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Analysis and optimization of a simple crop
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C. Sinfort1, A. Rapaport2

1 UMR ITAP, Montpellier, France
2 UMR MISTEA, Montpellier, France

Abstract

We propose a new simplified crop irrigation model and study the op-
timal control which consists in maximizing the biomass production at
harvesting time, under a constraint on the total amount of water used.
Under water scarcity, we show that the optimal strategy could have a
singular arc and therefore can be better than a simple bang-bang control
as commonly used. The gain is illustrated on numerical simulations. This
result is a promising first step towards the application of control theory
to the problem of optimal irrigation scheduling.
Key-words. Crop irrigation, water management, optimal control, state
constraint.

1 Model description and assumptions

We consider a simplified dynamical model of crop irrigation, inspired from [6],
where S(t) and B(t) stand respectively for the relative soil humidity (a number
between 0 and 1) and the crop biomass at time t belonging to an interval [0, T ]
representing the crop growth season:

Ṡ = k1(−ϕ(t)KS(S)− (1− ϕ(t))KR(S) + k2u(t)) (1)

Ḃ = k3ϕ(t)KS(S) (2)

with the initial condition (at the sowing date 0)

S(0) = 1 (3)

B(0) = 0 (4)

and T being the harvesting date. The control variable u(t) = F (t)/Fmax ∈ [0, 1]
is the ratio of the input water flow rate F (t) at time t over the maximal flow
Fmax that the irrigation device allows.

On an agronomic point of view, Eq. (1) represents the variation of a ver-
tically averaged soil moisture as influenced by three fluxes: crop transpiration,
crop evaporation, and crop irrigation. Unlike [6], we use here the simplified
hypothesis made in [1]: transpiration and evaporation can be partitioned using
a variable ϕ(t) representing the crop radiation use efficiency and independent
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of water stress. Both transpiration and evaporation fluxes are regulated by soil
moisture as in [6] using two functions KS and KR (see Assumption 1 and Fig. 1
below). Eq.(2) determines the amount of biomass produced per time unit. It is
simply related to the transpiration flux using the water use efficiency principle
[10, 6]. Note also that the proposed model does not consider rainfall inputs and
might be better associated to greenhouse grown crops.

Assumption 1. KS(·) and KR(·) are continuous piecewise linear functions
from [0, 1] to [0, 1], that take values 0 at S = 0 and 1 at S = 1, with

Sw := sup{S ∈ [0, 1] s.t KS(S) = 0} > Sh := sup{S ∈ [0, 1] s.t KR(S) = 0}

Moreover, there exists a threshold S? ∈ (0, 1) such that{
KS(S) = 1, S ∈ [S?, 1]; KS(S) < 1, S ∈ [0, S?)
0 < KR(S?) < 1

(5)

and KS(·), KR(·) are increasing when not equal to 0 or 1.

The thresholds Sw represents the plant wilting point, which is usually higher
than the hydroscopic point denoted by Sh. We shall say that S is a corner point
of KS , resp. KR when the function is non differentiable at S (therefore S? is
necessarily a corner point of KS). A typical instance of functions KS(·) , KR(·)
are given by the following expressions (see Fig. 1)

KS(S) =


0 S ∈ [0, Sw]
S − Sw
S? − Sw

S ∈ [Sw, S
?]

1 S ∈ [S?, 1]

KR(S) =

 0 S ∈ [0, Sh]
S − Sw
1− Sw

S ∈ [Sh, 1]

with 0 < Sh < Sw < S? < 1.

1
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Figure 1: Graphs of the functions KS and KR

Assumption 2. ϕ(·) is a C1 increasing function from [0, T ] to [0, 1] with ϕ(0) =
0 and ϕ(T ) = 1.
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Assumption 3. k1, k2, k3 are positive parameters with

k2 ≥ 1

Under these assumptions, one has straightforwardly the following property.

Lemma 1. Any solution S(·) of (1) verifies S(t) > Sh for any t ≥ 0.

Proof.

The condition k2 > 1 is a controllability assumption, in the sense that it
allows the variable S to stay equal to 1 with the constant control u = 1/k2.
However, the dynamics is naturally subject to the state constraint

S(t) ≤ 1, t ∈ [0, T ] (6)

We shall say that a control function u(·) is admissible when (6) is satisfied.
The set of admissible controls u(·) are measurable functions taking value

in [0, 1], such that the solution of (1),(3) verifies the constraint (6). To each
such control function, we associate the total water delivered on the time interval
[0, T ], and the biomass production at the harvesting date T , given respectively
by

Q[u(·)] := Fmax

∫ T

0

u(t) dt, BT [u(·)] := B(T )

Remark that this constraint can be tackled replacing equation (1) by

Ṡ = k1

(
− ϕ(t)KS(S)− (1− ϕ(t))KR(S) + k2χ(S, u(t))

)
(7)

where the function χ(·) is defined as follows

χ(S, u) :=

{
min(1/k2, u) if S = 1
u if S < 1

(8)

The total water delivered on the time interval [0, T ] is given by

Q[u(·)] := Fmax

∫ T

0

u(t) dt

2 Study of solutions above the S? threshold

Let us introduce the following notations and definitions.

2.1 Some notations and definitions

i. For any t0 ∈ [0, T ] and S0 ∈ [0, 1], we denote by St0,S0,0(·), resp. St0,S0,1(·),
the solution of the differential equation (7) over [0, T ] with S(t0) = S0 and
the constant control u = 0, resp. u = 1.

Then, for any solution S(·) of (7) with S(t0) = S0 and an admissible
control function u(·), one has clearly

St0,S0,0(t) ≤ S(t) ≤ St0,S0,1(t), t ∈ [t0, T ] (9)
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Notice that for t0 < T and S0 > 0 and, the map t 7→ St0,S0,0(t) is decreas-
ing over [t0, T ). Similarly, for t0 > 0 and S0 > 0, the map t 7→ St0,S0,1(t)
is increasing over [0, t0).

ii. For any t0 ∈ [0, T ) and S0 ∈ [0, 1], we denote by At0,S0
(t) the attainable

set at time t ∈ (t0, T ] for the variable S, that is the set of values of S(t),
where S(·) is solution of (7) for an admissible control function u(·). From
the continuous dependency of the solution of (7) with respect to u and
property (9), the attainable set is the interval:

At0,S0(t) =
[
St0,S0,0(t), St0,S0,1(t)] (10)

iii. For t0 ∈ [0, T ) and S0 ∈ (S?, 1], we define

t+(t0, S0) =

{
T if St0,S0,0(t) > S?, t ∈ [t0, T ]
inf{t > t0 ; St0,S0,0(t) = S?} otherwise

(11)

Similarly, for any (t0, S0) ∈ (0, T ]× (S?, 1], we define

t−(t0, S0) =

{
0 if St0,S0,1(t) > S?, ∀t ∈ [0, t0]
sup{t < t0 ; St0,S0,1(t) = S?} otherwise

(12)

iv. Take (t1, S1) ∈ [0, T ) × [S?, 1] and (t2, S2) ∈ (t1, T ] × [S?, 1] such that
S2 ∈ At1,S1

(t2). If t+(t1, S1) > t−(t2, S2), we consider the function

I(t) := St1,S1,0(t)− St2,S2,1(t), t ∈ [t1, t2] (13)

From point i., I(·) is decreasing on [t1, t2]. As (t2, S2) is attainable from
(t1, S1), there exists an admissible solution S(·) such that S(t1) = S1 and
S(t2) = S2. One has then I(t1) ≥ 0. Otherwise, one has St2,S2,1(t1) −
St1,S1,1(t1) = St2,S2,1(t1) − S(t1) > 0, and as (9) gives St2,S2,1(t2) −
St1,S1,1(t2) = S(t2) − St1,S1,1(t2) < 0, there exists tc ∈ (t1, t2) such that
St2,S2,1(tc) = St1,S1,1(tc), which contradicts the uniqueness of the solution
of (1) with u = 1. Similarly, one has I(t2) ≤ 0. By the intermediate value
theorem, we deduce that there exists an unique t̄(t1, S1, t2, S2) ∈ [t1, t2]
such that I(t̄(t1, S1, t2, S2)) = 0, and that one has

St1,S1,0(t̄(t1, S1, t2, S2)) = St2,S2,1(t̄(t1, S1, t2, S2)) > S? (14)

We define now the particular MRAP controls.

Definition 1. For any (t1, S1) ∈ [0, T ) × [S?, 1] and (t2, S2) ∈ (t1, T ] × [S?, 1]
such that S2 ∈ At1,S1

(t2), we associate the most rapid path approach to S?

(MRAP in short) control, defined as follows.

i) If t−(t2, S2) ≥ t+(t1, S1):

ũ(t) :=

 0 t ∈ [t1, t
+(t1, S1))

ũS?(t) t ∈ [t+(t1, S1), t−(t2, S2)]
1 t ∈ (t−(t2, S2), t2]

(15)

with the singular control

ũS?(t) :=
ϕ(t) + (1− ϕ(t))KR(S?)

k2
(16)
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Notice that under Assumption 3, this control is admissible as one has

ũS?(t) < 1, t ∈ [t+(t1, S1), t−(t2, S2)] (17)

ii) If t−(t2, S2) < t+(t1, S1):

ũ(t) :=

{
0 t ∈ [t1, t̄(t1, S1, t2, S2))
1 t ∈ (t̄(t1, S1, t2, S2), t2]

(18)

Clearly, the solution S̃(·) of (1) with S̃(t1) = S1 and control ũ(·) satisfies
S̃(t2) = S2 and

S(t) ≥ S̃(t) for any t such that S(t) ≥ S? (19)

(see Fig. 2 and 3).

0 T

S

t
t1

1

S?

0

S̃(·)

t+(t1, S1) t−(t2, S2) t2

S2

S1

Figure 2: The MRAP trajectory S̃(·) compared to other possible trajectories
S(·) when t−(t2, S2) > t+(t1, S1)

2.2 Properties of MRAP controls

The MRAP controls have been considered with the use of Green’s theorem
in several optimal control problems in the plane linear w.r.t. to the control
[5, 4, 9, 3]. Here, we shall consider it as a comparison tool for the water quantity
Q[u(·], that will play in important role in the next sections when a constraint
on Q[u(·] is considered.

Proposition 1. Let S(·) be a solution of (1) on [t1, t2] (with 0 ≤ t1 < t2 ≤ T )
for an admissible control u(·) such that S(t) ≥ S? for any t ∈ [t1, t2]. Denote
S1 = S(t1) and S2 = S(t2). Then, the solution S̃(·) of (1) on [t1, t2] with
S̃(t1) = S1 and the MRAP control ũ(·) defined in (15) or (18), satisfies the
following properties

S̃(t2) = S2 (20)

S̃(t) ≤ S(t), t ∈ [t1, t2] (21)
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Figure 3: The MRAP trajectory S̃(·) compared to other possible trajectories
S(·) when t−(t2, S2) < t+(t1, S1)

∫ t2

t1

ũ(t) dt ≤
∫ t2

t1

u(t) dt (22)

Moreover, the last inequality is strict when S(·) and S̃(·) are not identical.

Proof. Properties (20) and (21) follow directly from the construction of the
MRAP control ũ(·) and (19).

Define the closed curve C in the (t, S) plane, parameterized by θ ∈ [0, 2(t2−
t1)] as follows

(t, S)(θ) =

{
(t1 + θ, S̃(t1 + θ)) θ ∈ [0, t2 − t1)
(2t2 − t1 − θ, S(2t2 − t1 − θ)) θ ∈ [t2 − t1, 2(t2 − t1)]

(23)

On the other hand, from equation (1), one has

∆ :=

∫ t2

t1

ũ(t) dt−
∫ t2

t1

u(t) dt =

∮
C

1

k2

(
ϕ(t) + (1− ϕ(t)Kr(S)

)
dt+

1

k1
dS (24)

which is of the form

∆ =

∮
C
P (t, S)dt+G(t, S)dS (25)

From property (21), the curve C is anticlockwise oriented (see Fig. 4). Then,
by Green’s Theorem, one has

∆ =

∫∫
D

(
∂Q

∂t
− ∂P

∂S

)
dtdS (26)

where D is the domain enclosed by the curve C. We obtain here

∆ =

∫∫
D

−ϕ(t)K ′S(S)− (1− ϕ(t))K ′r(S) dtdS (27)

From Assumption 1, we have ∆ ≤ 0 and ∆ < 0 when D is of non-empty interior,
that is when the solution S̃(·) does not coincide with S(·).
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t0

S(·)

S̃(·)

S1

S2

t1 t2

C

D

t̄(t1, S1, t2, S2)

Figure 4: The domain D is delimited by the closed curve C composed of the
graphs of S̃(·) and S(·) anticlockwise oriented

2.3 About water consumption and biomass production

Let us define the number

B̄ := k3

∫ T

0

ϕ(t) dt (28)

which is the highest biomass production at time T , and the S-profile generated
by the null control (i.e. without any irrigation).

S(t) := S0,1,0(t), t ∈ [0, T ] (29)

One can straightforwardly check that the following lemma is verified.

Lemma 2. If S(T ) ≥ S?, then the control u(t) = 0, t ∈ [0, T ] ensures the
maximal biomass production B̄ at time T .

When S(T ) < S?, let us consider the MRAP control for t1 = 0, S1 = 1,
t2 = T , S2 = S?, that we denote by ũ0T (·). One has then the following property,
as a straightforward consequence of Proposition 1.

Corollary 1. Assume S(T ) < S?. The control ũ0T (·) has the least water
consumption Q[ũ0T (·)] among all admissible control u(·) giving the same biomass
production B̄ at time T .

3 The optimal control problem

Given a maximal quantity of available water Q̄ > 0, we consider the problem of
maximizing the biomass production

B?(Q̄) := sup
u(·)

B(T ) (30)

among measurable functions u(·) taking values in [0, 1], under the state con-
straint (6) and the integral constraint on the control

Q[u(·)] ≤ Q̄ (31)
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where B(·) is solution of (1)-(2). One can easily check, with the usual arguments
of the theory of optimal control (see for instance [12], that such a problem admits
an optimal solution. We shall say from now that a control u(·) is admissible
when constraints (6) and (31) are both satisfied. From Lemma 2, we know that
when the condition S(T ) ≥ S? is fulfilled, the null control is optimal whatever
is Q̄. When this condition is not satisfied, one obtains straightforwardly from
Corollary 1 the following properties.

Lemma 3. Assume S(T ) < S?. One has the following properties.

i. When Q̄ ≥ Q[ũOT (·)], ũOT (·) is optimal and one has B?(Q̄) = B̄.

ii. When Q̄ < Q[ũOT (·)], any admissible trajectory is such that B(T ) < B̄.
Moreover, the constraint (6) is not active on any optimal trajectory.

Remark 1. When Q̄ > Q[ũOT (·)], the optimal strategy is not unique: any
control that guarantees S(t) ≥ S? at any t ∈ [0, T ] yields B(T ) = B̄.

3.1 First results

In the following, we consider non-trivial cases for which the null control or the
control ũOT (·) are not optimal.

Assumption 4.

S(T ) < S? and 0 < Q̄ < Q[ũOT (·)]

Under this assumption, one can define the time

t := inf{t ∈ [0, T ] s.t. S(t) < S?} < T (32)

One has the following first result, concerning the behavior of optimal solutions
with respect to S = S?.

Proposition 2. Having u(t) = 0 for t ∈ [0, t] is optimal. Moreover, any optimal
solution u(·) is such that S(t) ≤ S? for any t ∈ [t, T ], and Q[u(·)] = Q̄.

Proof. Notice first that any solution S(·), B(·) is such that the set

E := {t ∈ [0, T ] s.t. S(t) < S?}

is non-empty, otherwise one would have B(T ) = B̄, which is excluded by Lemma
3.ii under Assumption 4. Let t? := inf E < T . By continuity of S(·), one has
necessarily S(t?) = S? and by Proposition 1 one has∫ t?

0

ũOT (t) dt ≤
∫ t?

0

u(t) dt (33)

Notice that one has ũOT (t) = ũS?(t) for t ∈ [t?, T ]. From Assumption 4, the
inequality ∫ T

0

u(t) dt <

∫ T

0

ũOT (t) dt (34)

is fulfilled. Consequently, (33) and (34) give the inequality∫ T

t?
u(t) dt <

∫ T

t?
ũS?(t) dt
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where ũS?(t) < 1 for t ∈ [t?, T ] (cf property (17)). Therefore, the set

E1 := {t ∈ [t?, T ] s.t. u(t) < 1}

is necessarily of non-null measure. Moreover, the set E ∩ E1 is also of non-null
measure (otherwise one would have u(t) = 1 for a.e. t ∈ E that would imply
that S(·) is increasing on E, which contradicts S(t?) = S?).

If t? > t, inequality (33) is strict (by Proposition 1), and one can consider a
control v(·) such that

v(t) = ũOT (t), t ∈ [0, t?],
v(t) = u(t), t ∈ [t?, T ] \ (E ∩ E1),
v(t) ∈ [u(t), 1], t ∈ E ∩ E1

with

0 <

∫
E∩E1

(
v(t)− u(t)) dt ≤

∫ t?

0

(
u(t)− ũ0T (t)

)
dt

Then, one has
Q[v(·)] ≤ Q[u(·)] ≤ Q̄

which guarantees that v(·) is admissible. Its associated solution Sv(·), Bv(·)
satisfies then Sv(t) ≥ S(t) for any t ∈ [0, T ] with∫

E∩E1

Sv(t) dt >

∫
E∩E1

S(t) dt

As S(t) < S? for t ∈ E ∩ E1, one obtains under Assumption 1 the inequality∫
E∩E1

ϕ(t)KS(Sv(t)) dt >

∫
E∩E1

ϕ(t)KS(S(t)) dt (35)

which yields

Bv(T ) =

∫ T

0

ϕ(t)KS(Sv(t)) dt >

∫ T

0

ϕ(t)KS(S(t)) = B(T ) (36)

We conclude that an optimal solution has to verify t? = t , that is such that

S(t) = S(t), t ∈ [0, t]

or equivalently that having u(t) = 0 for t ∈ [0, t] is optimal.

Consider now a solution S(·), B(·) with an admissible control u(·) that is
null on [0, t] and such that the set

F := {t ∈ [t, T ] s.t. S(t) > S?}

is non empty. From Proposition 1, one has∫
F

ũOT (t) dt <

∫
F

u(t) dt
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Let us consider an admissible control v(·) such that

v(t) = ũ[0,T ](t), t ∈ F,
v(t) = u(t), t ∈ [0, T ] \ (F ∪ (E ∩ E1)),
v(t) ∈ [u(t), 1], t ∈ E ∩ E1

with

0 <

∫
E∩E1

(
v(t)− u(t)) dt ≤

∫
F

(
u(t)− ũ0T (t)

)
dt

Its solution Sv(·), Bv(·) satisfies Sv(t) = S? for t ∈ F and Sv(t) ≥ S? for
t ∈ [0, T ] \ F with ∫

E∩E1

Sv(t) dt >

∫
E∩E1

S(t) dt

As before, we obtain inequalities (35), (36). We conclude that an optimal solu-
tion has to verify F = ∅, that is such that S(t) ≤ S? for t ∈ [t, T ].

Finally, consider an admissible control u(·) that is null on [0, t] with S(t) ≤
S? for t ∈ [t, T ] and Q[u(·)] < Q̄. As previously, one can consider another
admissible control v(·) such that:

v(t) = u(t), t ∈ [0, T ] \ (E ∩ E1),
v(t) ∈ [u(t), 1], t ∈ E ∩ E1

with

0 < Fmax

∫
E∩E1

(
v(t)− u(t)) dt ≤ Q̄−Q[u(·)]

Its solution Sv(·), Bv(·) satisfies Sv(t) ≥ S(t) for t ∈ [0, T ] with∫
E∩E1

Sv(t) dt >

∫
E∩E1

S(t) dt

One obtains again inequality (36), which shows that the control u(·) cannot be
optimal. Therefore, an optimal control u(·) has to satisfy Q[u(·)] = Q̄.

3.2 Application of the Maximum Principle

Notice that one can write equivalently the optimization problem (1)-(2)-(30) as
an (non-autonomous) scalar optimal control problem

max
u(·)

∫ T

0

ϕ(t)KS(S(t)) dt (37)

where S(·) is solution of (1), under constraints (6) and (31), or equivalently as
a optimal control in the plane for the dynamics

Ṡ = k1

(
− ϕ(t)KS(S)− (1− ϕ(t))KR(S) + k2u(t)

)
, S(0) = 1 (38)

V̇ = u(t), V (0) = 0 (39)

with the target

V (T ) ≤ V̄ :=
Q̄

Fmax
(40)
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and the criterion (37). Moreover, we know from Lemma 2 that under Assump-
tion 4, we do not have to consider the state constraint (6) for the optimal
solution. Let us write the Hamiltonian associated to this optimal control prob-
lem:

H(t, S, λS , λV , u) :=

λSk1

(
k2u− (ϕ(t)KS(S) + (1− ϕ(t))KR(S))

)
+ λV u+ λ0ϕ(t)KS(S)

(41)
and its adjoint equations:

λ̇S ∈ ϕ(t)
(
λSk1 − λ0

)
∂CKS(S(t)) + (1− ϕ(t))λSk1∂CKR(S(t)) (42)

λ̇V = 0 (43)

where ∂CKS , ∂CKR denote the Clark generalized gradient of the Lipschitz maps
KS , KR. Therefore, λV is constant.

The Maximum Principle of Pontryagin [7] ensures that for any optimal solu-
tion S(·), V (·), u(·), there exists an adjoint vector λ(·) = (λS(·), λV (·)) solution
of the adjoint system (42)-(43) and a scalar λ0 equal to 0 or 1 such that

λ0 + |λS(t)|+ |λV (t)| 6= 0, t ∈ [0, T ] (44)

which satisfy the transversality condition

λS(T ) = 0 (45)

(as S(T ) is free and by Proposition 2 one has necessarily V (T ) = V̄ ), along with
the maximization condition

H(t, S(t), λS(t), λV (t), u(t)) = max
v∈[0,1]

H(t, S(t), λS(t), λV (t), v), a.e. t ∈ [0, T ]

(46)
Defining the switching function

φ(t) := λS(t)k1k2 + λV (47)

the maximization (46) gives, for a.e. t ∈ [0, T ]

u(t) =

 1 if φ(t) > 0
? if φ(t) = 0
0 if φ(t) < 0

(48)

We first show that that an optimal solution cannot be abnormal.

Lemma 4. For any optimal solution, one has λ0 = 1.

Proof. If λ0 = 0, the only solution of (42) for the terminal condition (45) is
λS(t) = 0 for t ∈ [0, T ]. Moreover, the constant value of λV has to be negative
to fulfill the conditions (45) and (44). This implies that the φ(t) is negative for
any t ∈ [0, T ] and by (48), one has u(t) = 0 for a.e. t ∈ [0, T ] i.e. S(·) is the
optimal trajectory. Let t ∈ [0, T ] be such that S(t) = S?. Then the control v(·)
defined by

v̄(t) =


0 t ∈ [0, t)

Q̄

T − t
t ∈ [t, T ]
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is admissible, and its associated solution Sv(·) verifies

Sv(t) = S(t), t ∈ [0, t), Sv(t) > S(t), t ∈ [t, T ]

which implies the inequality∫ T

0

ϕ(t)KS(Sv(t)) dt >

∫ T

0

ϕ(t)KS(S(t))

and thus is a contradiction with the optimality of S(·).

We prove now sign properties of the adjoint variables, that will play a fun-
damental role in the following.

Proposition 3. For any optimal solution, one has λS(T ) > 0 for t ∈ [0, T ).
Moreover, one has λV < 0.

Proof. Let us consider the set

E := {t ∈ [0, T ) s.t. λS(t) < 0}

and assume by contradiction that E is non-empty. As KS , KR are non decreas-
ing functions, the elements of ∂CKS , ∂CKR are all non-positive, and one obtains
that λS is non-increasing on E. Therefore, one has supE = T and λS(T ) < 0,
which is a contradiction with the transversality condition (45).

If the constant λV is non negative, then one has φ(t) > 0 for any t ∈ [0, T )
which implies by (48) that one has u(t) = 1 for almost any t ∈ [0, T ]. Then one
obtains

V (T ) >

∫ T

0

ũOT (t) dt =
Q[ũOT (·)]
Fmax

> V̄

which is in contradiction with the target condition (40).

Proposition 3 and the transversality condition (45) imply that one has φ(T ) <
0, which yields straightforwardly the following properties.

Corollary 2. There exists t̄ < T such that u(t) = 0 for t ∈ [t̄, T ] is optimal.
Moreover, one has S(T ) < S?.

Let us now study the possibilities of singular arcs (we recall that a singular
is a piece of an optimal trajectory such that the switching function φ remains
equal to zero).

Lemma 5. A singular arc cannot occur at locus where S is not a corner point
of KS or KR.

Proof. A singular arc occurs when the switching function φ is equal to zero on
a time interval I of non-null measure. This amounts to have λS constant equal
to λ?S := −λv/(k1k2) > 0 on a such an interval. If KS and KR are differentiable
at S(t1) where t1 ∈ I, one has then, from (42)

ϕ(t)
(
λ?Sk1 − 1

)
K ′S(S(t1)) + (1− ϕ(t))λ?Sk1K

′
R(S(t1)) = 0 (49)

for any t ∈ I in a neighborhood of t1. From Lemma 1, one has KR(S(t1)) > 0
and thus K ′R(S(t1)) > 0 (by Assumption 1). Differentiating the left member of
(49) w.r.t. t at t1 yields

ϕ′(t1)
(

(λ?Sk1 − 1
)
K ′S(S(t1))− λ?Sk1K ′R(S(t1))

)
> 0

which shows that (49) cannot be satisfied on a neighborhood of t1.

12



3.3 An optimal synthesis

We consider the “saturated one slot” (SOS) feedback control, as follows.

Definition 2. For tS ∈ [t, T − V̄ ], we define the time-varying feedback control:

ψSOStS (t, S, V ) :=

 0 if t < tS or V = V̄ ,
1 if t ≥ tS and S < S? and V < V̄ ,
ũS?(t) if t ≥ tS and S = S? and V < V̄

(50)

This strategy consists in irrigating crops at once, from a time tS larger or
equal to t (accordingly to Proposition 2). It consists in delivering water at
the maximal flow rate (u = 1) as long as the humidity rate S is below S?, or
maintaining S = S? (with the singular control ũS?(·), accordingly to Proposition
2). Moreover, from Proposition 2 and Corollary 2, an optimal solution has to
use all the water quantity V̄ before the final time T . Therefore, the very last
possible time tS is necessarily less than T − V̄ .

One has then the following result about the optimality of the SOS strategy.

Proposition 4. Under Assumption 4, if for any t ∈ (t, T − V̄ ), S(t) is not a
corner point of KS or KR, then the SOS strategy is optimal, i.e. there exists
tS ∈ [t, T − V̄ ] such that the feedback control (50) is optimal.

Proof. Notice first that an optimal solution S(·) satisfies S(t) ≥ S(t) for any
t ∈ [0, T ] with S(t) ≤ S? for t ∈ [t, T ] (cf Proposition 2). From Lemma 5
and Assumption 1, we conclude that the only possible singular arc is when S(·)
remains equal to S?.

As u(t) = 0 is optimal for t ∈ [0, t] (Proposition 2), the switching function
φ(·) has to be non-positive on [0, t], or equivalently one should have λS(t) ≤
λS? = −λv/(k1k2 for t ∈ [0, t]. On the interval [0, t], S(·) is thus decreasing
with S(t) = S?. Let SR := sup{S ∈ [0, 1] s.t. KR(S) < 1}, which satisfies
SR > S? by Assumption 1. Define then tR := inf{t ∈ [0, t] s.t. S(tR) < SR}.
By hypothesis, KR and KS are respectively increasing and constant on [S?, SR].
From (42), we deduce that λS(·) is increasing on [tR, t] and thus one has λS(t) <
λS? for t ∈ [tR, t). Consider then the set

C := {t ∈ [t, T ] s.t. λS(t) ≥ λS?}

which is of non empty interior (otherwise u(t) = 0 would be optimal for any
t ∈ [t, T ], which is not possible by Proposition 2). Notice that one has necessarily
supC < T because the only possible singular arc is S = S? and one should have
S(T ) < S? (Corollary 2). Moreover, one can check that the property

S(t) = S? with t ∈ intC ⇒ λS(t) = λS? (51)

is fulfilled, because λS(t) > λS? would imply u(τ) = 1 for a.e. τ in a neighbor-
hood of t in C, violating S(t) ≤ S? for any t ∈ [t, T ].

Let us show now that C is a connected set. If not, there exists tm ∈ [t, T ]\C
inbetween two consecutive connected components of C that is a local minimum
of λS(·) with λS(tm) < λS? . One has then S(tm) < S? and by hypothesis, KS

and KR are differentiable at S(tm). From (42), one can write

λ̇S(tm) = ϕ(tm)(λS(tm)k1 − 1)K ′Sm + (1− ϕ(tm))λS(tm)k1K
′
Rm = 0 (52)

13



where K ′Sm, K ′Rm denote the derivatives of Ks, KR at S(tm),

λ̈S(tm) = ϕ′(tm)
(
(λS(tm)k1 − 1)K ′Sm − λS(tm)k1K

′
Rm

)
(53)

(using the fact that KS , KR are linear around S(tm)). By Lemma 1, one has
KR(tm) > 0 and under Assumption 1, one has then K ′Rm > 0. From (52), one

obtains λS(tm)k1 − 1 < 0 and then from (53) with Assumption 2, λ̈S(tm) < 0,
which contradicts that λS(·) has a local minimum at tm.

Finally, we obtained an optimal control defined for almost any t ∈ (0, T ] as
follows.

1. u(t) = 0 is optimal for t /∈ C,

2. u(t) = 1 is optimal for t ∈ interiorC with S(t) < S?, as a singular arc
can occur only at S = S?,

3. the singular control u(t) = ũS?(t) is optimal for t ∈ intC when S(t) = S?,
because of property (51) and the only way to have a neighborhood of t
belonging to C with S ≤ S? is to stay on the singular arc S = S?.

This proves, along with the fact that C is connected, the optimality of the
feedback (50).

4 Numerical illustration

We present in Fig. 5 the simulations performed with irrigation strategies SOS
and OS and with inputs data given in Table 1. The “One Shot” (OS) strategy
consists in delivering water at maximum flow rate during a single irrigation
period at a triggering time tS :

Definition 3. For tS ∈ [t, T − V̄ ], we define the open-loop control :

uOStS (t) :=

{
0 if t < tS or t > min(tS + Q̄/Fmax, T ))
1 if t ∈ [tS ,min(tS + Q̄/Fmax, T ))

It represents a class of widely used irrigation strategies, typically when drip
irrigation is not available. For illustrative purposes only, we have considered
dimensionless parameters (by normalizing the units) and function ϕ in the family
of t 7→ (t/T )α (α > 0).

T k1 k2 k3 S? Sw Sh Fmax Q̄ α
1 2.1 5 1 0.7 0.4 0.2 1.2 0.1 4

Table 1: Normalized parameters used for the simulations

The optimal OS strategy was obtained for tS = 0.697 and produced a
biomass B(T ) = 0.152. The corresponding humidity dynamics is plotted in
Fig. 5c. It can be seen that some value of S are above S?. It can be therefore
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Figure 5: Comparison of SO and SOS controls strategies on one typical example.
Model parameters used are given in Table 1.

concluded from the application of of Proposition 4 that an OS strategy cannot
be optimal. This is further illustrated by applying the SOS strategies for the
same inputs data. We find that the best SOS strategy gives a final biomass
B(T ) = 0.176 which is 15% higher than what gives the best OS strategy. The
associated control is a bang-singular-bang (see Fig. 5b).

Notice that the SOS strategy requires more knowledge or online measure-
ments than the OS control for its real application (as the expression of the sin-
gular control (16) needs the function ϕ(·) and the values S?, k2 and KR(S?)).
Moreover it change gradually the input flow rate during the singular arc phase.
This is why it can be considered as a more sophisticated strategy.

5 Conclusion

We have introduced a simple crop irrigation model in order to study optimal
irrigation scheduling using a mathematical analysis. We have shown, using a
comparison tool, that the state constraint of this model is never activated for
the optimal control problem solutions. Moreover we have shown that, under
water scarcity, an optimal trajectory has to reach as fast as possible the domain
for which the relative humidity is below or equal to the threshold of maximal
crop transpiration, and then do not leave this domain until the harvesting time.
However, due to water scarcity, it has to be below the threshold at some stage.
We have then compared two control strategies: the one-shot (OS), commonly
used in practice and a more sophisticated one, the saturated one-shot (SOS),
that could exhibit a singular arc. We have shown numerically the superiority
of this last strategy. We conjecture that the SOS strategy is indeed an optimal
control for this model. This would be a promising result since SOS irrigation
schemes are not so intuitive controls and because they can be also tested on
more detailed simulation models. This shall be the matter of a future work.
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