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Abstract. This paper is devoted to Fokker-Planck and linear kinetic equa-
tions with very weak confinement corresponding to a potential with an at
most logarithmic growth and no integrable stationary state. Our goal is to

understand how to measure the decay rates when the diffusion wins over the
confinement although the potential diverges at infinity.

1. Introduction. This paper addresses the large time behavior of the solutions
to the macroscopic Fokker-Planck equation and to kinetic equations with Fokker-
Planck or scattering collision operators.

The first part of this paper deals with the macroscopic Fokker-Planck equation

∂u

∂t
= ∆xu+∇x · (∇xV u) = ∇x

(

e−V ∇x

(

eV u
))

(1)

where x ∈ Rd, d ≥ 3, and V is a potential such that e−V 6∈ L1(Rd), that is, e−V dx
is an unbounded invariant measure. We shall investigate the two following examples

V1(x) = γ log |x| and V2(x) = γ log〈x〉
with γ < d and 〈x〉 :=

√

1 + |x|2 for any x ∈ Rd. These two potentials share the
same asymptotic behavior as |x| → ∞. The potential V1 is invariant under scalings,
whereas V2 is smooth at the origin. In both cases, the only integrable equilibrium
state is 0. Thus, if the initial datum u0 is such that u0 ∈ L1(Rd), we expect that
the solution to (1) converges to 0 as t→ +∞. When γ > 0, the potential V is very
weakly confining in the sense that, even if it eventually slows down the decay rate, it
is not strong enough to produce a stationary state of finite mass: the diffusion wins
over the drift. Our goal to establish the rate of convergence in suitable norms. We
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shall use the notation ‖·‖p := ‖·‖Lp(dx) in case of Lebesgue’s measure and specify

the measure otherwise.

Theorem 1.1. Assume that d ≥ 3, γ < (d − 2)/2 and V = V1 or V = V2. Then

any solution u of (1) with initial datum u0 ∈ L1
+ ∩ L2(Rd) satisfies, for all t ≥ 0,

‖u(t, ·)‖22 ≤ ‖u0‖22
(1 + c t)

d
2

with c :=
4

d
min

{

1, 1− 2 γ
d−2

}

C−1
Nash

‖u0‖4/d2

‖u0‖4/d1

. (2)

Here CNash denotes the optimal constant in Nash’s inequality [22, 10]

‖u‖2+
4
d

2 ≤ CNash ‖u‖
4
d
1 ‖∇u‖22 ∀u ∈ L1 ∩ H1(Rd) . (3)

Note that the rate of decay is independent of γ and we recover the classical estimate
due to J. Nash when V = 0 (here γ = 0). The proof of Theorem 1.1 and further
considerations on optimality are collected in Section 2.1.

Theorem 1.1 does not cover the interval (d−2)/2 < γ < d. This range is covered
by employing the natural setting of L2

(

eV
)

and by requiring additional moment
bounds.

Theorem 1.2. Let d ≥ 3, γ < d, V = V1 or V = V2, and u0 ∈ L1
+ ∩ L2

(

eV
)

. If

γ > 0, let us assume that
∥

∥|x|ku0
∥

∥

1
< ∞ for some k ≥ max{2, γ/2}. Then any

solution of (1) with initial datum u0 satisfies

∀ t ≥ 0 , ‖u(t, ·)‖2L2(eV dx) ≤ ‖u0‖2L2(eV dx) (1 + c t)−
d−γ
2 .

The constant c depends on d, γ, k, ‖u0‖L2(eV dx), ‖u0‖1, and
∥

∥|x|ku0
∥

∥

1
.

The proof of Theorem 1.2 is done in Section 2.2. Although this is a side result,
let us notice that the case in which the potential contributes to the decay, i.e., when
γ < 0, is also covered in Theorem 1.2. The scale invariance of (1) with V = V1
can be exploited to obtain intermediate asymptotics in self-similar variables. Let
us define

u⋆(t, x) =
c⋆

(1 + 2 t)
d−γ
2

|x|−γ exp

(

− |x|2
2 (1 + 2 t)

)

, (4)

The following result on intermediate asymptotics allows us to identify the leading
order term of the solution of (1) as t→ +∞. It is the strongest of our results on (1)
but initial data need to have a sufficient decay as |x| → ∞.

Theorem 1.3. Let d ≥ 1, γ ∈ (0, d) and V = V1. If for some constant K > 1, the
function u0 is such that

∀x ∈ R
d , 0 ≤ u0(x) ≤ K u⋆(0, x)

where c⋆ is chosen such that ‖u⋆‖1 = ‖u0‖1 then the solution u of (1) with initial

datum u0 satisfies

∀ t ≥ 0 , ‖u(t, ·)− u⋆(t, ·)‖p ≤ K c
1− 1

p
⋆ ‖u0‖

1
p

1

(

e
2 |γ|

)

γ
2

(

1−
1
p

)

(1 + 2 t)−ζp

for any p ∈ [1,+∞), where ζp := d
2

(

1− 1
p

)

+ 1
2 p min

{

4, 4 (d− γ), d− 1
}

.

More detailed results will be stated in Section 2.3. Let us quote some relevant
papers for (1). In the case without potential, the decay rates of the heat equation
is known for more than a century and goes back to [15]. Standard techniques use
the Fourier transform, Green kernel estimates and integral representations: see for
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instance [14]. There are many other parabolic methods which provide decay rates
and will not be reviewed here like, for instance, the Maximum Principle, Harnack
inequalities and the parabolic regularity theory: see for instance [25].

In his celebrated paper [22], J. Nash was able to reduce the question of the decay
rates for the heat equation to (3): see [7] for detailed comments on the optimality
of such a method. Entropy methods have raised a considerable interest in the
recent years, but the most classical approach based on the so-called carré du champ

method applies to (1) only for potentials V with convexity properties and a sufficient
growth at infinity: typically, if V (x) = |x|α, then α ≥ 1 is required for obtaining
a Poincaré inequality and the rate of convergence to a unique stationary solution
is then exponential, when measured in the appropriate norms; see [3] for a general
overview. An interesting family of weakly confining potentials is made of functions V
with an intermediate growth, such that e−V is integrable but lim|x|→∞ V (x)/|x| = 0:
all solutions of (1) are attracted by a unique stationary solution, but the rate is
expected to be algebraic rather than exponential. A typical example is V (x) = |x|α
with α ∈ (0, 1). The underlying functional inequality is a weak Poincaré inequality:
see [24, 20], and [2] for related Lyapunov type methods à la Meyn and Tweedie
or [5] for recent spectral considerations. We refer to [1] and [27, 28, 29] for further
considerations on, respectively, weighted Nash inequalities and spectral properties
of the diffusion operator.

The second part of this paper is devoted to kinetic equations involving a degen-
erate diffusion operator acting only on the velocity variable or scattering operators,
for very weak potentials like V1 or V2. Various hypocoercivity methods have been
developed over the years in, e.g., [16, 17, 21, 26, 12], in order to prove exponen-
tial rates in appropriate norms, in presence of a strongly confining potential. In
that case, the growth of the potential at infinity has to be fast enough not only
to guarantee the existence of a stationary solution but also to provide macroscopic
coercivity properties which typically amount to a Poincaré inequality. A popular
simplification is to assume that the position variable is limited to a compact set,
for example a torus. Such results are the counterpart in kinetic theory of diffusions
covered by the carré du champ method, as emphasized in [4].

Recently, hypocoercivity methods have been extended in [6] to the case without
any external potential by replacing the Poincaré inequality by Nash type estimates.
The sub-exponential regime or the regime with weak confinement, i.e., of a poten-
tial V such that a weak Poincaré inequality holds, has also been studied in [9, 18].
What we will study next is the range of very weak potentials V , which have a growth
at infinity which is below the range of weak Poincaré inequalities, but are still such
that lim|x|→∞ V (x) = +∞. This regime is the counterpart at kinetic level of the
results of Theorems 1.1, 1.2 and 1.3. As in the case of (1) when γ ≥ 0, the drift is
opposed to the diffusion, but it is not strong enough to prevent that the solution
locally vanishes.

Let us consider the kinetic equation

∂tf + v · ∇xf −∇xV · ∇vf = Lf (5)

where Lf is one of the two following collision operators:

(a) a Fokker-Planck operator

Lf = ∇v ·
(

M ∇v

(

M−1 f
)

)

,
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(b) a scattering collision operator

Lf =

∫

Rd

σ(·, v′)
(

f(v′)M(·)− f(·)M(v′)
)

dv′ .

We consider the case of a global equilibrium of the form

∀ (x, v) ∈ R
d × R

d , M(x, v) =M(v) e−V (x) where M(v) = (2π)−
d
2 e−

1
2 |v|2 .

We shall say that the gaussian function M(v) is the local equilibrium and assume
that the scattering rate σ(v, v′) satisfies

(H1) 1 ≤ σ(v, v′) ≤ σ , ∀ v , v′ ∈ R
d , for some σ ≥ 1 ,

(H2)

∫

Rd

(

σ(v, v′)− σ(v′, v)
)

M(v′) dv′ = 0 ∀ v ∈ R
d .

Notice thatM 6∈ L1(Rd×Rd) if V = V1 or V = V2, so that the space L
2
(

M−1dx dv
)

is defined with respect to an unbounded measure. As in the case of (1), the
only integrable equilibrium state is 0. Thus, if the initial datum f0 is such that
f0 ∈ L1(dx dv), we expect that the solution to (5) converges to 0 locally as t→ +∞
and look for the rate of convergence in suitable norms.

When V = 0, the optimal rate of convergence of a solution f of (5) with initial
datum f0 is known. In [6], it has been proved that there exists a constant C > 0
such that

∫∫

Rd×Rd

|f(t, ·, ·)|2 dµ ≤ C (1 + t)−
d
2

∫∫

Rd×Rd

|f0|2 dµ ∀ t ≥ 0 ,

where dµ = M−1 dx dv and by factorization, the result is extended with same rate
for an arbitrary ℓ > d to the measure 〈v〉ℓ dx dv if f0 ∈ L2

(

Rd × Rd, 〈v〉ℓdx dv
)

∩
L2
+

(

Rd, 〈v〉ℓdv; L1
(

Rd, dx
))

. Our main result on (5) is a decay rate in the presence
of a very weak potential. It is an extension of the results of Theorem 1.2 to the
framework of kinetic equations.

Theorem 1.4. Let d ≥ 3, V = V2 with γ ∈ [0, d) and k > max {2, γ/2}. We

assume that (H1)–(H2) hold and consider a solution f of (5) with initial datum

f0 ∈ L2(M−1dx dv) such that
∫∫

Rd×Rd〈x〉k f0 dx dv +
∫∫

Rd×Rd |v|k f0 dx dv < +∞.

Then there exists C > 0 such that

∀ t ≥ 0 , ‖f(t, ·, ·)‖2L2(M−1dxdv) ≤ C (1 + t)−
d−γ
2 .

Standard methods of kinetic theory can be used to establish the existence of
solutions of (5) when V = V2. We will not give details here. At formal level, similar
results can be expected when V = V1 but the singularity at x = 0 raises difficulties
which are definitely outside of the scope of this paper.

The expression of the constant C is explicit. However, due to the method, we
cannot claim optimality in the estimate of Theorem 1.4, but at least the asymptotic
rate is expected to be optimal by consistency with the diffusion limit, as it is the
case when V = 0 studied in [6]. The strategy of the proof and further relevant
references will be detailed in Section 3.

2. Decay estimates for the macroscopic Fokker-Planck equation. In this
section, we establish decay rates for (1) and discuss the optimal range of the pa-
rameters.
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2.1. Decay in L2(Rd). We prove Theorem 1.1. By testing (1) with u, we obtain

d

dt

∫

Rd

u2 dx = − 2

∫

Rd

|∇u|2 dx+

∫

Rd

∆V |u|2 dx ,

with

∆V1(x) = γ
d− 2

|x|2 and ∆V2(x) = γ
d− 2

1 + |x|2 +
2 γ

(1 + |x|2)2
.

For γ ≤ 0 we deduce

d

dt
‖u‖22 ≤ − 2 ‖∇u‖22 ≤ − 2

CNash
‖u0‖−4/d

1 ‖u‖2+4/d
2 ,

from Nash’s inequality (3). Integration completes the proof of (2). For the case
0 < γ < (d− 2)/2 we use the following Hardy-Nash inequalities.

Lemma 2.1. Let d ≥ 3 and δ < (d− 2)2/4. Then

‖u‖2+
4
d

2 ≤ Cδ
(

‖∇u‖22 − δ

∫

Rd

u2

|x|2 dx
)

‖u‖
4
d
1 ∀u ∈ L1 ∩ H1(Rd) , (6)

with

Cδ = CNash

(

1− 4 δ
(d−2)2

)−1

.

Let additionally η < (d2 − 4)/4. Then, for any u ∈ L1 ∩ H1(Rd),

‖u‖2+
4
d

2 ≤ Cδ,η
(

‖∇u‖22 − δ

∫

Rd

u2

〈x〉2 dx− η

∫

Rd

u2

〈x〉4 dx
)

‖u‖
4
d
1 (7)

with

Cδ,η = CNash

(

min
{

1− 4 δ
(d−2)2 , 1−

4 η
d2−4

})−1

.

The proof of Lemma 2.1 is given in Appendix C. We use Lemma 2.1 with δ =
γ (d− 2)/2 and with η = γ (for V = V2), and proceed as for γ ≤ 0 to complete the
proof of Theorem 1.1.

Remark 1. The condition δ < (d− 2)2/4 in Lemma 2.1 is optimal for (6) and (7).
The restriction on γ in Theorem 1.1 is also optimal. Let d ≥ 3, γ > (d − 2)/2 and
V = V1 or V = V2. Then there exists u ∈ L1 ∩ H1(Rd) such that ‖u‖2 = 1 and

− 2

∫

Rd

|∇u|2 dx+

∫

Rd

∆V |u|2 dx > 0 .

In the case V = V1, it is indeed enough to observe that (d − 2)2/4 is the optimal
constant in Hardy’s inequality (see Appendix C). The case V = V2 follows from the
case V = V1 by an appropriate scaling.

2.2. Decay in L2(eV dx). We prove Theorem 1.2. By testing (1) with u eV , we
obtain

1

2

d

dt

∫

Rd

u2 eV dx = −
∫

Rd

e−V
∣

∣∇
(

u eV
)∣

∣

2
dx . (8)

In the case V = V1, we have eV = |x|γ and (8) takes the form

1

2

d

dt

∫

Rd

|x|γu2 dx = −
∫

Rd

|x|−γ |∇ (|x|γu)|2 dx .

If γ ≤ 0 and a = d−γ
d+2−γ , the inequality

∫

Rd

|x|γ u2 dx ≤ C
(
∫

Rd

|x|−γ |∇ (|x|γu)|2 dx
)a (∫

Rd

|u| dx
)2(1−a)

(9)
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follows from the Caffarelli-Kohn-Nirenberg inequalities (see Appendix A, Ineq. (26)
applied with k = 0 to v = |x|γu). The conservation of the L1 norm of u gives

d

dt

∫

Rd

|u|2 |x|γ dx ≤ − 2 C−(1+ 2
d−γ ) ‖u0‖

− 4
d−γ

1

(
∫

Rd

|u|2 |x|γ dx
)

1+ 2
d−γ

.

The conclusion of Theorem 1.2 follows by integration. An analogous argument
based on the inhomogeneous Caffarelli-Kohn-Nirenberg inequality

∫

Rd

|u|2 〈x〉γ dx ≤ K
(
∫

Rd

〈x〉−γ |∇ (〈x〉γu)|2 dx
)a (∫

Rd

|u| dx
)2(1−a)

with a =
d− γ

d+ 2− γ

applies to the case γ ≤ 0, V = V2 (see Appendix B, Ineq. (30) applied with k = 0
and v = 〈x〉γu).

Without additional assumptions, it is not possible to expect a similar result for
γ > 0. Let us explain why. In the case V = V1 and with v = |x|γu, consider the
quotient

Q[v] :=

(∫

Rd |x|−γ |∇v|2 dx
)a (∫

Rd |x|−γ |v| dx
)2(1−a)

∫

Rd |x|−γ v2 dx

As a consequence of (9), Q[v] is bounded from below by a positive constant if γ ≤ 0
and a = (d− γ)/(d− γ + 2). Let us consider the case γ > 0.

Lemma 2.2. Let d ≥ 1, γ ∈ (0, d) and a = (d−γ)/(d−γ+2). Then there exists a se-

quence (vn)n∈N of smooth, compactly supported functions such that lim
n→∞

Q[vn] = 0.

Proof. Let us take a smooth function v and consider vn(x) = v(x + n e) for some
e ∈ Sd−1. Then Q[vn] = O

(

n−(1−a) γ
)

. With γ > 0, we know that a is in the range
0 < a < 1 if and only if γ ∈ (0, d).

For the proof of Theorem 1.2 in the case 0 < γ < d, V = V1, we start by
estimating the growth of the moment

Mk(t) :=

∫

Rd

|x|kudx ,

which evolves according to

M ′
k = k

(

d+ k − 2− γ
)

∫

Rd

u |x|k−2−γ dx ≤ k
(

d+ k − 2− γ
)

M
2
k
0 M

1− 2
k

k ,

where we have used Hölder’s inequality and M0(t) = M0(0) = ‖u0‖1. Integration
gives

Mk(t) ≤
(

Mk(0)
2/k + 2

(

d+ k − 2− γ
)

M
2/k
0 t

)k/2

.

If γ ∈ (0, d) and a = d+2k−γ
d+2k+2−γ , by inserting the Caffarelli-Kohn-Nirenberg inequal-

ity

∫

Rd

|x|γ u2 dx ≤ C
(
∫

Rd

|x|−γ |∇ (|x|γu)|2 dx
)a (∫

Rd

|x|k |u| dx
)2(1−a)
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(see Appendix A, Ineq. (26) applied to v = |x|γu) in (8), we observe that the
function z =

∫

Rd u
2 |x|γ dx solves

dz

dt
≤ − 2

(

C−1 z
)1+ 2

d+2k−γ Mk(t)
− 4

d+2k−γ ,

and, after integration,

z(t) ≤ z(0)
(

1 + a
(

(

1 + b t
)1− 2k

d+2k−γ − 1
))− d+2k−γ

2

with a and b depend only on the quantities entering into the constant c of Theo-
rem 1.2. Let θ = 2k/(d+ 2k − γ) and observe that

1 + a
(

(

1 + b t
)1−θ − 1

)

≥
(

1 + c t
)1−θ ∀ t ≥ 0 ,

if c = b min
{

a, a1/(1−θ)
}

. Our estimate becomes

z(t) ≤ z(0)
(

1 + a
(

(

1 + b t
)1−θ − 1

))−k/θ

≤ z(0)
(

1 + c t
)−k (1−θ)/θ

= z(0)
(

1 + c t
)− d−γ

2 .

In the case V = V2 we can adopt the same strategy, based on a moment now defined
as

Mk(t) :=

∫

Rd

〈x〉kudx ,

and on the inhomogeneous Caffarelli-Kohn-Nirenberg inequality
∫

Rd

〈x〉γu2 dx ≤ K
(
∫

Rd

〈x〉−γ |∇(〈x〉γu)|2 dx
)a

M
2(1−a)
k

with a =
d+ 2k − γ

d+ 2 + 2k − γ

(see Appendix B, Ineq. (30) applied to v = 〈x〉γu). This completes the proof of
Theorem 1.2.

2.3. Decay in self-similar variables and intermediate asymptotics.
We prove Theorem 1.3. With the parabolic change of variables

u(t, x) = (1 + 2 t)−d/2 v(τ, ξ) , τ = 1
2 log(1 + 2 t) , ξ =

x√
1 + 2 t

, (10)

which preserves mass and initial data, (1) is changed into

∂v

∂τ
= ∆ξv +∇ξ · (v∇ξΦ) , (11)

where
Φ(τ, ξ) = V (eτ ξ) + 1

2 |ξ|
2 .

We investigate the long-time behavior of solutions of (1) by considering quasi-
equilibria

v⋆(τ, ξ) :=M(τ) e−Φ(τ,ξ) , (12)

of (11) with an appropriately chosen M(τ).
For the scale invariant case V = V1, the potential Φ1(τ, ξ) = γ

(

log |ξ|+τ
)

+ 1
2 |ξ|2

in (11) can be replaced by the time independent potential φ1(x) = γ log |ξ|+ 1
2 |ξ|2.

With M(τ) = c⋆ e
γ τ , time independent equilibria

v⋆,1(ξ) := c⋆ |ξ|−γ e−|ξ|2/2 , (13)
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are available. For the second case V = V2 with potential

Φ2(τ, ξ) :=
γ
2 log

(

1 + e2τ |ξ|2
)

+ 1
2 |ξ|

2 ,

we shall use

v⋆,2(τ, ξ) := c⋆
(

e−2τ + |ξ|2
)−γ/2

e−|ξ|2/2 , (14)

so that v⋆,2 is asymptotically equivalent to v⋆,1 as τ → ∞.

If a quasi-equilibrium of the form (12) satisfies

∂v⋆
∂τ

≥ 0 ,

which holds for both examples (13) and (14) if γ > 0, then v⋆ is obviously a super-
solution of (11), thus proving the following result on uniform decay estimates.

Proposition 1. Let γ ∈ (0, d) and u(t, x) be a solution of (1) with initial datum

such that, for some constant c⋆ > 0,

0 ≤ u(0, x) ≤ c⋆
(

σ + |x|2
)−γ/2

exp

(

−|x|2
2

)

∀x ∈ R
d ,

with σ = 0 if V = V1 and σ = 1 if V = V2. Then

0 ≤ u(t, x) ≤ c⋆

(1 + 2 t)
d−γ
2

(

σ + |x|2
)−γ/2

exp

(

− |x|2
2 (1 + 2 t)

)

∀x ∈ R
d , t ≥ 0 .

For 0 < γ < d, we obtain a pointwise decay: the attracting potential is too weak
for confinement (no stationary state can exist, at least among L1(Rd) solutions)
but it slows down the decay compared to solutions of the heat equation (that is,
solutions corresponding to V = 0).

The result of Proposition 1 is also true for γ ≤ 0 if V = V1. In that case, a
repulsive potential with γ < 0 accelerates the pointwise decay, but does not change
the uniform decay rate as t→ +∞ because

∀ t > 0 , max
r>0

r−γ exp

(

− r2

4 t

)

=

(

e

2 |γ| t

)γ/2

. (15)

In order to obtain an estimate in L2
(

eV dx
)

, let us state a result on a Poincaré
inequality. We introduce the notations

Φγ,σ(ξ) :=
1
2 |ξ|

2 + γ
2 log

(

σ + |ξ|2
)

,

Zγ,σ :=

∫

Rd

e−Φγ,σ(ξ) dξ and dµγ,σ := Z−1
γ,σ e

−Φγ,σ dξ .

Lemma 2.3. Assume that d ≥ 1, γ ∈ (0, d) and σ ∈ R
+. With the above notations,

there is a positive constant λγ,σ such that

∫

Rd

|∇w|2 dµγ,σ ≥ λγ,σ

∫

Rd

|w − w|2 dµγ,σ

∀w ∈ H1(Rd, dµγ,σ) such that w =

∫

Rd

w dµγ,σ . (16)

Moreover, for any γ ∈ (0, d), minσ∈[0,1] λγ,σ > 0.
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Proof. Let us consider a potential ψ on Rd. We assume that ψ is a measurable
function such that

ℓ = lim
r→+∞

inff∈D(Bc
r)\{0}

∫

Rd

(

|∇f |2 + ψ |f |2
)

dξ
∫

Rd |f |2 dξ
> 0 ,

where Bc
r :=

{

x ∈ R
d : |x| > r

}

and D(Bc
r) denotes the space of smooth functions

on Rd with compact support in Bc
r . According to Persson’s result [23, Theorem 2.1],

the lower end of the continuous spectrum of the Schrödinger operator −∆+ψ is ℓ.
With w = f eΦγ,σ/2 and ψ = 1

4 |∇Φγ,σ|2− 1
2 ∆Φγ,σ, λγ,σ is either ℓ = 4 if −∆+ψ

has no eigenvalue in the interval (0, 4), or the lowest positive eigenvalue of −∆+ψ
in the interval (0, 4), since the kernel is generated by constant functions. This proves
that 0 < λγ,σ ≤ 4. An elementary computation shows that

4ψ(ξ) = X −
(

2 d+ σ − 2 γ
)

− γ
(

2 d+ 2 σ − γ − 4
)

X−1 − γ (γ + 4)X−2

with X = |ξ|2+σ, which allows in principle for an explicit computation of λγ,σ and
shows that it is continuous with respect to σ on R+.

In the special case σ = 0, it is possible to compute λγ,0 as follows.

Lemma 2.4. Assume that d ≥ 1 and γ ∈ (0, d). With the above notations, we have

λγ,0 = 4 (1− γ) if d = 1 and λγ,0 = min {4, 4 (d− γ), d− 1} if d ≥ 2.

Proof. A decomposition in spherical harmonics shows that the lowest eigenvalue
associated with a non-radial eigenfunction (in dimension d ≥ 2) is of the form
f(ξ) = g(r)Y (ω) with r = |ξ|, ω = ξ/r and −∆Sd−1Y = k (k + d− 2)Y , k ∈ N. If
k 6= 0, g ≡ 1 is optimal and the eigenvalue is k (k+d−2) with k = 1. Otherwise k = 0
and g is the lowest non-trivial Hermite polynomial with zero average on R+ ∋ r
in dimension n = d − γ, that is g(r) = r2 − n and the corresponding eigenvalue
is 4n. Notice that n is not necessarily an integer, but can be considered as a real
parameter. All other eigenvalues are larger. We conclude by taking the minimum
of the two eigenvalues. If d = 1, a similar conclusion holds with f(ξ) = ξ.

An interesting consequence of Lemma 2.4 is a result of intermediate asymptotics,
which allows to identify the leading order term of the solution of (1) as t→ +∞.

Corollary 1. Assume that d ≥ 1, γ ∈ (0, d) and V = V1. With the above notations,

if u solves (1) with an initial datum u0 ∈ L1
+(R

d) such that
(

u⋆(0, x)
)−1

u20 ∈
L1
+(R

d), with u⋆ defined by (4), and if we choose c⋆ in (4) such that ‖u⋆(0, ·)‖1 =
‖u0‖1, then

∫

Rd

(

u(t, x)− u⋆(t, x)
)2

u⋆(t, x)
dx ≤ (1 + 2 t)−λγ,0

∫

Rd

(

u(0, x)− u⋆(0, x)
)2

u⋆(0, x)
dx .

Proof. By definition of u⋆, we have
∫

Rd

v⋆,1 dξ =

∫

Rd

v(0, ξ) dξ =

∫

Rd

u0 dx .

Then, using the Poincaré inequality (16) and Lemma 2.4, we know that

d

dτ

∫

Rd

(v − v1,⋆)
2 eφ1 dξ = − 2

∫

Rd

∣

∣∇ξ

(

eφ1(v − v1,⋆)
)∣

∣

2
e−φ1 dξ

≤ − 2λγ,0

∫

Rd

(v − v1,⋆)
2 eφ1 dξ ,
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from which we deduce that
∫

Rd

(v − v1,⋆)
2 eφ1 dξ ≤ e−2λγ,0τ

∫

Rd

(u(0, x)− v1,⋆)
2 eφ1 dx .

This concludes the proof using the parabolic change of variables(10).

Proof of Theorem 1.3. A Cauchy-Schwarz inequality shows that

(
∫

Rd

∣

∣u(t, x)− u⋆(t, x)
∣

∣ dx

)2

≤
∫

Rd

u⋆(t, x) dx

∫

Rd

(

u(t, x)− u⋆(t, x)
)2

u⋆(t, x)
dx

≤ (1 + 2 t)−λγ,0

∫

Rd

u0 dx

∫

Rd

(

u(0, x)− u⋆(0, x)
)2

u⋆(0, x)
dx .

The Hölder interpolation inequality

‖u(t, ·)− u⋆(t, ·)‖p ≤ ‖u(t, ·)− u⋆(t, ·)‖
1
p

1 ‖u(t, ·)− u⋆(t, ·)‖1−
1
p

∞

combined with the results of Proposition 1 and Corollary 1 concludes the proof after
taking (15) and the expression of λγ,0 stated in Lemma 2.4 into account.

3. Decay estimate for the kinetic equation with weak confinement. In this
section, we prove Theorem 1.4 by revisiting the L2 approach of [12] in the spirit
of [6].

3.1. Notations and elementary computations. On the space L2(M−1dx dv),
we define the scalar product

〈f, g〉 =
∫∫

Rd×Rd

f g eV M−1 dx dv

and the norm ‖f‖ = 〈f, f〉1/2. Let Π be the orthogonal projection operator on
Ker(L) given by Πf := M ρ[f ], where ρ[f ] :=

∫

Rd f(v) dv, and T be the transport
operator such that Tf = v · ∇xf −∇xV · ∇vf . We assume that

M(v) = (2π)−
d
2 e−

1
2 |v|2 ∀ v ∈ R

d .

Let us use the notation u[f ] := eV ρ[f ] and observe that

TΠf =M e−V v · ∇xu[f ] , (TΠ)∗f = −M ∇x · ρ [v f ] ,
(TΠ)∗(TΠ)f = −M ∇x ·

(

e−V ∇xu[f ]
)

,

where the last identity follows from
∫

Rd M(v) v ⊗ v dv = Id. To build a suitable
Lyapunov functional, as in [11, 12, 6] we introduce the operator A defined by

A :=
(

Id+ (TΠ)∗(TΠ)
)−1

(TΠ)∗ .

As in [12] we define the Lyapunov functional H by

H[f ] :=
1

2
‖f‖2 + ε 〈Af, f〉

and obtain by a direct computation that

d

dt
H[f ] = −D[f ]
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with

D[f ] := − 〈Lf, f〉+ ε 〈ATΠf,Πf〉+ ε 〈AT(Id− Π)f,Πf〉
− ε 〈TA(Id− Π)f, (Id− Π)f〉 − ε 〈AL(Id− Π)f, f〉 , (17)

where we have used that 〈Af, Lf〉 = 0. For the first term in D[f ], we rely on the
microscopic coercivity estimate (see [12])

−〈Lf, f〉 ≥ λm ‖(Id− Π)f‖2 .
The second term 〈ATΠf,Πf〉 is expected to control the macroscopic contribution
‖Πf‖. In Section 3.2 the remaining terms will be estimated to show that for ε small
enough D[f ] controls ‖(Id − Π)f‖2 + 〈ATΠf,Πf〉. As in Section 2.2, estimates on
moments are needed, which will be proved in Section 3.3 and used in Section 3.4 to
show a Nash type estimate and to complete the proof of Theorem 1.4 by relating the
entropy dissipation D[f ] to H[f ] and by solving the resulting differential inequality.

3.2. Proof of the Lyapunov functional property of H[f ]. Let us define the
notations

〈u1, u2〉V :=

∫

Rd

u1 u2 e
−V dx and ‖u‖2V := 〈u, u〉V

associated with the norm L2(e−V dx). Unless it is specified, ∇ means ∇x.

Lemma 3.1. With the above notations, we have

‖Af‖ ≤ 1

2
‖(Id− Π)f‖ , ‖TAf‖ ≤ ‖(Id− Π)f‖

and

|〈TA(Id− Π)f, (Id− Π)f〉| ≤ ‖(Id− Π)f‖2 .

Proof. We already know from [12, Lemma 1] that the operator TA is bounded. Let
us give a short proof for completeness. The equation Af = g is equivalent to

(TΠ)∗f = g + (TΠ)∗ (TΠ) g . (18)

Multiplying (18) by gM−1 eV , we get that

‖g‖2 + ‖TΠg‖2 = 〈f,TΠg〉 = 〈(Id− Π)f,TΠg〉

≤ ‖(Id− Π)f‖ ‖TΠg‖ ≤ 1

4
‖(Id− Π)f‖2 + ‖TΠg‖2

from which we deduce that ‖Af‖ = ‖g‖ ≤ 1
2 ‖(Id− Π)f‖. Since A = ΠA, be-

cause (18) can be rewritten as g = ΠT
2
Πg−ΠTf using (TΠ)∗ = −ΠT, we also have

that TAf = TΠg and obtain that ‖TAf‖ = ‖TΠg‖ ≤ ‖(Id− Π)f‖. The estimate on
|〈TA(Id− Π)f, (Id− Π)f〉| follows.

The term 〈ATΠf,Πf〉 is the one which gives the macroscopic decay rate. Let

w[f ] be such that
(

Id+ (TΠ)∗(TΠ)
)−1

Πf = wM e−V . Then w solves

w − Lw = u[f ] where Lw := eV ∇ ·
(

e−V ∇w
)

. (19)

Lemma 3.2. With the above notations, if u = u[f ] and w = w[f ] solves (19), we
have

〈ATΠf,Πf〉 = ‖∇w‖2V + ‖Lw‖2V ≤ 5

4
‖u‖2V .
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Proof. Let w be a solution of (19). Since

ATΠf =
(

Id+ (TΠ)∗(TΠ)
)−1

(TΠ)∗(TΠ)Πf

=
(

Id+ (TΠ)∗(TΠ)
)−1(

Id+ (TΠ)∗TΠ− Id
)

Πf

= Πf −
(

Id+ (TΠ)∗(TΠ)
)−1

Πf = Πf − wM e−V ,

we obtain that

ATΠf = (u− w)M e−V .

Using (19) and integrating on Rd after multiplying by Πf = uM e−V , we obtain
that

〈ATΠf,Πf〉 = 〈u, u− w〉V = 〈w − Lw,−Lw〉V = ‖∇w‖2V + ‖Lw‖2V .
On the other hand, we can also write that

〈ATΠf,Πf〉 = 〈u, u− w〉V = − 〈u,Lw〉V
and obtain that

‖∇w‖2V + ‖Lw‖2V = − 〈u,Lw〉V ≤ ‖u‖V ‖Lw‖V ≤ 1

4
‖u‖2V + ‖Lw‖2V ,

using the Cauchy-Schwarz inequality. As a consequence, we obtain that

‖∇w‖2V ≤ 1

4
‖u‖2V and ‖Lw‖V ≤ ‖u‖V ,

which concludes the proof.

Lemma 3.3. With the above notations, if u = u[f ] and w solves (19), we have

‖Hess(w)‖2V ≤ max{1, γ} 〈ATΠf,Πf〉 .

Proof. The operator L = ∆−∇V · ∇ is such that

[L,∇]w = L(∇w) −∇(Lw) =
(

L
(

∂w
∂xi

)

− ∂
∂xi

(Lw)
)d

i=1
= −Hess(V ) · ∇w

and it is self-adjoint on L2(eV dx) so that

〈Lw1, w2〉V = − 〈∇w1,∇w2〉V = 〈w1,Lw2〉V
for any w1 and w2. Applied first with w1 = w and w2 = Lw and then with
w1 = w2 = ∇w, this shows that

‖Lw‖2V = − 〈∇w,∇Lw〉V = − 〈∇w,L∇w〉V −
∫

Rd

∇w · [L,∇]w e−V dx

= ‖Hess(w)‖2V +

∫

Rd

Hess(V ) : (∇w ⊗∇w)e−V dx

where ‖Hess(w)‖22 =
∫

Rd |Hess(w)|2 e−V dx =
∑d

i,j=1

∫

Rd

(

∂2w
∂xi∂xj

)2
e−V dx. In the

case V = V2, we deduce from

∂2V

∂xi∂xj
=

γ

〈x〉2
(

δij − 2
xi xj
〈x〉2

)

that

Hess(V ) ≥ −γ Id .
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Hence

max{1, γ} 〈ATΠf,Πf〉 ≥ ‖Lw‖2V +max{1, γ} ‖∇w‖2V
≥ ‖Hess(w)‖2V − γ ‖∇w‖2V +max{1, γ} ‖∇w‖2V ,

which concludes the proof.

Lemma 3.4. With the above notations and with mγ := 3max{1, γ}, we have

|〈AT(Id− Π)f,Πf〉| ≤ mγ 〈ATΠf,Πf〉1/2 ‖(Id− Π)f‖ .

Proof. Assume that u = u[f ] and w solves (19). Using g =
(

Id + (TΠ)∗(TΠ)
)−1

f

so that
(

Id+ (TΠ)∗(TΠ)
)

g = f means g − (Lw)M e−V = f , let us compute

〈AT(Id− Π)f,Πf〉 = 〈T(Id− Π)f,A∗
Πf〉 = 〈T(Id− Π)f,TΠg〉

=

∫∫

Rd×Rd

√
M v ⊗ v

(Id− Π)f√
M

: Hessw dxdv

=

∫∫

Rd×Rd

√
M

(

v ⊗ v − 1
d Id

) (Id− Π)f√
M

: Hessw dxdv

We conclude using a Cauchy-Schwarz inequality, Lemma 3.2 and Lemma 3.3.

In order to have unified notations, we adopt the convention that σ = 1/
√
2 if L

is the Fokker-Planck operator.

Lemma 3.5. With the above notations, we have

〈AL(Id− Π)f,Πf〉 ≤
√
2 σ 〈ATΠf,Πf〉1/2 ‖(Id− Π)f‖ .

Proof. We use duality to write

〈AL(Id− Π)f,Πf〉 = 〈L(Id− Π)f, h〉
where h = A

∗f = (TΠ)g and g =
(

Id+ (TΠ)∗(TΠ)
)−1

f so that
(

Id+ (TΠ)∗(TΠ)
)

g = f

and h = v · ∇wM e−V . Here w solves (19) with u = u[f ].

• If L is the Fokker-Planck operator, then
∫

Rd v Lf dv = − j and

|〈AL(Id− Π)f, f〉| = |〈j,∇w〉2| ≤ ‖j‖V ‖∇w‖V ≤ ‖(Id− Π)f‖ ‖∇w‖V .
We conclude using Lemma 3.2 and an estimate on j = |j| e where e ∈ Sd−1, that
goes as follows: by computing

|j| =
∣

∣

∣

∣

∫

Rd

v f dv

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Rd

v (Id− Π)f dv

∣

∣

∣

∣

≤
∫

Rd

(

(Id− Π)f M−1/2
)(

|v · e|M1/2
)

dv

≤
(
∫

Rd

∣

∣ Id− Π)f
∣

∣

2
M−1 dv

∫

Rd

|v · e|2M dv

)
1
2

=

(
∫

Rd

∣

∣ Id− Π)f
∣

∣

2
M−1 dv

)
1
2

,

we know that

‖j eV ‖2V =

∫

Rd

|j|2 eV dx ≤
∫∫

Rd×Rd

∣

∣ Id− Π)f
∣

∣

2
M−1 eV dx dv = ‖(Id− Π)f‖2 .
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• If L is the scattering operator, then

‖L(Id− Π)f‖2 ≤ σ2

∫

Rd

1

M

∣

∣

∣

∣

∫

Rd

MM ′

∣

∣

∣

∣

f ′

M ′
− f

M

∣

∣

∣

∣

dv′
∣

∣

∣

∣

2

dv

≤ σ2

∫

Rd

M

∣

∣

∣

∣

∫

Rd

√
M ′

√
M ′

∣

∣

∣

∣

f ′

M ′
− f

M

∣

∣

∣

∣

dv′
∣

∣

∣

∣

2

dv

≤ σ2

∫∫

Rd×Rd

MM ′

∣

∣

∣

∣

f ′

M ′
− f

M

∣

∣

∣

∣

2

dv dv′ ≤ 4 σ2

∫

Rd

f2M−1 dv

and ‖h‖ =
∥

∥v · ∇wM e−V
∣

∣ = ‖∇w‖2 so that

〈AL(Id− Π)f, f〉 ≤
√
2 σ 〈ATΠf,Πf〉1/2 ‖(Id− Π)f‖ .

Notice that for a nonnegative function f , we have the improved bounds ‖L(Id−Π)‖ ≤
σ ‖(Id− Π)f‖ and 〈AL(Id− Π)f,Πf〉 ≤ σ 〈ATΠf,Πf〉1/2 ‖(Id− Π)f‖.

Finally, we apply the results of Lemmas 3.1, 3.4, 3.5 to the right hand side of (17):

Lemma 3.6. With the above notations, we have

D[f ] ≥ λε
(

‖(Id− Π)f‖2 + 〈ATΠf,Πf〉
)

with

λε :=
1

2

(

λm −
√

(λm − 2 ε)2 + ε2
(

mγ +
√
2σ

)2
)

and λε > 0, if ε > 0 is small enough.

The functional H[f ] is a Lyapunov function in the sense that D[f ] ≥ 0 and the
equation D[f ] = 0 has a unique solution f = 0.

Proof. The above mentioned Lemmas imply

D[f ] ≥ (λm − ε) ‖(Id− Π)f‖2 + ε 〈ATΠf,Πf〉

− ε
(

mγ +
√
2σ

)

‖(Id− Π)f‖ 〈ATΠf,Πf〉1/2 .

The Lyapunov function property is a consequence of (19) and Lemma 3.2.

3.3. Moment estimates. Let us consider the case V = V2 and define the kth

order moments in x and v by

Jk(t) := ‖〈x〉k f(t, ·, ·)‖1 and Kk(t) := ‖|v|k f(t, ·, ·)‖1.
Our goal is to prove estimates on Jk and Kk. Notice that J0 = K0 = ‖f0‖L1(Rd×Rd)

is constant if f solves (5).

Lemma 3.7. Let γ ∈ (0, d), k ∈ N with k ≥ 2, V = V2 and assume that

f ∈ C
(

R+, L2(M−1dx dv)
)

is a nonnegative solution of (5) with initial datum f0
such that

∫∫

Rd×Rd〈x〉k f0 dx dv < +∞ and
∫∫

Rd×Rd |v|k f0 dx dv < +∞. There exist

constants C2, . . . , Ck such that

Jℓ(t) ≤ Cℓ (1 + t)
ℓ/2

and Kℓ(t) ≤ Cℓ ∀ t ≥ 0 , ℓ = 2, . . . , k . (20)

Proof. We present the proof for a Fokker-Planck operator, the case of a scattering
operator follows the same steps. A direct computation shows that

dKℓ

dt
≤ ℓ γ

∫∫

Rd×Rd

|x · v|
〈x〉2 |v|ℓ−2 f(t, x, v) dx dv + ℓ (ℓ+ d− 2)Kℓ−2 − ℓKℓ .
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A bound Cℓ for Kℓ, ℓ ∈ N, follows after observing that
∫∫

Rd×Rd

|x · v|
〈x〉2 |v|ℓ−2 f(t, x, v) dx dv ≤ Kℓ−1 ≤ K

1/ℓ
0 K

1−1/ℓ
ℓ

and Kℓ−2 ≤ K
2/k
0 K

1−2/ℓ
ℓ using Hölder’s inequality twice.

Next, let us compute

dJℓ
dt

= ℓ

∫∫

Rd×Rd

〈x〉ℓ−2 x · v f(t, x, v) dx dv =: ℓ Lℓ ,

and

dLℓ

dt
=

∫∫

Rd×Rd

〈x〉ℓ−2 |v|2 f dx dv + (ℓ− 2)

∫∫

Rd×Rd

〈x〉ℓ−4 (x · v)2 f dx dv

− γ

∫∫

Rd×Rd

〈x〉ℓ−4 |x|2 f dx dv − Lℓ

≤ (ℓ − 1)

∫∫

Rd×Rd

〈x〉ℓ−2 |v|2 f dx dv − Lℓ . (21)

Note that, again by Hölder’s inequality, |Lℓ| ≤ J
1−1/ℓ
ℓ K

1/ℓ
ℓ , ℓ = 2, . . . , k.

We prove the bound on Jℓ(t) by induction. If ℓ = 2, (21) implies L2(t) ≤
max

{

L2(0), C2

}

and, thus, J2(t) ≤ C2 (1 + t), up to a redefinition of C2.
Now let ℓ > 2 and assume that

Jℓ−1(t) ≤ Cℓ−1 (1 + t)
ℓ−1
2 .

We use Hölder’s inequality once more for the right hand side of (21):

dLℓ

dt
≤ (ℓ − 1)J

ℓ−2
ℓ−1

ℓ−1 K
1

ℓ−1

2(ℓ−1) − Lℓ ≤ (ℓ − 1)C
ℓ−2
ℓ−1

ℓ−1 C
1

ℓ−1

2(ℓ−1) (1 + t)
ℓ
2−1 − Lℓ ,

which implies

Lℓ ≤ C (1 + t)
ℓ
2−1 ,

and one more integration with respect to t establishes the estimate for Jℓ in (20),
up to an eventual redefinition of Cℓ.

Lemma 3.8. Let γ ∈ (0, d), k ∈ N with k > 2, V = V2 and assume that f ∈
C
(

R+, L2(M−1dx dv)
)

is a nonnegative solution of (5) with initial datum f0 such

that
∫∫

Rd×Rd〈x〉k f0 dx dv < +∞ and
∫∫

Rd×Rd |v|k f0 dx dv < +∞. Let w = w[f ] be

determined by (19) in terms of u = u[f ]. Then there exists a positive constant Ck

such that

0 ≤Mk(t) :=

∫

Rd

w 〈x〉k−γ dx ≤ Ck (1 + t)k/2 ∀ t ≥ 0 .

Proof. The solution w of (19) is positive by the maximum principle. In what follows
we use the definition of Mℓ for arbitrary integers ℓ and note that for ℓ ≤ 0,

Mℓ ≤M0 =

∫

Rd

w e−V dx =

∫

Rd

u e−V dx = ‖f0‖1. (22)

Multiplication of (19) by 〈x〉ℓ−γ and integration over Rd gives

Mℓ = ℓ (ℓ− 2 + d− γ)Mℓ−2 − (ℓ − 2− γ)Mℓ−4 + Jℓ , (23)

where Jℓ has been estimated in Lemma 3.7. Then, with ℓ = 2 and (22), we ob-
tain M2(t) ≤ C2 (1 + t). This implies by the Hölder inequality that M1(t) ≤
√

M0M2(t) ≤ C1 (1 + t)1/2. For 2 < ℓ ≤ k the estimate Mℓ(t) ≤ Cℓ (1 + t)ℓ/2

follows recursively from (23).
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3.4. Decay estimate for the kinetic equation (proof of Theorem 1.4).

Lemma 3.9. Let γ ∈ (0, d), k ≥ max{2, γ/2}, V = V2 and assume that f ∈
C
(

R+, L2(M−1dx dv)
)

is a nonnegative solution of (5) with initial datum f0 such

that
∫∫

Rd×Rd〈x〉k f0 dx dv < +∞ and
∫∫

Rd×Rd |v|k f0 dx dv < +∞. Assume the

above notations, in particular withMk defined as in Lemma 3.8, with the constant K
from (30), and with a = d+2k−γ

d+2+2k−γ . Then

‖Πf‖2 ≤ 2 〈ATΠf,Πf〉+KM
2(1−a)
k 〈ATΠf,Πf〉a =: Φ (〈ATΠf,Πf〉 ;Mk) ∀ t ≥ 0 .

Proof. If u = u[f ] and w solves (19), we recall that

〈ATΠf,Πf〉 = ‖∇w‖2V + ‖Lw‖2V
by Lemma 3.2. From (19), we also deduce that

‖u‖2V = 〈u,w − Lw〉V ≤ ‖u‖V
(

‖w‖2V + 2 ‖∇w‖2V + ‖Lw‖2V
)1/2

.

By inequality (30), we have that

‖w‖2V ≤ K‖∇w‖2aV M
2(1−a)
k .

Combining these inequalities gives

‖u‖2V ≤ K‖∇w‖2aV M
2(1−a)
k + ‖∇w‖2V + 〈ATΠf,Πf〉 ,

which, noting that ‖Πf‖ = ‖u‖V , implies the result.

As a consequence of Lemmas 3.1, 3.6, 3.9 and of the properties of Φ we have

H[f ] =
1

2
‖f‖2 + ε 〈Af, f〉

≤ 1 + ε

2
‖f‖2 ≤ 1 + ε

2

(

‖(Id−Π)f‖2 +Φ(〈ATΠf,Πf〉 ;Mk)
)

≤ 1 + ε

2
Φ
(

‖(Id−Π)f‖2 + 〈ATΠf,Πf〉 ;Mk

)

≤ 1 + ε

2
Φ

(

D[f ]

λε
;Mk

)

,

implying, with Lemma 3.8,

dH[f ]

dt
= −D[f ] ≤ −λε Φ

−1

(

2

1 + ε
H[f ];Ck(1 + t)k/2

)

.

The decay of H[f ] can be estimated by the solution z of the corresponding ODE
problem

dz

dt
= −λε Φ

−1

(

2

1 + ε
z;Ck(1 + t)k/2

)

, z(0) = H[f0] .

By the properties of Φ it is obvious that z(t) → 0 monotonically as t→ +∞, which
implies that the same is true for dz

dt . Therefore, there exists t0 > 0 such that, in the
rewritten ODE

− 2

λε

dz

dt
+KC

2(1−a)
k (1 + t)k(1−a)

(

− 1

λε

dz

dt

)a

=
2z

1 + ε
,

the first term is smaller than the second for t ≥ t0, implying the differential inequal-
ity

dz

dt
≤ − κ z1/a(1 + t)k(1−1/a) for t ≥ t0 ,
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with an appropriately defined positive constant κ. Integration and estimation as in
Section 2.2 gives

z(t) ≤ C (1 + t)
1+k(1−1/a)

1−1/a = C (1 + t)
γ−d
2 ,

thus completing the proof of Theorem 1.4.

Appendix A. Homogeneous Caffarelli-Kohn-Nirenberg inequalities of Nash
type.

A.1. The general Caffarelli-Kohn-Nirenberg inequalities. The main result
of [8] goes as follows. Assume that p ≥ 1, q ≥ 1, r > 0, 0 ≤ a ≤ 1 and

1

p
+
α⋆

d
> 0 ,

1

q
+
β⋆
d
> 0 ,

1

r
+
γ⋆
d
> 0 ,

1

r
+
γ⋆
d

= a

(

1

p
+
α⋆ − 1

d

)

+ (1− a)

(

1

q
+
β⋆
d

)

and, with σ such that γ⋆ = a σ + (1− a)β⋆,

0 ≤ α⋆ − σ if a > 0 .

Assume moreover that

α⋆ − σ ≤ 1 if a > 0 and
1

p
+
α⋆ − 1

d
=

1

q
+
β⋆
d
.

Then there exists a positive constant C such that the inequality

‖|x|γ⋆ v‖r ≤ C ‖|x|α⋆ ∇v‖ap
∥

∥|x|β⋆ v
∥

∥

1−a

q
(24)

holds for any v ∈ C∞
0 (Rd).

These interpolation inequalities are known in the literature as the Caffarelli-

Kohn-Nirenberg inequalities according to [8] but were introduced earlier by V.P. Il’in
in [19]. Next we specialize Ineq. (24) to various cases of Nash type corresponding
to q = 1.

A.2. Weighted Nash type inequalities. We consider special cases correspond-
ing to r = p = 2 and q = 1.
• Ineq. (24) with α⋆ = β/2, β⋆ = β/2, and γ⋆ = β/2 can be written under the
condition β > −d as

∫

Rd

|x|β v2 dx ≤ C
(
∫

Rd

|x|β |∇v|2 dx
)a (∫

Rd

|x|β/2 |v| dx
)2(1−a)

with a =
d

d+ 2
. (25)

We can indeed check that α⋆ − σ = 0 for any β ≤ 0 and 1
p + α⋆

d > 0, 1
q + β⋆

d > 0,

and 1
r + γ⋆

d > 0 if and only if β > −d.
• Ineq. (24) with α⋆ = − γ/2, β⋆ = k − γ and γ⋆ = − γ/2 can be written as

∫

Rd

|x|−γ v2 dx ≤ C
(
∫

Rd

|x|−γ |∇v|2 dx
)a (∫

Rd

|x|k−γ |v| dx
)2(1−a)

with a =
d+ 2k − γ

d+ 2 + 2k − γ
(26)
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under the condition γ < d and k ≥ γ/2. We can indeed check that α⋆ − σ =
2k−γ

2k−γ+d ≥ 0. In that case, we have α⋆ − σ < 1 for any γ ≤ 0 and the conditions
1
p + α⋆

d > 0, 1
q + β⋆

d > 0, and 1
r + γ⋆

d > 0 are always satisfied.

A.3. A weighted Nash inequality on balls. We adapt the proof of E. Carlen
and M. Loss in [10] to the case of homogeneous weights. With g = |x|−γ/2v, (26) is
equivalent to

∫

Rd

g2 dx ≤ C
(
∫

Rd

|∇g|2 dx− γ

4
(2 d− γ − 4)

∫

Rd

g2

|x|2 dx
)a

·
(
∫

Rd

|x|k− γ
2 |g| dx

)2(1−a)

.

Without loss of generality, we can assume that the function g is nonnegative and
radial, by spherically non-increasing rearrangements. From now on, we will only
consider nonnegative, radial, non-increasing functions g and the corresponding func-
tions v(x) = |x|γ/2g(x). For any R > 0, let

gR := g 1BR and vR(x) = |x|γ/2gR(x) .
We observe that g − gR is supported in Rd \BR and

g − gR ≤ g(R) ≤ gR :=

∫

Rd gR |x|k−γ/2 dx
∫

BR
|x|k−γ/2 dx

=

∫

Rd vR |x|k−γ dx
∫

BR
|x|k−γ/2 dx

because g is radial non-increasing, so that
∫

Rd

|v − vR|2 |x|−γ dx = ‖g − gR‖22

≤ gR

∫

Rd

|g − gR| dx = gRR
γ
2 −k

∫

Rd

|v − vR| |x|k−γ dx ,

i.e.,
∫

Rd

|v − vR|2 |x|−γ dx ≤
∫

Rd vR |x|k−γ dx
∫

BR
|x|k−γ/2 dx

R
γ
2 −k

∫

Rd

|v − vR| |x|k−γ dx . (27)

On the other hand, let us define vR :=
∫
Rd

vR |x|k−γ dx∫
BR

|x|2k−γ dx
and observe that

∫

Rd

|vR|2 |x|k−γ dx =

∫

Rd

∣

∣vR − vR |x|k
∣

∣

2 |x|−γ dx + v2R

∫

BR

|x|2k−γ dx .

Let us consider the weighted inequality
∫

BR

|w|2 |x|−γ dx ≤ 1

λR1

∫

BR

|∇w|2 |x|−γ dx ∀w ∈ H1(BR, |x|−γ dx)

such that

∫

BR

w |x|k−γ dx = 0 . (28)

The existence of a positive, finite constant λR1 can be deduced from elementary vari-
ational techniques as in [13]. We infer from the definition of vR that this inequality
is equivalent to

∫

Rd

|vR|2 |x|−γ dx ≤ 1

λR1

∫

BR

|∇v|2 |x|−γ dx+

(∫

Rd vR |x|k−γ dx
)2

∫

BR
|x|2k−γ dx

. (29)
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With λ1 := λ11, a simple scaling shows that λR1 = λ1 R
−2.

Let us come back to the estimation of
∫

Rd v
2 |x|−γ dx. By definition of vR, we

know that
∫

Rd

v2 |x|−γ dx ≤
∫

Rd

|vR|2 |x|−γ dx+

∫

Rd

|v − vR|2 |x|−γ dx .

After summing (27) and (29), we arrive at

∫

Rd

v2 |x|−γ dx ≤ R2

λ1

∫

BR

|∇v|2 |x|−γ dx+

(∫

Rd vR |x|k−γ dx
)2

∫

BR
|x|2k−γ dx

+
R

γ
2 −k

∫

BR
|x|k−γ/2 dx

∫

Rd

vR |x|k−γ dx

∫

Rd

|v − vR| |x|k−γ dx

and notice that
(∫

Rd vR |x|k−γ dx
)2

∫

BR
|x|2k−γ dx

+
R

γ
2 −k

∫

BR
|x|k−γ/2 dx

∫

Rd

vR |x|k−γ dx

∫

Rd

|v − vR| |x|k−γ dx

≤
∫

Rd

vR |x|k−γ dx

[

∫

Rd vR |x|k−γ dx
∫

BR
|x|2k−γ dx

+
R

γ
2 −k

∫

BR
|x|k−γ/2 dx

∫

Rd

|v − vR| |x|k−γ dx

]

≤
(
∫

Rd

v |x|k−γ dx

)2

max

{

1
∫

BR
|x|2k−γ dx

,
R

γ
2−k

∫

BR
|x|k−γ/2 dx

}

=

(
∫

Rd

v |x|k−γ dx

)2

cRγ−d−2k

using k > 0 and vR ≤ v, for some numerical constant c which depends only on d
and γ. Collecting terms, we have found that

∫

Rd

v2 |x|−γ dx ≤ R2

λ1

∫

BR

|∇v|2 |x|−γ dx+ cRγ−d−2k

(
∫

Rd

v |x|k−γ dx

)2

.

We can summarize our observations as follows.

Proposition 2. Let d ≥ 3, γ ∈ (0, d), k ≥ γ/2 and a = d+2k−γ
d+2+2k−γ . If C denotes

the optimal constant in (26), then (28) holds with a constant λR1 = λ1R
−2 for any

R > 0, where λ1 is a positive constant such that λ1 ≤ κ C−1/a for some explicit

positive constant κ depending only on γ and d.

The numerical value of κ can be deduced from the expression of c and from the
coefficients that arise from the optimization with respect to R > 0.

Appendix B. Inhomogeneous Caffarelli-Kohn-Nirenberg inequalities of
Nash type. Our goal is to establish an extension of (26) adapted to the inhomo-
geneous case.

Theorem B.1. If d ≥ 3, γ ∈ (0, d) and k ≥ γ/2, then

∫

Rd

〈x〉−γv2 dx ≤ K
(
∫

Rd

〈x〉−γ |∇v|2 dx
)a (∫

Rd

〈x〉k−γ |v| dx
)2(1−a)

(30)

with a = d+2k−γ
d+2+2k−γ holds for some optimal constant K > 0.
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Proof. Again we rely on the method of E. Carlen and M. Loss in [10]. The compu-
tations are similar to the ones of Proposition 2 except that |x| has to be replaced
by 〈x〉. With g = 〈x〉−γ/2v, (30) is equivalent to

∫

Rd

g2 dx ≤ K
(
∫

Rd

|∇g|2 dx− γ

4
(2 d− γ − 4)

∫

Rd

g2〈x〉−2 dx

−γ
4
(γ + 4)

∫

Rd

g2〈x〉−4 dx

)a

·
(
∫

Rd

〈x〉k− γ
2 |g| dx

)2(1−a)

.

Without loss of generality, we assume that the function g is nonnegative, radial by
spherically non-increasing rearrangements, and nonnegative. Let v(x) = 〈x〉γ/2g(x)
and

gR := g 1BR and vR(x) = 〈x〉γ/2gR(x)
for any R > 0. We observe that g − gR is supported in Rd \BR and

g − gR ≤ g(R) ≤ gR :=

∫

Rd gR 〈x〉k−γ/2 dx
∫

BR
〈x〉k−γ/2 dx

=

∫

Rd vR 〈x〉k−γ dx
∫

BR
〈x〉k−γ/2 dx

because g is radial non-increasing, so that
∫

Rd

|v − vR|2 〈x〉−γ dx = ‖g − gR‖22

≤ gR

∫

Rd

|g − gR| dx = gR 〈R〉 γ
2 −k

∫

Rd

|v − vR| 〈x〉k−γ dx ,

that is,
∫

Rd

|v − vR|2 〈x〉−γ dx ≤
∫

Rd vR 〈x〉k−γ dx
∫

BR
〈x〉k−γ/2 dx

〈R〉 γ
2 −k

∫

Rd

|v − vR| 〈x〉k−γ dx . (31)

On the other hand, using
∫

Rd

|vR|2 〈x〉−γ dx =

∫

Rd

∣

∣vR − vR 〈x〉k
∣

∣

2 〈x〉−γ dx+ v2R

∫

BR

〈x〉2k−γ dx

where vR :=

∫

Rd vR 〈x〉k−γ dx
∫

BR
〈x〉2k−γ dx

,

we deduce from the weighted Poincaré inequality
∫

BR

|w|2 〈x〉−γ dx ≤ 1

λR1

∫

BR

|∇w|2 〈x〉−γ dx

∀w ∈ H1(BR) such that

∫

BR

w 〈x〉2k−γ dx = 0

and from the definition of vR that

∫

Rd

|vR|2 〈x〉−γ dx ≤ 1

λR1

∫

BR

|∇v|2 〈x〉−γ dx+

(∫

Rd vR 〈x〉k−γ dx
)2

∫

BR
〈x〉2k−γ dx

. (32)

By definition of vR, we also know that
∫

Rd

v2 〈x〉−γ dx ≤
∫

Rd

|vR|2 〈x〉−γ dx+

∫

Rd

|v − vR|2 〈x〉−γ dx .
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After summing (31) and (32), we arrive at

∫

Rd

v2 〈x〉−γ dx ≤ 1

λR1

∫

BR

|∇v|2 〈x〉−γ dx+

(∫

Rd vR 〈x〉k−γ dx
)2

∫

BR
〈x〉2k−γ dx

+
〈R〉 γ

2 −k

∫

BR
〈x〉k−γ/2 dx

∫

Rd

vR 〈x〉k−γ dx

∫

Rd

|v − vR| 〈x〉k−γ dx

≤ a(R)

∫

BR

|∇v|2 〈x〉−γ dx+ b(R)

(
∫

Rd

v 〈x〉k−γ dx

)2

where a and b are two positive continuous functions on (0,+∞) defined by

a(R) := 1/λR1 and b(R) := max

{

1
∫

BR
〈x〉2k−γ dx

,
〈R〉 γ

2 −k

∫

BR
〈x〉k−γ/2 dx

}

and such that limR→0+ R
d
b(R) ∈ (0,+∞), limR→+∞Rd+2k−γ

b(R) ∈ (0,+∞),

limR→+∞R−2
a(R) = 1/λ1 where λ1 is the optimal constant in Proposition 2 while

limR→0+ R
−2

a(R) = 1/λ is related with Nash’s inequality as in [10] and such that
∫

B1

|w|2 dx ≤ 1

λ

∫

B1

|∇w|2 dx ∀w ∈ H1(B1) such that

∫

B1

w dx = 0 .

In order to prove (30), we can use the homogeneity of the inequality and assume
that

∫

Rd 〈x〉−γv2 dx = 1. What we shown so far is that

∀R > 0 , 1 ≤
(
∫

Rd

〈x〉k−γ |v| dx
)2

(

a(R)X + b(R)
)

where X =
∫

Rd〈x〉−γ |∇v|2 dx/
(∫

Rd〈x〉k−γ |v| dx
)2
. With the choice R = X−(1−a)/2,

we get that there exists a constant K > 0 such that a(R)X + b(R) < KXa. This
proves (30) with K ≤ K.

Appendix C. Hardy-Nash inequalities.

C.1. Proof of Lemma 2.1. We start with the proof of (7) by first showing a
Hardy type inequality. For some α ∈ R to be fixed later we compute

0 ≤
∫

Rd

∣

∣

∣

∣

∇u +
αx

1 + |x|2 u
∣

∣

∣

∣

2

dx

=

∫

Rd

|∇u|2 dx+ α2

∫

Rd

|x|2 u2

(1 + |x|2)2
dx+ α

∫

Rd

∇
(

u2
)

· x

1 + |x|2 dx .

We deduce that
∫

Rd

|∇u|2 dx+α2

∫

Rd

|x|2 u2

(1 + |x|2)2
dx−αd

∫

Rd

u2

1 + |x|2 dx+2α

∫

Rd

|x|2 u2

(1 + |x|2)2
dx ≥ 0 ,

so that, by writing |x|2 = 〈x〉2 − 1, we obtain

‖∇u‖22 + α (α − d+ 2)

∫

Rd

u2

1 + |x|2 dx − α (α+ 2)

∫

Rd

u2

(1 + |x|2)2
dx ≥ 0 . (33)
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Concerning the second term, we choose the optimal value α = (d − 2)/2 in (33),
producing the optimal upper bound for δ. It is now straightforward to show

‖∇u‖22 − δ

∫

Rd

u2

1 + |x|2 dx− η

∫

Rd

u2

(1 + |x|2)2
dx

≥ min
{

1− 4 δ
(d−2)2 , 1−

4 η
d2−4

}

‖∇u‖22 ,

whence the proof of (7) is completed by an application of Nash’s inequality (3).
The result (6) is shown analogously by using the standard Hardy inequality

‖∇u‖22 −
1

4
(d− 2)2

∫

Rd

u2

|x|2 dx ≥ 0 (34)

instead of (33). This completes the proof of Lemma 2.1.

C.2. Hardy-Nash vs. Caffarelli-Kohn-Nirenberg inequalities. The values
for Cδ and Cδ,η given in Lemma 2.1 cannot be expected to be optimal, since the
Hardy and Nash inequalities used in the proof have different optimizing functions.
Here we shall present an alternative proof of (6), showing that the optimal value
for Cδ can be given in terms of the optimal constant of an appropriately chosen
Caffarelli-Kohn-Nirenberg inequality of Nash type.

We start by rewriting (25) with optimal constant C = CCKN as
(
∫

Rd

|v|2 |x|β dx
)1+ 2

d

≤ C1+ 2
d

CKN

∫

Rd

|∇v|2 |x|β dx
(
∫

Rd

|v| |x|β/2 dx
)

4
d

,

which holds for β > −d. A straightforward computation shows that with the change
of variables v(x) = |x|−β/2 u(x), this is equivalent to (6) with δ = − β2/4− β (d−
2)/2. Thus, the choice β = 2 − d +

√

(d− 2)2 − 4 δ > −d amounts to (6) with

optimal constant Cδ = C1+2/d
CKN .
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