Biro Csaba
email: csaba.biro@louisville.edu

Edouard Bonnet
email: edouard.bonnet@dauphine.fr

Dániel Marx
email: dmarx@cs.bme.hu

Miltzow Tillmann

Pawel Rzążewski
email: p.rzazewski@mini.pw.edu.pl

Csaba Biró

Édouard Bonnet

Tillmann Miltzow
email: t.miltzow@gmail.com

Paweł Rzążewski

Fine-grained complexity of coloring unit disks and balls

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

algorithms exist for general graphs, assuming the Exponential Time Hypothesis (ETH).

The square root in the exponent seems to be best possible for planar graphs: assuming the ETH, the running time for these problems cannot be improved to 2 o(√ n) . In some cases, a similar speedup can be obtained for 2-dimensional geometric problems, for example, there are 2 O(√ n log n) time algorithms for Independent Set on unit disk graphs or for TSP on 2-dimensional point sets.

In this paper, we explore whether such a speedup is possible for geometric coloring problems. On the one hand, geometric objects can behave similarly to planar graphs: There are many examples of 2-dimensional geometric problems that are NP-hard, but can be solved significantly faster than the general case of the problem: for example, there are 2 O(√ n log n) time algorithms for TSP on 2-dimensional point sets or for Independent Set on the intersection graph of unit disks in the plane [START_REF] Alber | Geometric separation and exact solutions for the parameterized independent set problem on disk graphs[END_REF][START_REF] Marx | Optimal parameterized algorithms for planar facility location problems using voronoi diagrams[END_REF][START_REF] Smith | Geometric separator theorems and applications[END_REF], while only 2 O(n) time algorithms are known for these problems on general metrics or on arbitrary graphs. There is evidence that these running times are essentially best possible: under the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi, and Zane [START_REF] Impagliazzo | Which problems have strongly exponential complexity?[END_REF], the 2 O(√ n log n) time algorithms for these 2-dimensional problems cannot be improved to 2 o(√ n) , and the 2 O(n) algorithms for the general case cannot be improved to 2 o(n) . Thus running times with a square root in the exponent seems to be the natural complexity behavior of many 2-dimensional geometric problems. There is a similar "square root phenomenon" for planar graphs, where running times of the form 1) , or n O(√ k) are known for a number of problems [4, 7-15, 17, 18, 20, 21, 23, 27, 28, 31]. More generally, for d-dimensional geometric problems, running times of the form 2 O(n 1-1/d) or n O(k 1-1/d) appear naturally, and Marx and Sidiropoulos [START_REF] Marx | The limited blessing of low dimensionality: When 1-1/d is the best possible exponent for d-dimensional geometric problems[END_REF] showed that, assuming the ETH, this form of running time is essentially best possible for some problems.

2 O(√ n) , 2 O(√ k) • n O(
In this paper, we explore whether such a speedup is possible for geometric coloring problems. Deciding whether an n-vertex graph has an -coloring can be done in time O(n) by brute force, or in time 2 O(n) using dynamic programming. On planar graphs, we can n) . However, while every planar graph is 4-colorable, disks graphs can contain arbitrary large cliques, and hence -colorability is a meaningful question for larger, non-constant, values of as well. We show that if the number of colors is part of the input and can be up to Θ(n), then, surprisingly, no speedup is possible: Coloring the intersection graph of n disks with colors cannot be solved in time 2 o(n) , assuming the ETH. Thus we understand the complexity of the problem when the number of colors is a constant or Θ(n), but what exactly happens between these two extremes? Our main 2-dimensional result exhibits a smooth increase of complexity as the number of colors increases. Let us remark that when we express the running time as a function of two parameters (number n of disks and number of colors) it is not obvious what we mean by claiming that a running time is "best possible." In the statement of Theorem 1, we follow Fomin et al. [START_REF] Fomin | Tight bounds for parameterized complexity of cluster editing with a small number of clusters[END_REF],

who studied the complexity of a two-parameter clustering problem in a similar way: We restrict the parameter to be Θ(n α) for some fixed α, and determine the complexity under this restriction as a univariate function of n.

The proofs of both statements in Theorem 1 are not very specific to disks and can be easily adapted to, say, axis-parallel squares or other fat objects. However, it seems that the requirement of fatness is essential for this type of complexity behavior as, for example, the coloring of the intersection graphs of line segments does not admit any speedup compared to the 2 O(n) algorithm, even for a constant number of colors.

Theorem 2. There is no 2 o(n) time algorithm for 6-Coloring the intersection graph of line segments in the plane, unless the ETH fails.

We actually show a stronger statement that proves the lower bound even if the segments have only two directions. Let us mention that very recently Theorem 2 was strengthened by a subset of authors, who modified the argument to show that the same lower bound holds even for 4-Coloring, while for 3-Coloring there exists a subexponential algorithm [START_REF] Bonnet | Optimality program in segment and string graphs[END_REF]. We include the proof of Theorem 2 for the sake of completeness.

We observe that both hardness proofs crucially use that the segments can be of different (non-constant) lengths. For unit segments, only a weaker lower bound was shown in [START_REF] Bonnet | Optimality program in segment and string graphs[END_REF]: assuming the ETH, there is no algorithm for 4-Coloring an intersection graph of unit segments in time 2 o(n2/3) . The exact complexity of coloring the intersection graphs of unit line segments remains open.

How does the complexity change if we look at the generalization of the coloring problem into higher dimensions? It is known for some problems that if we generalize the problem from two dimensions to d dimensions, then the square root in the exponent of the running time changes to a 1 -1/d power, which makes the running time closer and closer to the running time of the brute force as d increases [START_REF] Marx | The limited blessing of low dimensionality: When 1-1/d is the best possible exponent for d-dimensional geometric problems[END_REF]. This may suggest that the d-dimensional generalization of Theorem 1 should have (n) = 2 O(n 1-1/d 1/d log n) , and

• cannot be solved in time 2 O n d-1+α d -
for any > 0, even for unit balls, unless the ETH fails.

Note that the lower bound of Theorem 3 is slightly weaker than the lower bound of Theorem 1: we only prove that the exponent of n cannot be improved by any positive > 0.

Techniques. The upper bounds of Theorems 1 and 3 follow fairly easily using standard techniques. Clearly, the problem of coloring disks with colors is non-trivial only if every point of the plane is contained in at most disks: otherwise the intersection graph would contain a clique of size larger than and we would immediately know that there is no -coloring. On the other hand, if every point is contained in at most of the n disks, then it is known that there is a balanced separator of size O(√ n) [START_REF] Miller | Separators for sphere-packings and nearest neighbor graphs[END_REF][START_REF] Smith | Geometric separator theorems[END_REF][START_REF] Smith | Geometric separator theorems and applications[END_REF]. By finding such a separator and trying every possible coloring on the disks of the separator, we can branch into O(√ n) smaller instances (here it is convenient to generalize the problem into the list coloring problem, where certain colors are forbidden on certain disks). This recursive procedure has the running time claimed in Theorem 1. We can use higher-dimensional separation theorems and a similar approach to prove the upper bound of Theorem 3. This part is explained in detail in Section 2.

For the lower bound of Theorem 1, the first observation is that instances with the following structure seem to be the hardest: the set of disks consists of g 2 groups forming a g × g-grid and each group consists of pairwise intersecting disks such that disks in group (i, j) can intersect disks only from those other groups that are adjacent to (i, j) in the g × ggrid. Note that this instance has n = g 2 disks. As a sanity check, let us observe that the g disks in any given row have g possible different colorings, hence we can solve the problem by a dynamic programming algorithm that sweeps the instance row by row in time

in 2 O(g log) = 2 O(√ n log)
, which is consistent with the upper bound of Theorem 1. We introduce the Partial d-grid Coloring problem as a slight generalization of such grid-like instances where some of the g × g groups can be missing, see Figure 1 for an illustration.

To prove that instances of this form cannot be solved significantly faster, we reduce from a restricted version of satisfiability where g 2 k variables are partitioned into g 2 groups of size k each such that these groups form a g × g-grid and there are two types of constraints:

clauses of size at most 3 where each variable comes from the same group and equality constraints forcing two variables from two adjacent groups to be equal. It is not very difficult to show that any 3-SAT instance with O(gk) variables and O(gk) clauses can be embedded into such a problem, hence the ETH implies that the problem cannot be solved in jocg.org A technical issue that arises in the reduction is that we want to consistently assign the same meaning to the colors everywhere throughout the created instance (e.g., in each group, we want to use colors {2i -1, 2i} on the (2i -1)-st and 2i-th disks of the group). This would be easy to do in the more general list coloring version of the problem where it is possible to distinguish colors using the lists. However, the colors are completely interchangeable in the ordinary coloring problem, for example, we can arbitrarily permute the colors in any proper coloring. An obvious approach is to use one of the groups as reference and define the color appearing on the i-th disk of the group to be interpreted as the i-th color. Then the challenge is to propagate this reference coloring to each and every gadget of the constructed instance. This may seem impossible at first: the "wires" propagating the reference coloring would need to cross the "wires" propagating streams of information between the gadgets. We

d-dimensional g × • • • × g-grid.
Then the reduction from this problem to coloring unit balls in d-dimensional space is very similar to the 2-dimensional case.

Algorithms

The ply (also called thickness) of a family of sets is the maximum number of sets that cover a single point. Fix d 2 and let S be a family of n d-dimensional convex objects. Note that the ply of S is at most the chromatic number of the intersection graph of S. Indeed, the subfamily of objects covering a same point forms a clique.

The diameter of a geometric object S is the supremum of the distance between any pair of points of S. The width of S is the infimum of distances between two parallel hyperplanes H 1 , H 2 , such that S lies between H 1 and H 2 . A family S of geometric objects is B-fat if for each S ∈ S it holds that diameter(S) width(S) B.

The theorem below is a special case of Theorem 26 in the manuscript of Smith and Wormald [START_REF] Smith | Geometric separator theorems[END_REF], which was informally announced in the extended abstract presented at FOCS 1998 [START_REF] Smith | Geometric separator theorems and applications[END_REF].

Theorem 4 (Smith, Wormald [START_REF] Smith | Geometric separator theorems[END_REF]). For every d 1 and B 0, there exists a constant c = c(d, B), such that for every B-fat collection S of n d-dimensional convex sets with ply at most , there exists a d-dimensional sphere Q, such that:

(i) at most d+1 d+2 n elements of S are entirely inside Q,

(ii) at most d+1 d+2 n elements of S are entirely outside Q,

(iii) at most cn 1-1/d 1/d elements of S intersect Q.

Now, using a fairly standard divide-and-conquer approach we prove the main result of this section, which implies the upper bounds in Theorems 1 and 3.

O(n 1-1/d 1/d) = 2 O(n 1-1/d 1/d log n) ,
using polynomial space.

Proof. First, we will exhaustively check if G contains an (+ 1)-clique. If so, we can immediately terminate, as colors are clearly not sufficient to color G. We can do it in time:

n +1 • n O(1) = n • n O(1) = 2 log n • n O(1) = 2 O(n 1-1/d 1/d log) . Indeed, log n n 1-1/d 1/d log is equivalent to 1-1/d /log n 1-1/d
/log n; which holds when n is sufficiently large (n 8) since n and x → x 1-1/d /log x is increasing for x 8.

From now on, we can assume that there is no (+ 1)-clique in G and thus the ply of S is at most . By Theorem 4, there exists a set Q ⊆ S of at most cn 1-1/d 1/d objects (or, equivalently, a subset of vertices of G) such that S \ Q is split into two parts S 1 , S 2 , each of size at most d+1 /d+2 n and such that no object of S 1 intersects an object of S 2 .

jocg.org

We can find such a set in an exhaustive way in time:

n cn 1-1/d 1/d • n O(1) = 2 O(n 1-1/d 1/d log n) .
Now, for every coloring of Q with lists L, we can try to extend this coloring to S 1 and S 2 recursively, using the standard divide-and-conquer approach (note that the lists of objects in S \ Q are updated according to the coloring of Q). This gives us the total running time

T (n) 2 O(n 1-1/d 1/d log) • 2 T d + 1 d + 2 n .
Solving this recursion we obtain the running time 2 O(n 1-1/d 1/d log) . Thus, the total running time of the algorithm is 2 O(n 1-1/d 1/d log n) . Observe that the space used is polynomial.

Since finding a proper geometric representation of many types of intersection graphs is NP-hard [START_REF] Van Leeuwen | Convex Polygon Intersection Graphs[END_REF] (or even ∃R-hard [START_REF]Computational geometry column 62[END_REF]), we are often interested in designing robust algorithms.

An algorithm is robust if its input is a graph (without a geometric representation), and the algorithm either gives a correct answer, or reports that the input graph is not an intersection graph.

We point out that the above coloring procedure is robust. If G is not an intersection graph of fat convex objects, then the algorithm either gives the correct answer (if G happens to have appropriate separators), or we can correctly report that the input is invalid (the exhaustive search step fails to find any separator).

Note that the running time could be slightly improved to 2 O(n 1-1/d 1/d log) should we have a faster algorithm for finding separators. It is worth noting that such (polynomial) algorithms exist for d-dimensional balls, cubes, and many other shapes [START_REF] Miller | Separators for sphere-packings and nearest neighbor graphs[END_REF][START_REF] Smith | Geometric separator theorems and applications[END_REF]. In particular, we obtain the following result for disks in a plane.

Corollary 6. Given a set S of n disks in the plane, the existence of a -coloring of an intersection graph of S can be decided in time 2 O(√ n log) , using polynomial space.

Intermediate problems

In this section, we introduce two technical problems, which will serve as an intermediate In other words, a and a are adjacent if a = a ± e i for some i ∈ [d].

jocg.org

We will often refer to vertices of a grid as cells. Moreover, if the value of g is either clear from the context or unimportant, we will call R[g, d] simply a d-dimensional grid.

The first problem is called d-grid 3-Sat and can be seen as a 3-Sat embedded in a grid.

Problem: d-grid 3-Sat

Input: A d-dimensional grid G = R[g, d], a positive integer k, a function ζ : v ∈ V (G) → {v 1 , v 2 , . . . , v k } mapping each cell v to k fresh boolean
v ∈ V (G) → {p v 1 , p v 2 , . . . , p v } ∈ ([] d) mapping each cell v to a set of points in [] d
. It is possible that some points p v i and p v j are superimposed, i.e., they have exactly the same coordinates -they are still counted as different points. Question: Is there an -coloring of all the points such that:

• two points in the same cell get different colors;

• if v and w are adjacent in G with w = v + e i (for some i ∈ [d]), and p ∈ ρ(v) and q ∈ ρ(w) receive the same color, then

p[i] q[i]?
The above definition is fairly technical but its underlying idea is simple. Let us first think of Partial 2-grid Coloring, the case when d = 2. We want to see a grid of unit disks (see Figure 1) as the centers of the disks in a discretized and normalized space (say, inner grids) where adjacencies between two contiguous cells (of the outer grid) is determined by exactly one coordinate within the inner grids. The forthcoming Section 4.1 and Figure 2 show the direct correspondence between a grid of unit disks and an instance of Partial 2-grid Coloring.

Journal of Computational Geometry

jocg.org 4 Two-Dimensional Lower Bounds

In this section, we discuss how to obtain a lower bound for the complexity of coloring unit disk graphs. We do it using a three-step reduction and the intermediate problems introduced in the previous section. Thanks to introducing these two intermediate steps, our construction is easy to generalize to higher dimensions (see Section 5).

We start with the last step of the reduction chain as it is the most direct. Furthermore it explains and motivates the introduction of Partial d-grid Coloring, or rather here Partial 2-grid Coloring, its special case in dimension 2. We will use the following theorem, whose proof can be found in Section 4.3.

Theorem 8. For any 0 α 1, there is no 2 o(√ n) algorithm solving Partial 2-grid
Coloring on a total of n points and = Θ(n α) points in each cell (that is n/ cells), unless the ETH fails. (i, j) into a disk centered at ((2 2 + 0.1)i + x, (2 2 + 0.1)j + y). The common radius of all the disks is set to 2 , and we set the number of colors to (see Figure 2). This way, the fact that two disks coming from adjacent cells along the x-axis (resp. y-axis) intersect is only determined by their x-coordinate (resp. y-coordinate). Indeed, the disks are big enough compared to the cells containing the points so that in the region where the disks of adjacent cells may intersect, their boundaries are close to horizontal or vertical straight lines (see the red rectangle in Figure 2). A formal explanation is detailed in Theorem 14.34 of [START_REF] Cygan | Parameterized Algorithms[END_REF]. Now Theorem 1 follows directly from Theorem 8.

Remark 1. Note that we do not actually require that the relation of the number n of disks and the number of colors is = Θ(n α) for some α. The claim holds also for other functions

= (n) = O(n), e.g. = Θ(log n).
Then we detail the first step of the reduction chain. Proof. The ETH together with the Sparsification Lemma [START_REF] Impagliazzo | Which problems have strongly exponential complexity?[END_REF] implies that there is no 2 o(N +M) algorithm to decide satisfiability of a 3-Sat formula with N variables and M clauses.

Let Φ be a 3-Sat formula with the variable set V ar and the clause set C. There is a simple polynomial-time procedure to modify Φ so that each variable appears at most 3 times. Indeed, first note that we can assume that no variable appears more than once within a clause. For each variable v appearing ∆ > 3 times, we introduce ∆ new variables v 1 , v 2 , . . . , v ∆ and substitute each appearance of v with a different v i . We also add clauses

(v 1 ∨ ¬v 2), (v 2 ∨ ¬v 3), . . . , (v ∆-1 ∨ ¬v ∆), (v ∆ ∨ ¬v 1)
to C. This chain of clauses enforces that all v i 's have the same truth-value in any satisfying assignment. Note that each newly introduced variable has exactly 3 occurrences. We repeat this until there are no variables with more than 3 occurrences. Thus we introduced at most 3|C| new variables and 3|C|

new clauses. So we can assume that each variable of Φ appears at most three times, let

N := |V ar| and M := |C|. Clearly M = Θ(N).
We choose k = Θ(N 2α/(1+α)) (actual constants will follow from the description below). Now we want to cover the set of variables by g = 7 6M/k = Θ(k (1-α)/2α) groups V 1 , . . . , V g such that the following conditions hold:

• for each clause C, there exists a group V i , such that all variables of C belong to V i ;

we say this group contains the clause C;

• if two clauses C, C share a variable, then they are contained in different groups;

Journal of Computational Geometry jocg.org

• each group contains at most k/2 variables.

To form these groups, we first construct a partition P 0 of the clauses into g = g/7 = 6M/k groups of size at most M/g k/6. As each variable occurs in at most three clauses, and thus every clause shares some variable with at most six other clauses, we can easily define a second refined partition P 1 of the clauses into g = 7g groups, such that no two clauses that share a variable are contained in the same group. We denote these groups by C 1 , . . . , C g . Now, we set V i to be exactly the set of variables contained in the set of clauses C i . As each clause has at most three variables, each group V i contains at most 3

• k/6 = k/2 variables. Now, we construct an instance I(Φ) of 2-grid 3-Sat. Let G = R[g, 2] with k variables in V 1 V 2 V 3 V 4 V 5 V 1 V 2 V 3 V 4 V 5 x x x x x x
Figure 3: Allocation of the variables. Each color corresponds to a set of variables. Note that for any variable x, the set of cells containing x is connected.

each cell. Note that the number of variables in

I(Φ) is g 2 k = Θ(k 1/α).
The cell (i, j) should contain the information about truth assignment of V i ∪ V j .

Note that if a variable appears in both V i and V j , it will be represented just once in the cell (i, j). As each group V i contains at most k/2 variables, each cell has enough space to accommodate all this information. To make all cells contain exactly k variables, we can add some dummy variables, which will not appear in any constraints. The total number of dummy variables added is at most g 2 • k, so the total number n of variables is Θ(k 1/α).

Observe that the variable group V i is contained exactly in the i-th row and i-th column of G. Now, we add each clause C ∈ C i to the set of clause constraints of the cell (i, i). Finally, we need to make sure that all copies of a single variable have the same truth assignment.

Observe that for each variable x the cells containing x form a connected set (see Fig. 3).

Therefore the consistency can be ensured using equality constraints. Note that since no variable appears more than once in a single cell, the equality constraints related to each edge of G are variable-disjoint.

It is easy to see that Φ is satisfiable if and only if I(Φ) is satisfiable. Furthermore First, we will explain the most basic building blocks of our construction, i.e., standard cells, reference cell, variable-assignment cells, local reference cells, and wires. Then we are ready to give an overview of the whole reduction. We finish with an elaborate explanation of more complicated gadgets and proof of their correctness.

N = O(gk) = O(g 2 k 2) = O(√ nk). This implies that a 2 o(

Standard cells.

A standard cell is a cell where the points p 1 , . . . , p are on the main diagonal, that is p i = (i, i) for every i ∈ [] (see cells A and B of Figure 5a). When we talk about the ordering of the points in a standard cell, we always mean the left-to-right (or equivalently, top-to-bottom) ordering. Standard cells will be used for the basic pieces of the construction, i.e., variable-assignment cells, local reference cells, and wires (see below).

Reference coloring. Later in the construction we will choose one standard cell R, which will be given a special function. We will refer to the coloring of R as the reference coloring.

For each i ∈ [], we define the color i to be the color used for the point p i in R. Now, saying that a point somewhere else has color i, has an absolute meaning; it means using the same color as used for point p i in R.

Variable-assignment cells. For each cell v = (i, j) ∈ V (G), we introduce in F a standard cell A(v) = (δi, δj), where δ is a large constant (the coordinates of cells refer to their position in R[g , 2], which is a supergraph of F). The cells A(v) for v ∈ V (G) are responsible for encoding the truth assignment of variables in ζ(v). Therefore we call them variableassignment cells. We will partition variable-assignment cells into two types. The cell A(v) ways to color these points with colors. We will only make use of 2 /4 = 2 k colorings among those. In our construction, we will make sure that each variable-assignment cell receives one of the standard colorings. even, then for each i ∈ [k], we interpret the coloring in the following way:

for v = (i, j) of I is called even if i + j is even. Otherwise A(v) is odd. Note that if v
If the cell A(v) is even, the coloring ϕ of A(v) is standard if {ϕ(p 2i-1), ϕ(p 2i)} = {2i -1, 2i} for i ∈ [k] and ϕ(p i) = i for i ∈ [4k] \ [2k]. If the cell A(v)
p 2i-1 → 2i -1 , p 2i → 2i as setting the variable v i to true; p 2i-1 → 2i , p 2i → 2i -1 as setting the variable v i to false. If A(v) is odd, for each i ∈ [k],
we interpret it in that way:

p 2k+2i-1 → 2i -1 , p 2k+2i → 2i as setting the variable v i to true; p 2k+2i-1 → 2i , p 2k+2i → 2i -1 as setting the variable v i to false.
Observe that in even (odd, respectively) cells A(v) the assignment of variables is only encoded by the coloring of the first (last, respectively) 2k points in A(v). The colors of the remaining points are exactly the same as in the reference coloring, so each cell contains exactly one half of the reference coloring.

Local reference cells. For all i, j ∈ [g -1], we introduce a new standard cell R(i, j) := (δi + δ/2, δj + δ/2), called a local reference cell. Moreover, we set the reference R to be R(1, 1). In the construction, we will ensure that the coloring of each local reference cell is exactly the same, i.e., is exactly the reference coloring.

Consider the variable-assignment cell A(v) for v = (i, j). We say that a local reference cell R(i , j) is associated with A(v), if j -j ∈ {0, 1} and i -i ∈ {0, 1}. Note that each variable-assignment cell has one, two, or four associated local reference cells. Moreover, if v, w are adjacent cells of I, then A(v) and A(w) share at least one associated local reference cell.

Wires. If two standard cells are adjacent, then they must be colored in the same way;

thus having a path of standard cells, allows us to transport the information from one cell to another. Let us prove that claim. Let A and B be two adjacent standard cells, such that A is left of B (see Figure 5a; the argument is similar if the cells are vertically adjacent).

Let p 1 , . . . , p be the points of the cell A and q 1 , . . . , q be the points of the cell B.

Note that the color of q 1 is necessarily equal to the color of p 1 , because the x-coordinates of points p 2 , p 3 , . . . , p exceed the x-coordinate of q 1 . Inductively, we can show that for every i 2, the color of q i is the same as the color of p i . Indeed, the colors used for p i+1 , p i+2 , . . . , p are not available for q i , because these points are too close to q i . On the other hand, by the inductive assumption, all colors used on p 1 , p 2 , . . . , p i-1 are already used for points q 1 , q 2 , . . . , q i-1 . Thus the only possible choice for the color of q i is the color of p i .

Observe that the use of wires allows us to create many copies of the same cell (see Fig. 5b). We say two cells are the same, if the point configuration and their coloring must be necessarily the same. Overview of the construction Before we move on to describe more complicated gadgets, we explain the overview of the construction. Figure 6 presents the arrangement of the cells in F . For each variable-assignment cell A(v), we introduce a clause-checking gadget, which is responsible for ensuring that all clauses in C(v) are satisfied. This gadget requires an access to the reference coloring, which can be attained from the local reference cells (we can choose any of the local reference cells associated with A(v)). For each edge vw of G, we introduce a consistency gadget. In fact, for inner edges of G (i.e., the ones not incident with the outer face 2) we introduce two consistency gadgets, one for each face incident with vw.

jocg.org

This gadget is responsible for ensuring the consistency on three different levels:

• to force all equality constraints C(v, w) to be satisfied,

• to ensure that each of A(v) and A(w) receives one of the standard colorings,

• to ensure that the local reference cell contains exactly the reference coloring.

This gadget also requires access to the reference coloring, so we join it with the appropriate local reference cell (see Fig. 6).

To join the variable-assignment cells and local reference cells with appropriate gadgets, we will use wires. Notice that each cell A can interact with at most four other cells, which may not be enough, if we want to attach several gadgets to A (see e.g. the middle variable assignment cell in Figure 6). However, since wires allow us to create an exact copy of A, we can attach any constant number of gadgets to copies of A, adding only a constant number of additional cells. Moreover, we can do it in a way that ensures that no two gadgets interact with each other (anywhere but on A). Thus, when we say that we attach some gadget to a cell, we will not discuss how exactly we do this.

Every gadget uses only a constant number of cells. Thus, making the constant δ large enough and using wires, we can make sure that different gadgets do not interact with each other (except for the shared cells). The total number of points in the construction is clearly increased only by a constant factor.

Permuting points and colors. Recall that when describing wires, we have not used the second coordinate of the points p 1 , . . . , p and q 1 , . . . , q . In fact, those coordinates can be chosen at our convenience, and the argument supporting the claim in the paragraphs on the wires would still work. Combining this observation horizontally and vertically, we can force any permutation of the colors (see Figure 7a). The gadget is realized as follows. Let σ be our target permutation. To the right of a standard cell A, we put a cell B. For each i ∈ [], we add a point (i, σ(i)) to B, so there are points in total. Below the cell B, we put a standard cell C. We observe that in any feasible coloring of those three cells, for every i ∈ [], the points p i and q σ(i) have the same color, where p i (resp. q i) is the point in (i, i) in the cell A (resp. cell C). Although permutation gadgets are more complicated than wires, the formal argument of correctness is identical as in the case of wires, as the propagation of colors between neighboring cells depends on only one coordinate.

Forgetting color assignment. Besides permuting points and colors, it is also possible to forget the color assignment of some points. Figure 7b shows a forgetting gadget attached to standard cells A and C. In the cell A we have the coloring from left to right a, b, c, d.

In the cell C, the first two points can be colored either a, b or b, a. In particular, if A is an even variable-assignment cell, then by looking at C we cannot distinguish anymore whether the variable was set to true or to false. Thus, using a forgetting gadget attached to two standard cells, we may force equality of colors of some corresponding points, while giving some freedom of choosing the others. This concept will be used in the next paragraph.

Parallelism. As we may have hinted in the previous paragraph, subparts of a given cell can act independently. In particular, this means that we can choose to forget any subset of information but preserve the rest. It is important to note that this is a more general phenomenon. Let 1 , . . . , t be positive integers summing up to . Consider an arrangement of cells where the points of each cell are all contained in the same square boxes of side lengths respectively 1 , . . . , t , along the diagonal as shown in Figure 8a. For each h ∈ [t], the h-th box (of side length h) contains exactly h points.

One may observe that a slight generalization of the argument given in the paragraph on wires shows that if A and B are adjacent cells with the same box-structure, i.e., each has points grouped in t boxes of sizes 1 , . . . , t , then for each h ∈ [t], the set of colors used on points in h-th box in A is exactly the same as the set of colors used in h-th box in B (see Figure 8a).

We point out that the combination of this observation and the forgetting gadget attached to a local reference cell and a variable-assignment cell A can be used to ensure that A receives one of the standard colorings (see Fig. 8b). The construction of the forgetting Journal of Computational Geometry jocg.org gadget varies depending on the parity of A. In general the gadget preserves the colors of 2k points containing the copy of one half of the reference coloring, and allows any permutation of colors within two-element boxes representing the variables. We will use a similar approach to check several clauses in parallel within the same group of a constant number of cells. Clause gadget. We detail how a disjunction of three literals is encoded (see the left part of Figure 9). Clauses with fewer literals are just a simplification of what comes next. First, we will explain how to express a clause C, whose variables x 1 , x 2 , x 3 are contained in a (6 × 6)box of a variable-assignment cell A. In the next paragraph we will show how to check several variable-disjoint clauses in one constant-size gadget. In general, in what follows, one should think of the coordinates that we will specify as coordinates within a box part of the cell, rather than as coordinates in the cell. The same applies to the colors, we should always look at the set of colors appearing in the particular box. Obviously, the clause-checking gadget needs to interact with variable-assignment encoding the values of x 1 , x 2 , x 3 . For simplicity of notation assume that x 1 is encoded by coloring points p 1 , p 2 with colors 1, 2; x 2 is encoded by coloring points p 3 , p 4 with colors 3, 4 and; x 3 is encoded by coloring points p 5 , p 6 with colors 5, 6. Our clause-checking gadget needs also an access to the reference coloring contained in the cell R. This is necessary to be able to distinguish between colors e.g. 1 and 2, and thus between setting x 1 to true or to false. Journal of Computational Geometry

R(i -1, j) R(i, j)

jocg.org

Proof. To show this, we will prove that the coloring of R(i, j) is the same as the coloring of

R(i -1, j) for each 2 i g -1 and j ∈ [g -1]
. The case for R(i, j -1) is analogous, and the claim follows inductively.

Let v = (i, j) and w = (i, j + 1) be cells of I. Note that v and w are adjacent and A(v) and A(w) are associated with both R(i -1, j) and R(i, j). Without loss of generality assume that v is even and w is odd, see Fig. 11 for illustration.

Intuitively, the consistency gadget corresponding to the edge vw and the left face bounded by vw (we shall call it the left consistency gadget) is responsible for copying one half of the coloring of R(i -1, j) to A(v) and the other half to A(w). Analogously, the consistency gadget corresponding to vw and the right face bounded by vw (we shall call it the right consistency gadget) is responsible for copying these halves to R(i, j), making sure that the coloring of R(i, j) is exactly the same as the coloring of R(i -1, j). More formally, for f ∈ [], by p f , q f , r f , and r f we denote, respectively, the points of A(v), A(w), R(i -1, j), and R(i, j). By the correctness of the left consistency gadget, we know that for every coloring ϕ, we have:

• ϕ(r f) = ϕ(q f) for all f ∈ [2k], • ϕ(r f) = ϕ(p f) for all f ∈ [4k] \ [2k].
Analogously, by the correctness of the right consistency gadget, we know that for every coloring ϕ, we have:

• ϕ(q f) = ϕ(r f) for all f ∈ [2k], • ϕ(p f) = ϕ(r f) for all f ∈ [4k] \ [2k].
This shows that ϕ(r f) = ϕ(r f) for every coloring ϕ and every f ∈ [], which proves the claim.

Claim 2. The following statements are true.

1. The coloring of each A(v) is one of the standard colorings.

2. For each pair of adjacent cells v, w of I, all local constraints C(v, w) are satisfied. Suppose we want to try a similiar approach to obtain a tight (i.e., matching the upper bound in Theorem 5 lower bound in d 3 dimensions. We observe that the naive approach of creating Θ(N/k) groups is not enough. Indeed, a standard computation shows that the bound in Theorem 5 is attained for the grid R[g, d] with g = Θ((N/k) 1/(d-1)) and k variables/points per cell. Thus we have to refine our reduction from 3-Sat to d-grid 3-Sat.

Embeddings

For integers g, d 1, we denote by H[g, d] the d-dimensional Hamming grid, i.e., a graph whose vertices are all points from [g] d , and two vertices are adjacent if their Hamming distance is exactly one (in other words, they differ on exactly one coordinate).

An embedding of a graph F into a graph G is a mapping f :) , such that:

V (F) → 2 V (G
• for each v ∈ V (F), the set f (v) is connected in G,
• for each edge uv of G, the sets f (u) and f (v) touch, i.e., either they have a non-empty intersection or there is an edge in G joining a vertex from f (u) to a vertex of f (v).

The depth of an embedding f is the maximum number of vertices of F mapped to sets containing the same vertex of G, that is max{|S| : S ⊆ V (F) and v∈S f (v) = ∅}.

Observe that if f is an embedding of G into F with depth D, and f is an embedding of F into H with depth D , then the composition f • f of f and f is an embedding of F into H with depth D • D . Now we will present a series of results about graph embeddings. We start with embedding arbitrary graphs into Hamming grids.

Theorem 9 (Marx, Sidiropoulos [START_REF] Marx | The limited blessing of low dimensionality: When 1-1/d is the best possible exponent for d-dimensional geometric problems[END_REF]). Let d 2. For every graph G with m edges, no isolated vertices, and with maximum degree ∆, there is an embedding

f from G to H[g, d -1] having depth O(d 2 ∆), where g = O(m 1/(d-1)
• log m log log m). Moreover, such an embedding can be found in deterministic polynomial time.

The next step will be embedding a Hamming grid into another, smaller Hamming grid.

Lemma 10. For every g, d 1 and every k = O(g d), there exists g = O(g/k

d = O(k)
It is straightforward to verify that f is an embedding.

Finally, Hamming grids can be embedded in grids.

Theorem 11 (Marx, Sidiropoulos [START_REF] Marx | The limited blessing of low dimensionality: When 1-1/d is the best possible exponent for d-dimensional geometric problems[END_REF]). For every d, g 1 there is an embedding f from

H[g, d -1] to R[g, d]
having depth at most d. Moreover, such an embedding can be found in deterministic polynomial time.

Now, by combining the above results, we show how we can efficiently embed an incidence graph of a 3-Sat formula into the grid.

Lemma 12. Let Φ be a 3-Sat formula over the variable set V ar = {x 1 , x 2 . . . , x N }, such that each variable appears in at most ∆ 3 clauses, and let k = O(N) be an integer. There

exists g = O(∆(∆N/k) 1/(d-1) • log(∆N) log log(∆N)
) and a mapping ϕ of variables of Φ to subsets of vertices of R[g, d], such that:

(i) for every x ∈ V ar, the set ϕ(x) is connected, (ii) for every v ∈ V (R[g, d]), the number of variables x such that v ∈ ϕ(x) is O(∆d 3 k), (iii) for every clause C, there exists a vertex v(C) ∈ V (R[g, d]) such that v(C) ∈ x∈C ϕ(x)
(if there is more than one such vertex, we set v(C) to be any of them);

(iv) if for two clauses C, C it holds that v(C) = v(C), then C and C are variable-disjoint.

Moreover, such a mapping can be found in polynomial time.

Proof. Let C = {C 1 , C 2 , . . . , C M } be the set of clauses of Φ. Consider an incidence graph G of Φ, i.e., the bipartite graph with the vertex set V ar∪C, and the edge set {xC : x ∈ V ar, C ∈ C, and x ∈ C}. Note that the maximum degree of G is ∆.

By Theorem 9, we can find an embedding

f from G to H[g , d -1] for g = O((∆N) 1/(d-1) • log(∆N) log log(∆N)), with depth O(d 2 ∆
). Now, by Lemma 10, there exists an embed-

ding f of H[g , d-1] into H[g , d-1] for g = O(g /k 1/(d-1)) = O((∆N/k) 1/(d-1) • log(∆N) log log(∆N))
with depth O(k). By Theorem 11, there is an embedding

f of H[g , d -1] into R[g , d]
with depth at most d. The last two properties follow from the observation that v(C) belongs to ϕ(x) for every

x ∈ C. Now we are ready to prove the following theorem, which is a generalization of Theorem 7 to higher dimensions. Observe that, as in the 2-dimensional case, two adjacent standard cells have to be colored in the same way (see Figure 12). being an obstacle anymore, bringing the reference coloring to the clause gadgets is no longer a delicate issue. We can therefore simplify a bit our reduction for d 3.

First, we do not require the local reference coloring cells of the planar case. Now, we only have one global reference coloring cell, and we wire this cell to every clause gadget. We can do it, as all gadgets are are embedded in a two-dimensional subspace, so we can always use extra dimensions to find place for wires (see Fig. 13).

Secondly, we no longer need two consistency gadgets between two adjacent even and odd cells. Now, between every even cell (resp. every odd cell) and each of its 2d neighboring odd cells (resp. even cells), we have one consistency gadget. Each even/odd cell is attached to 2d wires as represented in Figure 14 in dimension 3. It is noteworthy that we are not using the extra dimensions for those crucial gadgets.

The higher dimensional space is mainly needed and used in Section 5.1 to get Theorem 13. The common radius of all the balls is set to (d -1) 2 , and we set the number of colors to .

The correctness of this reduction is similar to the 2-dimensional case and is detailed in [25, jocg.org Theorem 3.1.].

Segments

First we will present the hardness proof for the list coloring problem, and then we will show how to modify it to obtain the result for 6-coloring. The segments in our construction will be axis-parallel, the class of intersection graphs of such segments in denoted by 2-Dir. In the description, we will identify the vertices of the intersection graph with the segments.

Theorem 15. There is no algorithm working in time 2 o(n) for the list 6-coloring of 2-Dir graphs with n vertices, unless the ETH fails.

Proof. We reduce from 3-coloring of graphs with maximum degree at most 4. Let G be a graph with n vertices and m = Θ(n) edges. It is a folklore result that, assuming the ETH, there is no algorithm solving this problem in time 2 o(n) (see for instance Lemma 1 in [START_REF] Cygan | Tight lower bounds on graph embedding problems[END_REF]).

Let the vertex set of G be V = {v 1 , v 2 . . . , v n }. We construct a 2-Dir graph G with lists L of colors from the set {1, 2, 3, 4, 5, 6}, such that G is 3-colorable if and only if G is list-colorable with respect to the lists L.

For each vertex v i we introduce two segments: a horizontal one, called x i , and a vertical one, called y i , so that they form a half of a n × n grid (see Figure 16). When i increases, x i becomes longer and y i shorter. One may observe that the intersection graph induced by those segments is not grid-like. We set the lists of each x i to {1, 2, 3} and the lists of each y i to {4, 5, 6}.

Each color c ∈ {1, 2, 3} will be identified with the color c + 3. Thus, we want to ensure that in any feasible 6-coloring f of G we have:

1. f (x i) + 3 = f (y i) for all i ∈ [n], 2. f (x i) + 3 = f (y i) for all i > j such that v i v j is an edge of G.
This is achieved by using equality gadgets and inequality gadgets. At the crossing point of

x i and y i , we put an equality gadget (represented by a circle on Figure 16). Moreover, for each edge v i v j of G, we put an inequality gadget at the crossing point of x i and y j , i > j

(represented by a square on Figure 16). The inequality gadget consists of 7 segments, arranged as depicted on Figure 18. So now consider an inequality gadget and suppose the color of x i is 1. Then p 1 and p 2 get colors 5 and 6, respectively. Thus the only choice for x is 4, which prevent y j from receiving color 4. This coloring can be extended to remaining segments by coloring q 1 , q 2 with color 2 and r 1 , r 2 with color 3. The other cases are again symmetric. Proof. We modify the construction from the proof of Theorem 15. We first introduce six overlapping segments R 1 , R 2 , . . . , R 6 , whose coloring will serve as a reference coloring. Since these segments are pairwise intersecting, each of them receives a different color. We will denote by i ∈ {1, 2, . . . , 6} the color assigned to R i . Now, for each segment v of G , we want to simulate the list L(v) from the instance of list 6-coloring constructed in the proof of Theorem 15. For every color i / ∈ L(v), we want to introduce a segment s i intersecting v, which will always receive color i.

To achieve this, we first need to transport the reference coloring to every gadget.

We will do it using bundles of overlapping segments, the overall high-level idea is depicted in Figure 19. We make sure that a bundle consisting of overlapping segments colored 1,2,3 intersects all y i 's, and a bundle consisting of overlapping segments colored 4,5,6 intersects all x i 's. Observe that this already simulates the lists for every x i , y i (i ∈ [n]). Such a construction relies on a constant-size gadget, which allows us to split, join, or turn the reference coloring. In other words, we want to be able to split a bundle into two Journal of Computational Geometry jocg.org perpendicular bundles, carrying the same information (splitting, see e.g. red bundles in the left of Figure 19), join two bundles carrying distinct sets of colors into a single one (joining, this happens next to the inequality gadgets), or change the orientation of a bundle from a horizontal to vertical (turning, see the top-right bundles in Figure 19). We always need to make sure that the color of each overlapping segment in the bundle is uniquely determined.

The construction of the gadget for splitting a bundle of six segments is depicted in Figure 20. Turning a bundle or splitting a bundle of three colors can be easily realized by finishing unnecessary segments just after leaving the gadget. Also note that joining is actually the same as splitting. In order to join two perpendicular bundles, each carrying three colors, we add three segments to each of bundles (this will make sure that they receive the colors not appearing in the bundle), and attaching the extended bundles to a split gadget.

Figure 20: Split gadget for 6 colors. The parallel segments depicted close to each other are in fact overlapping. Observe that the depicted 6-coloring is the only possible (up to the permutation of colors).

Note that the number of segments in this gadget is constant. Now, the only thing left is to connect every segment in every gadget to appropriate segments carrying the reference coloring. This can easily be done using a constant number of additional segments per gadget (see Figure 21). x i y i p 1 p 2 q 1 q 2 r 1 r 2

x Figure 21: Simulation of lists for vertices in equality and inequality gadgets. Violet lines denote tuples of overlapping segments, carrying the reference coloring. We finish unwanted segments just after leaving the turning gadgets.

3 -

 3 Coloring can be solved in time 2 O(√ n) on the intersection graph of n disks in the plane and, assuming the ETH, there is no such algorithm with running time 2 o(√ n) . On the other hand, if the number of colors is part of the input, then no such speedup is possible: Coloring the intersection graph of n unit disks with colors cannot be solved in time 2 o(n) , assuming the ETH. More precisely, we exhibit a smooth increase of complexity as the number of colors increases: If we restrict the number of colors to = Θ(n α) for some 0 α 1, then the problem of coloring the intersection graph of n disks with colors • can be solved in time exp O(n 1+α 2 log n) = exp O(√ n log n) , and • cannot be solved in time exp o(n 1+α 2) = exp o(√ n) , even on unit disks, unless the ETH fails. More generally, we consider the problem of coloring d-dimensional balls in the Euclidean space and obtain analogous results showing that the problem 1 Introduction

decide 3 -

 3 colorability significantly faster in time 2 O(√ n) , for example, by observing that planar graphs have treewidth O(√ n). Let us consider now the problem of coloring the intersection graph of a set of disks in the 2-dimensional plane, that is, assigning a color to each disk such that if two disks intersect, then they receive different colors. For a constant number of colors, geometric objects can behave similarly to planar graphs: 3-Coloring can be solved in time 2 O(√ n) on the intersection graph of n disks in the plane and, assuming the ETH, there is no such algorithm with running time 2 o(√

Theorem 1 . 2)

 12 For any fixed 0 α 1, the problem of coloring the intersection graph of n disks with = Θ(n α) colors • can be solved in time 2 O(n 1+α 2 log n) = 2 O(√ n log n) , and • cannot be solved in time 2 o(n 1+α = 2 o(√ n) , even for unit disks, unless the ETH fails.

Figure 1 :

 1 Figure 1: A grid of disks.

 get around this problem by splitting the reference coloring into two halves and propagating them separately. The d-dimensional lower bound of Theorem 3 goes along the same lines, but we first prove a lower bound for a d-dimensional version of 3-SAT, where there are g d groups of variables of size k each, arranged into a g × • • • × g-grid. Based on earlier results by Marx and Sidiropoulos [24], we prove an almost tight lower bound for this d-dimensional 3-SAT by embedding a 3-SAT instance with roughly g d-1 k variables and clauses into the

Theorem 5 .

 5 Let G be an intersection graph of a B-fat collection S = {S 1 , S 2 , . . . , S n } of n d-dimensional convex objects. For any integer n and lists L : S → 2 [] , we can decide whether G can be properly colored with lists L in time n

 step in our hardness reductions. Let us start with some notation and definitions. For an integer n, we denote by [n] the set {1, 2, . . . , n}. For a set S, we denote by 2 S the family of all subsets of S. For a fixed dimension d and i ∈ [d], we denote by e i the d-dimensional vector, whose i-th coordinate is equal to 1 and all remaining coordinates are equal to 0. For a point p ∈ N d and i ∈ [d], by p[i] we denote the i-th coordinate of p, i.e. p • e i , where '•' denotes the inner product of vectors. For two positive integers g, d, we denote by R[g, d] the d-dimensional g-grid, i.e., a graph whose vertices are all vectors from [g] d , and two vertices are adjacent if they differ on exactly one coordinate, and exactly by one (on that coordinate).

 variables, and a set C of constraints of two kinds: clause constraints: for a cell v, a set C(v) of pairwise variable-disjoint disjunctions of at most 3 literals on ζ(v); equality constraints: for adjacent cells v and w, a set C(v, w) of pairwise variabledisjoint constraints of the form v i = w j (with i, j ∈ [k]). Question: Is there an assignment of the variables such that all constraints are satisfied? Not all variables need to appear in some constraint. The second technical problem is called Partial d-grid Coloring. Problem: Partial d-grid Coloring Input: An induced subgraph G of the d-dimensional grid R[g, d], a positive integer , and a function ρ :

4. 1

 1 Reduction from Partial 2-grid Coloring to -Coloring of unit disk graphs Proof of the third and last step of the lower bound of Theorem 1. There is a transparent reduction from Partial 2-grid Coloring to -Coloring on unit disk graphs. We follow, for instance, Theorems 1 and 3 in [22]. In that paper, a reduction is given from a problem called Grid Tiling to Independent Set on unit disk graphs. The same reduction applies from Partial 2-grid Coloring, which can be seen as a coloring variant of Grid Tiling, to -Coloring on unit disk graphs. Consider an instance of Partial 2-grid Coloring with n points in total, whose points are are in [] 2 in each cell. One turns every point (x, y) ∈ [] 2 of every cell at position

4. 2 n 1+α 2 ,Figure 2 :

 222 Figure2: Illustration of how the disks are spaced out. In the region marked by the red rectangle, where disks of two adjacent cells may intersect, the boundary of each disk is close to a horizontal straight line. So, two disks do not intersect if and only if the y-coordinate of the center in the top cell is at most the y-coordinate of the center in the bottom cell.

jocg.org 4 . 3 Theorem 8 .

 438 Reduction from 2-grid 3-Sat to Partial 2-grid Coloring The next step is reducing 2-grid 3-Sat to Partial 2-grid Coloring. This step is the most important part of the proof. For any 0 α 1, there is no 2 o(√ n) algorithm solving Partial 2-grid Coloring on a total of n points and = Θ(n α) points in each cell (that is n/ cells), unless the ETH fails. Proof. We present a reduction from 2-grid 3-Sat to Partial 2-grid Coloring. Let I = (G, k, ζ, C) be an instance of 2-grid 3-Sat, where G = R[g, 2] and each cell contains k variables. We think of G as embedded in the plane in a natural way, with edges being horizontal or vertical segments. We construct an equivalent instance J = (F, , ρ) of Partial 2-grid Coloring with |V (F)| = Θ(|V (G)|) = Θ(g 2) and := 4k points per cell, where F is an induced subgraph of R[g , 2] with g = Θ(g).

 and w are adjacent cells in I, then A(v) and A(w) have different parity.As each variable-assignment cell contains = 4k points, there are ! = 2O(log)

Figure 4 :

 4 Figure 4: Variable-assignment cells of even parity contain the bottom half of the reference coloring as in cell A and cells of odd parity contain the top part of the reference coloring, as in cell B.

4 (

 4 a) If two standard cells are adjacent, they must have the same coloring.(b) Wires can be used to create many copies of the same cell.

Figure 5 :

 5 Figure 5: Construction and usage of wires.

Figure 6 :

 6 Figure 6: Illustration of the instance J. Each blue square represents a cell A(v) corresponding to the cell v of I (light blue cells represent even cells and dark blue ones represent odd cells). The orange squares are local reference cells, which contain the reference coloring. Gray and brown squares represent, respectively, clause-checking and consistency gadgets.

 The coloring of C is the coloring of A with the permutation σ = (3, 4, 1, 2) applied. In the cell C, colors a and b are now interchangeable.

Figure 7 :

 7 Figure 7: Permutation gadget (left) and forgetting gadget (right), attached to cells A and C.

Figure 8 :

 8 Figure 8: Boxes in adjacent cells with the same box-structure act independently from each other.

2 Figure 9 :

 29 Figure 9: Illustration of the clause-checking gadget. To the left, one clause x 1 ∨ ¬x 2 ∨ x 3 is represented. To the right, two clauses are checked in parallel.

FirstFigure 10 :

 10 Figure 10: Overview of the consistency gadget. The clause gadgets serve to realize the equality constraints C(v, w).

Figure 11 :

 11 Figure 11: Two consistency gadgets ensure propagation of the reference coloring.

3 .

 3 For each cell v of I, all constraints C(v) are satisfied. The claim follows directly from Claim 1 and the correctness of forget, clause-checking, and consistency gadgets. Now, observe that the total number of points in F is n = O(g 2) = O(n), where n = g 2 k is the total number of variables in I. Thus, the existence of an algorithm solving J in time 2 o(√ n) could be used to solve I in time 2 o(√ n k) , which, by Theorem 7, contradicts the ETH. Journal of Computational Geometry jocg.org 5 Higher Dimensional Lower Bounds Recall that in the hardness proof of 2-grid 3-Sat and Partial 2-grid Coloring (see Theorems 7 and 8) we started with a 3-Sat instance with N variables and Θ(N) clauses, we formed g = Θ(N/k) groups, each containing O(k) variables, and we arranged them on in such a way that every pair of groups met in a separate grid cell. This required O(g 2) grid cells.

Let b = 3∆ + 1 .

 1 Next, consider the following depth-1 embedding f of R[g , d] into R[g, d], where g = bg = O(∆(∆N/k) 1/(d-1) • log(∆N) log log(∆N)). For a = (a 1 , a 2 , . . . , a d) ∈V (G[g , d]), we define f (a) = d q=1 b-1 p=0 {(ba 1 , ba 2 , . . . , ba d) + pe q }.The composition ϕ of f, f , f , and f is an embedding of G into R[g, d] with depthO(d 3 ∆k).Journal of Computational Geometryjocg.orgBy the properties of f , we observe that for every clause C the set ϕ (C) contains a vertex of the form ba, where a = (a 1 , a 2 , . . . , a d) for integers a 1 , a 2 , . . . , a d . We set v (C) to be such a vertex (if there is more than one, we pick an arbitrary one). Consider a clause C and let v (C) = ba for a = (a 1 , a 2 , . . . , a d). Let C be the set of clauses C , such that v (C) = ba. We want to partition C into at most b -1 = 3∆ groups C 1 , C 2 , . . . , C b-1 , such that the clauses in one group are variable-disjoint. We can easily do it with a greedy algorithm -note that each clause may share a variable with at most 3(∆ -1) < 3∆ other clauses. Now, for every clause C of C i , for i ∈ [b -1], we will extend ϕ , by including v(C) := ba + ie 1 + e 2 in ϕ (C). It is not hard to verify that ϕ is still an embedding of G into R[g, d] with depth O(d 3 ∆k). Finally, for every x ∈ V ar, we define a mapping ϕ of variables of Φ to subsets of vertices of R[g, d] in the following way: ϕ(x) = ϕ (x) ∪ C : x∈C ϕ (C). Note that each ϕ(x) is connected, since ϕ (x) and every ϕ (C) is connected, and ϕ (x) and ϕ (C) touch whenever x ∈ C. Moreover, recall that the depth of ϕ is O(d 3 ∆k). Since the number of variables mapped by ϕ to any fixed vertex of R[g , d] is at most three times larger, so it is O(d 3 ∆k).

Theorem 13 .= 2 O> 0 .

 1320 For any integer d 3 and reals > 0 and 0 α 1, there is no algorithm solving d-grid 3-Sat with n variables in total and k = Θ(n α) variables per cell in time 2 (n 1-1/d-k 1/d) , unless the ETH fails.Proof. Let Φ be a 3-Sat instance with N variables and Θ(N) clauses, and let each variable appear in at most ∆ = 3 clauses. By the ETH and the Sparsification Lemma[START_REF] Impagliazzo | Which problems have strongly exponential complexity?[END_REF], there is no algorithm deciding the satisfability of Φ in time2 o(N) . Let k = Θ N 1/(d-1) log N log log N d/(1/(d-1)+1/α) , g = O((N/k) 1/(d-1) • log N log log N), and let ϕ be the mapping of variables of Φ to the subsets of vertices of R[g, d] given by Lemma 12(recall that ∆ = 3). Now we construct an instance I(Φ) just as we did in the proof of Theorem 7. For every cell v of R[g, d] we add variables ϕ -1 (v). For each clause C, we add the clause constraint to the cell v(C). Moreover, using equality constraints, we ensure that all copies of the same variable get the same truth assignment (recall that each set ϕ(x) is connected).It is clear that I(Φ) is a satisfiable instance of d-grid 3-Sat if and only if Φ is satisfiable.The number of cells inI(Φ) is g d = O (N/k) d/(d-1) log N log log N d. The total number jocg.org of variables is thusn =g d k = O (N/k) d/(d-1) k • log N log log N d = O (N d /k) 1/(d-1) • log N log log Nd , and a direct computation shows that k = Θ(n α). Suppose we have an algorithm solving d-grid 3-Sat in time 2 Applying it to I(Φ) gives a total running time exp O(n d-1+α d -) = 2 o(N) . So we can use this algorithm to solve Φ in time 2 o(N) , thus refuting the ETH. 5.2 Reduction from d-grid 3-Sat to Partial d-grid Coloring After establishing the hardness of d-grid 3-Sat, we can proceed to showing the hardness of Partial d-grid Coloring. Theorem 14. For any integer d 3, and reals 0 α 1 and > 0, there is no 2 O(n 1-1/d-1/d) algorithm solving Partial d-grid Coloring on a total of n points and = Θ(n α) points in each cell, unless the ETH fails. The proof of Theorem 14 is a consequence of Theorem 13 and of the gadgets constructed in Section 4. The reduction is now from d-grid 3-Sat and we only have to very slightly adapt the construction. The overall picture is the grid-like structure of Figure 6 extended to dimension d. From an instance I of d-grid 3-Sat produced by the reduction of Theorem 13 on the grid R[g, d] with k variables per cell, we build an equivalent instance J of Partial d-grid Coloring on a subgraph of R[g , d] with g = Θ(g) with := 4k points (and colors), in the following way. A cell of I is again called even (resp. odd) if its coordinates sum up to an even integer (resp. odd integer). For each even/odd cell of I, we have a corresponding even/odd standard cell in J (in the grid R[g , d]). We define similarly a standard cell as a cell in which the points p 1 , . . . , p are in the main diagonal, i.e., p i = (i, i, . . . , i) ∈ [] d for all i ∈ [].

Figure 12 : A wire in dimension 3 .Figure 13 :

 12313 Figure 12: A wire in dimension 3. The coloring of any cell forces the same coloring in the others.

Figure 14 :

 14 Figure 14: The 2d wires leaving a, say, even cell to reach each one of the 2d consistency gadgets shared with the 2d adjacent odd cells. The cells in red are part of the wires to the clause gadget.

Figure 15 : 5 . 3

 1553 Figure 15: The clause gadget in dimension 3. The wires meet in a plane where the information is projected to 2 dimensions. The core of the gadget is then identical to the 2-dimensional case.

The equality gadget consists of 9 1 and c 1 colors 5 and 6 ,

 916 segments, arranged as depicted on Figure17. Consider the equality gadget and suppose x i gets the color 1. Then a 1 receives color 4, and b respectively. Thus the only choice for the color for y i is 4. This can be extended to remaining segments of the gadget e.g. by coloring a 2 with color 2, a 3 with color 3, b 2 , c 2 with color 5, and b 3 , c 3 with color 6. The other cases are symmetric.

6 Figure 16 : 2 Figure 17 :Theorem 2 .

 6162172 Figure 16: A graph G (left) and a high-level construction of G (right). Circles denote equality gadgets and squares denote inequality gadget

x i y i p 1 p 2 q 1 q 2 r 1 r 2 6 Figure 18 :

 2618 Figure 18: Inequality gadget.

6 Figure 19 :

 619 Figure 19: Reference coloring is transported to every gadget. Red and blue lines denote, respectively, triples of overlapping segments with colors 1,2,3, and 4,5,6. Parallel lines depicted close to each other are in fact overlapping. Segments R 1 , R 2 , . . . , R 6 are positioned in the lower left corner of the picture.

 The total size of the construction increases by a constant factor, as we introduce O(n) constant-size split gadgets. Thus an algorithm for 6-coloring the constructed 2-Dir graph in time 2 o(n) could be used to 3-color the input graph G in time 2 o(n) , contradicting the ETH.

 times1/d . That is, as d increases, the running time becomes less and less sensitive to the number of colors and approaches 2 O(n) , even for constant number of colors.

					jocg.org
	n 1-1/d Theorem 3. For any fixed 0	α	1 and dimension d	2, the problem of coloring the
	intersection graph of n balls in the d-dimensional Euclidean space with = Θ(n α) colors
				d-1+α
		• can be solved in time 2 O n	d	log n
	of	√	1-1/d in the exponent instead n . Actually, this is not exactly what happens: 1 the correct exponent appears to be

 Let s = k 1/d and g = g/s = O(g/k 1/d). Let v = (a 1 , a 2 , . . . , a d) be a vertex of H[g, d].We define f by mapping v to the singleton containing (1+ a 1 /s , 1+ a 2 /s , . . . , 1+ a d /s). Note that the number of vertices of H[g, d] mapped to a single vertex is s

	Journal of Computational Geometry	jocg.org
	Proof.	

1/d

) and an embedding f of H

[g, d]

into H[g , d] with depth O(k). Moreover, this embedding can be found in deterministic polynomial time.

The astute reader can quickly realize that

O((n) 1-1/d) is certainly not the correct answer when, say, = Θ(n) and d =

3: then 2 O((n) 1-1/d) = 2 O(n 4/3) is worse than the running time 2 O(n) possible even for general graphs!

√nk) algorithm for 2-grid

* Supported by the European Research Council (ERC) Starting Grant PARAMTIGHT (no. 280152) and Consolidator Grant SYSTEMATICGRAPH (no. 725978).

Then, consider cells A and B.

The cell A contains the variable assignment. Recall that for each variable we use two points. If a variable occupying rows 2i -1 and 2i in the cell A occurs positively in C, then we place in cell B a point in row 2i -1 in the third column of the box and a point in the row 2i in the sixth column; if the variable appears negatively, we do the opposite: we place in cell B a point in the row 2i -1 in the sixth column and a point in row 2i in the third column. Note that the colors of points in B are forced, looking from top to bottom they are the same as in A. By construction, the colors in the sixth column are not available to the point p. Therefore, the point p can be colored if and only if one of colors 1,3,5 appears in the third column of B, i.e., one of literals is true. Since the remaining points in U can receive any distinct colors, we conclude that the whole set of cells constituting the gadget can be colored if and only if the clause is satisfied by the truth assignment.

Checking clauses in parallel. Consider the cell v of 2-grid 3-Sat. Let C 1 , . . . , C f be the clauses of C(v) and recall that these clauses are pairwise variable-disjoint. Let σ be a permutation of points in A(v), such that the 2|C 1 | points encoding the variables of C 1 appear on positions 1, 2, . . . , 2|C 1 |, the 2|C 1 | points encoding the variables of C 2 appear on positions

and so on. The points encoding variables which do not appear in any clause from C(v) and the points which do not encode any variable (i.e., the points carrying a half of the reference coloring) appear on the last position, in any order.

We introduce a new standard cell A, and using a permutation gadget we ensure that it contains the copies of points of A(v) in the permutation σ. In the same way we introduce a standard cell R, which contains the reference coloring with the permutation σ applied.

An illustration on how two clauses can be checked simultaneously is shown on the right part of Figure 9. Observe that since the clauses in C(v) are pairwise variable-disjoint, one clause-checking gadget is enough to ensure the satisfiability of all clauses in C(v).

Thus, for each cell A(v) and its associated local reference cell R, we introduce a clause-checking gadget corresponding to the clauses in C(v), and join it with A(v) and R.

Equality check. Let A be a cell of J and let the points p 2i-1 , p 2i (p 2j-1 , p 2j for 2i < 2j -1) in the cell A encode the variable x (y, respectively). Suppose we want to make sure that always x = y. This is equivalent to saying that in any proper coloring ϕ, we have

Such an equivalence of two variables can be expressed by two clauses C 1 = x ∨ ¬y and C 2 = ¬x ∨ y. Thus, if we have an access to the reference coloring, we can ensure the equivalence using the clause-checking gadget. Observe that C 1 and C 2 are not variabledisjoint, so in fact we need to use two clause-checking gadgets. However, two clause-checking gadgets are enough to ensure the equivalence of any set of pairwise-disjoint pairs of variables represented in the single cell. Observe that A does not have to be a variable-assignment cell (i.e., does not have to carry a half of the reference coloring). In fact, we will use the equality checks for cells where each pair of points p 2i-1 , p 2i corresponds to some variable, encoded in an analogous way as in variable-assignment cells.

Consistency gadget. The last gadget, called the consistency gadget, will join every three cells A(v), A(w), R, where A(v) and A(w) are variable-assignment cells corresponding to Journal of Computational Geometry jocg.org adjacent cells v and w of I, and a R is a local reference cell associated with both A(v) and A(w). This gadget is responsible for ensuring that colorings of these three cells are consistent, that is:

• the equality constraints C(v, w) in the 2-grid 3-Sat instance I are satisfied,

• R has exactly the reference coloring.

For schematic picture of the gadget, refer to Figure 10. Suppose that A(v) is even, A(w) is odd, and v is above w in I (all other cases are symmetric). We denote the points of A(v) by p 1 , p 2 , . . . , p , the points of A(w) by q 1 , q 2 , . . . , q , and the points by R by r 1 , r 2 , . . . , r (going from top-left to bottom-right). First, we introduce two forgetting gadgets and attach one of them to R and A(v), and the other one to R and A(w). The first gadget forgets the top half of the reference coloring, i.e., it ensures that in every coloring ϕ we have

The second gadget forgets the bottom half of the reference coloring, i.e., it ensures that in every coloring ϕ we have • ϕ(q 2i-1) = ϕ(r 2i-1) and ϕ(q 2i) = ϕ(r 2i) for i ∈ [k],

• {ϕ(q 2i-1), ϕ(q 2i)} = {ϕ(r 2i-1), ϕ(r 2i)} for i ∈

We also introduce a new standard cell S. Let s 1 , s 2 , . . . , s be the points in S. With two additional forgetting gadgets, one attached to S and A(v), and the other one attached to S and A(w), we ensure that in every coloring ϕ we have:

Note that the cell S contains the information about the values of all variables in ζ(v) (first 2k points) and in ζ(w) (second 2k points). Now consider the set of equality constraints C(v, w), recall that each of them is of the form v i = w j . Thus we want to ensure that in every coloring ϕ, we have ϕ(s 2i-1) + 1 = ϕ(s 2i) if and only if ϕ(s 2k+2j-1) + 1 = ϕ(s 2k+2j).

We can easily do it by performing the equality check on S, using two clause gadgets and R as a reference coloring.

Is is straightforward to observe that if I is satisfiable, then J can be colored with colors, in a way described above. The opposite implication follows from the claims below.

Claim 1. The coloring of each R(i, j) for i, j ∈ [g -1] is exactly the same as the coloring of R = R(1, 1).