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Abstract. We consider a small interacting sample coupled to several non-interacting leads.
Initially, the system is at thermal equilibrium. At some instant t0 the system is set into the so
called partition-free transport scenario by turning on a bias on the leads. Using the theory of
Volterra operators we rigorously formulate a Dyson equation for the retarded Green’s function
and we establish a closed formula for the associated proper interaction self-energy.

1 Introduction

The backbone of many-body perturbation theory (MBPT) is the interaction self-energy Σ which appears
in the Dyson equation for equilibrium or non-equilibrium Green’s function (NEGF). At equilibrium, the
structure of Σ is guessed by systematically using Wick’s theorem and by analysing the resulting expansion
into Feynman diagrams [1]. Approximation schemes (e.g. mean-field approach or RPA) correspond to
partial resummation of series of diagrams contributing to Σ.

In the finite temperature non-equilibrium regime of interacting systems the initial state cannot be in
general connected to a non-interacting state in the remote past [2] and writing down statistical averages
of time-dependent observables becomes cumbersome. The remedy for these technical difficulties is to
combine the chronological T and anti-chronological T time-ordering operators into a single operator TC
which allows an unambiguous book-keeping of time arguments on the two-branch Schwinger-Keldysh
contour [3, 4, 5]. This construction comes with a price: the non-equilibrium GFs turn to contour-ordered
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quantities as well and the various identities among them are not easy to recover. At a formal level one
assumes the existence of a well-defined self-energy and then the contour-ordered Dyson equation splits
via the Langreth rules [6] into the Keldysh equation for the lesser/greater GFs and the Dyson equation
for the retarded/advanced GFs (see the textbook [7]).

The existence of a self-energy for the contour-ordered GF is argued by the formal analogy between
equilibrium and non-equilibrium quantum averages. Then a complete interaction self-energy can be
defined [8]. In more recent formulations [9] one starts from the differential equations of motions relating
higher n-particle Green-Keldysh functions and then truncates the so-called Martin-Schwinger hierarchy
[10] to identify various approximate interaction self-energies.

Nowadays, the NEGFs formalism has grown up as a remarkable machinery, being extensively used for
modelling quantum transport in mesoscopic systems [11], molecules [12] or even nuclear reactions [13].
Nonetheless, some fundamental theoretical questions were only recently answered by fully exploiting the
mathematical structure of the theory and without making any approximations. We refer here to: (i) the
existence of non-equilibrium steady-state (NESS) in interacting open systems and (ii) the independence of
the steady-state quantities from the initial state of the sample [14, 15, 16, 17, 18] both in the partitioning
[19] and partition free [20, 21] settings. We recall here that in the partitioned case the system and the
biased leads are initially decoupled.

In our recent work [22] the NEGF formalism for open systems in the partitioning transport setting
was rigorously treated in great detail and generality. In particular, we derived the Jauho-Wingreen-Meir
formula (JWM) [23] for the time-dependent current through an interacting sample by using only real-time
quantities.

In this short note we are interested in the partition-free regime which was adapted for interacting systems
by Stefanucci and Almbladh [24]. Recently, the long-time limit of the energy current in the partition-free
setting was discussed in Ref.[25] and the transient heat currents due to a temperature gradient were
calculated in [26]. We briefly outline a rigorous formulation of the non-equilibrium Dyson equation for
the retarded Green’s function. Mathematical details are kept to a minimum while focusing on the explicit
construction of a complete interaction self-energy.

The content of the paper goes as follows: the model and the notations are introduced in Section 2, the
main result and its proof are given in Section 3 while Section 4 is left for conclusions.

2 Setting and notation.

2.1 Configuration space and Hamiltonians.

We assume that a small sample is coupled to M leads. The one-particle Hilbert space is of tight-binding
type and can be written as h = hS ⊕ hR where hS is finite dimensional and hR = ⊕M

ν=1hν describes
the (finite or not) leads. Particles can only interact in the sample. One-particle operators are denoted
with lower-case letters and their second quantized versions will be labeled by capital letters. The one-
particle Hamiltonian of the decoupled system acquires a block-diagonal structure hD = hS ⊕ hR where
hR = ⊕M

ν=1hν is supposed to be bounded. The lead-sample tunnelling Hamiltonian is defined as:

hT =

M∑

ν=1

dν
(
|fν〉〈gν |+ |gν〉〈fν |

)
, (1)

where ν counts the particle reservoirs, fν ∈ hν and gν ∈ hS are unit vectors and dν ∈ R are coupling
constants. The one-particle Hamiltonian of the fully coupled system is then h = hD + hT.
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We summarize below some useful identities from the second quantization machinery (see e.g. [27]). The
total Fock space admits a factorization F = FS ⊗ FR. By a#(f) we mean either the creation operator
a∗(f) or the annihilation operator a(f). We have a∗(λf) = λa∗(f) and a(λf) = λa(f). The general form
of the canonical anticommutation relations is:

{a(f), a∗(g)} = 〈f |g〉, {a(f), a(g)} = 0. (2)

Here 〈f |g〉 denotes the scalar product in h. Also, a#(f) is bounded on the Fock space and ‖a#(f)‖ ≤ ‖f‖.

The interacting, coupled system, and with a potential bias vν on lead ν is described by:

Kv := H +

M∑

ν=1

vνNν + ξW, (3)

where Nν is the particle number operator on lead ν (i.e., the second quantization of the orthogonal
projection onto hν), v := (v1, . . . , vM ) ∈ R

M is the bias vector and

W =
1

2

∑

x,y∈S

w(x, y)a∗(|x〉)a∗(|y〉)a(|y〉)a(|x〉)

is the second quantization of a two-body potential satisfying w(x, y) = w(y, x) and w(x, x) = 0 for all
x, y ∈ S. Here ξ ∈ R stands for the interaction strength.

Assume that the bias is turned on at time t = 0. Then the Heisenberg evolution of an observable A at
t > 0 is

τ tKv
(A) := eitKvAe−itKv , t > 0. (4)

If h is a single-particle Hamiltonian, the associated Heisenberg evolution obeys:

τ tH(a#(f)) := eitHa#(f)e−itH = a#(eithf), (5)

and one has

[H, a∗(f)] = a∗(hf), [H, a(f)] = −a(hf). (6)

Along the proof of the Dyson equation we shall encounter the operators:

b(f) := iξ[W,a(f)], b∗(f) := iξ[W,a∗(f)]. (7)

These operators vanish if f is supported in the leads.

2.2 The partition-free initial state.

The initial state in the partition-free case is a Gibbs state characterized by the inverse temperature β > 0
and the chemical potential µ ∈ R. It is given by the thermodynamic (i.e., infinite leads) limit of the
density operator ρpf = Z−1e−β(K0−µN) where Z = TrF e−β(K0−µN). In what follows we briefly explain
how it is constructed.

The interacting but decoupled and unbiased Hamiltonian is denoted by:

KD := HS + ξW +HR = K0 −HT .
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The thermodynamic limit of ρD = Z−1
D e−β(KD−µN) where ZD = TrF e−β(KD−µN) is a tensor product

between a many-body Gibbs state

ρS =
1

TrFS
e−β(HS+ξW−µNS )

e−β(HS+ξW−µNS )

only acting on the finite dimensional Fock space FS , andM non-interacting (β, µ) Fermi-Dirac quasi-free
states acting on each lead separately, where expectations can be computed with the usual Wick theorem.
This special factorized initial state is denoted by

〈
·
〉
β,µ

. For example, the expectation of a factorized

observable of the type O = OS

∏M
ν=1 a

∗(f̃ν)a(fν) where f̃ν , fν ∈ hν is:

〈
O
〉
β,µ

= TrFS
(ρSOS)

M∏

ν=1

〈fν |(Id + eβ(hν−µ))−1f̃ν〉.

Its connection with the partition-free state is as follows. Consider the operator B(α) := e−iαKDHT e
iαKD ,

α ∈ R. From (1) and using (5) we see that a generic term entering B(α) is

∑

ν

dν a
∗(e−iαhνfν) τ

−α
HS+ξW

(
a(gν)

)
.

Since hν is bounded and FS is finite dimensional, this expression remains bounded for all complex values
of α. Then, the initial value problem

Γ′(x) = B(ix)Γ(x), Γ(0) = Id,

has a unique solution given by a norm convergent Picard/Dyson/Duhamel iteration, with terms containing
products of operators either living in the sample or in the leads. Before the thermodynamic limit, the
operators Γ(β) and eβKDe−βK0 satisfy the same differential equation and obey the same initial condition
at β = 0, hence they must coincide. Consequently, writing e−βK0 = e−βKDΓ(β) we obtain an appropriate
expression for the thermodynamic limit: O being an arbitrary bounded physical observable, we have

〈
O
〉
pf

=

〈
Γ(β)O

〉
β,µ〈

Γ(β)
〉
β,µ

. (8)

2.3 Function spaces and Volterra operators.

Let 0 < T <∞ be fixed and let C1
0 ([0, T ]; h) be the space consisting of time dependent vectors φ(t) ∈ h,

0 ≤ t ≤ T , which are continuously differentiable with respect to t, and φ(0) = 0. We also define
C([0, T ]; h) to be the space of vectors which are only continuous in t, with no additional condition at
t = 0. We note that C([0, T ]; h) is a Banach space if we introduce the norm

|||ψ||| := sup
0≤t≤T

‖ψ(t)‖h.

We say that an operator A which maps C([0, T ]; h) into itself is a Volterra operator if there exists a
constant CA <∞ such that

‖(Aψ)(t)‖h ≤ CA

∫ t

0

‖ψ(t′)‖hdt
′, 0 ≤ t ≤ T.
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By induction one can prove:

‖(Anψ)(t)‖h ≤ CA

(CAT )
n−1

(n− 1)!

∫ t

0

‖ψ(t′)‖hdt
′, n ≥ 1.

This implies:

|||Anψ||| ≤
(CAT )

n

(n− 1)!
|||ψ|||

which leads to the conclusion that the operator norm of An is bounded by (CAT )n

(n−1)! . In particular, the

series
∑

n≥1(−1)nAn converges in operator norm and defines a Volterra operator with a constant less

than CAe
TCA . Thus, (Id + A)−1 = Id +

∑
n≥1(−1)nAn always exists and A(Id + A)−1 is a Volterra

operator.

2.4 Retarded NEGF’s.

Let {ej} be an arbitrary orthonormal basis in h. Define the map G0 : C([0, T ]; h) 7→ C1
0 ([0, T ]; h) given

by:

〈ej |(G0ψ)(t)〉 := −i

∫ t

0

〈ej |e
−i(t−t′)hvψ(t′)〉dt′, (9)

where hv denotes the single-particle Hamiltonian of the non-interacting coupled and biased system. One
can check that G0 is invertible and if φ ∈ C1

0 ([0, T ]; h):

(G−1
0 φ)(t) = i∂tφ(t)− hvφ(t) ∈ C([0, T ]; h). (10)

By definition, the retarded non-equilibrium Green operator in the partition-free settingGξ : C([0, T ]; h) 7→
C1

0 ([0, T ]; h) is given by:

〈ej |(Gξψ)(t)〉 := −i

∫ t

0

〈
{τ t

′

Kv
(a∗(ψ(t′))), τ tKv

(a(ej))}
〉
pf
dt′. (11)

Using (5) and (2) we see that Gξ coincides with G0 when ξ = 0. One can show that

‖(Gξψ)(t)‖h ≤ 2

∫ t

0

‖ψ(t′)‖hdt
′, (12)

so that Gξ is a Volterra operator. The integral kernel of Gξ is nothing but the more familiar retarded
NEGF given by:

GR
ξ (ej , t; em, t

′) := −iθ(t− t′)
〈
{τ t

′

Kv
(a∗(em)), τ tKv

(a(ej))}
〉
pf
, (13)

and

〈ej |(Gξψ)(t)〉 =
∑

m

∫ t

0

GR
ξ (ej , t; em, t

′)〈em|ψ(t′)〉dt′. (14)

The advanced NEGF can be defined as:

GA
ξ (ej , t; em, t

′) := −GR
ξ (ej , t

′; em, t) = iθ(t′ − t)
〈
{τ t

′

Kv
(a∗(em)), τ tKv

(a(ej))}
〉
pf
.

All properties of the advanced NEGF can be immediately read off from those of the retarded one.
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3 Irreducible self-energy and Dyson equation.

Here is the main result of our paper.

Theorem 3.1. The bounded linear map Σ̃ξ defined on C([0, T ]; h) by

〈ej |(Σ̃ξφ)(t)〉 := −i

∫ t

0

〈
{τ t

′

Kv
(b∗(φ(t′))), τ tKv

(b(ej))}
〉
pf
dt′ + i

〈
τ tKv

({a∗(φ(t)), b(ej)})
〉
pf
, (15)

obeys:

Gξ = G0 +G0Σ̃ξG0. (16)

Moreover, the operator G0Σ̃ξ is a Volterra operator, the inverse (Id +G0Σ̃ξ)
−1 exists, and by defining

Σξ := Σ̃ξ

(
Id +G0Σ̃ξ

)−1

(17)

we have:

Gξ = G0 +G0ΣξGξ. (18)

Finally, G0Σξ is also a Volterra operator and

Gξ = (Id−G0Σξ)
−1
G0. (19)

As in the physical literature Eq.(17) defines the irreducible self-energy operator Σξ in terms of the reducible

part Σ̃ξ.

3.1 Proof: step 1.

First we will show that the identity:

G−1
0 Gξ = Id + Fξ (20)

holds on C([0, T ]; h), where the map Fξ is given by

〈ej |(Fξψ)(t)〉 :=

∫ t

0

〈
{τ t

′

Kv
(a∗(ψ(t′))), τ tKv

(b(ej))}
〉
pf
dt′. (21)

Using (10) and (11) we have:

〈em|(G−1
0 Gξψ)(t)〉 = 〈em|ψ(t)〉 −

∑

j

〈em|hvej〉〈ej |(Gξψ)(t)〉

+

∫ t

0

〈
{τ t

′

Kv
(a∗(ψ(t′))), ∂tτ

t
Kv

(a(em))}
〉
pf
dt′. (22)

From the antilinearity of the annihilation operators we get

∑

j

〈em|hvej〉〈ej |(Gξψ)(t)〉 = −i

∫ t

0

〈
{τ t

′

Kv
(a∗(ψ(t′))), τ tKv

(a(hvem))}
〉
pf
dt′.

Also, using (4), (6) and (7) we obtain the identity:

∂tτ
t
Kv

(a(em)) = −iτ tKv
(a(hvem)) + τ tKv

(b(em)).

After introducing the last two identities into (22) we see that two terms cancel each other and we obtain
(21).
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3.2 Proof: step 2.

The second step consists of showing that Fξ can be written as Σ̃ξG0, with Σ̃ξ as in (15). In order to

identify Σ̃ξ we compute for every φ ∈ C1
0 ([0, T ]; h) the quantity (remember that a∗ is linear):

〈ej |(FξG
−1
0 φ)(t)〉 = i

∫ t

0

〈
{τ t

′

Kv
(a∗(∂t′φ(t

′))), τ tKv
(b(ej))}

〉
pf
dt′

−

∫ t

0

〈
{τ t

′

Kv
(a∗(hvφ(t

′))), τ tKv
(b(ej))}

〉
pf
dt′. (23)

Another key identity is:

τ t
′

Kv
(a∗(∂t′φ(t

′))) = ∂t′
(
τ t

′

Kv
(a∗(φ(t′)))

)
− iτ t

′

Kv
(a∗(hvφ(t

′)))− τ t
′

Kv
(b∗(hvφ(t

′))).

Inserting this identity in (23), integrating by parts with respect to t′ and using that φ(0) = 0, we obtain
(15).

3.3 Proof: step 3.

From the first two steps we derive (16). From (15) and (12) we see that A = G0Σ̃ξ is a Volterra operator
for which there exists a T -dependent constant C <∞ such that

‖(Aψ)(t)‖h ≤ C

∫ t

0

‖ψ(t′)‖hdt
′, 0 ≤ t ≤ T. (24)

Then (Id +A)−1 exists and it is given by a norm convergent Neumann series
∑

n≥0(−1)nAn, as long as
T <∞. We write

G0 =
(
Id +G0Σ̃ξ

)−1

Gξ

and we can choose Σξ as in (17), which finishes the construction of the proper self-energy.

3.4 Consequences.

We list a few remarks concerning our main theorem.

(i) The integral kernel of Σ̃ξ (see (15)) is given by

Σ̃R
ξ (ej , t; em, t

′) := −iθ(t− t′)
〈
{τ t

′

Kv
(b∗(em)), τ tKv

(b(ej))}
〉
pf

+ iδ(t− t′)
〈
τ tKv

({a∗(em), b(ej)})
〉
pf
.

If either ej or em belongs to the leads, then the above matrix element equals zero. The explanation for
the first term is that at least one of the two operators b(ej) and b

∗(em) defined through (7) would be zero
in this case, because the self-interaction W is only supported in the sample, hence it commutes with any
observable supported on the leads. For the second term, assume that ej is from the sample while em is
from the leads. Then since b(ej) is a sum of products of three creation/annihilation operators from the
sample, it anticommutes with a∗(em).

The proper self-energy Σξ has the same support property. One recognizes that Σ̃R
ξ (ej , t; em, t

′) is a

reducible self-energy . In the diagrammatic language all terms contributing to Σ̃R
ξ (ej , t; em, t

′) connect
to other diagrams by incoming and outgoing G0-lines.
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(ii) If both ej = x and em = y are located in the small sample, then from (18) we see that in order to
compute GR

ξ (x, t; y, t
′) we only need to know the values of G0 restricted to the small sample (besides Σξ,

of course). From (9) we have:

GR
0 (x, t; y, t

′) = −iθ(t− t′)〈x|e−i(t−t′)hvy〉,

with x, y ∈ S. Such matrix elements can be computed from the resolvent (hv − z)−1 restricted to the
small sample; we note that via the Feshbach formula, the biased leads appear as a non-local “dressing”
potential which perturbs hS , see [17] for details.

At the level of integral kernels, the Dyson equation (18) reads as:

GR
ξ (x, t; y, t

′) = GR
0 (x, t; y, t

′) +
∑

u,v∈S

∫ t

0

ds

∫ s

0

ds′GR
0 (x, t;u, s)Σ

R
ξ (u, s; v, s

′)GR
ξ (v, s

′; y, t′).

(iii) Assume that we can write Σξ as Σapp + Σ′, where Σapp is an approximating Volterra operator. If
Gapp = (Id−G0Σapp)

−1G0 is the solution of the approximate Dyson equation Gapp = G0+G0ΣappGapp,
then we have:

Gξ = Gapp +GappΣ
′Gξ

and Gξ = (Id−GappΣ
′)−1Gapp.

(iv) The limit T → ∞ is a difficult problem. To the best of our knowledge, the only rigorous mathematical
results concerning the existence of a steady-state regime in partition free-systems are [17, 18]. Under
certain non-resonant conditions and for ξ small enough, one can prove that a quantity like GR

ξ (em, t
′ +

s; en, t
′), where s > 0 is fixed, will have a limit as t′ → ∞. This is definitely not guaranteed to happen

in all cases, not even in non-interacting systems, due to bound states which may produce persistent
oscillations.

(v) One may generalize the present setting in order to allow a non-trivial time dependence of the bias, the
only difference would appear in the evolution groups which now would have time-dependent generators.
Also, the notation and formulas would be more involved, but no new mathematical issues would appear.

4 Conclusions

We presented a non-perturbative approach to the partition-free transport problem. Starting from the
Volterra operator associated to the retarded Green’s function we establish its Dyson equation, and we
derive closed formulas for the reducible and irreducible self-energies. The proof is rigorous yet elementary
in the sense that although the partition-free scenario is a genuine non-equilibrium regime we do not use
contour-ordered operators. A Keldysh equation for the lesser Green’s function should be established
following the same lines of reasoning, with the extra difficulty induced by the fact that in the partition
free setting, the small sample is not empty at t = 0.

Unravelling the connection between the closed formula (15) and the diagrammatic approach remains
an open problem. Although the anti-commutator structure

〈
τ tKv

({a∗(φ(t)), b(ej)})
〉
pf

in Eq. (15) looks

less familiar one can speculate that the systematic application of the Wick theorem should eventually
recover various classes of diagrams. A possible approximation in the self-energy would be to replace the
interacting propagator τ tKv

(·) with the non-interacting one τ tHv
(·), where Kv = Hv + ξW . Note however
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that the application of the Wick theorem is technically challenging due to the extra term Γ(β) appearing
in (8).

Given the fact that the partition-free setting is less studied in the literature, yet more intuitive on physical
grounds than the partitioned approach, we hope that our investigation will trigger more efforts from both
the physical and mathematical-physics communities. Our main message is that one can properly formulate
some of the central equations of the many-body perturbation theory (MBPT) in a direct way, paying
close attention to fundamental issues like convergence, existence, uniqueness, stability, and at the same
time, trying to obtain precise error bounds for a given approximation of the self-energy. The Volterra
theory guarantees that for relatively small T ’s one can ”keep doing what one has been doing”; however,
the large time behavior like for example the existence of steady states and the speed of convergence seem
to be very much dependent on the system and no general recipe can work out in all cases.
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