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Abstract
A (unit) disk graph is the intersection graph of closed (unit) disks in the plane. Almost three
decades ago, an elegant polynomial-time algorithm was found for Maximum Clique on unit
disk graphs [Clark, Colbourn, Johnson; Discrete Mathematics ’90]. Since then, it has been an
intriguing open question whether or not tractability can be extended to general disk graphs. We
show the rather surprising structural result that a disjoint union of cycles is the complement of
a disk graph if and only if at most one of those cycles is of odd length. From that, we derive
the first QPTAS and subexponential algorithm running in time 2Õ(n2/3) for Maximum Clique
on disk graphs. In stark contrast, Maximum Clique on intersection graph of filled ellipses or
filled triangles is unlikely to have such algorithms, even when the ellipses are close to unit disks.
Indeed, we show that there is a constant ratio of approximation which cannot be attained even
in time 2n1−ε , unless the Exponential Time Hypothesis fails.
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1 Introduction

An intersection graph of geometric objects has one vertex per object and an edge between
every pair of vertices corresponding to intersecting objects. Intersection graphs for many
different families of geometric objects have been studied due to their practical applications
and their rich structural properties [9, 31]. Among the most studied ones are disk graphs,
which are intersection graphs of closed disks in the plane, and their special case, unit disk
graphs, where all the radii are the same. Their applications range from sensor networks
to map labeling [20], and many standard optimization problems have been studied on disk
graphs, see for example [36] and references therein. In this paper, we study Maximum
Clique on general disk graphs.

Known results.

Recognizing unit disk graphs is NP-hard [10], and even ∃R-complete [24]. Clark et al. [18]
gave a polynomial-time algorithm for Maximum Clique on unit disk graphs with a geo-
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metric representation. The core idea of their algorithm can actually be adapted so that the
geometric representation is no longer needed [34]. The complexity of the problem on general
disk graphs is unfortunately still unknown. Using the fact that the transversal number for
disks is 4, Ambühl and Wagner [4] gave a simple 2-approximation algorithm for Maximum
Clique on general disk graphs. They also showed the problem to be APX-hard on intersec-
tion graphs of ellipses and gave a 9ρ2-approximation algorithm for filled ellipses of aspect
ratio at most ρ. Since then, the problem has proved to be elusive with no new positive or
negative results. The question on the complexity and further approximability of Maximum
Clique on general disk graphs is considered as folklore [6], but was also explicitly mentioned
as an open problem by Fishkin [20], Ambühl and Wagner [4] and Cabello [12, 13].

A closely related problem is Maximum Independent Set, which is known to be W[1]-
hard (even on unit disk graphs [30]) and to admit a subexponential exact algorithm [2] and
PTAS [16, 19] on disk graphs.

Results and organization.

In Section 2, we mainly prove that the disjoint union of two odd cycles is not the complement
of a disk graph. To the best of our knowledge, this is the first structural property that
general disk graphs do not inherit from strings or from convex objects. We provide an
infinite family of forbidden induced subgraphs, an analogue to the recent work of Atminas
and Zamaraev on unit disk graphs [5]. In Section 3, we show how to use this structural
result to approximate and solve Maximum Independent Set on complements of disk
graphs, hence Maximum Clique on disk graphs. More precisely, we present the first
quasi-polynomial-time approximation scheme (QPTAS) and subexponential-time algorithm
for Maximum Clique in disk graphs, even without the geometric representation of the
graph. In Section 4, we highlight how those algorithms contrast with the situation for
ellipses or triangles, where there is a constant α > 1 for which an α-approximation running
in subexponential time is highly unlikely (in particular, ruling out at once QPTAS and
subexponential-time algorithm). We conclude in Section 5 with a few open questions.

Definitions and notations.

For two integers i 6 j, we denote by [i, j] the set of integers {i, i + 1, . . . , j − 1, j}. For a
positive integer i, we denote by [i] the set of integers [1, i]. If S is a subset of vertices of a
graph, we denote by N(S) the set of neighbors of S deprived of S, and we denote by N [S]
the set N(S) ∪ S. The 2-subdivision of a graph G is the graph H obtained by subdividing
each edge of G exactly twice. If G has n vertices and m edges, then H has n+ 2m vertices
and 3m edges. The co-2-subdivision of G is the complement of H. Hence it has n + 2m
vertices and

(
n+2m

2
)
− 3m edges. The co-degree of a graph is the maximum degree of its

complement. We sometimes call co-disk a graph which is the complement of a disk graph.
For two distinct points x and y of the plane, we denote by `(x, y) the unique line going

through x and y, and by seg(x, y) the closed straight-line segment whose endpoints are x and
y. If s is a segment with positive length, then we denote by `(s) the unique line containing
s. We denote by d(x, y) the euclidean distance between points x and y. We will often define
disks and elliptical disks by their boundary (circles and ellipses). Mainly, we will use the
following basic facts about circles and ellipses. There are two circles which cross a given
point with a given tangent at this point, and a given radius; one if we further specify on
which side of the tangent the circle is. There is one circle which crosses two points with
a given tangent at one of the two points, provided the other point is not on this tangent.
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There is one (not necessarily unique) ellipse which passes through two given points with two
given tangents at those points.

The Exponential Time Hypothesis (ETH) is a conjecture by Impagliazzo et al. asserting
that there is no 2o(n)-time algorithm for 3-SAT on instances with n variables [23]. The
ETH, together with the sparsification lemma [23], even implies that there is no 2o(n+m)-
time algorithm solving 3-SAT.

2 Disk graphs with co-degree 2

In this section, we fully characterize the degree-2 complements of disk graphs. We show the
following theorem:

I Theorem 1. A disjoint union of paths and cycles is the complement of a disk graph if and
only if the number of odd cycles is at most one.

We split the theorem into two. In a first subsection, we show that the union of two
disjoint odd cycles is not the complement of a disk graph. This is the part of Theorem 1
which will be algorithmically useful. As disk graphs are closed by induced subgraphs, it
implies that in the complement of a disk graph two vertex-disjoint odd cycles have to be
linked by at least one edge. This will turn out useful when solving Maximum Independent
Set in the complement of the graph (to solve Maximum Clique on the original graph). In
a second subsection, we show how to represent the complement of the disjoint union of even
cycles and exactly one odd cycle. Although this result is not needed for the forthcoming
algorithmic section, it nicely highlights the singular role that parity plays, as well as it
exposes the complete set of disk graphs of co-degree 2.

2.1 The disjoint union of two odd cycles is not co-disk

We call positive distance between two non-intersecting disks the minimum of d(x, y) where
x is in one disk and y is in the other. If the disks are centered at c1 and c2 with radius r1
and r2, respectively, then this value is d(c1, c2)− r1− r2. We call negative distance between
two intersecting disks the length of the straight-line segment defined as the intersection of
three objects: the two disks and the line joining their center. This value is r1 +r2−d(c1, c2),
which is positive.

We call proper representation a disk representation where every edge is witnessed by
a proper intersection of the two corresponding disks; namely, the interior of the two disks
intersects. It is easy to transform a disk representation into a proper representation (of the
same graph).

I Lemma 2. If a graph has a disk representation, then it has a proper representation.

Proof. If two disks intersect non-properly, we increase the radius of one of them by ε/2
where ε is the smallest positive distance between two disks. J

In order not to have to discuss about the corner case of three aligned centers in a disk
representation, we show that such a configurations is never needed to represent a disk graph.

I Lemma 3. If a graph has a disk representation, it has a proper representation where no
three centers are aligned.
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Figure 1 Disk realization of a K2,2. As the centers are positioned, it is impossible that the two
non-edges are between the disks 2 and 3, and between the disks 1 and 4 (or between the disks 1
and 3, and between the disks 2 and 4).

Proof. By Lemma 2, we have or obtain a proper representation. Let ε be the minimum
between the smallest positive distance and the smallest negative distance. As the repres-
entation is proper, ε > 0. If three centers are aligned, we move one of them to any point
which is not lying in a line defined by two centers in a ball of radius ε/2 centered at it. This
decreases by at least one the number of triple of aligned centers, and can be repeated until
no three centers are aligned. J

From now on, we assume that every disk representation is proper and without three
aligned centers. We show the folklore result that in a representation of a K2,2 which sets
the four centers in convex position, both non-edges have to be diagonal.

I Lemma 4. In a disk representation of K2,2 with the four centers in convex position, the
non-edges are between vertices corresponding to opposite centers in the quadrangle.

Proof. Let c1 and c2 be the centers of one non-edge, and c3 and c4 the centers of the
other non-edge. Let ri be the radius associated to center ci for i ∈ [4]. It should be that
d(c1, c2) > r1 + r2 and d(c3, c4) > r3 + r4 (see Figure 1). Assume c1 and c2 are consecutive
on the convex hull formed by {c1, c2, c3, c4}, and say, without loss of generality, that the
order is c1, c2, c3, c4. Let c be the intersection of seg(c1, c3) and seg(c2, c4). It holds that
d(c1, c3) + d(c2, c4) = d(c1, c) + d(c, c3) + d(c2, c) + d(c, c4) = (d(c1, c) + d(c, c2)) + (d(c3, c) +
d(c, c4)) > d(c1, c2) + d(c3, c4) > r1 + r2 + r3 + r4 = (r1 + r3) + (r2 + r4). Which implies
that d(c1, c3) > r1 + r3 or d(c2, c4) > r2 + r4; a contradiction. J

We derive a useful consequence of the previous lemma, phrased in terms of intersections
of lines and segments.

I Corollary 5. In any disk representation of K2,2 with centers c1, c2, c3, c4 with the two
non-edges between the vertices corresponding to c1 and c2, and between c3 and c4, it should
be that `(c1, c2) intersects seg(c3, c4) or `(c3, c4) intersects seg(c1, c2).

Proof. Either the disk representation has the four centers in convex position. In that case,
by Lemma 4, seg(c1, c2) and seg(c3, c4) are the diagonals of a convex quadrangle. Hence
they intersect, and a fortiori, `(c1, c2) intersects seg(c3, c4) (`(c3, c4) intersects seg(c1, c2),
too).

Or the disk representation has one center, say without loss of generality, c1, in the interior
of the triangle formed by the other three centers. In that case, `(c1, c2) intersects seg(c3, c4).
If instead a center in {c3, c4} is in the interior of the triangle formed by the other centers,
then `(c3, c4) intersects seg(c1, c2). J

We can now prove the main result of this section thanks to the previous corollary, parity
arguments, and some elementary properties of closed plane curves, namely Property I and
Property III of the eponymous paper [35].
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I Theorem 6. The complement of the disjoint union of two odd cycles is not a disk graph.

Proof. Let s and t be two positive integers and G = C2s+1 + C2t+1 the complement of the
disjoint union of a cycle of length 2s + 1 and a cycle of length 2t + 1. Assume that G is a
disk graph. Let C1 (resp. C2) be the cycle embedded in the plane formed by 2s + 1 (resp.
2t + 1) straight-line segments joining the consecutive centers of disks along the first (resp.
second) cycle. Observe that the segments of those two cycles correspond to the non-edges
of G. We number the segments of C1 from S1 to S2s+1, and the segments of C2, from S′1 to
S′2t+1.

For the i-th segment Si of C1, let ai be the number of segments of C2 intersected by the
line `(Si) prolonging Si, let bi be the number of segments S′j of C2 such that the prolonging
line `(S′j) intersects Si, and let ci be the number of segments of C2 intersecting Si. For the
second cycle, we define similarly a′j , b′j , c′j . The quantity ai + bi − ci counts the number of
segments of C2 which can possibly represent a K2,2 with Si according to Corollary 5. As we
assumed that G is a disk graph, ai + bi − ci = 2t+ 1 for every i ∈ [2s+ 1]. Otherwise there
would be at least one segment S′j of C2 such that `(Si) does not intersect S′j and `(S′j) does
not intersect Si.

Observe that ai is an even integer since C2 is a closed curve. Also, Σ2s+1
i=1 ai + bi − ci =

(2t + 1)(2s + 1) is an odd number, as the product of two odd numbers. This implies
that Σ2s+1

i=1 bi − ci shall be odd. Σ2s+1
i=1 ci counts the number of intersections of the two

closed curves C1 and C2, and is therefore even. Hence, Σ2s+1
i=1 bi shall be odd. Observe that

Σ2s+1
i=1 bi = Σ2t+1

j=1 a
′
j by reordering and reinterpreting the sum from the point of view of the

segments of C2. Since the a′j are all even, Σ2s+1
i=1 bi is also even; a contradiction. J

2.2 The disjoint union of cycles with at most one odd is co-disk
We only show the following part of Theorem 1 to emphasize that, rather unexpectedly, parity
plays a crucial role in disk graphs of co-degree 2. It is also amusing that the complement
of any odd cycle is a unit disk graph while the complement of any even cycle of length at
least 8 is not [5]. Here, the situation is somewhat reversed when complements of even cycles
are easier to represent than complements of odd cycles. We defer the proof of the following
theorem to the appendix.

I Theorem 7. The complement of the disjoint union of even cycles and one odd cycle is a
disk graph.

Theorem 6 and Theorem 7, together with the fact that disk graphs are closed by taking
induced subgraphs prove Theorem 1.

3 Algorithmic consequences

Now we show how to use the structural results from Section 2 to obtain algorithms for
Maximum Clique in disk graphs. A clique in a graph G is an independent set in G. So,
leveraging the result from Theorem 1, we will focus on solving Maximum Independent
Set in graphs without two vertex-disjoint odd cycles as an induced subgraph.

3.1 QPTAS
The odd cycle packing number ocp(H) of a graph H is the maximum number of vertex-
disjoint odd cycles in H. Unfortunately, the condition that G does not contain two vertex-
disjoint odd cycles as an induced subgraph is not quite the same as saying that the odd cycle
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packing number of G is 1. Otherwise, we would immediately get a PTAS by the following
result of Bock et al. [7].

I Theorem 8 (Bock et al. [7]). For every fixed ε > 0 there is a polynomial (1 + ε)-
approximation algorithm for Maximum Independent Set for graphs H with n vertices
and ocp(H) = o(n/ logn).

The algorithm by Bock et al. works in polynomial time if ocp(H) = o(n/ logn), but it does
not need the odd cycle packing explicitly given as an input. This is important, since finding
a maximum odd cycle packing is NP-hard [25]. We start by proving a structural lemma,
which spares us having to determine the odd cycle packing number.

I Lemma 9. Let H be a graph with n vertices, whose complement is a disk graph. If
ocp(H) > n/ log2 n, then H has a vertex of degree at least n/ log4 n.

Proof. Consider a maximum odd cycle packing C. By the assumption, C contains more than
n/ log2 n vertex-disjoint cycles. By the pigeonhole principle, there must be a cycle C ∈ C
of size at most log2 n. Now, by Theorem 6, H has no two vertex-disjoint odd cycles with
no edges between them. Therefore there must be an edge from C to every other cycle of C,
there are at least n/ log2 n such edges. Let v be a vertex of C with the maximum number
of edges to other cycles in C, by the pigeonhole principle its degree is at least n/ log4 n. J

Now we are ready to construct a QPTAS for Maximum Clique in disk graphs.

I Theorem 10. For any ε > 0, Maximum Clique can be (1 + ε)-approximated in time
2O(log5 n), when the input is a disk graph with n vertices.

Proof. Let G be the input disk graph and let G be its complement, we want to find a
(1 + ε)-approximation for Maximum Independent Set in G. We consider two cases. If
G has no vertex of degree at least n/ log4 n, then, by Lemma 9, we know that ocp(G) 6
n/ log2 n = o(n/ logn). In this case we run the PTAS of Bock et al. and we are done.

In the other case, G has a vertex v of degree at least n/ log4 n (note that it may still be
the case that ocp(G) = o(n/ logn)). We branch on v: either we include v in our solution and
remove it and all its neighbors, or we discard v. The complexity of this step is described by
the recursion F (n) 6 F (n−1) +F (n−n/ log4 n) and solving it gives us the desired running
time. Note that this step is exact, i.e., we do not lose any solutions. J

3.2 Subexponential algorithm
Now we will show how our structural result can be used to construct a subexponential
algorithm for Maximum Clique in disk graphs. The odd girth of a graph is the size of a
shortest odd cycle. An odd cycle cover is a subset of vertices whose deletion makes the graph
bipartite. We will use a result by Györi et al. [22], which says that graphs with large odd
girth have small odd cycle cover. In that sense, it can be seen as relativizing the fact that
odd cycles do not have the Erdős-Pósa property. Bock et al. [7] turned the non-constructive
proof into a polynomial-time algorithm.

I Theorem 11 (Györi et al. [22], Bock et al. [7]). Let H be a graph with n vertices and no
odd cycle shorter than δn (δ may be a function of n). Then there is an odd cycle cover X
of size at most (48/δ) ln(5/δ) Moreover, X can be found in polynomial time.

Let us start with showing three variants of an algorithm.
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I Theorem 12. Let G be a disk graph with n vertices. Let ∆ be the maximum degree of G
and c be the odd girth of G (they may be functions of n). Maximum Clique has a branching
or can be solved, up to a polynomial factor, in time:
(i) 2Õ(n/∆) (branching), (ii) 2Õ(n/c) (solved), (iii) 2O(c∆) (solved).

Proof. Let G be the input disk graph and let G be its complement, we look for a maximum
independent set in G.

To prove (i), consider a vertex v of degree ∆ in G. We branch on v: either we include v
in our solution and remove N [v], or discard v. The complexity is described by the recursion
F (n) 6 F (n− 1) + F (n− (∆ + 1)) and solving it gives (i). Observe that this does not give
an algorithm running in time 2Õ(n/∆) since the maximum degree might drop. Therefore,
we will do this branching as long as it is good enough and then finish with the algorithms
corresponding to (ii) and (iii).

For (ii) and (iii), let C be the cycle of length c, it clearly can be found in polynomial
time. By application of Theorem 11 with δ = c/n, we find an odd cycle cover X in G of
size Õ(n/c) in polynomial time (see for instance [3]). Next we exhaustively guess in time
2Õ(n/c) the intersection I of an optimum solution with X and finish by finding a maximum
independent set in the bipartite graph G − (X ∪ N(I)), which can be done in polynomial
time. The total complexity of this case is 2Õ(n/c), which shows (ii).

Finally, observe that the graph G − N [C] is bipartite, since otherwise G contains two
vertex-disjoint odd cycles with no edges between them. Moreover, since every vertex in G
has degree at most ∆, it holds that |N [C]| 6 c(∆− 1) 6 c∆. Indeed, a vertex of C can only
have c(∆−2) neighbors outside C. We can proceed as in the previous step: we exhaustively
guess the intersection of the optimal solution with N [C] and finish by finding the maximum
independent set in a bipartite graph (a subgraph of G−N [C]), which can be done in total
time 2O(c∆), which shows (iii). J

Now we show how the structure of G affect the bounds in Theorem 12.

I Corollary 13. Let G be a disk graph with n vertices. Maximum Clique can be solved in
time:
(a) 2Õ(n2/3),
(b) 2Õ(

√
n) if the maximum degree of G is constant,

(c) polynomial, if both the maximum degree and the odd girth of G are constant.

Proof. ∆ and c can be computed in polynomial time. Therefore, knowing what is faster
among cases (i), (ii), and (iii) is tractable. For case (a), while there is a vertex of degree
at least n1/3, we branch on it. When this process stops, we do what is more advantageous
between cases (ii) and (iii). Note that min(n/∆, n/c, c∆) 6 n2/3 (the equality is met for
∆ = c = n1/3). For case (b), we do what is best between cases (ii) and (iii). Note that
min(n/c, c) 6

√
n (the equality is met for c =

√
n). Finally, case (c) follows directly from

case (iii) in Theorem 12. J

Observe that case (b) is typically the hardest one for Maximum Clique. Moreover, the win-
win strategy of Corollary 13 can be directly applied to solve Maximum Weighted Clique,
as finding a maximum weighted independent set in a bipartite graph is still polynomial-
time solvable. On the other hand, this approach cannot be easily adapted to obtain a
subexponential algorithm for Clique Partition (even Clique p-Partition with constant
p), since List Coloring (even List 3-Coloring) has no subexponential algorithm for
bipartite graphs, unless the ETH fails (see [27], the bound can be obtained if we start
reduction from a sparse instance of 1-in-3-Sat instead of Planar 1-in-3-Sat).
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4 Other intersection graphs and limits

In this section, we discuss the impossibility of generalizing our results to related classes of
intersection graphs.

4.1 Filled ellipses and filled triangles
A natural generalization of a disk is an elliptical disk, also called filled ellipse, i.e., an
ellipse plus its interior. The simplest convex set with non empty interior is a filled triangle
(a triangle plus its interior). We show that our approach developed in the two previous
sections, and actually every approach, is bound to fail for filled ellipses and filled triangles.

APX-hardness was shown for Maximum Clique in the intersection graphs of (non-
filled) ellipses and triangles by Ambühl and Wagner [4]. Their reduction also implies that
there is no subexponential algorithm for this problem, unless the ETH fails. Moreover, they
claim that their hardness result extends to filled ellipses since “intersection graphs of ellipses
without interior are also intersection graphs of filled ellipses”. Unfortunately, this claim is
incorrect. In the appendix, we show:

I Theorem 14. There is a graph G which has an intersection representation with ellipses
without their interior, but has no intersection representation by convex sets.

This error and the confusion between filled ellipses and ellipses without their interior has
propagated to other more recent papers [26]. Fortunately, we show that the hardness result
does hold for filled ellipses (and filled triangles) with a different reduction. Our construction
can be seen as streamlining the ideas of Ambühl and Wagner [4]. It is simpler and, in the
case of (filled) ellipses, yields a somewhat stronger statement.

I Theorem 15. There is a constant α > 1 such that for every ε > 0, Maximum Clique
on the intersection graphs of filled ellipses has no α-approximation algorithm running in
subexponential time 2n1−ε , unless the ETH fails, even when the ellipses have arbitrarily
small eccentricity and arbitrarily close value of major axis.

This is in sharp contrast with our subexponential algorithm and with our QPTAS when
the eccentricity is 0 (case of disks). For any ε > 0, if the eccentricity is only allowed to be
at most ε, a subexponential algorithm or a QPTAS are very unlikely. This result subsumes
[15] (where NP-hardness is shown for connected shapes contained in a disk of radius 1 and
containing a concentric disk of radius 1− ε for arbitrarily small ε > 0) and corrects [4]. We
show the same hardness for the intersection graphs of filled triangles.

I Theorem 16. There is a constant α > 1 such that for every ε > 0, Maximum Clique
on the intersection graphs of filled triangles has no α-approximation algorithm running in
subexponential time 2n1−ε , unless the ETH fails.

We first show this lower bound for Maximum Weighted Independent Set on the
class of all the 2-subdivisions, hence the same hardness for Maximum Weighted Clique
on all the co-2-subdivisions. It is folklore that from the PCP of Moshkovitz and Raz [33],
which roughly implies that Max 3-SAT cannot be 7/8 + ε-approximated in subexponential
time under the ETH, one can derive such inapproximability in subexponential time for many
hard graph and hypergraph problems; see for instance [8].

The following inapproximability result for Maximum Independent Set on bounded-
degree graphs was shown by Chlebík and Chlebíková [17]. As their reduction is almost linear,
the PCP of Moshkovitz and Raz boosts this hardness result from ruling out polynomial-time
up to ruling out subexponential time 2n1−ε for any ε > 0.
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I Theorem 17 ([17, 33]). There is a constant β > 0 such that Maximum Independent
Set on graphs with n vertices and maximum degree ∆ cannot be 1+β-approximated in time
2n1−ε for any ε > 0, unless the ETH fails.

We could actually state a slightly stronger statement for the running time but will settle for
this for the sake of clarity. We are now equipped to show the following:

I Theorem 18. There is a constant α > 1 such that for any ε > 0, Maximum Independent
Set on the class of all the 2-subdivisions has no α-approximation algorithm running in
subexponential time 2n1−ε , unless the ETH fails.

Proof. Let G be a graph with maximum degree a constant ∆, with n vertices v1, . . . , vn and
m edges e1, . . . , em, and let H be its 2-subdivision. Recall that to form H, we subdivided
every edge of G exactly twice. These 2m vertices in V (H) \ V (G), representing edges, are
called edge vertices and are denoted by v+(e1), v−(e1), . . . , v+(em), v−(em), as opposed to
the other vertices of H, which we call original vertices. If ek = vivj is an edge of G, then
v+(ek) (resp. v−(ek)) has two neighbors: v−(ek) and vi (resp. v+(ek) and vj).

Observe that there is a maximum independent set S which contains exactly one of
v+(ek), v−(ek) for every k ∈ [m]. Indeed, S cannot contain both v+(ek) and v−(ek) since
they are adjacent. On the other hand, if S contains neither v+(ek) nor v−(ek), then adding
v+(ek) to S and potentially removing the other neighbor of v+(ek) which is vi (with ek =
vivj) can only increase the size of the independent set. Hence S contains m edge vertices
and s 6 n original vertices, and there is no larger independent set in H.

We observe that the s original vertices is S form an independent set in G. Indeed, if
vivj = ek ∈ E(G) and vi, vj ∈ S, then neither v+(ek) nor v−(ek) could be in S.

Now, assume there is an approximation with ratio α := 1 + 2β
(∆+1)2 for Maximum In-

dependent Set on 2-subdivisions running in subexponential time, where 1 + β > 1 is
a ratio which is not attainable for Maximum Independent Set on graphs of maximum
degree ∆ according to Theorem 17. On instance H, this algorithm would output a solution
with m′ edge vertices and s′ original vertices. As we already observed this solution can
be easily (in polynomial time) transformed into an at-least-as-good solution with m edge
vertices and s′′ original vertices forming an independent set in G. Further, we may assume
that s′′ > n/(∆ + 1) since for any independent set of G, we can obtain an independent set
of H consisting of the same set of original vertices and m edge vertices. Since m 6 n∆/2
and s′′ > n/(∆ + 1), we obtain m 6 s′′∆(∆ + 1)/2 and 2m/(∆ + 1)2 6 s′′∆/(∆ + 1). From
m+s
m+s′′ 6 α and ∆ > 3, we have

s 6 m · 2β
(∆ + 1)2 + s′′ · (1 + 2β

(∆ + 1)2 ) 6 s′′( ∆β
∆ + 1 + 1 + 2β

(∆ + 1)2 ) 6 s′′(1 + β)

This contradicts the inapproximability of Theorem 17. Indeed, note that the number of
vertices of H is only a constant times the number of vertices of G (recall that G has bounded
maximum degree, hence m = O(n)). J

Recalling that independent set is a clique in the complement, we get the following.

I Corollary 19. There is a constant α > 1 such that for any ε > 0, Maximum Clique on the
class of all the co-2-subdivisions has no α-approximation algorithm running in subexponential
time 2n1−ε , unless the ETH fails.

For exact algorithms the subexponential time that we rule out under the ETH is not
only 2n1−ε but actually any 2o(n).
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Now, to Theorem 15 and Theorem 16, it is sufficient to show that intersection graphs
of (filled) ellipses or of (filled) triangles contain all co-2-subdivisions. We start with (filled)
triangles since the construction is straightforward.

I Lemma 20. The class of intersection graphs of filled triangles contains all co-2-subdivisions.

Proof. Figure 2 is a proof by picture. The corresponding words can be found in the ap-
pendix. J

Figure 2 A co-2-subdivision of a graph with 5 vertices (in red) represented with triangles. We
only represented two edges: one between vertices 1 and 4 (in green), and one between vertices 2
and 3 (in blue). We only represented the points p1 to p5 and q1 to q5, and x.

We use the same ideas for the construction with filled ellipses. The two important sides
of a triangle encoding an edge of the initial graph G become two tangents of the ellipse.

I Lemma 21. The class of intersection graphs of filled ellipses contains all co-2-subdivisions.

Proof. Let G be any graph with n vertices v1, . . . , vn and m edges e1, . . . , em, and H be
its co-2-subdivision. We start with the convex monotone chain p0, p1, p2, . . . , pn−1, pn, pn+1,
only the gap between pi and pi+1 is chosen very small compared to the positive y-coordinate
of p0. This requirement is for the disks Di encoding the vertices vi ∈ G to form a clique.
We also take p0 with a large x-coordinate. For i ∈ [0, n+ 1], qi is the symmetric of pi with
respect to the x-axis. For each i ∈ [n], we define Di as the disk whose boundary is the
unique circle which goes through pi and qi, and whose tangent at pi has the direction of
`(pi−1, pi+1). It can be observed that, by symmetry, the tangent of Di at qi has the direction
of `(qi−1, qi+1).

Let us call τ+
i (resp. τ−i ) the tangent of Di at pi (resp. at qi) very slightly translated

upward (resp. downward). The tangent τ+
i (resp. τ−i ) intersects every disks Di′ but Di

(see Figure 3). Let denote by p′i (resp. q′i) be the projection of pi (resp. qi) onto τ+
i (resp.

onto τ−i ) For each k ∈ [m], let `k be the line crossing the origin O = (0, 0) and forming with
the horizontal an angle εk, where εk is smaller than the angle formed by `(p0, p1) with the
horizontal. Let `+k (resp. `−k ) be `k very slightly translated upward (resp. downward). To
encode an edge ek = vivj , we have two filled ellipses E+

k and E−k . The ellipse E+
k (resp. E−k )

is defined as being tangent with τ+
i at p′i (resp. with τ−j at q′j) and tangent at `+k (resp. `−k )
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p1

q1

p2

q2

p3

q3

p4

q4

D3

τ+
3

Figure 3 The blue line intersects every red disk but the third one.

at the point of x-coordinate 0 (thus very close to O), where ek = vivj . The proof that the
intersection graph of {Di}i∈[n] ∪ {E+

k , E
−
k }k∈[m] is H is similar to the case of filled triangles.

Again, no ellipse is fully contained in another ellipse. Hence, this construction works for
both filled ellipses and ellipses without their interior.

Now, let us place p0 at P := (
√

3/2, 1/2) and still make the distance between pi and pi+1
very small compared to 1. All the points pi are very close to P and all the points qi are very
close to Q := (

√
3/2,−1/2). This makes the radius of all the disks Di arbitrarily close to 1.

We also chose the convex monotone chain p0, . . . , pn+1 so that `(p0, p1) forms a 60-degree
angle with the horizontal. We have the chain strictly convex but very close to a straight-line,
so that `(p0, p1) ≈ `(pn, pn+1) ≈ `(pi, pi+1) ≈ `(pi, pi+2). By that, we mean that all those
lines almost cross P and make an angle of roughly 60-degree with the horizontal. The same
holds for the points qi. For the choice of an elliptical disk tangent to the x-axis at O and to
a line with a 60-degree slope at P (resp. at Q), we can take a disk of radius 1 centered at
(0, 1) (resp. at (0,−1)); see Figure 4.

E−k

E+
k

Di

P

Q

O

Figure 4 The layout of the disks Di, and the elliptical disks E+
k and E−k .

The acute angle formed by `1 and `m (incident in O) is made arbitrarily small so that,
by continuity of the elliptical disk defined by two tangents at two points, the filled ellipses
E+
k and E−k have eccentricity arbitrarily close to 0 and major axis arbitrarily close to 1. J

In the construction, we made both the eccentricity of the (filled) ellipses arbitrarily close
to 0 and the ratio between the largest and the smallest major axes arbitrarily close to 1.
We know that this construction is very unlikely to work for the extreme case of unit disks,
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since a polynomial algorithm is known for Max Clique. It is interesting to note that even
with disks of arbitrary radii, our Theorem 6 unconditionally proves that the construction
does fail. Indeed the co-2-subdivision of C3 + C3 is the complement of C9 + C9, hence not
a disk graph.

4.2 Homothets of a convex polygon
Another natural direction of generalizing a result on disk intersection graphs is to consider
pseudodisk intersection graphs, i.e., intersection graphs of collections of closed subsets of
the plane (regions bounded by simple Jordan curves) that are pairwise in a pseudodisk
relationship (see Kratochvíl [28]). Two regions A and B are in pseudodisk relation if both
differences A\B and B\A are arc-connected. It is known that Phom graphs, i.e., intersection
graphs of homothetic copies of a fixed polygon P , are pseudodisk intersection graphs [1].
As shown by Brimkov et al., for every convex k-gon P , a Phom graph with n vertices has at
most nk maximal cliques [11]. This clearly implies that Maximum Clique, but also Clique
p-Partition for fixed p is polynomially solvable in Phom graphs. Actually, the bound on
the maximum number of maximal cliques from [11] holds for a more general class of graphs,
called kDIR-CONV, which admit a intersection representation by convex polygons, whose
every side is parallel to one of k directions.

Moreover, we observe that Theorem 7 cannot be generalized to Phom graphs or kDIR-
CONV graphs. Indeed, consider the complement Pn of an n-vertex path Pn. The number
of maximal cliques in Pn, or, equivalently, maximal independent sets in Pn is Θ(cn) for
c ≈ 1.32, i.e., exponential in n [21]. Therefore, for every fixed polygon P (or for every fixed
k) there is n, such that Pn is not a Phom (kDIR-CONV) graph.

5 Perspectives

We presented the first QPTAS and subexponential algorithm for Maximum Clique on disk
graphs. Our subexponential algorithm extends to the weighted case and yields a polynomial
algorithm if both the degree ∆ and the odd girth c of the complement graph are constant.
Indeed, our full characterization of disk graphs with co-degree 2, implies a backdoor-to-
bipartiteness of size c∆ in the complement.

We have also paved the way for a potential NP-hardness construction. We showed why
the versatile approach of representing complements of even subdivisions of graphs forming
a class on which Maximum Independent Set is NP-hard fails if the class is general
graphs, planar graphs, or even any class containing the disjoint union of two odd cycles.
This approach was used by Middendorf for some string graphs [32] (with the class of all
graphs), Cabello et al. [14] to settle the then long-standing open question of the complexity
of Maximum Clique for segments (with the class of planar graphs), in Section 4 of this
paper for ellipses and triangles (with the class of all graphs). Determining the complexity
of Maximum Independent Set on graphs without two vertex-disjoint odd cycles as an
induced subgraph is a valuable first step towards settling down the complexity of Maximum
Clique on disks.

Another direction is to try and strengthen our QPTAS in one of two ways: either to
obtain a PTAS for Maximum Clique in disk graphs, or to obtain a QPTAS (or PTAS)
for Maximum Weighted Clique in disk graphs. It is interesting to note that Bock et
al. [7] showed a PTAS for Maximum Weighted Independent Set for graphs G with
ocp(G) = O(logn/ log logn). However, this bound is too weak to use a win-win approach
similar to Theorem 10.
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6 Appendix

6.1 Proof of Theorem 7
We start with a disk representation of the complement of one even cycle C2s. Again, this
construction is not possible with unit disks for even cycles of length at least 8. We assume
that the vertices of the cycle C2s are 1, 2, . . . , 2s in this order. For each i ∈ [2s], the disk
Di encodes the vertex i. We start by fixing the disks D1, D2, and D2s. Those three disks
have the same radius. We place D2 and D2s side by side: their centers have the same y-
coordinate. They intersect and the distance between their center is ε > 0. We define D1
as the disk above D2 and D2s tangent to those two disks and sharing the same radius. We
denote by p1 its intersection with D2 and by ps its intersection with D2s. We then slightly
shift D1 upward so that it does not touch (nor does it intersect) D2 and D2s anymore. While
we do this translation, we imagine that the points p1 and ps remain fixed at the boundary
of D2 and D2s respectively (see Figure 5a). Let p2, p3, . . . , ps−1 points in the interior of D1
and below the line `(p1, ps) such that p1, p2, . . . , ps−1, ps form an x-monotone convex chain
(see Figure 5b).

D2 D2s

D1

p1 ps

(a) Three important disks
with the same size D1, D2,
D2s.

p1 psp2 p3 p4
ps-1ps-2ps-3. . .

D1

(b) Zoom where D1 almost touches D2 and D2s.

Figure 5 The disks D1, D2, D2s and the convex chain p1, p2, . . . , ps. The curvature of the
boundary of D1 is exaggerated in the zoom for the sake of clarity.

Now, we define the disks D4,D6, . . . ,D2s−2. For each i ∈ {4, 6, . . . , 2s− 2}, let Di be the
unique disk with the same radius as D2 and such that the boundary of Di crosses pi/2 and
is below its tangent τi/2 at this point which has the direction of `(pi/2−1, pi/2+1).

It should be observed that the only disk with even index i which contains pi/2 is Di. We
can further choose the convex chain {pi}i∈[s] such that one co-tangent τi,i+1 to D2i and D2i+2
has a slope between the slopes of τi and τi+1. Finally we define the disks D3,D5, . . . ,D2s−1.
For each i ∈ {3, 5, . . . , 2s − 1}, let Di be tangent to τi,i+1 at the point of x-coordinate the
mean between the x-coordinates of p i−1

2
and p i+1

2
. Moreover, Di is above τi,i+1 and has

a radius sufficiently large to intersect every disk with even index which are not Di−1 and
Di+1. It is easy to see that the disks Di with even index (resp. odd index) form a clique.
By construction, the disk Di with odd index greater than 3 intersects every disk with even
index except Di−1 and Di+1 since Di is on the other side of τi,i+1 than those two disks. As
the line τi,i+1 intersects every other disk with even index, there is a sufficiently large radius
so that Di does so, too. The particular case of D1 has been settled at the beginning of the
construction. This disk avoids D2 and D2s and contains p2, p3, . . . , ps−1, so intersects all the
other disks with even index.
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We now explain how to stack even cycles. We make the distance ε between the center of
D2 and D2s a thousandth of their common radius. Note that this distance does not depend
on the value of s. We identify the small region (point) where the disk D1 intersects with the
disks of even index, between two different complements of cycles. We then rotate from this
point one representation by a small angle (see Figure 6 for multiple complements of even
cycles stacked).

D1

D2i+1

D2i

Figure 6 A disk realization of the complement of the disjoint union of an arbitrary number of
even cycles. The rectangles symbolize the large disks; the ones with odd index except D1.

The reason why there are indeed all the edges between two complements of cycles is
intuitive and depicted in Figure 7 and more specifically Figure 7b. We superimpose all
the complements of even cycles in a way that the maximum rotation angle between two
complements of cycles is small (see for instance Figure 10).

Finally, we need to add one disjoint odd cycle in the complement. There is a nice
representation of a complement of an odd cycle by unit disks in the paper of Atminas and
Zamaraev [5] (see Figure 8).

We will use a different and non-unit representation for the next step to work. Let 2s+ 1
be the length of the cycle. We use a similar construction as for the complement of an even
cycle. We denote the disks D′1,D′2, . . . ,D′2s+1. The difference is that we separate D′1 away
from D′2 but not from D′2s. Then, we represent all the disks with odd index but D′2s+1
as before. The disk D′2s+1 is chosen as being cotangent to D′1 and D′2s and to the left of
them. Then we very slighlty move D′2s+1 to the left so that it does not intersect those two
disks anymore. The disk D′2s have the rightmost center among the disks with even index.
Therefore D′2s+1 still intersects all the other disks of even index.

Moreover, the disks with even index form a clique and the disks with odd index form a
clique minus an edge between the vertex 1 and the vertex 2s + 1. Hence, the intersection
graph of those disks is indeed the complement of C2s+1 (see Figure 9).

This representation of C2s+1 can now be put on top of complements of even cycles. We
identify the small region (point) where the disk D1 intersects the disks of even index (in
complements of even cycles) with the small region (point) where the disk D′1 intersects the
disks of even index (in the one complement of odd cycle). We make the disk D′1 significantly
smaller than D1 and rotate the representation of C2s+1 by a sizable angle, say 60 degrees
(see Figure 10).
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D1

D2i

(a) The only potential non-edges are between two disks
represented almost tangent.

(b) Zoom in where the boundary
of the disks intersect.

Figure 7 Zoom in where the disk D1 of the several complements of even cycles intersects all the
D2i of the other cycles.

Figure 8 A disk realization of the complement of an odd cycle with unit disks as described by
Atminas and Zamaraev [5]. Unfortunately, we cannot use this representation.

D′2i+1

D′2i

D′2s+1

D′1

Figure 9 A disk realization of the complement of an odd cycle of length 2s + 1.
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D1

D2i+1

D2i

D′2i+1

D′2s+1

Figure 10 Placing the complement of odd cycle on top of the complements of even cycles.

It is easy to see that the disks of the complement of the odd cycle intersect all the disks
of the complements of even cycles. A good sanity check is to observe why we cannot stack
representations of complements of odd cycles, with the same rotation scheme. In Figure 11,
the rotation of two representations of the complement of an odd cycle leaves disks D′1 and
D′′2s′+1 far apart when they should intersect.

D′2i+1

D′2i

D′2s+1

D′1

D′′2s′+1

Figure 11 Sanity check: trying to stack the complements of two odd cycles fails. The disks D′1
and D′′2s′+1 do not intersect.

6.2 Proof of Theorem 14
The argument is similar to the one used by Brimkov et al. [11], which was in turn inspired
by the construction by Kratochvíl and Matoušek [29]. Consider the graph G in Figure 12
(containing what we will henceforth call black, gray and white vertices), and observe that c
and d are two non-adjacent vertices with the same neighborhoods.
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c

d

b

a

a

c d

b

Figure 12 A graph G and its representation with empty ellipses.

Suppose G can be represented by intersecting convex sets. For a vertex v, let Rv be
the convex set representing v. The union of representatives of the white vertices contains a
closed Jordan curve, that we will call the outer circle. Let us choose the outer circle in such
a way that it intersects the representatives of all gray vertices. It divides the plane into two
faces – an interior and an exterior.

The outer circle cannot be crossed by the representative of any black vertex. Moreover,
as black vertices form a connected subgraph, they have to be represented in the same face F
(with respect to the outer circle). Thus, along this circle the representatives of gray vertices
appear in a prescribed ordering (note that they form an independent set). This implies the
ordering in which some part of representatives of the black vertices occur.

First, observe that the representatives of the gray neighbors of a, b, and c intersect the
outer circle in the following ordering: a1, c1, b1, c2, a2, c3, b2, c4 (where each zi for z ∈ {a, b, c}
is a distinct gray neighbor of z).

Clearly, each gray neighbor of a must intersect Ra outside Ra ∩ (Rb ∪ Rc), each gray
neighbor of b must intersect Rb outside Rb ∩ (Ra ∪ Rc), and each gray neighbor of c must
intersect Rc outside Rc ∩ (Ra ∪Rb). Thus, some parts of Ra, Rb, and Rc are exposed (i.e.,
outside the intersection with the union of representatives of remaining two vertices) in the
ordering: a, c, b, c, a, c, b, as we move along the boundary of Ra ∪ Rb ∪ Rc. Note that this
implies that Ra ∩Rb ∩Rc 6= ∅, since all sets are convex.

For any z ∈ {a, b, c} and any i, the set Rzi
contains a segment s(zi), whose one end is on

the boundary of Rz and the other end is on the outer circle (recall that all representatives are
convex). For z ∈ {a, b} and i ∈ {1, 2}, by s′(zi) we denote the segment joining the endpoint
of s(zi) on the boundary of Rz to the closest point in Rz ∩Rc. Now we observe that the set⋃
z∈{a,b},i∈{1,2} s(zi) ∪ s′(zi) partitions F \Rc into four disjoint regions Q1, Q2, Q3, Q4. Let

Q1 be the region adjacent to s(a1) and s(b1), Q2 be the region adjacent to s(b1) and s(a2),
Q3 be the region adjacent to s(a2) and s(b2), and Q4 be the region adjacent to s(b2) and
s(a1). Note that one of these regions may be unbounded, if F is the unbounded face of the
outer circle.

For every i ∈ {1, 2, 3, 4}, the set Rci
\ Rc is contained in Qi. For i = {1, 2, 3, 4}, let pi

be a point in Rd ∩ Rci
, such a point exist, since d is adjacent to ci. By convexity of Rd,

the segment p1p2 is contained in Rd. On the other hand, it crosses the curve s(b1) ∪ s′(b1),
let q1 be the intersection point. Since Rd is disjoint with Rb1 , clearly q1 ∈ s′(b1) ⊆ Rb. In
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the analogous way we define q2 to be the crossing point of p2p3 and s(a2) ∪ s′(a2), q3 to be
the crossing point of p3p4 and s(b2) ∪ s′(b2), and q4 to be the crossing point of p4p1 and
s(a1) ∪ s′(a1). We observe that q2 ∈ s′(a2) ⊆ Ra, q3 ∈ s′(b2) ⊆ Rb, and q4 ∈ s′(a1) ⊆ Ra.
Let us consider the segment q1q3. It must intersect either s(c2)∪Rc or s(c4)∪Rc. Without
loss of generality, we assume that it intersects s(c2) ∪ Rc. Let q′ be this intersection point.
By convexity, q′ ∈ Rd and q′ ∈ Rb. If q′ ∈ s(c2), we get the contradiction with the fact that
b and c2 are non-adjacent. On the other hand, if q′ ∈ Rc, we get the contradiction with the
fact that d and c are non-adjacent.

Finally, it is easy to represent G with empty ellipses (see Fig. 12 right).

6.3 Proof of Lemma 20
Let G be any graph with n vertices v1, . . . , vn and m edges e1, . . . , em, and H be its co-2-
subdivision. We start with n + 2 points p0, p1, p2, . . . , pn, pn+1 forming a convex monotone
chain. Those points can be chosen as pi := (i, p(i)) where p is the equation of a positive
parabola taking its minimum at (0, 0). For each i ∈ [0, n+1], let qi be the reflection of pi by
the line of equation y = 0. Let x := (n+ 1, 0). For each vertex vi ∈ V (G) the filled triangle
δi := piqix encodes vi. Observe that the points p0 = q0, pn+1, and qn+1 will only be used
to define the filled triangles encoding edges.

To encode an edge ek = vivj , we have two filled triangles ∆+
k and ∆−k . The triangle

∆+
k (resp. ∆−k ) has an edge which is supported by `(pi−1, pi+1) (resp. `(qj−1, qj+1)) and is

prolonged so that it crosses the boundary of each δi′ but δi (resp. but δj). A second edge
of ∆+

k and ∆−k are parallel and make with the horizontal a small angle εk, where ε > 0 is
chosen so that εm is smaller than the angle formed by `(p0, p1) with the horizontal line.
Those almost horizontal edges intersect for each pair ∆+

k′ and ∆−k′′ with k′ 6= k′′ intersects
close to the same point. Filled triangles ∆+

k and ∆−k do not intersect. See Figure 2 for the
complete picture.

It is easy to check that the intersection graph of {δi}i∈[n] ∪ {∆+
k ,∆

−
k }k∈[m] is H. The

family {δi}i∈[n] forms a clique since they all contain for instance the point x. The filled
triangle ∆+

k (resp. ∆−k ) intersects every other filled triangles except ∆−k (resp. ∆+
k ) and δi

(resp. δj) with ek = vivj .
One may observe that no triangle is fully included in another triangle. So the construction

works both as the intersection graph of filled triangles and triangles without their interior.
The edge of a ∆+

k or a ∆−k crossing the boundary of all but one δi, and the almost horizontal
edge can be arbitrary prolonged to the right and to the left respectively. Thus, the triangles
can all be made isosceles.
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