
HAL Id: hal-01991541
https://hal.science/hal-01991541

Submitted on 23 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing RNA Secondary Structures is Hard
Edouard Bonnet, Pawel Rzążewski, Florian Sikora

To cite this version:
Edouard Bonnet, Pawel Rzążewski, Florian Sikora. Designing RNA Secondary Structures is Hard.
RECOMB 2018, Apr 2018, Paris, France. �hal-01991541�

https://hal.science/hal-01991541
https://hal.archives-ouvertes.fr

Designing RNA Secondary Structures is Hard

Édouard Bonnet1, Paweł Rzążewski2, and Florian Sikora3

1 Middlesex University, Department of Computer Science, London, UK edouard.bonnet@dauphine.fr
2 Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland

p.rzazewski@mini.pw.edu.pl
3 Université Paris-Dauphine, PSL Research University, CNRS, LAMSADE, Paris, France

florian.sikora@dauphine.fr

Abstract. An RNA sequence is a word over an alphabet on four elements {A,C,G,U}
called bases. RNA sequences fold into secondary structures where some bases pair with
one another while others remain unpaired. Pseudoknot-free secondary structures can be
represented as well-parenthesized expressions with additional dots, where pairs of matching
parentheses symbolize paired bases and dots, unpaired bases. The two fundamental problems
in RNA algorithmic are to predict how sequences fold within some model of energy and to
design sequences of bases which will fold into targeted secondary structures. Predicting
how a given RNA sequence folds into a pseudoknot-free secondary structure is known to
be solvable in cubic time since the eighties and in truly subcubic time by a recent result of
Bringmann et al. (FOCS 2016), whereas Lyngsø has shown it is NP-complete if pseudoknots
are allowed (ICALP 2004). As a stark contrast, it is unknown whether or not designing a
given RNA secondary structure is a tractable task; this has been raised as a challenging open
question by Anne Condon (ICALP 2003). Because of its crucial importance in a number
of fields such as pharmaceutical research and biochemistry, there are dozens of heuristics
and software libraries dedicated to RNA secondary structure design. It is therefore rather
surprising that the computational complexity of this central problem in bioinformatics has
been unsettled for decades.
In this paper we show that, in the simplest model of energy which is the Watson-Crick model
the design of secondary structures is NP-complete if one adds natural constraints of the form:
index i of the sequence has to be labeled by base b. This negative result suggests that the same
lower bound holds for more realistic models of energy. It is noteworthy that the additional
constraints are by no means artificial: they are provided by all the RNA design pieces of
software and they do correspond to the actual practice (see for example the instances of the
EteRNA project). Our reduction from a variant of 3-Sat has as main ingredients: arches
of parentheses of different widths, a linear order interleaving variables and clauses, and an
intended rematching strategy which increases the number of pairs iff the three literals of a
same clause are false. The correctness of the construction is also quite intricate; it relies
on the polynomial algorithm for the design of saturated structures – secondary structures
without dots – by Haleš et al. (Algorithmica 2016), counting arguments, and a concise case
analysis.

1 Introduction

Ribonucleic acid (RNA) is a molecule playing an important role besides deoxyribonucleic acid
(DNA) and proteins. RNA is a chain of nucleotides (or bases) and can be represented as a sequence
on a 4-letter alphabet: A,U,C,G; denoting the first letter of the corresponding base. Unlike DNA,
RNA is single stranded, and folds into itself: some of the bases are linked to each other (they
are paired or matched) to form a stable and compact structure. This pairing forms the secondary
structure of the RNA molecule; the primary structure is the sequence of nucleotides and the
tertiary structure is the 3D shape. Predicting how an RNA molecule folds is vital to understand
its biological function.

Experiments reveal that the secondary structure of an RNA strand tends to follow the laws
of thermodynamics. Given a model associating a free-energy value to secondary structures, it is
widely accepted, since the pioneer work of the chemistry Nobel laureate Christian B. Anfinsen [5],

that the secondary structure of a sequence can be predicted as the one with the minimum free-
energy (MFE), i.e., the one ensuring the greatest stability. The most simple energy model is the
Watson-Crick model, allowing A to pair with U and C to pair with G (it also can be seen as the
Nussinov-Jacobsen model using only AU and GC base pairs). In this model, the MFE is simply
realized by a structure with the greatest number of pairs.

RNA folding. A stem-loop or hairpin loop is a building block of RNA secondary structures. It
consists of a series of consecutive base pairs (called double-helix or stackings) ending in a loop of
unpaired nucleotides. A pseudoknot occurs when some nucleotides of this loop pair somewhere else
in the RNA strand. Pseudoknot-free secondary structures correspond to well nested structures.
They can be represented as a well-parenthesized expression where matching parentheses symbolize
base pairs, with additional dots to symbolize unpaired nucleotides.

Given a sequence of nucleotides, the RNA Folding problem consists of finding the pseudoknot-
free secondary structure with the minimum free-energy. RNA Folding can be solved by a simple
dynamic programming in time O(n3) where n is the size of the sequence [25,33]. Since this result
in the early 1980s, a lot of work has been devoted to propose new methods for secondary struc-
ture prediction. Recently, the first truly subcubic algorithm for RNA Folding was proposed by
Bringmann et al. [8] and runs in deterministic time O(n2.861) or randomized time O(n2.825). Some
faster polynomial-time approximation algorithms were later obtained [28].

When pseudoknots are allowed, the computational complexity of predicting how RNA folds
gets a bit blurry. The short answer would be to say that the folding prediction becomes NP-
complete [24,2,18]. Observing that none of those three hardness constructions are ideal, the first
one because the value of the free-energy is not fixed but specified as part of the input, and
the other two, because they assume that only planar pseudoknots are legal, Lyngsø gives two
additional NP-hardness proofs [22]. They work in seemingly very close models; both not too
distant from Watson-Crick. However, the NP-hardness in one model crucially needs that the
alphabet size is unbounded (which is rather unsatisfactory), while the NP-hardness in the other
model carries over to a binary alphabet. When only restricted types of pseudoknots are allowed,
dynamic programming still works and yields polynomial-time algorithms with worse running times
than in the pseudoknot-free case [26,24,2,10]. Under the hypothesis that the pseudoknots may only
form after the pseudoknot-free pairs, the O(n3)-time complexity can be attained again [19]. In a
simpler model, an approach based on maximum weighted matchings makes the folding prediction
tractable for general pseudoknots [30].

RNA design. In the inverse folding problem called RNA Design, one is given a secondary structure
and has to find a sequence of bases which uniquely folds into this structure; or report that such a
sequence does not exist. The sequence must fold into this structure instead of any other structure.
In particular, in the Watson-Crick model, any other structure the sequence can fold into must
have strictly fewer pairs. If such a sequence exists, we call it a design for the secondary structure.

This problem was introduced in the early 1990s in a paper which, to date, has over 2000 cita-
tions [17]. The motivation to study this problem comes from the fact that the functions performed
by particular RNA sequences are strongly influenced by the secondary structures these sequences
fold into. Thus an important step towards designing RNA sequences that perform given functions
is to be able to design sequences that fold into given secondary structures [3]. Surprisingly, the
complexity of RNA Design is still unknown despite two decades of works and was explicitly stated
as a major open problem [4,12,13,15,20,23]. This is exceptional for a central problem in computa-
tional biology [15]. Schnall-Levin et al. gave a NP-hardness proof for a more general problem [29].
However, to be applicable to RNA Design, the energy model would have to depend on the 3-Sat
instance in the reduction (hence, would be different for each instance) which is clearly not realistic
(see the discussions in [15, Section 5] or in [23]).

Solving RNA Design finds applications in multiple fields such as pharmaceutical research
and biochemistry [15] as well as synthetic biology and RNA nanostructures [11]; the two latter
areas aim at creating enhanced RNA with desirable properties. It is also a major step towards

functional RNA molecular design. Therefore, there are many algorithms and software products4
solving the RNA inverse folding problem [14,1,4,9]. Churkin et al. compare the main freewares
solving RNA Design such as RNAInverse, antaRNA, and RNAiFold [11]. All of them are either
heuristics, or use meta-heuristics, or have an exponential running time. Let us also mention the
EteRNA project, an online game where (more than 100.000) players have to find a correct sequence
given a structure [21].

Recently, Haleš et al. gave some sufficient conditions under which one can answer to the problem
in polynomial time [15]. Their main result is to show that if the structure is saturated, i.e., does
not contain any unpaired letter, then a design –if it exists– can be found in linear time by a
greedy procedure. In the case of saturated structures, the existence of a design is solely based on
the maximum degree of a tree representing the structure. The authors also show that on smaller
alphabets and general secondary structures, RNA Design is tractable. This line of research was
later continued by Jedwab et al. [20]. The authors presented an infinite family of designable
structures containing unpaired letters. Again, the characterization of these structures is given in
terms of trees.

Following the name of the precoloring extension problem in graphs [6], let the extension version
(RNA Design Extension) of the inverse folding problem be the same as RNA Design with
the additional constraint that some indices of the RNA sequence should contain a specified base.
Lyngsø observes that this assumption is biologically coherent: “Most recent methods do allow for
position specific constraints, where in addition to folding into the target structure the designed
sequence is also required in certain positions to have a particular nucleotide” [23]. Indeed, in
addition to the target structure, one has to force some bases at key positions to ensure that
the RNA molecule possesses a given function. Zhou et al. also propose a method to solve RNA
Design where some positions within the sequence are constrained to certain bases [32]. Rodrigo et
al. impose the presence of a certain sequence at a specific position in the structure [27]. Borujeni
et al. enforce the presence of a given subsequence (called the Shine-Dalgarno sequence) paired to a
“start codon” to start the translation of RNA to proteins [7]. Furthermore, software libraries solving
RNA Design allow those additional unary constraints and the instances of the EteRNA project
contain immutable nucleotides. Thus it appears that the design of RNA secondary structures is
better captured by RNA Design Extension than its restriction RNA Design.

In this paper, we show that RNA Design Extension is NP-hard in the simple Watson-Crick
model of energy, suggesting that the same bound holds for more realistic energy models.

Ideas of the reduction. The main reason the complexity of designing RNA secondary structures
has been open for about twenty years is that it is difficult to create challenging structures for which
the intended sequence will not fold into an undesired better structure; let alone to actually prove
it. It is considerably easier to exhibit an alternative better structure for a bad sequence. Indeed,
in the former case, one needs to argue over all the structures compatible with the sequence, while
in the latter, one just needs to find one particular structure. With that in mind, YES-instances of
the starting NP-hard problem will be much more problematic to deal with than the NO-instances.

Our reduction is from E3-SAT (where all the clauses have exactly three literals). Each clause
gadget contains some unpaired bases and is surrounded by an arch of nested parentheses. The
number of unpaired bases and the width of this arch are set so that if the three literals of the
clause are unsatisfied (i.e. false), one can obtain a better structure by deleting the arch and
matching the previously unpaired bases with other previously unpaired bases in the corresponding
variable gadgets. However, if only at most two literals of the clause are unsatisfied this rematching
strategy ends up with a worst structure.

To combat any improving rematching strategy for the sequences we want to interpret as sat-
isfying assignments, we use arches of increasing widths to represent the variables. This allows a
simple counting argument to significantly prune the set of undesired rematchings. Another key
4 The following wikipedia page already references more than a dozen https://en.wikipedia.org/
wiki/List_of_RNA_structure_prediction_software#Inverse_folding.2C_RNA_design, last access:
23/01/2019

https://en.wikipedia.org/wiki/List_of_RNA_structure_prediction_software#Inverse_folding.2C_RNA_design
https://en.wikipedia.org/wiki/List_of_RNA_structure_prediction_software#Inverse_folding.2C_RNA_design

technical ingredient is to display the variable and clause gadgets interleaved in a carefully cho-
sen order. Interestingly, we also make use of the fact that saturated structures can be efficiently
designed [15] in the correctness of our reduction.

Robustness of the reduction. As established in the Watson-Crick energy model, our hardness result
enjoys the following healthy properties. We only need a 4-letter alphabet for the sequences, which
naturally corresponds to the four nucleotides A,U,C,G. This is optimal in light of the paper by
Haleš et al. [15] where the authors show the tractability of designing RNA secondary structures
on an alphabet of size at most 3. The way free-energy is computed is fixed (it can be thought
as −1 for each base pair); hence, it is not part of the input and cannot be used to artificially
encode a hard task. We do not need pseudoknots –which make the folding prediction intractable–
to obtain the hardness. Watson-Crick being the simplest model, our result strongly suggests that
RNA secondary structure design is hard in more authoritative models.

Let also note that the structures produced by our reduction are reasonably realistic. They
contain as building blocks nested parentheses surrounding some dots. Interestingly, this structure
is, as we mentioned, known as a stem-loop which is itself a building block of RNA structures.
Finally, we believe that the ideas developed in the reduction can be adapted to fit other energy
models and will prove useful to show NP-hardness even when no element of the sequence is
constrained to be a specified nucleotide.

Organization. The rest of the paper is organized as follows. In Section 2, we formally introduce all
the required notions and define the problem RNA Design (Extension). In Section 3, we show
our main contribution: even in the very simple Watson-Crick model, designing RNA secondary
structures is NP-hard if the input structure comes with imposed bases at some specific positions.
In short, RNA Design Extension is NP-hard. In Section 4, we give simple algorithms with a
complexity better than the brute-force for RNA Design (Extension).

2 Preliminaries

For a positive integer n, we denote by [n] the set {1, 2, . . . , n} of positive integers no greater than
n. Given a word w of length n over an alphabet Σ, w[i] ∈ Σ denotes the i-th letter of w (for
i ∈ [n]).

Sequences and extensions. An RNA sequence is a word over the set of bases {A,C,G,U}. A
sequence is a word over {1, 2, 3, 4}, where 1 represents A, 4 represents U , 2 represents C, and 3
represents G. This way, two letters can be paired if they sum up to 5. We call base an element of
{1, 2, 3, 4}. A partial sequence is a word over {1, 2, 3, 4, ?}. An extension of a partial sequence w is
a sequence w′ of the same length n such that ∀i ∈ [n], if w[i] 6= ? then w[i] = w′[i], and if w[i] = ?
then w′[i] ∈ {1, 2, 3, 4}.

Secondary structures. A pseudoknot-free secondary structure (or structure for short) is any word
over the alphabet {(,), .} such that if one removes all the ., the remaining word is a well paren-
thesized expression. In what follows, we will always omit the adjective pseudoknot-free. A well-
parenthesized expression (or member of the Dyck language) is a word with the same number of (
and), and such that no prefix of the word have more) than (. We call letter an element of {(,), .}.
We refer to . as an unpaired letter, or an unmatched letter, or simply a dot, as opposed to (and),
which are paired. A structure is saturated if it does not contain any unpaired letter.

Designs. In a well-parenthesized expression E, an opening parenthesis at index i is said to be
matched to a closing parenthesis at index j if j is the smallest index to satisfy j > i and that
the multiset {E[i+ 1], E[i+ 2], . . . , E[j − 2], E[j − 1]} contains the same number of opening and
closing parentheses. We extend this definition to structures by ignoring the unpaired letters. A
structure S is compatible with a sequence w, if they have the same length and for any indices

i < j ∈ [n] such that S[i] = (is matched to S[j] =), then w[i] and w[j] can be paired (i.e.,
{w[i], w[j]} ∈ {{1, 4}, {2, 3}}). A sequence w is a design for a structure S if S is compatible with
w and every other structure S′ compatible with w has strictly more unpaired letters. A partial
sequence w can be extended to a design of S if there is an extension w′ of w which is a design for
S. We also say that a (partial) sequence w labels an index i (or, by a slight abuse of language, a
letter l := S[i]) of a structure S of the same size with (or by) a base b ∈ {1, 2, 3, 4, ?} if w[i] = b.

In RNA Design Extension, one is given a structure S and a partial sequence w of the
same length. The goal is to decide if w can be extended to a design for S. The RNA Design
problem can be seen as the special case when the partial sequence w only contains ? symbols. In
words, no index of the structure S is constrained to be labeled by a specific base of {1, 2, 3, 4}.
In the introduction, we argued that RNA Design Extension is perhaps more natural than its
restriction RNA Design.

Example 1. w = 214??1?1343 is a partial sequence. w′ = 21423121343 is an extension of w.
S = (()()((.))) is a structure (since (()()(())) is a well-parenthesized expression). S is compatible
with w′. However, w′ is not a design for S since S′ = (((())(.))) is also compatible with w′ and has
the same number of unpaired letters (only one). Actually, w cannot be extended to a design of S
since, none of {21414121343, 21441121343, 21432121343} is a design for S. Observe that, in order
to be compatible with S, the two first ? in w have to get bases that can be paired while the third
? should be a 2 to be paired with the following 3. The sequence 11423312424 is a design for S.

Tree representation of a structure. A structure S can be seen as a rooted tree T , whose nodes
are either pairs of matching parentheses (we call such nodes paired), or unmatched letters (we
call them unpaired). The parent-child relation is defined by nestedness of parentheses/unmatched
letters. Following Haleš et al. [15], for convenience we also add a special node which is a virtual
root of T . Its role is to simplify working with structures which are not surrounded by parentheses.
Note that the children of each node are ordered and an unpaired node is always a leaf.

Every substructure of S, defined by a subtree of T is itself called a subtree. Observe that not
every subword of S is a subtree. The degree of a node in T is the number of its neighbors, excluding
the unpaired ones (note that we count the parent of a node as a neighbor). Finally, by the degree
of a structure we mean the maximum degree of a node in its tree.

3 Hardness of RNA Design Extension

The following lemma is intuitive and straightforward to prove. We will use it repeatedly in order to
prove our main theorem. It says that a design induces designs in all the subtrees of the structure.

Lemma 2. A design w for a structure S labels every subtree of S with a design.

Proof. Assume that there is a subtree T of S which is labeled by w′ and w′ is not a design. Let
T ′ be a second structure compatible with w′, having at least as many paired letters as T . The
structure S′ obtained by replacing in S the subtree T by T ′ is another structure compatible with
w and having at least as many paired letters as S; a contradiction.

We show the main result of the paper. A first glimpse of the construction may consist of reading
the dedicated paragraph in the introduction and going through Figure 1 to 5.

Theorem 3. RNA Design Extension is NP-complete.

Proof. RNA Design Extension is in NP because the polynomial dynamic programming algo-
rithm to solve RNA Folding in the papers [25,33] can be slightly adapted to test the uniqueness
of the maximally matched structure. Therefore, one can guess (certificate of polynomial size) an
extension of the partial sequence into a design (if such an extension exists) and check it with the
tuned dynamic programming.

We reduce from the NP-hard problem E3-Sat, which is a variant of 3-Sat, in which all clauses
have exactly three distinct literals. This problem remains NP-hard when each variable appears at
most four times [31]. Let I = (X = {x1, · · · , xn}, C = {C1, · · · , Cm}) be such an instance with n
variables and thus m = Θ(n) 3-clauses. We will build an equivalent instance J = (S,w) of RNA
Design Extension with a structure S and a partial sequence w both of length N = Θ(n6).

Let t := n2 and y := (n+ 3m)t. In the structure S, for every variable and every literal we will
introduce a gadget containing t consecutive unpaired letters. There will not be any other unpaired
letter in S. Hence y = (n + 3m)t represents the overall number of unpaired letters. It might be
useful to keep in mind that n +m = Θ(n) � t = Θ(n2) � y = Θ(n3). For all the inequalities in
the proof to hold, we assume that n,m are greater that some large constant, say 1000.

Variable gadget. The gadget encoding a variable xi is defined as follows:

V 〈xi〉 := ((((((((((((((((︸ ︷︷ ︸
length i(m+1)y

.........︸ ︷︷ ︸
length t

))))))))))))))))︸ ︷︷ ︸
length i(m+1)y

where the opening parentheses are labeled by 1, the closing parentheses are labeled by 4 (see
Figure 1a). We will refer to those parentheses as the arch of xi. The next lemma indicates how
the dots can be labeled in the variable gadgets.

A potential solution is an extension of w whose restriction to the subtree corresponding to one
variable gadget is a design. By Lemma 2, we know that a solution to the RNA Design Extension
instance (S,w) has to be a potential solution.

Lemma 4. In a potential solution, the dots in V 〈xi〉 all receive label 2, or all receive label 3.

Proof. Indeed, if one dot is labeled by 1 (resp. 4), then there would be a distinct structure, with
the same number of pairs, that matches this dot to the first closing parenthesis (resp. to the last
opening parenthesis). Consider now the case where one dot is labeled by 2 and another dot is
labeled by 3. Then those two dots can be matched5 together, yielding a structure with strictly
more pairs.

We interpret labeling all the dots of V 〈xi〉 by 2 to setting xi to true, and labeling all the dots
by 3 to setting xi to false. The dots in the variable gadgets will be the only letters of the structure
S which are not originally labeled by w.

Clause gadget. In the clause gadgets, the structure is entirely labeled by w. Consider a 3-clause
Cj = `a ∨ `b ∨ `c with a < b < c and `i ∈ {xi,¬xi} (for i ∈ {a, b, c}). We define a literal gadget
for each literal of Cj . For `a this gadget is denoted by L〈`a〉 and is the same as V 〈xa〉, where
all the opening parentheses are labeled by 1, all the closing parentheses, by 4, and the dots are
labeled by 2 if the literal is positive and by 3 if it is negative (see Figure 1b and Figure 1c). For
`i ∈ {`b, `c}, the literal gadget is denoted by L−jy〈`i〉 and is obtained from L〈`i〉 by removal of jy
pairs of parentheses in the surrounding arch; so their number is only (b(m+ 1)− j)y in L−jy〈`b〉
and (c(m+ 1)− j)y in L−jy〈`c〉.

The whole clause Cj is encoded by the clause gadget:

S〈Cj〉 := (. . . (︸ ︷︷ ︸
jy

(. . . (︸ ︷︷ ︸
q

((L−jy〈`b〉)((. . . (︸ ︷︷ ︸
jy

(L〈`a〉)). . .)︸ ︷︷ ︸
jy

))((L−jy〈`c〉))). . .)︸ ︷︷ ︸
q

). . .)︸ ︷︷ ︸
jy

with q := 3t−10(n+m). The outermost jy opening parentheses of S〈Cj〉 are labeled by 1, forcing
the corresponding jy closing parentheses to be labeled by 4. The next q opening parentheses are
labeled by 2, and their matching parentheses are labeled by 3. The extra jy opening parentheses
5 By that slight abuse of language, we mean that the letters labeling those dots in one structure can be
matched together to form a new structure (with more pairs). Let us also recall that we use the words
matched and paired interchangeably.

1 41 41 41 41 41 41 41 4... ...
.

ti(m+ 1)y i(m+ 1)y

????????

(a) The variable gadget
V 〈xi〉.

1 41 41 41 41 41 41 41 4... ...
.

ti(m+ 1)y i(m+ 1)y

22222222

(b) The literal gadget L〈xi〉.

1 41 41 41 41 41 41 41 4... ...
.

ti(m+ 1)y i(m+ 1)y

33333333

(c) The literal gadget L〈¬xi〉.

Fig. 1: The variable and literal gadgets for xi. If the ? in V 〈xi〉 are labeled by 2 (resp. 3) –setting
xi to true (resp. false)–, then V 〈xi〉 can be entirely rematched to L〈¬xi〉 (resp. L〈xi〉). Note that
L〈xi〉 and L〈¬xi〉 do not depends of the truth assignment but only if they appear positively of
negatively in a clause.

surrounding L〈`a〉 are labeled by 4, and their matching parentheses, by 1. The label of the few
remaining parentheses is specified in Figure 2.

We will refer to the jy + q outermost pairs of parentheses as the arch of Cj . We also call the
first jy pairs, the first layer of the arch, and the next q pairs, the second layer. Let A(q)j denote
the set of indices of the second layer in the clause gadget S〈Cj〉. Let A(q)2j ⊆ A(q)j be the indices
of the opening parentheses (labeled by 2) and A(q)3j := A(q)j \A(q)2j be the indices of the closing
parentheses (labeled by 3). Finally, let A(q) :=

⋃
j∈[m]A(q)j .

1 41 41 41 41 41 42 32 32 32 3

L−jy〈`b〉 L〈`a〉 L−jy〈`c〉
12 334...42 31...12422 33

jy jyq qjy jy

Fig. 2: A 3-clause gadget S〈Cj〉: `a ∨ `b ∨ `c with a < b < c.

Overall construction. We join all the gadgets in a binary tree of Θ(n + m) = Θ(n) pairs of
parentheses and height Θ(log n) labeled such as illustrated in Figure 3. The only requirement on
this labeling is that there is no other way of fully matching the binary tree onto itself. In other
words, the labeling should be a design for the structure restricted to the parentheses of the binary
tree. We say that a pair of matched parentheses is labeled by i-j (with i + j = 5) if the opening
parenthesis is labeled by i (implying that the closing parenthesis has to be labeled by j = 5− i).
A possibility6 for labeling the binary tree is to use 1-4 for the outermost pair of parentheses and
recursively use 2-3 and 3-2 for the two children of parentheses labeled by 1-4 or 4-1, and use 1-4
and 4-1 for the two children of parentheses labeled by 2-3 or 3-2. We denote by T the set of indices
of the letters in this binary tree. At the “leaves” of the binary tree, we place the n+m variable and
clause gadgets. The gadgets V 〈x1〉, V 〈x2〉, up to V 〈xn〉 are placed from left to right. For i ∈ [n−1],
we reserve some room in between V 〈xi〉 and V 〈xi+1〉 for some clause gadgets, according to the
following rule. For each clause Cj on variables xa, xb, xc, with a < b < c, we insert the gadget
S〈Cj〉 somewhere between V 〈xb〉 and V 〈xc〉; in other words, to the right of V 〈xb〉 and to the left of
6 Theorem 1 in [16] shows that there are exponentially many possible labelings for the tree. For more
details, see the proof of Lemma 5 in the present paper.

V 〈xc〉. Obviously, such an ordering of the variable and clause gadgets can be found in polynomial
time. The order of the clause gadgets that are between the same two consecutive variable gadgets
V 〈xi〉 and V 〈xi+1〉 is not important and can be chosen arbitrarily. As n+m need not be a power
of 2, there might be, as in Figure 3, some empty “leaves” without a variable gadget nor a clause
gadget. We will show that the partial sequence w can be extended into a design for the structure
S if and only if I is satisfiable.

The whole construction can be seen as simulating the following game, equivalent to 3-Sat,
where your opponent has the more interesting role. There are boxes with 3 literals written on
top of each box. At the beginning of the game, an opponent, who does not want you to get rich,
chooses a truth assignment of the variables appearing on the boxes. Opening a box costs 2.99¤ of
your favorite currency ¤. The rules say that you can open at most one box. Once you open a box,
you find inside one object per literal. You can turn this object into 1¤ if the literal is unsatisfied,
and the object is worthless otherwise. Knowing that, you will decide to open a box if and only if
its three literals are unsatisfied (and win 3¤ − 2.99¤ = 0.01¤). If you open a box with at least
one satisfied literal, then you lose at least 2.99¤ − 2¤ = 0.99¤. If the formula is satisfiable and
your opponent is computationally almighty, he will choose a satisfying assignment. And you will
not win anything: you will decide not to open any box since it has a negative outcome.

In our case, opening a box by paying 2.99¤ corresponds to destroying, in a clause gadget, the q
pairs of innermost parentheses surrounding the three literal gadgets (together with some Θ(log n)
pairs of parentheses in T and an additional constant number within the clause gadget); and turning
an object, found inside the box, associated to an unsatisfied literal `i into 1¤ corresponds to fully
pairing a variable gadget to a matching literal gadget.

V 〈x1〉 V 〈x2〉 S〈C1〉 S〈C2〉 V 〈x3〉 S〈C3〉 V 〈x4〉
1212 33 2442 33 213312 33 2442 33 2124

Fig. 3: The overall picture with 4 variables and 3 clauses. C1 and C2 are on variables x1, x2, x3
while C3 is on variables x1 or x2 and variables x3, x4.

I unsatisfiable implies J has no design extension. Assume that instance I is not satisfiable. By
Lemma 4, we already observed that every potential solution corresponds to a truth assignment
(via the interpretation: dots to 2 ≡ true, dots to 3 ≡ false). For any potential solution w′, let A
be the corresponding variable assignment. By assumption, there is a clause which is not satisfied
by A; suppose it is the clause Cj = `a ∨ `b ∨ `c.

For two structures S1, S2 compatible with the same sequence w′, we say that a parenthesis or
a dot at index u in S1 is rematched in S2 to a parenthesis or a dot at index v in S1 if u and v
are the indices of matching parentheses in S2 (but not in S1). Similarly, we say that the letter at
index u (resp. the index u itself) is rematched to the letter at index v (resp. the index v itself). If
the nature of the structures S1 and S2 is obvious from the context, we will not precise them.

We exhibit a structure S′ compatible with w′ and with more paired letters than S (see Figure 4).
In this paragraph and the next one, the role of S1 is played by S and the role of S2, by S′. The
jy opening parentheses of the first layer of the arch of Cj are rematched to the last jy closing
parentheses of the arch of xb, while the jy closing parentheses of the first layer of the arch of Cj

are rematched to the first jy opening parentheses of the arch of xc. The letters whose indices are
in A(q)j (second layer) become unpaired. We fully rematch V 〈xb〉, V 〈xa〉, and V 〈xc〉, to L−jy〈`b〉,

L〈`a〉, and L−jy〈`c〉, respectively. It is only possible since all those three literals are unsatisfied by
A; which means that, for any i ∈ {a, b, c}, if the dots in V 〈xi〉 are labeled by 2 (resp. 3), then the
dots in L〈`i〉 or L−jy〈`i〉 are labeled by 3 (resp. 2). So, those dots can be matched with each other.
Observe that the extra arch above L〈`a〉 absorbs the first jy opening parentheses of the arch of xb
and the last jy closing parentheses of the arch of xc. Whereas the first layer of the arch of S〈Cj〉
absorbs the last jy closing parentheses of the arch of xb and the first jy opening parentheses of
the arch of xc.

Rematching those six sets of t consecutive dots incurs a win of 3t pairs. Let us now count the
number of pairs in S that we lose. We have to break at most 6dlog(n +m)e pairs in T (indices
in the binary tree), so that the six gadgets V 〈xa〉, V 〈xb〉, V 〈xc〉, and L〈`a〉, L−jy〈`b〉, L−jy〈`c〉
in S〈Cj〉 can be rematched with each other. Those pairs that we break are all the parentheses in
T in the paths going from those six gadgets to the root of the binary tree. Actually removing all
the parentheses of T would still work. We also broke the q = 3t − 10(n +m) pairs of indices in
A(q), plus the 6 pairs of parentheses in S〈Cj〉 which are not part of an arch. The rest of S′ is
matched as in S. This new structure has at least 3t − (3t − 10(n +m) + 6) − 6dlog(n +m)e =
10(n+m)−6(dlog(n+m)e+1) > 0 more pairs. Hence, S partially labeled by w cannot be extended
into a design.

41 41 41 41 1 41 41 41 41 41 41 41 41 4 1 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 42 32 32 32 32 32 3

L−jy〈`b〉 L〈`a〉
L−jy〈`c〉

12 334442 31112422 33

V 〈xa〉

...

V 〈xb〉

...

V 〈xc〉

...

S〈Cj〉

Fig. 4: Suppose a clause Cj on variables xa, xb, and xc, with a < b < c, is not satisfied by the
extension w′. In red (light gray) is how we build a structure S′ with more pairs than S (in black).

I satisfiable implies J has a design extension. Let A be a satisfiable assignment and let w′ be the
extension of w corresponding to A. We show that w′ is a design for S. For the sake of contradiction,
assume that there is a structure S′ 6= S compatible with w′, having at least as many pairs as S.
Let us take S′ maximally matched, i.e, such that there is no structure S′′ compatible with w′ with
strictly more pairs than S′.

Lemma 5. S′ has to match at least one letter which is unpaired in S.

Proof. Assume that S′ does not match any unpaired letters in S. As S′ has at least the same
number of paired letters as S, it implies that S′ matches exactly the same letters (meaning the
same indices) as S. Let R′ (resp. R) be the structure obtained by restricting S′ (resp. S) to the
paired letters of S. Let ŵ be w′ restricted to those paired letters. By construction, R′ and R are
two distinct saturated structures both compatible with ŵ. In the proof of Theorem 1 in [16], the
authors show that every saturated structure with degree at most 4 has a design (in fact, many
designs); and that this design can be found (in linear time) by a greedy labeling. The greedy
labeling is any labeling which does not assign labels i-j to a child of paired parentheses labeled by
j-i and avoids labeling two siblings with the same (oriented) pair i-j. Observe that R has degree

at most 4 and that ŵ, which we fully specified in the above construction, respects those two rules.
Thus, ŵ is a design for R; a contradiction to the existence of R′.

The following lemma is straightforward and proves useful to argue about the quality of a
structure reachable from a partially built structure. It is based on a simple counting argument.
For any i ∈ [4], we denote by #(i, w) the number of occurrences of i in the word w.

Lemma 6. If a structure contains (R) as a subtree (that is, the opening and closing parentheses
around R match) and the labeling ŵ of R is complete, then, for any i ∈ [4] and integer x, |#(i, ŵ)−
#(5− i, ŵ)| > x implies that more than x letters will remain unpaired.

Proof. Let Î be the set of (consecutive) indices of letters labeled by ŵ. Because of the surrounding
parentheses, a base with index in Î has to be matched with a base with index also in Î. If, in ŵ,
the number of i exceeds the number of 5 − i by more than x, then more than x bases i will not
find a pairing 5− i.

V 〈x1〉
1 4

V 〈x2〉
1 41 4

V 〈x3〉
1 41 41 4

V 〈x4〉
1 41 41 41 4

2

3?3?

0u

1u

2u

3u

position of the 3 paired to the 2 in V 〈x3〉

Fig. 5: Why pairing a letter in V 〈xi〉, not paired in S, to a letter in V 〈xi′〉 with i 6= i′ cannot give
a sufficiently paired structure. A single blue edge represents an arch of thickness u := (m + 1)y.
The y-axis corresponds to a lower bound of the imbalance |#(1, ŵ) − #(4, ŵ)| where ŵ is the
subsequence surrounded by the new pair depicted by the red dashed edge. The gray areas mark
positions where a 3 can actually be present. In those regions, |#(1, ŵ) −#(4, ŵ)| is greater than
u, so this pairing necessarily yields a worse structure than S.

Let Di be the set of the dots contained in V 〈xi〉 and in all the occurrences of L〈`i〉 and L−jy〈`i〉
(with `i ∈ {xi,¬xi} and some j ∈ [m]).

Lemma 7. In S′, a base labeling a dot of Di can only be matched to a base labeling a dot of Di.

Proof. What is illustrated in Figure 5 is in fact more general, and extends from the variable
gadgets to the variable plus the literal gadgets. Suppose a base labeling a dot of Di is matched to
a base labeling a dot of Di′ with i 6= i′. Then, such a pair would surround a subsequence ŵ in w′
with |#(1, ŵ) −#(4, ŵ)| > |i − i′|(m + 1)y > (m + 1)y = u > y, provided the two bases do not
appear within the same clause gadget. Remember that, in the gadget for the clause Cj , the extreme
literals (corresponding to the second and third literals) are deprived of jy matching parentheses
in their arch, while the middle literal (corresponding to the first literal) has an additional jy pairs
of parentheses in its arch labeled 4-1 instead of 1-4. This explains why jy does not appear in the
upper bound of the imbalance. The inequality |#(1, ŵ)−#(4, ŵ)| > y holds for the three subcases:
variable-variable, variable-clause, and clause-clause (where X-Y says that the first base appears in

an X gadget and the second base appears in a distinct Y gadget), and no matter which literal of
the clause (first, second, or third) contains the base.

Now, if a base labeling a dot of Di in a literal gadget is matched to a base labeling a dot of Di′

in the same clause gadget S〈Cj〉 (but a different literal gadget), then such a pair would surround
a subsequence ŵ in w′ with |#(1, ŵ)−#(4, ŵ)| > (|i− i′|(m+ 1)− j)y > |m+ 1− j|y > y.

Finally, if a base labeling a dot of Di is matched to a base which is not labeling a dot of a Di′ ,
then the imbalance |#(1, ŵ)−#(4, ŵ)|, in the word ŵ surrounded by this pair, is larger, for some
j ∈ [m], than (i(m+ 1)− j)y > (m+ 1−m)y > y.

Recall that S has only y unpaired letters. By Lemma 6, in all those cases, S′ would have at
least y + 1 unpaired letters; a contradiction.

We will apply Lemma 6 again to argue that the second layer of the clause arches cannot be
significantly rematched. Let T ′ be T augmented with the constant number per clause gadget of
indices corresponding to parentheses not in any arch.

Lemma 8. In S′, a letter with index in A(q)2j (resp. A(q)3j) can only be matched to a letter of
T ′ ∪ A(q)3j (resp. T ′ ∪ A(q)2j).

Proof. First, in S′, A(q)2j cannot be rematched to A(q)3j′ with j 6= j′. Such a match would indeed
surround a subsequence ŵ in w′ with |#(1, ŵ) − #(4, ŵ)| > |j − j′|y. By Lemma 6 that would
imply that S′ has strictly fewer pairs than S. Second, matching a letter with index in A(q)2j to a
3 outside of T ′ ∪

⋃
j′ A(q)3j′ would mean to match it to a 3 labeling a dot in S. For this case, we

can conclude similarly to the proof of Lemma 7.

Let i ∈ [n] be such that a dot of Di labeled by 2 is matched in S′ to a dot of Di labeled by
3. By Lemma 5 and Lemma 7, this index exists. Since Di contains several literal gadgets but only
one variable gadget V 〈xi〉, at least one endpoint of this pair is in a clause gadget. Let j ∈ [m] be
the index of this clause. None of the pairs of parentheses of A(q)j can be present in S′; otherwise
the matching would cross. As |T ′| = Θ(n) and q = Θ(t) = Θ(n2), Lemma 8 implies that most of
those q pairs in S are unpaired in S′; only a negligible O(n) of the corresponding letters could be
rematched in T ′.

Of the three literals of Cj , at most two are not satisfied by A. Let k ∈ [n] be the index
of a satisfied literal in Cj . The number of pairs of parentheses in S destroyed in S′ is at least
q − O(n) = 3t− O(n). At best, 2t (t per unsatified literal) new pairs are formed in S′ by linking
literal gadgets in S〈Cj〉 to the corresponding variable gadgets. This still incurs a deficit of t−O(n)
pairs. The dots in the literal gadget of xk in S〈Cj〉 have to be rematched, since otherwise S′ is
not maximal: reversing locally S′ to S would provide a structure with strictly more pairs and
would not create a crossing. In other words, the structure S′′ obtained from S′ by replacing the
parentheses with at least one endpoint in S〈Cj〉 by the parentheses of S in the gadget of Cj and
the two variable gadgets corresponding to the unsatisfied literals would have t − O(n) > 0 more
pairs than S′.

By Lemma 7, the dots in the literal gadget of xk in S〈Cj〉 can only be rematched to another
clause gadget S〈Cj′〉 containing the opposite literal of xk. By the same argument as for S〈Cj〉,
this rematching costs at least 3t − O(n) parentheses in A(q)j′ (so 6t − O(n) in total). And only
5t new pairs can be obtained; this is the case if the four literals in the clauses Cj and Cj′ which
are not on the variable xk are unsatisfied and rematched to the corresponding variable gadgets7.
The deficit of this rematching is 6t − 5t − O(n) = t − O(n) > 0 (since we assumed that n,m are
large enough). Thus reversing S′ to S locally (in the two clause gadgets of Cj and Cj′ and the five
variable gadgets) would provide a structure with more pairs than S′, contradicting its maximality.

7 Observe that this case is not even possible, since otherwise the clause Cj′ would not be satisfied by A,
so the actual deficit of this rematching strategy is even 2t− O(n). Although, a deficit of t− O(n) was
good enough.

4 Algorithmic results

In this section we show that the trivial O∗(4n)-time algorithm for the RNA Design problem can
be significantly improved by analyzing the tree representation of the input sequence.

Consider a structure S and its tree representation T . Let us define two families of subtrees that
can be found in T (we follow the notation used by Haleš et al. [15]). By m5 we denote a node of
degree more than 4. By m3◦ we denote a node with at least one unpaired child, and degree greater
than 2. We will use the following result by Haleš et al. [15] (note that both m5 and m3◦ do not
denote a specific subtree, but rather infinite families of subtrees).

Theorem 9 (Haleš et al. [15]). If S is designable, then it contains neither m5 nor m3◦.

Theorem 10. RNA Design Extension can be solved in time:
(i)
√
3
n · nO(1), where n is the length of the input structure,

(ii) 2s · nO(1), where s is the number of unlabeled elements in the input structure,
using polynomial space.

Proof. Let S be the input structure of length n and with s unlabeled elements. Let T be the tree
representation of S and let r be the virtual root of T . By section 9 we know that r has at most 4
children, each being either a matching pair of parentheses, or an unpaired letter. In the first step,
we branch into all possible labelings of the unlabeled children of r. If there are no more unlabeled
nodes, we check in polynomial time if the obtained labeling is a design of S, and if it extends the
predefined partial labeling.

Consider a non-leaf node v of T , which is labeled, but all its children are unlabeled. Note that
since v is not a leaf, it corresponds to a pair of matching parentheses.

We now want to branch into all possible labelings of children of v. However, in some cases
we can prune the search tree, if we know that the current partial solution is not extendable to a
design. By section 9, we know that there are only very few possibilities of how the children of v
look like. Either all of them are paired and then v has at most 3 children (otherwise we obtain
m5), or v has some unpaired children and at most one paired child (otherwise we obtain m3◦).
Without loss of generality assume that v is labeled with 1-4 (all other cases are symmetric).

1 41 42 32 3 1 42 34 1 3 2 ◦ ◦· · · ◦ ◦· · ·
1 44 1

◦...◦...◦
1 41

◦ ◦ ◦ ◦
1 42 3

Fig. 6: Some labelings which cannot be extended to a design, because they can be folded into some
other structure with at least as many paired letters as in S (the first two pictures correspond to
Case I, the third one to Case II, and the last two to Case III).

Case I. First, consider the case that v has d 6 3 children and all of them are paired. It is easy to
verify that the only possible labelings of the children of v are: 1-4, 2-3, 3-2 (in any ordering, each
of them may appear only once, see Figure 6 for some examples). This gives the recursion

F (n) 6
3!

(3− d)!
F (n− 2d),

where F (n) denotes the complexity of the discussed algorithm for the input structure of length n.
The worst-case is achieved for d = 1 and has complexity F (n) = O∗(

√
3
n
) = O(1.7321n).

Case II. Now consider the case that v has one paired child and d > 1 unpaired ones. We observe
that the paired child of v can be labeled with 1-4 only, while the unpaired children can get either
2 or 3, but all of them must receive the same label (again, see Figure 6). This gives the recursion

F (n) 6 2F (n− 2− d).

The worst case is achieved for d = 1 and has complexity F (n) = O∗(3
√
2
n
) = O(1.2600n).

Case III. Finally, consider the case that v has d > 1 unpaired children and no paired ones. Let
us call such a node bad. We observe that all children of v must receive the same label, either 2 or
3 (again, see Figure 6), thus the recursion for this case is

F (n) 6 2F (n− d),

which gives the complexity bound F (n) = O∗(2n) (achieved for d = 1).
However, we can show that this case cannot happen too often. We say that a node of T , which

has at least two paired children, is good. Let T ′ be a tree constructed from T by removing all
unpaired nodes, and contracting all induced paths into single edges (thus we remove nodes of
degree 2). Moreover, if the virtual root r of T has degree 1, we remove it and assume that T ′ is
rooted at the only child of r. It is easy to observe that T ′ has the following properties:

(a) every node of T ′ is also a node of T ,
(b) the root of T ′ has at most 4 children,
(c) every inner node of T ′ has 2 or 3 children,
(d) every good vertex of T is an inner node of T ′,
(e) every bad vertex of T is a leaf of T ′.

Let z be the number of leaves in T ′, clearly the number of bad vertices in T is at most z. Since
every inner node of T ′ has at most 3 children, we observe that the number of inner nodes in T ′
is at least (z − 4)/2, so this gives us a lower bound for the number of good nodes in T . Thus, for
every two bad nodes (up to a constant number exceptional ones), there exists a good node (which
is not shared with any other pair of bad nodes). More formally speaking, we can partition the set
of all but a constant number of bad nodes into a family A of two-elements sets, and define an
injective mapping from A to the set of good nodes of T . So, if we consider labeling children of two
bad nodes (with d1 and d2 unpaired children, respectively) and d > 2 children of a good node at
the same time, we obtain the recursion

F (n) 6 22 · 6 · F (n− d1 − d2 − 2d).

The worst case-complexity for this case is achieved for d1 = d2 = 1 and d = 2, which gives us
F (n) 6 24F (n− 1− 1− 4) = 24F (n− 6), so F (n) = O∗(6

√
24

n
) = O(1.6984n). Since there is only

a constant number of bad nodes which are not paired with good nodes, the blow-up in complexity
is also a constant and can be ignored in O(·)-notation.

The correctness of the described procedure is clear and follows from the fact that we only dis-
card labeling which cannot appear in any design. The running time of the procedure is determined
by the complexity of the worst-case branching, which appears in Case I for d = 1, and thus the
running time can be bounded by F (n) = O∗(

√
3
n
) = O(1.7321n).

Note that the above recursive procedure is completely oblivious to the initial partial labeling
of S. The only place where we make use of it is the final checking. In our second approach we will
only construct partial labelings which extend the pre-labeling.

First, observe that if S has a matching pair and one of its elements is already labeled, the
label of the other element is also uniquely determined. Thus we can assume that each node of T is
either labeled (i.e., if it is a paired node, then both parentheses are already labeled), or unlabeled.

The cases we consider are the same as in the first algorithm, but now the size of the problem
is s, the number of unlabeled elements in the input structure.

Case I. Let d be the number of paired children of v, p of which are unlabeled. We have 1 6
p 6 d 6 3. Considering all cases, we observe that the worst case is achieved for d = p = 1. It is
described by the recursion

F ′(s) 6 3F ′(s− 2),

and its complexity is F ′(s) =
√
3
s ·nO(1), where F ′(s) is the complexity of the discussed algorithm

for an input structure with s unlabeled elements.
Case II. Recall that the labeling of the paired child of v must be the same as the labeling of v.
Thus, without loss of generality, we can assume that the paired child of v is labeled. Also, if at
least one of unpaired children is labeled, we can extend the labeling to all other unlabeled children.
Suppose that v has d > 1 unpaired children We obtain the recursion

F ′(s) 6 2F ′(s− d).

Its worst-case is achieved for d = 1, and the complexity is F ′(s) = 2s · nO(1).
Case III. This case is analogous to the previous one – all d unpaired children of v get the same
label. The recursion for this case is

F ′(s) 6 2F ′(s− d),

with the worst case achieved for d = 1 and the complexity bound F ′(s) = 2s · nO(1).
The correctness is straightforward and the complexity bound for the whole procedure is F ′(s) =

2s · nO(1).

Finally, let us remark that Haleš et al. [15] give a complete characterization of saturated struc-
tures (i.e., ones without unpaired elements), which have a design. This characterization implies
a polynomial-time algorithm for the RNA design problem on such structures. Using bottom-
up dynamic programming on the tree representation on the input structure, we can adapt this
procedure to the more general RNA Design Extension problem.

Observation 11 RNA Design Extension is tractable on saturated structures. ut

Acknowledgments

Thanks to Valia Mitsou and Yann Ponty for valuable discussions and comments.

References

1. R. Aguirre-Hernández, H. H. Hoos, and A. Condon. Computational RNA secondary structure design:
empirical complexity and improved methods. BMC Bioinformatics, 8(1):34, 2007.

2. T. Akutsu. Dynamic programming algorithms for RNA secondary structure prediction with pseudo-
knots. Discrete Applied Mathematics, 104(1):45–62, 2000.

3. J. Anderson-Lee, E. Fisker, V. Kosaraju, M. Wu, J. Kong, J. Lee, M. Lee, M. Zada, A. Treuille,
and R. Das. Principles for predicting rna secondary structure design difficulty. Journal of Molecular
Biology, 428(5, Part A):748 – 757, 2016. Challenges in RNA Structural Modeling and Design.

4. M. Andronescu, A. P. Fejes, F. Hutter, H. H. Hoos, and A. Condon. A New Algorithm for RNA
Secondary Structure Design. Journal of Molecular Biology, 336(3):607 – 624, 2004.

5. C. Anfinsen. Principles that govern the folding of protein chains. Science, 181(4096):223, 1973.
6. M. Biró, M. Hujter, and Z. Tuza. Precoloring extension. I. Interval graphs. Discrete Mathematics,

100(1-3):267–279, 1992.
7. A. E. Borujeni, D. M. Mishler, J. Wang, W. Huso, and H. M. Salis. Automated physics-based design

of synthetic riboswitches from diverse RNA aptamers. Nucleic Acids Research, 44(1):1–13, 2016.
8. K. Bringmann, F. Grandoni, B. Saha, and V. V. Williams. Truly Sub-cubic Algorithms for Language

Edit Distance and RNA-Folding via Fast Bounded-Difference Min-Plus Product. In IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016, pages 375–384, 2016.

9. G. L. Butterfoss and B. Kuhlman. Computer-based design of novel protein structures. Annual review
of biophysics and biomolecular structure, 35:49–65, 2006.

10. H. Chen, A. Condon, and H. Jabbari. An O(n5) Algorithm for MFE Prediction of Kissing Hairpins
and 4-Chains in Nucleic Acids. Journal of Computational Biology, 16(6):803–815, 2009.

11. A. Churkin, M. D. Retwitzer, V. Reinharz, Y. Ponty, J. Waldispühl, and D. Barash. Design of RNAs:
Comparing Programs for inverse RNA folding. Briefings in Bioinformatics, 2017.

12. A. Condon. Problems on RNA Secondary Structure Prediction and Design. In Automata, Languages
and Programming, 30th International Colloquium, ICALP 2003, pages 22–32, 2003.

13. A. Condon. RNA Molecules: Glimpses Through an Algorithmic Lens. In Proceedings of LATIN 2006:
Theoretical Informatics, 7th Latin American Symposium, pages 8–10, 2006.

14. J. A. García-Martín, P. Clote, and I. Dotú. RNAiFold: a web server for RNA inverse folding and
molecular design. Nucleic Acids Research, 41(Webserver-Issue):465–470, 2013.

15. J. Hales, A. Héliou, J. Manuch, Y. Ponty, and L. Stacho. Combinatorial RNA Design: Designability
and Structure-Approximating Algorithm in Watson-Crick and Nussinov-Jacobson Energy Models.
Algorithmica, 79(3):835–856, 2017.

16. J. Haleš, A. Héliou, J. Maňuch, Y. Ponty, and L. Stacho. Combinatorial RNA Design: Designability and
Structure-Approximating Algorithm. In Combinatorial Pattern Matching - 26th Annual Symposium,
CPM 2015, Proceedings, pages 231–246, 2015.

17. I. Hofacker, W. Fontana, P. Stadler, L. Bonhoeffer, and M. Tacker. Fast Folding and Comparison of
RNA Secondary Structures. Monatshefte für Chemie (Chemical Monthly), 125:167–188, 1994.

18. S. Ieong, M.-Y. Kao, T.-W. Lam, W.-K. Sung, and S.-M. Yiu. Predicting RNA secondary structures
with arbitrary pseudoknots by maximizing the number of stacking pairs. Journal of Computational
biology, 10(6):981–995, 2003.

19. H. Jabbari, A. Condon, and S. Zhao. Novel and efficient RNA secondary structure prediction using
hierarchical folding. Journal of Computational Biology, 15(2):139–163, 2008.

20. J. Jedwab, T. Petrie, and S. Simon. An infinite class of unsaturated rooted trees corresponding to
designable RNA secondary structures. CoRR, abs/1709.08088, 2017.

21. J. Lee, W. Kladwang, M. Lee, D. Cantu, M. Azizyan, H. Kim, A. Limpaecher, S. Gaikwad, S. Yoon,
A. Treuille, R. Das, and EteRNA Participants. RNA design rules from a massive open laboratory.
Proceedings of the National Academy of Sciences, 111(6):2122–2127, 2014.

22. R. B. Lyngsø. Complexity of Pseudoknot Prediction in Simple Models. In Automata, Languages
and Programming: 31st International Colloquium, ICALP 2004, Turku, Finland, July 12-16, 2004.
Proceedings, pages 919–931, 2004.

23. R. B. Lyngsø. Inverse folding of RNA, 2012. http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.226.5439&rep=rep1&type=pdf.

24. R. B. Lyngsø and C. N. S. Pedersen. RNA Pseudoknot Prediction in Energy-Based Models. Journal
of Computational Biology, 7(3-4):409–427, 2000.

25. R. Nussinov and A. B. Jacobson. Fast algorithm for predicting the secondary structure of single-
stranded RNA. Proceedings of the National Academy of Sciences, 77(11):6309–6313, 1980.

26. E. Rivas and S. R. Eddy. A dynamic programming algorithm for RNA structure prediction including
pseudoknots. Journal of molecular biology, 285(5):2053–2068, 1999.

27. G. Rodrigo, T. E. Landrain, and A. Jaramillo. De novo automated design of small RNA circuits for
engineering synthetic riboregulation in living cells. Proceedings of the National Academy of Sciences,
109(38):15271–15276, 2012.

28. B. Saha. Fast & Space-Efficient Approximations of Language Edit Distance and RNA-Folding: An
Amnesic Dynamic Programming Approach. In IEEE 58th Annual Symposium on Foundations of
Computer Science, FOCS 2017, 2017. To appear.

29. M. Schnall-Levin, L. Chindelevitch, and B. Berger. Inverting the Viterbi algorithm: an abstract
framework for structure design. In Machine Learning, Proceedings of the Twenty-Fifth International
Conference (ICML 2008), pages 904–911, 2008.

30. J. E. Tabaska, R. B. Cary, H. N. Gabow, and G. D. Stormo. An RNA folding method capable of
identifying pseudoknots and base triples. Bioinformatics (Oxford, England), 14(8):691–699, 1998.

31. C. A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Mathematics, 8(1):85–
89, 1984.

32. Y. Zhou, Y. Ponty, S. Vialette, J. Waldispühl, Y. Zhang, and A. Denise. Flexible RNA design under
structure and sequence constraints using formal languages. In ACM Conference on Bioinformatics,
Computational Biology and Biomedical Informatics. ACM-BCB 2013, page 229, 2013.

33. M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences using thermodynamics
and auxiliary information. Nucleic acids research, 9(1):133–148, 1981.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.226.5439&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.226.5439&rep=rep1&type=pdf

	Designing RNA Secondary Structures is Hard

