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Abstract
A terrain is an x-monotone polygonal curve, i.e., successive vertices have increasing x-coordinates.
Terrain Guarding can be seen as a special case of the famous art gallery problem where one
has to place at most k guards on a terrain made of n vertices in order to fully see it. In 2010, King
and Krohn showed that Terrain Guarding is NP-complete [SODA ’10, SIAM J. Comput. ’11]
thereby solving a long-standing open question. They observe that their proof does not settle the
complexity of Orthogonal Terrain Guarding where the terrain only consists of horizontal
or vertical segments; those terrains are called rectilinear or orthogonal. Recently, Ashok et al.
[SoCG’17] presented an FPT algorithm running in time kO(k)nO(1) for Dominating Set in the
visibility graphs of rectilinear terrains without 180-degree vertices. They ask if Orthogonal
Terrain Guarding is in P or NP-hard. In the same paper, they give a subexponential-time
algorithm running in nO(

√
n) (actually even nO(

√
k)) for the general Terrain Guarding and

notice that the hardness proof of King and Krohn only disproves a running time 2o(n1/4) under the
ETH. Hence, there is a significant gap between their 2O(n1/2 log n)-algorithm and the no 2o(n1/4)

ETH-hardness implied by King and Krohn’s result.
In this paper, we adapt the gadgets of King and Krohn to rectilinear terrains in order to prove

that even Orthogonal Terrain Guarding is NP-complete. Then, we show how to obtain an
improved ETH lower bound of 2Ω(n1/3) by refining the quadratic reduction from Planar 3-SAT
into a cubic reduction from 3-SAT. This works for both Orthogonal Terrain Guarding
and Terrain Guarding.
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1 Introduction

Terrain Guarding is a natural restriction of the well-known art gallery problem. It asks,
given an integer k, and an x-monotone polygonal chain or terrain, to guard it by placing
at most k guards at vertices of the terrain. An x-monotone polygonal chain is defined from
a sequence of n points of the real plane R2 p1 = (x1, y1), p2 = (x2, y2), . . . , pn = (xn, yn)
such that x1 6 x2 6 . . . 6 xn as the succession of straight-line edges p1p2, p2p3, . . . , pn−1pn.
Each point pi is called a vertex of the terrain. We can make each coordinate of the vertices
rational without changing the (non-)existence of a solution. We will therefore assume that
the input is given as a list of n pairs of rational numbers, together with the integer k. A
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XX:2 Orthogonal Terrain Guarding is NP-complete

point p lying on the terrain is guarded (or seen) by a subset S of guards if there is at least
one guard g ∈ S such that the straight-line segment pg is entirely above the polygonal chain.
The terrain is said guarded if every point lying on the terrain is guarded. The visibility graph
of a terrain has as vertices the geometric vertices of the polygonal chain and as edges every
pair which sees each other. Again two vertices (or points) see each other if the straight-line
segment that they define is above the terrain.

The Orthogonal Terrain Guarding is the same problem restricted to rectilinear
(also called orthogonal) terrains, that is every edge of the terrain is either horizontal or
vertical. In other words, pi and pi+1 share the same x-coordinate or the same y-coordinate.
We say that a rectilinear terrain is strictly rectilinear (or strictly orthogonal) if the horizontal
and vertical edges alternate, that is, there are no two consecutive horizontal (resp. vertical)
edges. Both problems come with two other variants: the continuous variant, where the
guards can be placed anywhere on the edges of the terrain (and not only at the vertices),
and the graphic variant, which consists of Dominating Set in the visibility graphs of
(strictly rectilinear) terrains. The original problem is sometimes called the discrete variant.

It is a folklore observation that for rectilinear terrains, the discrete and continuous vari-
ants coincide. Indeed, it is an easy exercise to show that from any feasible solution using
guards in the interior of edges, one can move those guards to vertices and obtain a feasible
solution of equal cardinality. The only rule to respect is that if an edge, whose interior
contained a guard, links a reflex and a convex vertex, then the guard should be moved to
the reflex vertex. We will therefore only consider Orthogonal Terrain Guarding and
Dominating Set in the visibility graphs of strictly rectilinear terrains. By subdividing the
edges of a strictly rectilinear terrain with an at most quadratic number of 180-degree ver-
tices (i.e., vertices incident to two horizontal edges or to two vertical edges), one can make
guarding all the vertices equivalent to guarding the whole terrain. Therefore, Orthogonal
Terrain Guarding is not very different from Dominating Set in the visibility graph of
(non necessarily strictly) rectilinear terrains (and Terrain Guarding is not very different
from Dominating Set in the visibility graph of terrains).

Exponential Time Hypothesis. The Exponential Time Hypothesis (usually referred to as
the ETH) is a stronger assumption than P 6=NP formulated by Impagliazzo and Paturi [13].
A practical (and slightly weaker) statement of ETH is that 3-SAT with n variables cannot
be solved in subexponential-time 2o(n). Although this is not the original statement of the
hypothesis, this version is most commonly used; see also Impagliazzo et al. [14]. The
so-called sparsification lemma even brings the number of clauses in the exponent.

I Theorem 1 (Impagliazzo and Paturi [13]). Under the ETH, there is no algorithm solving
every instance of 3-SAT with n variables and m clauses in time 2o(n+m).

As a direct consequence, unless the ETH fails, even instances with a linear number of
clauses m = Θ(n) cannot be solved in 2o(n). Unlike P 6=NP, the ETH allows to rule out
specific running times. We refer the reader to the survey by Lokshtanov et al. for more
information about ETH and conditional lower bounds [22].

Planar satisfiability. Planar 3-SAT was introduced by Lichtenstein [21] who showed its
NP-hardness. It is a special case of 3-SAT where the variable/clause incidence graph is
planar even if one adds edges between two consecutive variables for a specified ordering of
the variables: x1, x2, . . . , xn; i.e., xixi+1 is an edge (with index i+ 1 taken modulo n). This
extra structure makes this problem particularly suitable to reduce to planar or geometric
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problems. As a counterpart, the ETH lower bound that one gets from a linear reduction
from Planar 3-SAT is worse than the one with a linear reduction from 3-SAT; it only
rules out a running time 2o(

√
n). Indeed, Planar 3-SAT can be solved in time 2O(

√
n) and,

unless the ETH fails, cannot be solved in time 2o(
√

n). A useful property of any Planar
3-SAT-instance is that its set of clauses C can be partitioned into C+ and C− such that both
C+ and C− admit a removal ordering. A removal ordering is a sequence of the two following
deletions:

(a) removing a variable which is not present in any remaining clause
(b) removing a clause on three consecutive remaining variables together with the middle
variable

which ends up with an empty set of clauses. By three consecutive remaining variables,
we mean three variables xi, xj , xk, with i < j < k such that xi+1, xi+2, . . . , xj−1 and
xj+1, xj+2, . . . , xk−1 have all been removed already. The middle variable of the clause is xj .
For an example, see Figure 1.

x1 x2 x3 x4 x5 x6 x7 x8

C+

C−

Figure 1 The bipartition (C+, C−) of a Planar 3-SAT-instance. The three-legged arches rep-
resent the clauses. Here is a removal ordering for C−: remove the clause on x5, x6, x7 and its middle
variable x6, remove the variable x5, remove the clause on x3, x4, x7 and its middle variable x4, re-
move the clause on x2, x3, x7 and its middle variable x3, remove the variable x7, remove the clause
x1, x2, x8 and its middle variable x2.

Order claim. The following visibility property in a terrain made King and Krohn realize
that they will crucially need the extra structure given by the planarity of 3-SAT-instances.

I Lemma 2 (Order Claim, see Figure 2). If a, b, c, d happen in this order from the left
endpoint of the terrain to its right endpoint, a and c see each other, and b and d see each
other, then a and d also see each other.

a

b
cc

d

Figure 2 The order claim.

In particular, this suggests that checking in the terrain if a clause is satisfied can only work
if the encodings of the three variables contained in the clause are consecutive.

Related work and remaining open questions for terrain guarding. Terrain Guarding
was shown NP-hard [17] and can be solved in time nO(

√
k) [1]. This contrasts with the para-

meterized complexity of the more general art gallery problem where an algorithm running
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in time f(k)no(k/ log k) for any computable function f would disprove the ETH, both for the
variant Point Guard Art Gallery where the k guards can be placed anywhere inside
the gallery (polygon with n vertices) and for the variant Vertex Guard Art Gallery
where the k guards can only be placed at the vertices of the polygon [3], even when the
gallery is a simple polygon (i.e., does not have holes). Dominating Set on the visibility
graph of strictly rectilinear terrains can be solved in time kO(k)nO(1) [1], while it is still not
known if (Orthogonal) Terrain Guarding can be solved in FPT time f(k)nO(1) with
respect to the number of guards.

There has been a succession of approximation algorithms with better and better constant
ratios [15, 6, 2, 12]. Eventually, a PTAS was found for Terrain Guarding (hence for
Orthogonal Terrain Guarding) [19] using local search and an idea developed by Chan
and Har-Peled [5] and Mustafa and Ray [23] which consists of applying the planar separator
theorem to a (planar) graph relating local and global optima. Interestingly, this planar
graph is the starting point of the subexponential algorithm of Ashok et al. [1].

Again the situation is not nearly as good for the art gallery problem. If holes are al-
lowed in the polygon, the main variants of the art gallery problem are as hard as the Set
Cover problem; hence a o(logn)-approximation cannot exist unless P=NP [10]. Eidenbenz
also showed that a PTAS is unlikely in simple polygons [9]. For simple polygons, there
is a O(log logOPT )-approximation [16, 18] for Vertex Guard Art Gallery, using the
framework of Brönnimann and Goodrich to transform an ε-net finder into an approxima-
tion algorithm, and for Point Guard Art Gallery there is a randomized O(logOPT )-
approximation under some mild assumptions [4], building up on [8, 7]. If a small fraction
of the polygon can be left unguarded there is again a O(logOPT )-approximation [11]. A
constant-factor approximation is known for monotone polygons [20], where a monotone poly-
gon is made of two terrains sharing the same left and right endpoints and except those two
points the two terrains are never touching nor crossing.

The classical complexity of Orthogonal Terrain Guarding remains the most press-
ing open question [1].

I Open question 1. Is Orthogonal Terrain Guarding in P or NP-hard?

In the conclusion of the paper by Ashok et al. [1], the authors observe that the construc-
tion of King and Krohn [17] rules out for Terrain Guarding a running time of 2o(n1/4),
under the ETH. Indeed the reduction from Planar 3-SAT (which is not solvable in time
2o(
√

n) unless the ETH fails) and its adaptation for Orthogonal Terrain Guarding in
the current paper have a quadratic blow-up: the terrain is made of Θ(m) = Θ(n) chunks con-
taining each O(n) vertices. On the positive side, the subexponential algorithm of Ashok et
al. runs in time 2O(

√
n log n) [1]. Therefore, there is a significant gap between the algorithmic

upper and lower bounds.

I Open question 2. Assuming the ETH, what is the provably best asymptotic running time
for Terrain Guarding and Orthogonal Terrain Guarding?

Organization. In Section 2, we address Open question 1 by showing that Orthogonal
Terrain Guarding is also NP-hard. We design a rectilinear subterrain with a constant
number of vertices which simulates a triangular pocket surrounded by two horizontal seg-
ments. This enables us to adapt the reduction of King and Krohn [17] to rectilinear terrains.
Our orthogonal gadgets make an extensive use of the triangular pockets.

In Section 3, we show how to make cubic reductions from 3-SAT by refining the quadratic
reductions from Planar 3-SAT. This gives an improved ETH-based lower bound of 2Ω(n1/3)
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but does not quite resolve1 Open question 2.

2 Orthogonal Terrain Guarding is NP-complete

King and Krohn give a reduction with a quadratic blow-up from Planar 3-SAT to Terrain
Guarding [17]. They argue that the order claim entails some critical obstacle against
straightforward hardness attempts. In some sense, the subexponential algorithm running in
time nO(

√
n) of Ashok et al. [1] proves them right: unless the ETH fails, there cannot be a

linear reduction from 3-SAT to Terrain Guarding. It also justifies their idea of starting
from the planar variant of 3-SAT. Indeed, this problem can be solved in time 2O(

√
n).

From far, King and Krohn’s construction looks like a V -shaped terrain. If one zooms in,
one perceives that the V is made of Θ(n) connected subterrains called chunks. If one zooms
a bit more, one sees that the chunks are made of up to n variable encodings each. Let us
order the chunks from bottom to top; in this order, the chunks alternate between the right
and the left of the V (see Figure 3).

T2 T1

T0

T−1

T−2

Figure 3 The V -shaped terrain and its ordered chunks. The chunk Ti only sees parts of chunks
Ti−1 and Ti+1. The initial chunk T0 contains an encoding of each variable. Below this level (chunks
with a negative index), we will check the clauses of C−. Above this level (chunks with a positive
index), we will deal with the clauses of C+.

The construction is such that only two consecutive chunks interact. More precisely, a
vertex of a given chunk Ti only sees bits of the terrain contained in Ti−1, Ti, and Ti+1. Half-
way to the top is the chunk T0 that can be seen as the initial one. It contains the encoding
of all the variables of the Planar 3-SAT-instance. Concretely, the reasonable choices to
place guards on the chunk T0 are interpreted as setting each variable to either true or false.
Let (C+, C−) be the bipartition of the clauses into two sets with a removal ordering for the
variables ordered as x1, x2, . . . , xn. Let C+

1 , C
+
2 , . . . , C

+
s (resp. C−1 , C

−
2 , . . . , C

−
m−s) be the

order in which the clauses of C+ (resp. C−) disappear in this removal ordering. Every chunk
below T0, i.e., with a negative index, are dedicated to checking the clauses of C− in the order
C−1 , C

−
2 , . . . , C

−
m−s, while every chunk above T0, i.e., with a positive index, will check if the

clauses of C+ are satisfied in the order C+
1 , C

+
2 , . . . , C

+
s . The placement of the chunks will

propagate downward and upward the truth assignment of T0, and simulate the operations of
a removal ordering: checking/removing a clause and its middle variable, removing a useless

1 In the conference version of the paper, we erroneously claim a 2Ω(n1/2) lower bound.



XX:6 Orthogonal Terrain Guarding is NP-complete

variable. Note that for those gadgets, we will have to distinguish if we are going up (C+) or
going down (C−). In addition, the respective position of the positive and negative literals of
a variable appearing in the next clause to check will matter. So, we will require a gadget to
invert those two literals if needed.

To sum up, the reduction comprises the following gadgets: encoding a variable (variable
gadget), propagation of its assignment from one chunk to a consecutive chunk (interaction
of two variable gadgets), inverting its two literals (inverter), checking a clause upward and
removing the henceforth useless middle variable (upward clause gadget), checking a clause
downward and removing the henceforth useless middle variable (downward clause gadget),
removing a variable (upward/downward deletion gadget). Although King and Krohn rather
crucially rely on having different slopes in the terrain, we will mimic their construction gadget
by gadget with an orthogonal terrain. We start by showing how to simulate a restricted
form of a triangular pocket. This will prove to be a useful building block.

a

u

p

→ εa → a

Figure 4 Simulation of a right trapezoid pocket and a right triangular pocket. The right trian-
gular pocket is obtained from the right trapezoid by making the distance ε sufficiently small.

The simulation of a right trapezoid pocket giving rise to the right triangular pocket is
depicted on Figure 4. The idea is that the vertex p at the bottom of the pit is only seen
by four vertices (no vertex outside this gadget will be able to see p). Among those four
vertices, u sees a strict superset of what the others see. Hence, we can assume with no loss
of generality that a guard is placed on u. Now, u sees the part of the terrain represented in
bold. Even if vertex u sees a part of the vertical edge incident to a (actually the construction
could avoid it), this information can be discarded since the guard responsible for seeing a
will see this edge entirely. Everything is therefore equivalent to guarding the terrain with the
right trapezoid pocket drawn in the middle of Figure 4 with a budget of guards decreased
by one. If the length of the horizontal edge incident to a is made small enough, then every
guard seeing a will see the whole edge, thereby simulating the right triangular pocket to the
right of the figure.

The acute angle made by the right triangular pocket and the altitude of the leftmost and
rightmost horizontal edge in this gadget can be set at our convenience. We will represent
triangular pockets in the upcoming gadgets. The reader should keep in mind that they are
actually a shorthand for a rectilinear subterrain.

With the same idea, one can simulate a general triangular pocket as depicted on Figure 5,
with the budget decreased by two guards. Again, the non-reflex angle made by the triangular
pocket and the altitude of the leftmost and rightmost horizontal edges can be freely chosen.
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uv

→
ε

→

Figure 5 Simulation of a trapezoid pocket and a triangular pocket. The triangular pocket is
obtained from the trapezoid by making the distance ε arbitrary small.

The reason why those triangular pockets do not provide a straightforward reduction from the
general Terrain Guarding problem is that the pocket has to be preceded and succeeded
by horizontal edges.

dx,x

vx

vx

dx

dxTi towards Ti−1

towards Ti+1

Figure 6 A variable gadget. We omit the superscript i on all the labels. Placing a guard at
vertex vx to see dx corresponds to setting variable x to true, while placing it at vertex vx to see dx

corresponds to setting x to false. Both vi+1
x and vi+1

x
of Ti+1 (not represented on this picture) see

dx,x of Ti.

The variable gadget is depicted on Figure 6. It is made of three right triangular pockets.
Placing a guard on vx (resp. vx) is interpreted as setting the variable x to true (resp. false).

On Figure 7 is represented the propagation of a variable assignment from one chunk to
the next chunk. On all the upcoming figures, we adopt the convention that red dashed lines
materialize a blocked visibility (the vertex cannot see anything below this line) and black
dashed lines highlight important visibility which sets apart the vertex from other vertices.
Say, one places a guard at vertex vi

x to see (among other things) the vertex di
x. Now, di

x

and di
x,x remain to be seen. The only way of guarding them with one guard is to place it at

vertex vi+1
x . Indeed, only vertices on the chunk Ti+1 can possibly see both. But the vertices

higher than vi+1
x cannot see them because their visibility is blocked by vi+1

x or a vertex to
its right, while the vertices lower than vi+1

x are too low to see the very bottom of those two
triangular pockets. The same mechanism (too high → blocked visibility, too low → too flat
angle) is used to ensure that the different variables do not interfere.

Symmetrically, the only vertex seeing both di
x,x and di

x is vi+1
x . So, placing a guard

at vi
x forces to place the other guard at vi+1

x . Observe that the chosen literal goes from
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Ti

Ti+1

towards Ti−1

vx

vx
dx

dx

dx,x

vy

vy
dy

dy

vx

dx
vx

dx

vy

vy
dy

dy

Figure 7 Propagating variable assignments upward and downward. Note that the positive literal
alternates being above or below the negative literal. We represent two variables x and y to illustrate
how the corresponding gadgets are not interfering.

being above (resp. below) in chunk Ti to being below (resp. above) in chunk Ti+1. Also,
each d-vertex (i.e., vertex of the form d••) has its visibility contained in the one of a v-
vertex (of the form v••). Actually, each non v-vertex has its visibility contained in the one
of a v-vertex. Furthermore, seeing the d-vertices with v-vertices is enough to see the entire
subterrain/chunk. Hence, the problem can be seen as a red-blue domination: taking v-
vertices (red) to dominate the d-vertices (blue). The red-blue visibility graph corresponding
to the propagation of variable assignments is represented on Figure 8. It can be observed
that the only way of guarding the 3z d-vertices on chunk T i (corresponding to z vertices)
with a budget of 2z guards is to place z guards on v-vertices of chunk Ti and z guards on
v-vertices of chunk Ti+1 in a consistent way: the assignment of each variable is preserved.

. . . . . .

TiTi−1

vi
x

vi
xvi−1

x

vi−1
x

vi+1
x

vi+1
xdi

x

di
x,x

di
xdi−1

x

di−1
x,x

di−1
x

vi
y

vi
yvi−1

y

vi−1
y

vi+1
y

vi+1
ydi

y

di
y,y

di
ydi−1

y

di−1
y,y

di−1
y

Figure 8 The red-blue domination graph for variable-assignment propagation.

We also need an alternative way of propagating truth assignments such that the chosen
literal stays above or stays below on its respective chunk. This gadget is called inverter. It
requires an extra guard compared to the usual propagation. The inverter gadget allows us
to position the three literals of the clause to check and delete at the right spots.

It consists of a right triangular pocket whose bottom vertex is di
x,x surrounded by two
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vx

vx

vx

vx

gx

gx dx,xex fx

ex fxTi

towards Ti−1

Ti+1

Figure 9 The inverter gadget. We omit the superscripts i and i + 1. If a guard should be placed
on at least one vertex among v`

x and v`
x (for ` ∈ {i, i + 1}), then the two ways of seeing the four

vertices ei
x, f i

x, ei
x, f i

x with three guards are {vi
x, gi

x, vi+1
x

} and {vi
x, gi

x, vi+1
x }.

rectangular pockets whose bottom vertices ei
x, f

i
x and ei

x, f
i
x are only seen among the v-

vertices by vi+1
x , vi

x and vi+1
x , vi

x, respectively. On top of the rectangular pockets, gi
x sees

both ei
x and f i

x, whereas gi
x sees both ei

x and f i
x. Actually, gi

` is only one of the four vertices
seeing both ei

` and f i
` (which includes ei

` and f i
` themselves). We choose gi

` as a representative
of this class. What matters to us is that the four vertices seeing both ei

` and f i
` do not see

anything more than the rectangular pocket; the other parts of the terrain that they might
guard are seen by any v-vertex on chunk Ti+1 anyway.

The pockets are designed so that vi
x and vi+1

x (resp. vi
x and vi+1

x ) together see the whole
edge ei

xf
i
x (resp. ei

xf
i
x) and therefore the entire pocket. Again, the only two v-vertices to

see di
x,x are vi+1

x and vi+1
x . The e- and f -vertices are added to the blue vertices and the

g-vertices are added to the red vertices, since the latter sees more than the former, and since
seeing the e- and f -vertices are sufficient to also see the g-vertices. The red-blue domination
graph is depicted on Figure 10.

Ti

vi
x

gi
x

gi
x

vi
x

f i
x

ei
x

di
x,x

ei
x

f i
x

vi+1
x

vi+1
x

Figure 10 The red-blue domination graph for the inverter gadget.

Guarding di−1
x,x (resp. guarding di

x,x) requires to take one v-vertex among vi
x, v

i
x (resp. vi+1

x ,

vi+1
x ). The two only ways of seeing both rectangular pockets with an extra guard is then
to place the three guards at vi

x, g
i
x, v

i+1
x or vi

x, g
i
x, v

i+1
x ; hence the propagation of the truth

assignment.
So far, the gadgets that we presented can be used going up along the chunks of positive

index as well as going down along the chunks of negative index. For the clause gadgets,
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we will have to distinguish the downward clause gadget when we are below T0 (and going
down) and the upward clause gadget when we are above T0 (and going down). The reason
we cannot design a single gadget for both situations is that the middle variable which needs
be deleted is in one case, in the lower chunk, and in the other case, in the higher chunk.

To check a clause downward on three consecutive variables x, y, z, we place on chunk
Ti, thanks to a preliminary use of inverter gadgets, the three literals satisfying the clause
at the relative positions 1, 4, and 5 when the six literals of x, y, z are read from top to
bottom. Figure 11 shows the downward clause gadget for the clause x ∨ y ∨ ¬z. On the
chunk Ti−1 just below, we find the usual encoding of variables x and z, which propagates the
truth assignment of those two variables. The variable gadget of y is replaced by the right
triangular pocket whose bottom is di−1

y,y , and a general triangular pocket whose bottom wC

is only seen among the v-vertices by vi−1
`1

(on chunk Ti−1) and vi
`2

and vi
`3

(on chunk Ti),
where C = `1 ∨ `2 ∨ `3. On chunk Ti−1 and below, no v-vertex corresponding to variable y
can be found.

wC

vx

vy

vz

vz

vx

vx

vy

vz

vz

vx

Ti

Ti−1

Figure 11 The downward clause gadget for C = x ∨ y ∨ ¬z. We use the usual propagation for
variables x and z. The variable y disappears from Ti−1 and downward. The inverters have been
used to place, on Ti, the literals of C at positions 1, 4, and 5. The vertex wC is seen only by vi

y,
vi

z, and vi−1
x (circled); hence it is seen if and only if the chosen assignment satisfies C.

Hence, the vertex wC is only guarded if the choices of the guards at the v-vertices
correspond to an assignment satisfying C. The vertex wC has its visibility contained in the
one of a v-vertex, hence it is a blue vertex. The red-blue domination graph associated to a
downward clause is represented on Figure 12.

To check a clause upward on three consecutive variables x, y, z, we place on chunk Ti,
thanks to a preliminary use of inverter gadgets, the three literals satisfying the clause at the
relative positions 1, 3, and 6 when the six literals of x, y, z are read from top to bottom.
We exclude the three right triangular pockets for the encoding of the middle variable y. At
the same altitude as the v-vertex corresponding to the literal of y satisfying the clause, we
have a designated vertex wC . On the chunk Ti+1, we find the usual encoding of variables
x and z, which propagates the truth assignment of those two variables, but the encoding of
variable y is no longer present (in this chunk and in all the chunks above). Figure 13 shows
the upward clause gadget for the clause x ∨ ¬y ∨ z.

The vertex wC is only seen among the v-vertices by vi
`2

(on chunk Ti) and vi+1
`1

and
vi+1

`3
(on chunk Ti+1), where C = `1 ∨ `2 ∨ `3. The particularity of two consecutive chunks

encoding an upward clause gadget is that Ti is not entirely below Ti+1. In fact, all the
encodings of variables above y on chunk Ti+1 are above all the encodings of variables above
y on chunk Ti. The latter are above all the encodings of variables below y on chunk Ti+1,
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TiTi−1

vi
z

vi
z

vi
y

vi
y

vi
x

vi
x

wC

di−1
y,y

vi−1
z

vi−1
z

vi−1
x

vi−1
x

Figure 12 The red-blue domination graph for the downward clause gadget for C = x ∨ y ∨ ¬z.
The double arcs symbolize that, due to the propagator, the variable-assignment of x and z should
be the same between Ti and Ti−1. The only assignment that does not dominate wC is x, y, z, as it
should.

vx

vy

vz

vz

vx

vx

vy

vz

vz

vx

wC

Ti

Ti+1

Figure 13 The upward clause gadget for C = x ∨ ¬y ∨ z. We use the usual propagation for
variables x and z. The variable y disappears from Ti+1 and upward. The inverters have been used
to place, on Ti, the literals of C at positions 1, 3, and 6. The vertex wC is seen only by vi

y, vi+1
x ,

and vi+1
z (circled); hence it is seen if and only if the chosen assignment satisfies C.

which are, in turn, above all the encodings of variables below y on chunk Ti. Again, the
vertex wC is only guarded if the choices of the guards at the v-vertices correspond to an
assignment satisfying C, as depicted in Figure 14.

Ti Ti+1

vi
z

vi
z

vi
y

vi
y

vi
x

vi
x

wC

vi+1
z

vi+1
z

vi+1
x

vi+1
x

Figure 14 The red-blue domination graph for the upward clause gadget for C = x ∨ ¬y ∨ z. The
double arcs symbolize that, due to the propagator, the variable-assignment of x and z should be
the same between Ti and Ti+1. The only assignment that does not dominate wC is x, y, z, as it
should.
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Finally, we design variable deletion gadgets. Recall that we sometimes need to remove a
variable which does not appear in any clauses anymore (and was never a middle variable).
As for clause gadgets, we have to distinguish downward deletion gadget and upward deletion
gadget. Both gadgets can be thought as a simplification of the corresponding clause gadget
where we flatten the region which should normally contain wC .

Ti

Ti+1

towards Ti−1

dx,x
vy

vy
dy

dy

vx

dx
vx

dx

vy

vy
dy

dy

Figure 15 Downward deletion of the variable x (and propagation of the variable y). On chunk
Ti−1, the encoding of variable x has totally disappeared: there is not even a di−1

x,x
.

On all the chunks below the downward deletion of a variable x, there is no encoding of
variable x. And, on all the chunks above the upward deletion of a variable x, there is no
encoding of variable x. The gadgets are represented in Figure 15 and Figure 16, respectively.

Ti

Ti+1

towards Ti−1

vx

vx

vy

vy
dy

dy

vy

vy
dy

dy

Figure 16 Upward deletion of the variable x (and propagation of the variable y). On chunk Ti−1

is the usual encoding of variable x with three right triangular pockets.

This ends the list of gadgets. The gadgets are assembled as in the reduction of King and
Krohn. From the initial chunk T0 and going up (resp. going down), one realizes step by step
(chunk by chunk) the elementary operations to check the clauses of C+ (resp. C−) in the
order C+

1 , C
+
2 , . . . C

+
s (resp. C−1 , C

−
2 , . . . C

−
m−s) including propagation, inversion of literals,

upward clause checking (resp. downward clause checking), and upward variable deletion
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(resp. downward variable deletion). Each chunk has O(n) vertices. Each clause takes O(1)
chunks to be checked. So the total number of chunks is O(m) = O(n) and the total number
of vertices is O(n2).

The total budget is fixed as one per right triangular pocket, two per general triangular
pocket, one per variable encoding including the slightly different one at inverters and the one
just before an upward deletion (see encoding of variable x on chunk Ti in Figure 16), and
one extra per inverter. Note that the lone d•x,x at downward clause gadget and downward
deletion do not count as variable gadget and they do not increase the budget. To give an
unambiguous definition of the number of variable encodings, we count the number of pairs
i, x such that the vertices vi

x and vi
x exist.

We explained why the guards inside the triangular pockets can be placed (and the budget
reduced). At this point the correctness of the reduction is similar to the one by King and
Krohn. Therefore we just sketch it. The d-vertices force to place at least one guard in
each variable encoding. We argued that this will be sufficient to see all the right triangular
and rectangular pockets if and only if the variable assignments are consistent between two
consecutive chunks (by completing with guards gi

` at each inverter where ` is the literal
chosen to be true). Finally, the terrain is entirely seen whenever the m general triangular
pockets corresponding to the m clauses are all guarded, which happens if and only if the
truth assignment chosen on chunk T0 satisfies all the clauses.

This shows that Orthogonal Terrain Guarding and Dominating Set on the vis-
ibility graph of rectilinear terrains are NP-hard. Recall that the continuous variant of Or-
thogonal Terrain Guarding is equivalent to its discrete counterpart. The membership
in NP of all those variants is therefore trivial. What is left to prove is that Dominating
Set on the visibility graph of strictly rectilinear terrains is NP-hard. Our reduction almost
directly extends to this variant. The only issue is with the general triangular pocket gad-
get. Indeed, when the two guards are placed inside the pocket, all the internal vertices are
guarded. In Orthogonal Terrain Guarding, one still needed to see the interior of the
tiny top horizontal edge. But this is no longer required in Dominating Set. We observe
that the general triangular pocket is only used in the downward clause gadget. We explain
how we can make the downward clause gadget without the general triangular pocket. From
the gadget depicted on Figure 11, we make the following modifications. The three literals
of the clause are now at positions 2, 4, and 5 on chunk Ti. The third literal, that is, the
one of the middle variable which does not satisfy the clause has its v-vertex slightly lowered
in such a way that it does not see anything meaningful on chunk Ti−1. On chunk Ti−1,
the right triangular pocket with bottom di−1

y,y is simply removed, and the triangular pocket
with bottom wC is replaced by a right triangular pocket which sees among the v-vertices
vi

`1
, vi

`2
, vi

`3
and nothing else, for C = `1 ∨ `2 ∨ `3.

What we lose with this new construction is the vertex di−1
y,y which forced to take one

v-vertex between vi
y, v

i
y. We can now place no guard at those vertices, provided that we

place two guards at vi+1
y and vi+1

y . However, this can only help if there is also a downward
clause gadget between chunks T i+1 and Ti. Therefore, we just have to observe the rule of
not putting two downward clause gadgets in a row (for instance by separating them with
some simple propagation).

3 Improved ETH-Hardness for (Orthogonal) Terrain Guarding

We now explain how to turn the quadratic reductions from Planar 3-SAT into cubic
reductions from 3-SAT by taking a step back. This step back is the reduction from 3-
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SAT to Planar 3-SAT by Lichtenstein [21], or rather, the instances of Planar 3-SAT
it produces. The idea of Lichtenstein in his classic paper is to replace each intersection of a
pair of edges in the incidence graph of the formula by a constant-size planar gadget, called
crossover gadget (see Figure 17).

ξa1 a2

b1

b2

γ β

αδ

Figure 17 The crossover gadget of Lichtenstein for the crossing edges a1a2 and b1b2. The large
labeled nodes represent variables, and the small unlabeled nodes represent clauses. The clauses
ensure that the value of a1 and a2 (resp. b1 and b2) are the same. The thick blue curved line
delimits on one side, the clauses of C+, and on the other side, the clauses of C−.

Due to the sparsification of Impagliazzo et al. [14], even instances of 3-SAT with a
linear number of clauses cannot be solved in subexponential time, under the ETH. Hence,
the number of edges in the incidence graph of the formula can be assumed to be linear in the
number N of variables. Thus there are at most a quadratic number Θ(N2) of intersections;
which implies a replacement of the intersections by a quadratic number of constant-size
crossover gadgets. More concretely, the original N variables (resp. Θ(N) clauses) are placed
horizontally at the bottom of a Θ(N) × Θ(N) construction grid (resp. vertically at the
left of that grid). Those original variables and clauses are joined in a rectilinear fashion.
Crossover gadgets are placed on a superset of the edge intersections and subset of the grid
(see Figure 18). There is a noose (blue closed curve on the figure) going through all the
variables and defining the partition (C+, C−). Let C− be the part containing the original
clauses and C+ be the other part.

We wish to reduce the number of chunks that we actually need to check all the clauses.
In the reduction by King and Krohn, each single clause incurs a constant number of chunks:
to place the literals at the right position and to check the clause. However, the only require-
ment for a clause to be checked is that it operates on consecutive variables. Therefore, one
can check several clauses in parallel if they happen to be on disjoint and consecutive vari-
ables. Checking a set of variable-disjoint clauses in parallel means that we put the simple
propagation/literal inverters/clause gadgets necessary to check a clause, on a constant num-
ber of chunks. In particular, between chunks, say, Ti and Ti+1, we may have multiple clause
checker gadgets.

A first observation is that the Θ(N2) clauses of the crossover gadgets can be checked in
parallel with only O(1) chunks. Indeed, the constant number of clauses within each crossover
gadget operates on pairwise-disjoint sets of variables. They are also consecutive within each
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C1

C2

C3

w x y z

Figure 18 Reduction from 3-SAT to Planar 3-SAT, reproduction of Figure 4.3. in Tippen-
hauer’s master thesis [24] which follows Lichtenstein’s original paper. Notice that some crossover
gadgets are used on places without edge intersection, in order to route the blue closed curve (indic-
ating the separation (C+, C−)).

gadget with the variable ordering a1, γ, b1, β, ξ, δ, b2, α, a2. We deal first with the remaining
clauses of C+. At this point, there are still potentially Θ(N2) equality constraints in C+.
In Figure 18, the equality constraints are materialized by thick black edges going from one
crossover to another. We say that an equality constraint is vertical if the corresponding edge
contains a vertical section, and that it is horizontal otherwise. Hence a horizontal equality
constraint is actually represented by a horizontal segment (without bend). The column of a
vertical equality constraint is the column of its (unique) vertical section.

We first check in parallel all the vertical equality constraints of the first column (there
are four in Figure 18). We can then check in parallel all the horizontal equality constraints
whose segment ends to the left of the second column (there is just one, on the figure). Now,
the vertical equality constraints of the second column can be checked in parallel (one, in the
figure). We then check at once all the horizontal equality constraints whose segment ends to
the left of the third column (three, in the figure), and so on. We therefore only need Θ(N)
chunks for C+.

For C−, we do the same starting from the last column and going down column by column.
After Θ(N) chunks, we are left with the original variables and clauses which are only O(N).
Thus we finish with O(N) additional chunks. A chunk contains O(N2) variable encodings,
hence O(N2) vertices. So the total number of vertices of a terrain produced from a 3-SAT
formula on N variables is O(N3). This implies that there is no algorithm running in time
2o(n1/3) for (Orthogonal) Terrain Guarding on terrains with n vertices, unless the
ETH fails.
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4 Perspectives

We have proved that Orthogonal Terrain Guarding is NP-complete, as well as its
variants. We showed how to get improved ETH-based lower bounds for Terrain Guarding
and Orthogonal Terrain Guarding, by designing a cubic reduction from 3-SAT out of
the quadratic reduction from Planar 3-SAT. This establishes that there is no 2o(n1/3)-time
algorithm for those problems, unless the ETH fails.

Besides closing the gap between this lower bound and the existing 2O(
√

n log n)-algorithm,
the principal remaining open questions concern the parameterized complexity of terrain
guarding.

(1) Is Terrain Guarding FPT parameterized by the number of guards?
(2) Is Orthogonal Terrain Guarding FPT parameterized by the number of guards?

A negative answer to the second question would come as a real surprise in light of the
kO(k)nO(1)-time algorithm solving Dominating Set on the visibility graph of strictly or-
thogonal terrains.
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