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Abstract

Wideband signals are expected to be used to achieve the required quality of service (QoS) in the next generation of
wireless communications, civil and military radar, and many wireless sensor network (WSN) scenarios. Wideband
signal detection has been identified as one of the most challenging problems in the proliferation of the cognitive
radio technology. Moreover in many applications, spectrum sensing in cognitive radio (CR) is expected to be
performed with limited resources in terms of time, computation, and complexity. This paper is dedicated to the
detection of a wideband signal with small sample size. Aiming at using small sample size, a statistical model of
samples is given based on Student’s t distribution. However, the limited number of channel observations brings a
reduction of confidence in the decision. A set of new basic probability assignments associated with the hypothesis of
the occupied or vacant channel are then proposed to perform the Dempster-Shafer (D-S) decision process. Simulation
results show that the proposed method has much higher sensitivity to sense an occupied channel than the traditional
energy detection method (ED) and the decision fusion method when small sample size is used.

Keywords: Wideband signal detection, Cognitive radio, Small sample size, Dempster-Shafer theory of evidence

1 Introduction
With the evolution and development of various wireless
technologies, spectrum resources are becoming scarce
due to the increasing need for spectral bandwidth and
number of users. Cognitive radio (CR) technology has
attracted a lot of interest, especially for the next gener-
ation of wireless communications, many types of radar
systems and wireless sensor network (WSN) [1–4]. In all
those systems, wideband signals are expected to be used
to achieve the required quality of service (QoS). There-
fore, wideband signal detection plays an important role in
a wide range of wireless communication systems and has
been identified as one of the most challenging problems
in the CR technology applications [5–7].
Although, there are numerous current research works

focusing on wideband signal detection, many severe chal-
lenges still exist [8, 9]. First of all, in realistic scenarios,
it is very difficult to know the number of antennas, the
coding scheme, and the structure of the detected signal.
Therefore, an accurate blind spectrum sensing method
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without any prior information is of great interest. More-
over, in order to avoid unexpected harmful interference,
CR user must be able to quickly vacate the frequency band
when the licensed user starts transmitting. Thus, the sens-
ing time must be limited to an acceptable level, while still
guarantee a sufficiently low detection error probability.
For this purpose, a number of spectrum sensing meth-

ods have been proposed and investigated in [10–17].
Under no prior knowledge about the wideband signal,
energy detection (ED) has been shown to be themost pop-
ular technique in cooperative sensing thanks to its low
computational power requirements on wireless devices
[3, 13]. However, energy detection is limited by the signal-
to-noise ratio (SNR) wall and has high probability of
false alarm [14]. In order to overcome these shortcom-
ings, eigenvalue-based spectrum sensing methods have
been proposed [14, 15], which are mainly based on the
asymptotic or limiting distribution of extreme eigenval-
ues in order to overcome the noise uncertainty problem.
Unfortunately, they cannot be extended to a more general
dimensional setting due to their daunting computational
cost. Moreover, these techniques require large number of
samples, which is often not suitable for real application
scenarios [16]. Thus [18–20], study the spectrum sensing
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method using goodness-of-fit (GoF) test for small sam-
ple size, relying on the Anderson-Darling (AD) statistic.
In that case, the GoF test is only performed to assess the
rejection (or not) of the null hypothesis (i.e., the absence
of PU signal). Different from the GoF test mentioned
above, both hypotheses of the presence and absence of
the wideband signal would be considered in the proposed
method in order to make full use of the statical informa-
tion of the binary hypotheses and improve the detection
performance.
Considering the challenges mentioned above, a robust

spectrum sensing method with small sample size is pro-
posed in this work. On the one hand, this means short
time in real-time data processing. Especially when the
detecting devices have only a single-radio architecture, the
time of sampling and observing the channel is expected
to be as short as possible. On the other hand, we consider
that only less steady state reception can be obtained in
some complex information environment. Firstly, consid-
ering that the Gaussian approximation in ED is good only
when the sample size is sufficiently large [21], we reformu-
late the spectrum sensing into Student’s t distribution test
problem as in [19], which is popular in situations where
the sample size is small. Besides, based on the charac-
teristics of Student’s t-distribution, new basic probability
assignment (BPA) functions are proposed for estimating
the presence or not of a wideband signal emitter. However,
due to the small number of samples, the estimation perfor-
mance inevitably suffers from lack of reliability. In order
to improve the reliability, Dempster-Shafer (D-S) theory
of evidence [22–30] is used to make a final decision. As in
[31], in the proposed method, Student’s t distribution of a
reduced number of samples is used. The main contribu-
tion stands in the proposition of two new BPA functions to
evaluate the credibility of the collected small samples from
a wideband signal and the combination of BPA functions
in order to make a more reliable decision. Specifically, the
novelty is that the cumulative distribution function (CDF)
of Student’s t distribution is utilized to define the BPA
functions, which is different from the BPA functions based
on the CDF of normal distribution and ED in [23–27].
The new BPAs based on Student’s t distribution are more
appropriate for dealing with the situation of small samples
than the BPAs based on normal distribution. Moreover,
in the proposed scheme, in order to fully exploit the col-
lected samples, both hypotheses of presence or absence of
wideband signal are used. Simulations show that the pro-
posed method has much higher sensitivity to detect the
presence of a signal than ED- and GoF-based methods.
The rest of the paper is organized as follows. In

Section 2, some spectrum sensing preliminaries are pre-
sented. The proposed spectrum sensing scheme includ-
ing the statistical model of the received small samples,
basic probability assignment functions and D-S fusion, is

described in Section 3. Simulation results and conclusions
are given in Sections 4 and 5, respectively.

2 Spectrum sensing preliminaries
In this paper, we assume that a wideband signal needs
to be detected. According to [32], a signal having a frac-
tional bandwidth greater than 0.01 and smaller than 0.25
is categorized as wideband. Consider that the observed
bandwidth is subdivided into K subbands with equal
bandwidth Bsub. Then the full observed bandwidth is
Btot = KBsub. In each subband, signals are band-passed
and downconverted to the baseband. In order to pro-
vide a detection in a very short time, a limited number
of real-valued samples Q are collected in each subband.
The Nyquist rate in each subband is 2Bsub, and by set-
ting the oversampling factor to N, the sampling period is
Ts = 1

2BsubN . In each subband, the signal is oversampled
with a factor N, which means that the sampling frequency
is very much larger than the subband width. Actually,
when N is large enough while maintaining a small Q
(number of samples), the scheme in each subband can be
seen as a narrowband signal sampling process. As the over
sampling factor N is increased, the observation duration
QTs is reduced. Let x(k)

q be the qth sample in the kth sub-
band. Wideband signal detection can be formulated as a
binary hypothesis problem as follows

x(k)
q =

⎧
⎪⎨

⎪⎩

w(k)
q H0

∀k∈{1, 2, . . . ,K},∀q∈{1, 2, . . . ,Q},
s(k)q +w(k)

q H1

(1)

where H0 andH1 respectively represent the hypotheses of
absence and presence of a signal in the kth subband. w(k)

q
is the noise contribution in the sample. Without loss of
generality, we assume that the noise is an additive white
Gaussian noise (AWGN) with zero mean and variance σ 2.
s(k)q is the signal component in the kth subband when it is
present. According to the oversampling assumption and
small number of samples (short observation), it can be
assumed that the signal is constant during its observation
so that s(k)q = s(k). In each of the K subbands, Q samples
are collected with oversampling factor N. The more K is
large, the more the narrowband signal hypothesis in each
subband is true. The more K and N are large, the more
the constant signal assumption overQ samples tends to be
true. Since the number of samples Q is small, the obser-
vation duration is very short and during this short period,
the narrowband signal can be approximated as constant.
Moreover, in practice, the distribution of the power spec-
tral density of the signal is unknown, we assume that
the signal uniformly occupies the full bandwidth which is
the most reasonable, fair, and neutral assumption. As an
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example, this assumption holds in many multicarrier sig-
nals schemes. It allows to model the signal as a constant
in both time and frequency domains. Let us consider in
this study that s(k) = 1, without loss of generality. In the
simulations section below, the values of K, N, and Q have
been selected arbitrarily as a matter of example, and some
simulations are provided in Subsection 4.4 to support the
signal assumptions.
In this case, the spectrum sensing problem is equiva-

lent to a standard scenario with Gaussian distributions
having equal variance and different means under each
hypothesis.

3 Methods
The proposed spectrum sensing method relies on a fusion
processing using D-S theory and a new set of BPA func-
tions. BPA definition and evaluation are the key points
of the D-S fusion. In most applications, it is generally
assumed that the number of available samples is suffi-
ciently large in order to correctly estimate the BPAs and
perform a reliable fusion. But in this work, we consider
that the CR device is very limited in terms of sample size.
Hence, we propose to define some new BPAs relying on
Student’s t distribution.

3.1 Statistical model of the received small samples
Considering the small number of samples and the special
sensing scenario about detecting a wideband signal in a
zero mean Gaussian noise, it is shown that the optimal
test in signal detection is Student’s t test [31]. In order
to construct the test statistic in accordance with Student’s
t distribution, we denote, respectively, Xk and S2k as the
mean and variance of the samples in the kth subband,

Xk �
Q∑

q=1

x(k)
q
Q

(2)

and

S2k �
Q∑

q=1

(
x(k)
q − Xk

)2

Q − 1
(3)

where k = 1, 2, · · · ,K . Hence, K variables (one from each
subband) are obtained as

Yk �
Xk

√
Q

Sk
, k = 1, 2, · · · ,K . (4)

Under H0 hypothesis, there exists only noise, x(k)
q ∼

N
(
0, σ 2), then Yk follows Student’s t distribution with

degree v = Q−1 degrees of freedom. Otherwise, underH1
hypothesis, the received signal samples include the wide-
band signal and noise, then x(k)

q ∼ N
(
μ, σ 2), with μ = 1

in our case. It comes that Yk has a non-central Student’s

t distribution with v = Q − 1 degrees of freedom and
non-centrality parameter δ = √

Qμ2/σ 2, where μ2/σ 2 is
the SNR [19].
The probability density function (PDF) of Student’s t

distribution has the similar bell shape of a normally dis-
tributed variable withmean 0 and variance 1, except that it
is a bit lower and wider. The largerQ is, themore Student’s
t distribution approaches the standard normal distribu-
tion [33]. Conversely, whenQ is small, the tails of Student’s
t distribution are much heavier than those of the normal
distribution, as shown in Fig. 1. Moreover, the PDFs of the
non-central t distribution with different Q are also given
in Fig. 1. As we can see, there is a certain overlap between
the tails of the t distribution and the non-central t distri-
bution with the same degrees of freedom v = Q − 1,
and the overlapping region decreases with the increase of
Q from Fig. 1a to d. This also validates that Yk in Eq. (4)
for small Q is prone to taking values that fall far from
their statistical mean and leads to an unreliable BPA esti-
mation. Therefore, we propose to calculate K variables Yk
and combine them by D-S theory of evidence for a reliable
decision. In addition, in order to estimate the belief of the
observed signal in each subband, the cumulative distribu-
tion functions (CDF) of Yk under H0 and H1 denoted by
F0(y) and F1(y) are applied, which are given in [33]. For D-
S fusion, we assume that Yk has at least two values, that is
K ≥ 2.
Note that in this statistical model we reformulate the

received samples x(k)
q into a new variable Yk , which has

Student’s t distribution and non-central t distribution
underH0 andH1 hypotheses, respectively. The CDF F0(y)
of Yk under H0 hypothesis only depends on the degrees
of freedom v, while F1(y) is related to parameter δ =√
Q · SNR. In this work, we assume that the noise vari-

ance σ 2 is known, as in ED-based methods. Moreover, for
the proposedmethod, as explained in the next section, the
wideband signal detection is done by evaluating the relia-
bilities of bothH0 andH1 hypotheses, which is a beneficial
feature that is not used in the conventional GoF test based
methods.

3.2 Basic probability assignment estimation
According to the D-S theory of evidence [22], � denotes
the universal set, and let 2� be its power set. A func-
tion m : 2� �→[ 0, 1] named basic probability assignment
(BPA) is defined to quantify the candidate proposition as
follows:

m(∅) = 0,
∑

A⊂2�

m(A) = 1. (5)

where for any set A ⊂ 2�, m(A) > 0 which provides the
degree of confidence that proposition A is true. Then, in
our framework, 2� = {∅, {H0}, {H1},�}.
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a b

c d

Fig. 1 Impact of different degrees of freedom v = Q − 1 for the probability density function (PDF) of Student’s t distribution and non-central t
distribution. a Q = 2. b Q = 4. c Q = 8. d Q = 16

In order to evaluate the credibility of the collected
samples in the kth subband, we propose two new BPA
functions mk(H0) and mk(H1) for H0 and H1 hypotheses
in Eqs. (6) and (7), respectively

mk(H0) = 1 − F0(Yk) (6)
mk(H1) = F1(Yk) (7)

where mk(H0) and mk(H1) are related to the CDF F0 (y)
and F1 (y) of Yk , respectively. Importantly, these BPA func-
tions indicate the credibilities for hypotheses H0 and H1
to be true, respectively. For example, a larger value of Yk
results in a larger mk(H1) and a smaller mk(H0), and vice
versa, as shown in Fig. 2. Thus, we can make a decision
on the presence or not of the wideband signal by compar-
ing mk(H0) and mk(H1). If mk(H1) > mk(H0), the signal
exists; otherwise, the signal does not exist. However, since
the number of samples Q is small, Yk has been obtained

Fig. 2 Tendency of the BPA functions of Yk includingmk(H0) under
H0 hypothesis andmk(H1) under H1 hypothesis
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with a small number. This will cause a big uncertainty and
increase the conflict betweenmk(H0) andmk(H1). Then a
third BPA function is defined as follows:

mk(�) = 1 − mk(H0) − mk(H1) (8)

where � = {H1,H0} denotes either hypothesis could be
true and mk(�) indicates the total uncertainty of the kth
subband of samples. mk(�) is finally equal to F0 − F1 by
combining Eqs. (6), (7), and (8). We can show that the
value of F0−F1 is non-negative with the CDFs of Student’s
t distribution and the non-central t distribution. As shown
in Fig. 3, the CDF of Student’s t distribution F0 (the solid
line) is on the left side of the non-central t distribution F1
(the dashed line). Then, for the same value Yk , F0 must be
greater than or equal to F1. In order to improve the proba-
bility of detection and reduce the influence of the conflict
evidence, we make a final reliable decision by fusing all
BPA functions obtained from the K groups of samples.

3.3 D-S fusion and final decision
In order to improve the reliability of detection, we need to
combine the K BPA functions and make a final decision.
Then, according to the basic D-S theory of evidence and
Eqs. (6), (7), and (8), two new combined BPA functions
can be obtained as [23]

m(H0) = m1(H0) ⊕ m2(H0) ⊕ · · · ⊕ mK (H0)

= 1
1 − κ

∑

A1∩A2∩···∩AK=H0

K∏

k=1
mk(Ak) (9)

m(H1) = m1(H1) ⊕ m2(H1) ⊕ · · · ⊕ mK (H1)

= 1
1 − κ

∑

A1∩A2∩···∩AK=H1

K∏

k=1
mk(Ak) (10)

Fig. 3 Cumulative density function (CDF) of Student’s t distribution
and the non-central t distribution

where Ak ⊂ 2� for k ∈ {1, . . . ,K} and κ is a measure of
the amount of conflict among the mass sets:

κ =
∑

A1∩A2∩···∩AK=∅

K∏

k=1
mk(Ak). (11)

From Eqs. (9), (10), and (11), we can see that the two new
BPA functionsm(H0) andm(H1) are obtained by using the
orthogonal sum for K BPA functions, which indicate the
credibilities for hypotheses H0 and H1 to be true, respec-
tively. The notationm = m1 ⊕m2 is called the orthogonal
sum of m1 and m2, which is commutative and associa-
tive. If and only if there exist at least two subsets A1 and
A2 of 2� with A1 ∩ A2 �= ∅ such that m1(A1) �= 0 and
m2(A2) �= 0, thenm is calculated as shown in Eq. (12) [23].

m(A) =

∑

A1∩A2=A
m1(A1)m2(A2)

∑

A1∩A2 �=∅
m1(A1)m2(A2)

. (12)

Finally, based on all K subband observations, the deci-
sion is made by comparing the ratio between m(H1) and
m(H0) as follows:

m(H1)

m(H0)

H1
≷
H0

η (13)

where η is the decision threshold. In fact, it is difficult
to derive the closed-form expression for the threshold
η and the probability of detection for the proposed
method. Therefore, we have developed a simulation
model. According to the constant false alarm rate (CFAR)
definition, the threshold η corresponding to a given prob-
ability of false alarm is determined in advance by a Monte
Carlo simulation with 10,000 independent runs. With the
changing of η, the corresponding detection probability is
determined, which is used to draw the receiver operating
characteristics curves (ROC). The simulation settings and
some examples are given in Section 4.
Consequently, the pseudo code of the proposed spec-

trum sensing method with small sample size is given in
Algorithm 1. Note that the computational complexity of
the proposed method mainly comes from D-S fusion (step
10 in Algorithm 1. Generally, it increases rapidly with the
number of elements in the frame of discernment (�) and
the number of the subbands K, as shown in Eqs. (9) and
(10). However, since the frame of discernment consists of
only two elements {H0,H1} for the spectrum sensing, the
combination of two mass functions requires the computa-
tion of 2× 2 intersections [28]. Moreover, in the proposed
scheme, due to the division of the observed bandwidth
into K subbands, a large K increases the number of BPA
functions then the computational complexity of the D-S
fusion.
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Algorithm 1 Proposed SS method with small sample size
1: Initialization: k = 0
2: η ← Set the decision threshold
3: x(k)

q ← Get the received sample with K subbands
(each subband has Q elements)

4: while k ≤ K do
5: k ← k + 1
6: Yk ← Construct the new statistic using Eq. (4)
7: F0(Yk), F1(Yk) ← Yk
8: mk(H0),mk(H1),mk(�) ← F0(Yk), F1(Yk)
9: end while

10: D-S fusion (m(H0),m(H1)) ← Calculate the final BPA
functions using Eqs. (9) and (10)

11: if m(H1)
m(H0)

> η then
12: Wideband signal is said to be present in the band
13: else
14: Observed bandwidth is said to be free
15: end if

4 Simulation results and analysis
In this section, the performance of the proposed method
is evaluated with simulations. At first, we compare the
proposed method with ED under different sampling num-
bers. Secondly, we evaluate the detection performance of
the proposed method with the same total sampling num-
bers and different subband and sampling numbers. Finally,
we compare with the methods in [19, 20, 34].
In the following simulations, we consider a baseband

signal with Btot bandwidth and decompose it into K sub-
bands, which means that the bandwidth of each subband
is Bsub = Btot/K . With an oversampling factorN, the sam-
pling rate in each subband is then 2BsubN . The parameters
are summarized in Table 1. Note that the simulation set-
tings in Table 1 are only chosen to illustrate our purpose
and some other values could be chosen.

4.1 Performance comparison with ED
In the first simulation, we examine the performance of
the proposed method by comparison with the basic ED

Table 1 Simulation parameters

Parameter Value

Total bandwidth Btot 100 MHz

Bandwidth of each subband Bsub 5 MHz

Number of subbands K 20

Number of samples in each subband Q 16/8

Oversampling factor N 100

Sampling period Ts = 1
2BsubN

0.001 μs

method, which calculates the total energy in the full band-
width as

E =
K∑

k=1

Q∑

q=1

∣
∣
∣x(k)

q

∣
∣
∣
2

(14)

The noise power σ 2 is assumed to be known in EDmethod
and in the proposed method. As performed in many
practical schemes, the noise power can be estimated peri-
odically when no signal is expected in the frequency band
of interest. Note that in the comparison, the test statis-
tic in ED method is approximated as Gaussian distributed
thanks to the number of the total samples (e.g., KQ > 150)
and by using the central limit theorem.
Figure 4 presents the probability of detection (Pd) of

the proposed method with different sampling numbers
Q = 16, 8, where the probability of false alarm

(
Pfa

)
is set

to 0.05 for different SNR. As can be seen, with the increase
of SNR and for a given value of Q, the probability of detec-
tion of the proposed method rises up quickly which is
better than the trend of the curves of ED method. For the
proposed method, when Q = 8, the probability of detec-
tion is 0.9796 at − 10 dB. In order to clearly reveal the
performance of the proposed method, the receiver oper-
ating characteristic (ROC) curves with different sampling
numbers are shown in Fig. 5 when SNR = − 15 dB. It
is obvious that the performance of the proposed method
and ED is improved with the increase of the number of
samples. When the probability of false alarm Pfa is 0.1
with Q = 16, 8, the corresponding detection probabili-
ties of the proposed method Pd reach 0.9632 and 0.8155,
respectively.

Fig. 4 Probability of detection versus SNR for the proposed method
and ED with different sampling numbers
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Fig. 5 ROC curves of the proposed method and ED with different
sampling numbers at SNR = − 15 dB

4.2 Performance analysis with different Q and K
In the second simulation, the detection performance of
the proposed method with different Q and K is assessed.
Figure 6 shows that Pd of the proposed method goes up
quickly with the increase of SNR, where Pfa is 0.05 for dif-
ferent SNRs. As shown in Fig. 6, when the total number
of samples is KQ = 600, the detection performance of
the proposed method is better than when KQ = 360 and
KQ = 120. Moreover, for the same total number of sam-
ples, when the wideband is divided into more groups, a
better performance can be obtained. As en example, for
SNR = −15 dB and KQ = 360, the magnified part of
Fig. 6 shows that the detection probabilities are respec-
tively 0.9501, 0.9461, and 0.9455 for (Q = 9, K = 40),
(Q = 12, K = 30), and (Q = 18, K = 20), respectively. This

Fig. 6 Probability of detection versus SNR for the proposed method
with QK = 600, 360, 120 and K = 40, 30, 20

also verifies that a large K results in a more reliable BPA
estimation and finally gives a high detection probability.
Moreover, the corresponding ROC curves are shown in
Fig. 7 for SNR = − 15 dB. It also verifies that a larger K
gives a better detection performance with the same total
number of samples.

4.3 Performance comparison with the methods in [19, 20,
34] and EDmethod

In the third simulation, we compare the performance of
the proposed method with the GoF methods, such as the
AD test-based method in [19], the Zc test-based method
in [20], the decision fusionmethod in [34] and EDmethod
with Q = 8,K = 20 for SNR = −15 dB. The GoF
method is non-parametric which utilizes the distance
between the empirical CDF of the received samples and
the CDF of the noise distribution, to detect the pres-
ence of a signal. In [19], a blind spectrum sensing method
based on the AD statistic and Student’s t distribution is
proposed to outperform the energy detection. In [20], a
non-parametric sensing scheme is proposed for the non-
Gaussian environment modelled by Middleton class A
noise, where the PDF of the test statistics is approximated
as log-normal and an expression of Pd is derived. In [34], a
semi-soft fusion scheme is proposed to achieve a trade-off
between sensing performance and bandwidth cost. How-
ever, thesemethods are not designed for the small number
of samples situation, nor wideband signal. As we can see
in Fig. 8, the proposed method, the AD test-based method
in [19], the Zc test-based method in [20], and the decision
fusion method in [34] are better than ED when Q = 8
and K = 20 are used. When the probability of false
alarm is equal to 0.1, the detection probability of the pro-
posed method is 0.8191. This is about 21% better than the

Fig. 7 ROC curves of the proposed method with QK = 600, 360, 120
and K = 40, 30, 20 at SNR= − 15 dB
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Fig. 8 ROC curves comparison among different spectrum sensing
methods with Q = 8, K = 20 at SNR= − 15 dB

detection probability of its counterparts (the GoF meth-
ods in [19, 20]). Even comparing with the decisionmethod
proposed in [34], the detection probability of the proposed
method has also about 8.1% increase.
In addition, in order to facilitate the comparisons with

other methods, the number of samples required by the
methods in [19, 20, 34] and ED method to achieve a simi-
lar performance is determined. In Table 2, for the targeted
performance (Pfa,Pd) = (0.1, 0.8191), it can be observed
that the required number of samples for the methods in
[19, 20, 34] and ED method is 260, 260, 200, and 9900.
However, the proposed method only requires 160 samples
to achieve the same performance. In fact, reducing the
number of samples without sacrificing the detection per-
formance is a very attractive feature in practice, because
it brings an economy in terms of computational burden,
sensing time, and energy consumption.

4.4 Discussion
Considering that no prior knowledge about the channel is
available, a simplified assumption of the constant ampli-
tude in each subband is made in this paper. In order to
support this assumption, some simulations are proposed
to show that the method still works well even if the whole

Table 2 Required number of samples for different methods with
same performance

Method Pfa Pd Required number of samples

ED method 0.1 0.8191 9900 (Q = 495, K = 20)

Method in [20] 0.1 0.8191 260 (Q = 13, K = 20)

Method in [19] 0.1 0.8191 260 (Q = 13, K = 20)

Method in [34] 0.1 0.8191 200 (Q = 10, K = 20)

Pro-method 0.1 0.8191 160 (Q = 8, K = 20)

bandwidth is not perfectly uniformly occupied. Let us
consider amplitude s(k) in each subband as a Gaussian dis-
tribution with mean s̄ = 1 and variance σ 2

s . Given that
σ 2
s = 0 corresponds to the constant amplitude assump-

tion, we present the results with σ 2
s = 0.3 and σ 2

s = 0.6
in the following simulations, whereQ = 16 and K = 20.
As shown in Fig. 9, when σ 2

s is increased from 0 to 0.3 and
0.6, the proposed method still performs well compared to
the classical ED technique. We can also see that the pro-
posed method is not sensitive to the variation of power
spectral density of the signal.

5 Conclusion
In this paper, we propose a wideband signal detection
method for CR applications with limited resource. The
advantage of the proposed technique compared to the tra-
ditional detection methods is that only small number of
samples is required. In this work, the samples are fully
exploited with Student’s t test which ismore suitable to the
small sample size case. New BPA functions based on the
CDF of Student’s t distribution are constructed and used
in the D-S fusion process, which improves the detection
performance. Simulation results show that the proposed
method can achieve a higher probability of detection than
other compared methods with small sample size. The pro-
posed method uses a small number of samples without
sacrificing the detection performance, therefore brings an
important economy in terms of computational burden,
sensing time, and energy consumption. In the future work,
multipath frequency selective channels between the PUs
and the CR devices could be considered. As a result of
such harsh environment (multipath with no line of sight
and strong propagation loss), cooperative spectrum sens-
ing techniques with small sample size will be developed. In

Fig. 9 Probability of detection versus SNR for the proposed method
and ED with different σ 2

s
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addition, due to an imperfect knowledge of the bandwidth
especially at the edge of the spectrum or strong frequency
attenuations through the channel, it may occur in practice
that sometimes the band is not fully occupied when the
signal is present. Although this situation is not considered
in this study, a rejection of misleading subbands could be
elaborated according to an evaluation of a similarity cri-
teria among the subbands. This problem deserves to be
taken into account in some future work.
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