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Abstract

We consider a simple crop irrigation model and study the optimal control which consists of maximizing the
biomass production at harvesting time. A specificity of this work is to impose a quota on the water used for
irrigation, in a context of limited resources. The model is written as a 2d non-autonomous dynamical system
with a state constraint, and a non-smooth right member given by threshold-based soil and crop water stress
functions. We show that when the water quota is below the threshold giving the largest possible production,
the optimal strategy consists of irrigating once. We then show that the optimal solution can have one or several
singular arcs, and therefore be better than simple bang-bang controls, as commonly used. The gains over the
best bang-bang controls are illustrated on numerical simulations. These new feedback controls that we obtain
are a promising first step towards the concrete application of control theory to the problem of optimal irrigation
scheduling under water scarcity.

Key-words. Crop irrigation, water management, optimal control, singular arcs, feedback synthesis.

1 Introduction

Today, in the context of the climate crisis, tensions around water resources are growing, and agriculture in many
countries, particularly in the South, must now be considered as having to be water-saving. One way to cope
with this changing context is to impose irrigation quotas. But such quotas could imply yield losses as the best
crop water requirements would not necessarily be fulfilled. In these particular but expected situations, optimizing
the schedule of irrigation to minimize yield losses becomes crucial. Crop modeling and numerical simulations are
handy tools for understanding and adjusting these compromises. More particularly the control theory as irrigation
is typically a control variable of a crop model.

Numerous texts and articles have developed systematic approaches to tackle the scheduling optimization prob-
lem. We refer to [10, 11, 17, 18, 22] and references therein. However, most of the existing approaches do not allow
to have analytical descriptions of an optimal solution’s theoretical properties as they are based on the numerical
optimization of complex models. Control theoretical tools, such as the Pontryagin’s Maximum Principle, allow, as
a rule, to discover structures of optimal strategies in terms of state feedback available for large classes of operating
conditions and parameter values. Unlike optimization among open-loop controls that apply for precise require-
ments, closed-loop procedures offer adaptability and robustness for concrete applications, when state variables
can be measured in real-time. However, when models have too numerous equations, variables, and parameters
or do not present a robust structure, the study of optimal strategies with these techniques is most of the time
out of reach of analytical characterizations. This is a motivation to consider models with a reasonable simplicity
to benefit from these theoretical approaches (see e.g. [12, 16]). Even when these models are imperfect, optimal
policies’ derivation is of possible relevance. It generally provides simple but non-intuitive control rules that can
be tested in simulation on more realistic detailed models. Sometimes, combinations of analytical description and
reduced optimization can be obtained, which still offer advantages over purely numerical solutions in open-loop.
This is the spirit in which this work has been conducted.

The aim of this work is to derive feedback strategies in the context of water quotas extending the work initiated
in [9], where a simplified crop model is presented to investigate optimal irrigation strategies. The present work
goes two steps further, first in relaxing assumptions on the water stress functions of the model, and secondly in
providing the complete solution of the optimal control problem as well as associated numerical simulations.

∗corresponding author
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The organization of the paper is as follows. Section 2 presents the crop model with its assumptions. Section
3 is dedicated to the formulation of the optimal control problem under constraint, along with some preliminary
results. In section 4, crucial properties of the optimal solutions are proved. Then, Section 5 is devoted to the
application of the Pontryagin Maximum Principle and the synthesis of the optimal irrigation strategy. Finally, in
Section 6, we illustrate the theoretical results on numerical simulations and draw comparisons of several control
strategies.

2 Model description and assumptions

We consider the dynamical model of crop irrigation introduced in [9] and inspired from [14], where S(t) and B(t)
stand respectively for the relative soil humidity in the root zone (a quantity between 0 and 1) and the crop biomass
at time t in an interval [0, T ] representing the crop growth season:

Ṡ = k1(−ϕ(t)KS(S)− (1− ϕ(t))KR(S) + k2u(t)), (1)

Ḃ = ϕ(t)KS(S)f(B), (2)

with the initial condition (at the sowing date 0)

S(0) = 1, (3)

B(0) = B0 > 0, (4)

and T is the harvesting date. The control variable u(t) = F (t)/Fmax ∈ [0, 1] is the ratio of the input water flow
rate F (t) at time t over the maximal flow Fmax that the irrigation allows.

Eq. (1) represents the variation of a vertically averaged soil moisture as influenced by crop evapotranspiration
(ϕ(t)KS(S) + (1 − ϕ(t))KR(S)) and irrigation (k2u(t)). In this model as in [1], crop evapotranspiration is split
into crop transpiration (ϕ(t)KS(S)) and soil evaporation ((1− ϕ(t))KR(S)) using the crop radiation interception
efficiency ϕ(t). This function ϕ(t), which makes the system non-autonomous, can be seen as a surrogate to the
crop coefficient used in the FAO approach [23]. The two functions KS and KR (see Assumption 1 and Fig. 1
below) are used to model the regulation of transpiration and evaporation by soil moisture as in [14]. Eq. (2)
determines the amount of biomass produced per time unit from the transpiration flux as in [20, 14] and modulated
by a normalized growth kinetics function f(·). Note that the present model does not consider a temporal variation
of the reference evapotranspiration present in many crop models and does not include either rainfall inputs: it
would be more suitable for greenhouse-grown crops.

Assumption 1. The functions KS and KR are piecewise linear non decreasing from [0, 1] to [0, 1] with numbers
0 < Sh < Sw < S? < 1 such that

1. KS, resp. KR is null on [0, Sw], resp. [0, Sh], and positive outside this interval.

2. KS is equal to 1 on [S?, 1] and concave increasing on [Sw, S
?].

3. KR(1) = 1 and KR is convex increasing on [Sw, S
?].

The value Sw represents the plant wilting point, which is usually higher than the hydroscopic point denoted
by Sh. S? is the minimal threshold on the soil humidity that gives the best biomass production. This assumption
generalizes the usual expressions found in the literature (see for instance [14]), given by the following assumption
(see Fig. 1).

Assumption 1bis. The functions KS and KR are piecewise linear non decreasing from [0, 1] to [0, 1] given by
the following expressions

KS(S) =


0 S ∈ [0, Sw],

S − Sw
S? − Sw

S ∈ [Sw, S
?],

1 S ∈ [S?, 1],

KR(S) =

 0 S ∈ [0, Sh],
S − Sh
1− Sh

S ∈ [Sh, 1],
(5)

where 0 < Sh < Sw < S? < 1.

We shall say that S is a corner point of KS , resp. KR when the function is non differentiable at S (therefore
S? is necessarily a corner point of KS).
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Figure 1: Graphs of the functions KS and KR given by expressions (5)

Assumption 2. ϕ(·) is a C1 increasing function from [0, T ] to [0, 1] with ϕ(0) = 0 and ϕ(T ) = 1.

Notice that the dynamics (1)-(2) is non-autonomous and that we consider a mild hypothesis on the function
ϕ.

Assumption 3. k1, k2 are positive parameters with

k2 ≥ 1.

Assumption 4. The function f is a non-negative Lipschitz continuous function with linear growth such that
f(B0) > 0.

Typical instances of growth function f are constants or the logistic law, as considered in [16]

f(B) = rB

(
1− B

Bmax

)
, (6)

with Bmax > B0, but other choices are possible. The condition k2 > 1 is a controllability assumption, in the sense
that it allows the variable S to stay equal to 1 with the constant control u = 1/k2. However, the dynamics is
naturally subject to the state constraint

S(t) ≤ 1, t ∈ [0, T ]. (7)

We shall consider the set U of admissible controls as measurable functions u(·) taking value in [0, 1] such that the
solution of (1)-(3) verifies the constraint (7). Under the former assumptions, one obtains straightforwardly the
following property.

Lemma 1. For any admissible control u(·), the solution (S(·), B(·)) of system (1)-(2) with initial condition (3)-(4)
verifies

S(t) > Sh, t ≥ 0, (8)

and B(·) is uniformly bounded on [0, T ].

Remark 1. Another way to impose the state constraint (7) to be fulfilled is to consider that the extra water
than could be brought when the soil is already saturated (i.e. S = 1) is indeed lost. This amounts to consider the
following dynamics of S instead of equation (1):

Ṡ = k1

(
− ϕ(t)KS(S)− (1− ϕ(t))KR(S) + k2χ(S, u(t))

)
, (9)

where the function χ(·) is given by

χ(S, u) :=

{
min(1/k2, u) if S = 1,
u if S < 1.

(10)

Note that the right member of the o.d.e. (9) remains bounded, continuous w.r.t. (t, S, u) and Lipschitz in S, which
then gives existence and uniqueness of solution of (9) for any measurable control function u(·) that takes values
in [0, 1]. However, we shall show in Section 4 (Proposition 2) that under water scarcity, an optimal solution never
saturates this constraint, so that we no longer need to consider it.
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3 The optimization problem

For each control u(·) in U , we associate the total water delivered to the crop during the time interval [0, T ] as

Q[u(·)] := Fmax

∫ T

0

u(t) dt (11)

and given a quantity of water Q̄ > 0 available on the time interval [0, T ], we define the constraint

Q[u(·)] ≤ Q̄. (12)

Then, we consider the optimal control problem

sup
{
B(T ), u(·) ∈ U that satisfies (12)

}
. (13)

By the usual argument of compactness of the set of admissible solutions, the dynamics being linear w.r.t. u (see
for instance [24]), one concludes about the existence of an optimal solution of Problem (13), that we aim now to
characterize. Preliminary results are available in the conference paper [9], which are much proved and generalized
in the present work.

Let B̄ = B(T ) where B(·) is solution of Ḃ = ϕ(t)f(B) with B(0) = B0, which is an uniform bound of the
solutions of (2)-(4) on [0, T ]. Note that f is necessarily positive on [B0, B̄) and one can consider the change of
variable of the biomass

B 7→ B̃ = g(B) :=

∫ B

B0

db

f(b)
, B ∈ [B0, B̄),

which gives the simplified dynamics
˙̃B = ϕ(t)KS(S), B̃ = 0

instead of (2) and the true value of the biomass B(t) can be recovered by B(t) = g−1(B̃(t)), the function g being
increasing and thus invertible. For instance, for the logistic law (6), one has

B(t) =
Bmax

1 +
(
Bmax

B0
− 1
)
e−rB̃(t)

, t ≥ 0.

Therefore, maximizing B̃(T ) is equivalent to maximizing B(T ) (i.e. an optimal control maximizing B̃(T ) is also
optimal for the problem (13)). For sake of simplicity, we shall drop the f(B) term in equation (2) and consider
B0 = 0 without any loss of generality.

For convenience, we shall denote, for any t0 ∈ [0, T ] and S0 ∈ [0, 1], St0,S0,0(·), resp. St0,S0,1(·), for the solution
of the differential equation (1) with S(t0) = S0 and the constant control u = 0, resp. u = 1. We shall see in
the following that the corner points, and especially the threshold S?, are playing a crucial role in the optimal
synthesis. The following definitions will be useful in the following.

Definition 1. Denote S(·) := S0,1,0(·) and define

t := sup{t ∈ [0, T ] s.t. S(t) > S?}.

Define also the number

B?T :=

∫ T

0

ϕ(t) dt.

Straightforwardly, on has the first result.

Lemma 2.

(i) The inequality B(T ) ≤ B?T is fulfilled for any admissible control u(·).

(ii) If t = T , then any admissible control u(·) gives B(T ) = B?T (in particular the control identically null).

Let us now define singular controls as the ones that maintain S(·) constant.
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Definition 2. For any S̃ ∈ (0, 1), define the control

ũS̃(t) :=
ϕ(t)KS(S̃) + (1− ϕ(t))KR(S̃)

k2
, t ∈ [0, T ] (14)

and posit for S̃ = S?

Q? := Fmax

∫ T

t

ũS?(t) dt.

Note that under Assumption 3, the control (14) is admissible i.e. one has ũS̃(t) ∈ [0, 1] at any t ∈ [0, T ] whatever

is S̃ ∈ (0, 1). Moreover one has
ũS̃(t) ∈ (0, 1), t ∈ (0, T ), S̃ ∈ (Sh, S

?]. (15)

One can easily check that the following Lemma holds.

Lemma 3. Assume t < T .

(i) For any Q̄ ≥ Q?, the control

u(t) =

{
0 t ∈ [0, t),
ũS?(t) t ∈ [t, T ],

(16)

satisfies the constraint (12) and gives B(T ) = B?T .

(ii) For any Q̄ < Q? and admissible control u(·) satisfying the constraint (12), one has B(T ) < B?T .

Consequently, when t = T or Q̄ ≥ Q?, we know that the maximal biomass production B?T can be reached with
the control strategy (16) (other choices could be possible). We shall focus now on the complementary cases that
fulfill the following conditions.

Hypothesis 1. t < T and Q̄ < Q?.

This hypothesis corresponds to situations of water scarcity, because there is not any enough water available to
maintain the soil humidity constantly above or equal to the level S? which provides the maximal production B?T
at the harvesting time. Those situations are quite challenging from the control viewpoint because the crop has
to suffer from dryness at a certain point and the question amounts to choose, to some extent, how and when, to
impact as little as possible the biomass production at final time T . We start by investigating the behavior of the
optimal solutions above the S? level.

4 Properties of the optimal solutions with respect to threshold S?

We introduce below the MRAP (for Most Rapid Approach Path) to S = S? controls. Such kind of controls have
already been considered in several optimal control problems in the plane, characterizing their optimality (e.g.
[13, 7, 6] or related to the so-called “turnpike” property (see e.g. [15, 21, 5]). Here, we use it in a different way. We
do not pretend that these controls are necessarily optimal (and indeed they are not), but they respect the state
constraint (7) and can locally improve the cost, providing then a comparison tool given in Proposition 1 below
and used later on. We begin with some definitions.

Definition 3. For (t0, S0) ∈ [0, T )× (S?, 1], we define the number

t+(t0, S0) =

{
T if St0,S0,0(t) > S?, t ∈ [t0, T ],
inf{t > t0 ; St0,S0,0(t) = S?} otherwise.

And for any (t0, S0) ∈ (0, T ]× (S?, 1], we define

t−(t0, S0) =

{
0 if St0,S0,1(t) > S?, t ∈ [0, t0],
sup{t < t0 ; St0,S0,1(t) = S?} otherwise.

Definition 4. For any (t1, S1) ∈ [0, T ) × [S?, 1] and (t2, S2) ∈ (t1, T ] × [S?, 1] such that S2 is attainable from
(t1, S1) at time t2 with an admissible control, we associate the MRAP control ũ(·) on the time interval [t1, t2] as
follows:
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i) If t−(t2, S2) ≥ t+(t1, S1):

ũ(t) :=

 0 if t ∈ [t1, t
+(t1, S1)),

ũS?(t) t ∈ [t+(t1, S1), t−(t2, S2)],
1 if t ∈ (t−(t2, S2), t2].

(17)

ii) If t−(t2, S2) < t+(t1, S1):

ũ(t) :=

{
0 if t ∈ [t1, t̄(t1, S1, t2, S2)),
1 if t ∈ (t̄(t1, S1, t2, S2), t2].

where t̄(t1, S1, t2, S2) is the unique t̄ ∈ [t1, t2] such that St1,S1,0(t̄) = St2,S2,1(t̄) > S? (one can easily verify that the
function I(t) := St1,S1,0(t)− St2,S2,1(t) is decreasing on [t1, t2] and such that I(t1) ≥ 0, I(t2) ≤ 0, which gives the
existence and uniqueness of t̄(t1, S1, t2, S2)).

These particular trajectories are depicted on Fig. 2 and 3.

0 T

S

t
t1

1

S?

0

S̃(·)

t+(t1, S1) t−(t2, S2) t2

S2

S1

Figure 2: The MRAP trajectory S̃(·) (in blue) compared to other admissible trajectories S(·) when t−(t2, S2) >
t+(t1, S1)

Then, one has the following comparison result.

Proposition 1. Let S(·) be a solution of (1) on [t1, t2] (with 0 ≤ t1 < t2 ≤ T ) for an admissible control u(·) such
that S(t) ≥ S? for any t ∈ [t1, t2]. Denote S1 = S(t1) and S2 = S(t2). Then, the solution S̃(·) of (1) on [t1, t2]
with S̃(t1) = S1 and the MRAP control ũ(·) (given in Definition 4) satisfies the following properties:

S̃(t2) = S2. (18)

S̃(t) ≤ S(t), t ∈ [t1, t2]. (19)

∫ t2

t1

ũ(t) dt ≤
∫ t2

t1

u(t) dt. (20)

Moreover, the last inequality is strict when S(·) and S̃(·) are not identical.

Proof. By construction, the solution S̃(·) verifies S̃(t1) = S(t1) and S(t2) = S(t2). Thus, property (18) is verified.

From standard comparison results of scalar differential equation with right hand sides that are Lipschitz
continuous w.r.t. the state variable (see e.g. [25]), one has for any solution S(·) of (1) with S(t0) = S0 and any
admissible control function u(·), the following frame

St0,S0,0(t) ≤ S(t) ≤ St0,S0,1(t), t ∈ [t0, T ]. (21)
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0
t2

S̃(·)

S?

t̄(t1, S1, t2, S2)

S2

S1

Figure 3: The MRAP trajectory S̃(·) (in blue) compared to other admissible trajectories S(·) when t−(t2, S2) <
t+(t1, S1)

Therefore, property (19) is verified.

Consider then the function δ(t) := S(t)− S̃(t). From expression (1), one can write

dδ = −k1
(
F (t, S(t))− F (t, S̃(t))

)
dt+ k1k2 (u(t)− ũ(t)) dt, (22)

where we posit
F (t, S) = ϕ(t)KS(S) + (1− ϕ(t))KR(S).

Integrating (22) between t = t1 and t = t2, one obtains

δ(t2)− δ(t1) = −k1
∫ t2

t1

(
F (t, S(t))− F (t, S̃(t))

)
dt

+k1k2

(∫ t2

t1

u(t) dt−
∫ t2

t1

ũ(t) dt

)
.

As F is non-decreasing w.r.t. S and S(t) ≥ S̃(t) for t ∈ [t1, t2], one obtains∫ t2

t1

u(t) dt−
∫ t2

t1

ũ(t) dt ≥ δ(t2)− δ(t1)

k1k2
= 0

which proves property (20).

This result leads to the following properties of the optimal solutions.

Proposition 2. Assume that Hypothesis 1 is satisfied (water scarcity). Then, any optimal solution satisfies the
following properties.

(i) u(t) = 0 for a.e. t ∈ [0, t],

(ii) S(t) ≤ S? for any t ∈ [t, T ],

(iii) Q[u(·)] = Q̄.

Proof. Let ũ(·) be the MRAP control for (t1, S1) = (0, 1) and (t2, S2) = (T, S?) (see Definition 4).
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Consider any S(·) solution of (1),(3) for an admissible control u(·) satisfying the constraint (12). Notice first
that the set

E := {t ∈ [0, T ] s.t. S(t) < S?}

is non-empty, otherwise one would have B(T ) = B?T , which is excluded by Lemma 3.ii. Let t? := inf E < T . By
continuity of S(·), one has necessarily S(t?) = S? and by Proposition 1 one has∫ t?

0

ũ(t) dt ≤
∫ t?

0

u(t) dt. (23)

Notice that one has ũ(t) = ũS?(t) for t ∈ [t?, T ]. From Hypothesis 1, the inequality

Q[u(·)] = Fmax

∫ T

0

u(t) dt < Q? = Fmax

∫ T

0

ũ(t) dt (24)

is fulfilled. Consequently, (23) and (24) give the inequality∫ T

t?
u(t) dt <

∫ T

t?
ũS?(t) dt,

where ũS?(t) < 1 for t ∈ [t?, T ) (cf property (15)). Therefore, the set

E1 := {t ∈ [t?, T ] s.t. u(t) < 1}

is necessarily of non-null measure. Moreover, the set E ∩E1 is also of non-null measure (otherwise one would have
u(t) = 1 for a.e. t ∈ E that would imply that S(·) is increasing on E, which contradicts S(t?) = S?).

If t? > t, inequality (23) is strict (by Proposition 1), and one can consider a control v(·) such that v(t) = ũ(t), t ∈ [0, t?],
v(t) = u(t), t ∈ [t?, T ] \ (E ∩ E1),
v(t) ∈ [u(t), 1], t ∈ E ∩ E1,

with

0 <

∫
E∩E1

(
v(t)− u(t)) dt ≤

∫ t?

0

(
u(t)− ũ(t)

)
dt.

Then, one has
Q[v(·)] ≤ Q[u(·)] ≤ Q̄

which guarantees that v(·) satisfies the constraint (12). Its associated solution Sv(·), Bv(·) satisfies then Sv(t) ≥
S(t) for any t ∈ [0, T ] with ∫

E∩E1

Sv(t) dt >

∫
E∩E1

S(t) dt.

As S(t) < S? for t ∈ E ∩ E1, one obtains under Assumption 1 the inequality∫
E∩E1

ϕ(t)KS(Sv(t)) dt >

∫
E∩E1

ϕ(t)KS(S(t)) dt, (25)

which yields

Bv(T ) =

∫ T

0

ϕ(t)KS(Sv(t)) dt >

∫ T

0

ϕ(t)KS(S(t)) = B(T ). (26)

We conclude that an optimal solution has to verify t? = t, that is such that

S(t) = S(t), t ∈ [0, t]

or equivalently that u(t) = 0 for t ∈ [0, t] is optimal.

Consider now a solution S(·), B(·) with an admissible control u(·) that is null on [0, t] and satisfies the constraint
(12), and the set

F := {t ∈ [t, T ] s.t. S(t) > S?}

8



is non empty. From Proposition 1, one has ∫
F

ũ(t) dt <

∫
F

u(t) dt.

Let us consider an admissible control v(·) such that v(t) = ũ(t), t ∈ F,
v(t) = u(t), t ∈ [0, T ] \ (F ∪ (E ∩ E1)),
v(t) ∈ [u(t), 1], t ∈ E ∩ E1,

with

0 <

∫
E∩E1

(
v(t)− u(t)) dt ≤

∫
F

(
u(t)− ũ(t)

)
dt.

Its solution Sv(·), Bv(·) satisfies Sv(t) = S? for t ∈ F and Sv(t) ≥ S? for t ∈ [0, T ] \ F with∫
E∩E1

Sv(t) dt >

∫
E∩E1

S(t) dt.

As before, we obtain inequalities (25), (26), and conclude that an optimal solution has to verify F = ∅, that is
such that S(t) ≤ S? for t ∈ [t, T ].

Finally, consider an admissible control u(·) that is null on [0, t] with S(t) ≤ S? for t ∈ [t, T ] and Q[u(·)] < Q̄.
As previously, one can consider another admissible control v(·) such that:{

v(t) = u(t), t ∈ [0, T ] \ (E ∩ E1),
v(t) ∈ [u(t), 1], t ∈ E ∩ E1,

with

0 < Fmax

∫
E∩E1

(
v(t)− u(t)) dt ≤ Q̄−Q[u(·)].

Its solution Sv(·), Bv(·) satisfies Sv(t) ≥ S(t) for t ∈ [0, T ] with∫
E∩E1

Sv(t) dt >

∫
E∩E1

S(t) dt.

One obtains again inequality (26), which shows that the control u(·) cannot be optimal. Therefore, an optimal
control u(·) has to satisfy Q[u(·)] = Q̄.

5 An optimal synthesis

Note first that one can write equivalently the optimization problem (13) as an (non-autonomous) scalar optimal
control problem

max
u(·)

∫ T

0

ϕ(t)KS(S(t)) dt, (27)

where S(·) is solution of (1), under constraints (7) and (12), or equivalently as a optimal control in the plane for
the dynamics

Ṡ = k1

(
− ϕ(t)KS(S)− (1− ϕ(t))KR(S) + k2u(t)

)
, S(0) = 1, (28)

V̇ = u(t), V (0) = 0, (29)

with the target

V (T ) ≤ V̄ :=
Q̄

Fmax
(30)

and the criterion (27). Moreover, we know from Proposition 2 that under Hypothesis 1 the state constraint (7) is
never saturated for any optimal solution.

9



5.1 Application of the Maximum Principle

Let us write the Hamiltonian associated to this optimal control problem:

H(t, S, λS , λV , u) :=

λSk1

(
k2u− (ϕ(t)KS(S) + (1− ϕ(t))KR(S))

)
+ λV u+ λ0ϕ(t)KS(S),

(31)

and its adjoint equations:

λ̇S ∈ ϕ(t)
(
λSk1 − λ0

)
∂CKS(S(t)) + (1− ϕ(t))λSk1∂CKR(S(t)), (32)

λ̇V = 0, (33)

where ∂CKS , ∂CKR denote the Clarke generalized gradients of the Lipschitz maps KS , KR. Therefore, λV is
constant. The (non-smooth) Maximum Principle of Pontryagin (see for instance [3]) states that for any optimal
solution S(·), V (·), u(·), there exists an adjoint vector λ(·) = (λS(·), λV (·)) which is an absolutely continuous
solution of the adjoint system (32)-(33) and a scalar λ0 equal to 0 or 1 such that

λ0 + |λS(t)|+ |λV (t)| 6= 0, t ∈ [0, T ], (34)

which satisfy the transversality condition
λS(T ) = 0, (35)

(remind that S(T ) is free and V (T ) = V̄ by Proposition 2), along with the maximization condition

H(t, S(t), λS(t), λV (t), u(t)) = max
v∈[0,1]

H(t, S(t), λS(t), λV (t), v), a.e. t ∈ [0, T ]. (36)

Defining the switching function
φ(t) := λS(t)k1k2 + λV , (37)

the maximization (36) gives, for a.e. t ∈ [0, T ] u(t) = 1 if φ(t) > 0,
u(t) ∈ [0, 1] if φ(t) = 0,
u(t) = 0 if φ(t) < 0.

(38)

We first show that that an optimal solution cannot be abnormal.

Lemma 4. For any optimal solution, one has λ0 = 1.

Proof. If λ0 = 0, the only solution of (32) for the terminal condition (35) is λS(t) = 0 for t ∈ [0, T ]. Moreover,
the constant value of λV has to be negative to fulfill the conditions (35) and (34). This implies that the φ(t) is
negative for any t ∈ [0, T ] and by (38), one has u(t) = 0 for a.e. t ∈ [0, T ] i.e. S(·) is the optimal trajectory. Let
t ∈ [0, T ] be such that S(t) = S?. Then the control v(·) defined by

v̄(t) =


0, t ∈ [0, t),

Q̄

T − t
, t ∈ [t, T ],

is admissible, and its associated solution Sv(·) verifies

Sv(t) = S(t), t ∈ [0, t), Sv(t) > S(t), t ∈ [t, T ]

which implies the inequality ∫ T

0

ϕ(t)KS(Sv(t)) dt >

∫ T

0

ϕ(t)KS(S(t)) dt,

and thus is a contradiction with the optimality of S(·).

We prove now sign properties of the adjoint variables, that will play a crucial role in the following.

Proposition 3. For any optimal solution, one has λS(t) ≥ 0 for t ∈ [0, T ). Moreover, one has λV < 0.
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Proof. Let us consider the set
E := {t ∈ [0, T ) s.t. λS(t) < 0}

and assume by contradiction that E is non-empty. As one has S(t) > Sh for any t ∈ [0, T ] (cf Lemma 1), and the
functions KS and KR are respectively non-decreasing and increasing on [Sh, 1] (by Assumption 1), one obtains
from equation (32) that λS is non-increasing on E. Therefore, one has supE = T and λS(T ) < 0, which is a
contradiction with the transversality condition (35).

If the constant λV is non negative, then one has φ(t) > 0 for any t ∈ [0, T ) which implies by (38) that one has
u(t) = 1 for almost any t ∈ [0, T ]. Then one obtains

V (T ) >

∫ T

0

ũOT (t) dt =
Q[ũOT (·)]
Fmax

> V̄ ,

which is in contradiction with the target condition (30).

Then, Proposition 3 and the transversality condition (35) imply that one has φ(T ) < 0, which gives straight-
forwardly the following property of the optimal solutions.

Corollary 4. For any optimal solution, there exists t̄ < T such that u(t) = 0 for a.e. t ∈ [t̄, T ]. Moreover, one
has S(T ) < S?.

5.2 Study of singular arcs

Let us now study the possibilities of singular arcs (we recall that a singular arc is a part of an optimal trajectory
such that the switching function φ remains equal to zero).

Proposition 5. A singular arc on a closed interval I not reduced to a singleton satisfies S(t) = S̃, t ∈ I where S̃
is a corner point of KS or KR that belongs to (Sw, S

?].

Proof. A singular arc occurs when the switching function φ is equal to zero on a closed interval I of non-null
measure. This amounts to have λS constant equal to λ?S := −λv/(k1k2) > 0 on such an interval. If KS and KR

are differentiable at S(t1) with t1 ∈ I, K ′S(S(t)) and K ′R(S(t)) are constant equal to K ′S(S(t1)) and K ′R(S(t1)) on
a neighborhood (t1 + ε, t1 + ε) of t1 (as the functions KS , KR are piecewise linear by Assumption 1). Then, from
equation (32), one gets

ϕ(t)
[
(λ?Sk1 − 1

)
K ′S(S(t1))− λ?Sk1K ′R(S(t1)

]
= −λ?Sk1K ′R(S(t1)), t ∈ I ∩ (t1 + ε, t1 + ε). (39)

From Lemma 1, one has S(t1) > Sh and thus K ′R(S(t1)) > 0 (by Assumption 1). Finally, as the function ϕ is
strictly increasing, we deduce that (39) cannot be fulfilled. We deduce that a singular arc can occur only for
constant S = S̃ that are non-differential points of KS or KR.

From Proposition 2, we known that a singular arc cannot be optimal at values S̃ above S?, and from Lemma
1, that it cannot occur for S̃ ≤ Sh. From equation (32), one should have

0 ∈ ϕ(t)
(
λ?Sk1 − λ0

)
∂CKS(S̃) + (1− ϕ(t))λ?Sk1∂CKR(S̃) a.e. t ∈ I. (40)

At S̃ ∈ (Sh, Sw), one has ∂CKS(S̃) = {0} and any element in ∂CKR(S̃) is positive. Therefore condition (40)
cannot be fulfilled. Let us show now that a singular arc with S̃ = Sw cannot be part of an optimal solution. If it
is, let I = [t1, t2] and define

δI =

∫
I

u(t)dt :=

∫
I

ũSw
(t)dt < t2 − t1.

From Corollary 4, one has t2 < T . If S(t) ≤ Sw for any t > t2, one would have B(T ) = B(t1). Consider then the
control

ǔ(t) =

 u(t), t ∈ [0, t1),
1, t ∈ [t1, t1 + δI),
0, t ∈ [t1 + δI , T ],

and the associated solution Š(·), B̌(·). This control would be admissible (i.e. Q[ǔ(·)] ≤ Q[u(·)] = Q̄), and one
would have B̌(T ) > B̌(t1 + δI) > B̌(t1) = B(T ) (because Š(t) > Sw for t ∈ [t1, t1 + δI]). Then, the control
u(·) would not be optimal. Therefore S(·) has to take values above Sw in the time interval [t2, T ] and from what
precedes for a.e. t > t2 with S(t) > Sw, either Ṡ(t) > 0 (with u(t) = 1) or Ṡ < 0 (with u(t) = 0) or Ṡ(t) = 0 (with
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a singular control). Then, from Corollary 4 we deduce that there exists a sub-interval J = [t̄1, t̄2] ⊂ (t2, T ] with
t̄1 < t̄2 such that S(t) > Sw for any t ∈ J and u(t) = 0 for a.e. t ∈ J .

Let us now consider a control with t† ∈ I, defined as follows

u†(t) =

 0 if t ∈ [t1, t
†),

1 if t ∈ [t†, t2],
u(t) otherwise.

Denote by S†, B† the corresponding solution. For t† = t1, one has S†(t2) > Sw and for t† = t2, S†(t2) < Sw. By
the intermediate value theorem, there exists t†0 ∈ (t1, t2) such that S†0(t2) = Sw. Then, one has S†0(t) < Sw at
any t ∈ (t1, t2) and S†0(t) = S(t) for t ∈ [0, T ] \ (t1, t2). Moreover one has B†0(t) = B(t) for any t ∈ [0, T ] (due to
Ḃ(t) = Ḃ†0(t) = 0 at t ∈ (t1, t2)). As one has S†0(t1) = S†0(t2) = Sw, one gets from the integration of equation
(1) on I and KR increasing on (Sh, Sw), the inequality∫

I

u†0(t)dt =
1

k2

∫
I

(1− ϕ(t))KR(S†0(t))dt <
1

k2

∫
I

(1− ϕ(t))KR(Sw)dt =

∫
I

u(t)dt.

Therefore, the control u†0(·) gives the same cost B†0(T ) = B(T ) but with a lower water consumption i.e. Q[u†0(·)] <
Q[u(·)] = Q̄. Let δ = Q̄−Q[u†0(·)] > 0 and consider the control

u#(t) =

{
u†0(t), t ∈ [0, t̄1) ∪ [min(t̄2, t̄1 + δ), T ],
1, t ∈ [t̄1,min(t̄2, t̄1 + δ)),

which satisfies also the constraint (12). Denote S#(·), B#(·) the solution with the control u#(·). One has
S#(t̄1) = S(t̄1) and B#(t̄1) = B(t̄1) and then S#(t) > S(t) for any t > t̄1, which implies B#(t) > B(t) for any
t > t̄1 (because KS(S#(t)) > KS((t)) for t ∈ J). Therefore, the control u(·) cannot optimal, which shows that
S̃ = Sw cannot be a singular arc.

5.3 The SMS strategy

For convenience, we denote sub-sets of corner points of KS or KR as below.

Definition 5. For any S ∈ (Sw, S
?], let C(S) be the set of corner points S̃ ≥ S in (Sw, S

?] and n(S) = card C(S).
Define then the increasing sequence of corner points {S̃i(S)}i=1···n(S) such that C(S) = {S̃1(S), · · · , S̃n(S)(S)}.

Note that for any S ∈ (Sw, S
?], the set C(S) is non empty. It contains at least S? as the largest element,

i.e. S̃n(S) = S?. We define now the saturated multiple shots (SMS) strategy.

Definition 6. For Sm ∈ (Sh, S
?] and a sequence of non decreasing numbers Vi ∈ (0, V̄ ], i ∈ {1, · · · , n(Sm)} with

at least one equal to V̄ , define the time-varying feedback control

ψSMS
Sm,{Vi}(t, S, V ) :=


0 if V = V̄ or S > Sm with V = 0,

ũS(t) if S = S̃i(Sm) for i ∈ {1, · · · , n(Sm)} with V < Vi,
1 otherwise.

(41)

Note that this control strategy is admissible because it guarantees V (T ) ≤ V̄ . This strategy consists of starting
the irrigation when the moisture S reaches an irrigation trigger threshold Sm, with one or several stages. If the
humidity rate S(t) reaches a level S̃i(Sm) for some i ∈ {1, · · · , n(Sm)} the flow rate is saturated to maintain S
constant at this level value as long as the used volume V (t) stays below the value Vi. This is what we call a
”saturated shot”. Note that if Vi is too small or if S̃i(Sm) cannot be reached, there is no saturation of the flow
rate for this value i.e. the trajectory does not present a step at this value. The generated trajectory has then at
most n(Sm) increasing saturated slots. This is why we call this feedback control a ”saturated multiple shots” (see
Section 6 for an illustration). Remark also that once S(·) has reached Sm then S(t) ≤ S? for any future time. We
now give our main result about the optimality of the SMS strategy.

Theorem 1. Under Assumptions 1, 2, 3, 4 and Hypothesis 1, there exists a value Sm ∈ (Sh, S
?] and a sequence

of non decreasing numbers Vi, i = 1, · · · , n(Sm) with at least one equal to V̄ such that the SMS feedback (41) with∫ tM

0

ψSMS
Sm,{Vi}(t, S(t), V (t)) dt = V̄ for some tM < T (42)

is optimal.

12



Proof. Let u(·) be an optimal control, S(·), V (·) the associated solution of (28), (29) and λS(·), λV the adjoint
variables given by the Maximum Principle (see Section 5.1). Recall first that under Hypothesis 1, S(·) satisfies
S(t) ≥ S(t) for any t ∈ [0, T ] with S(t) ≤ S? for t ∈ [t, T ] (cf Proposition 2.ii).

As u(t) = 0 for a.e. t ∈ [0, t] (Proposition 2.i), the switching function φ(·) has to be non-positive on [0, t],
or equivalently one should have λS(t) ≤ λS? = −λv/(k1k2) > 0 for t ∈ [0, t]. On the interval [0, t], S(·) is thus
decreasing with S(t) = S?. As KR and KS are respectively increasing and constant on the interval [S?, 1], we
deduce from (32) that λS(t) < λS? for any t ∈ [0, t).

Consider the set
C := {t ∈ [t, T ] s.t. λS(t) ≥ λS?}

which is of non empty interior (otherwise u(t) = 0 would be optimal for any t ∈ [t, T ], which is not possible by
Proposition 2.iii). Let us show that the set C is a connected. If not, consider a time interval (t1, t2) in-between
two consecutive connected components of C, that is such that λS(t1) = λS(t2) = λS? and λS(t) < λS? for any
t ∈ (t1, t2). Note that λS(t) < λS? for t ∈ (t1, t2) implies that u(t) = 0 for almost any t ∈ (t1, t2) and consequently
S(·) is decreasing on (t1, t2).

The function λS attains necessarily its minimum on (t1, t2), say at t̂, and one has then

0 ∈ ϕ(t̂)(λS(t̂)k1 − 1)∂CKS(S(t̂)) + (1− ϕ(t̂))λS(t̂))k1∂CKR(S(t̂)). (43)

If S(t̂) < Sw, one has ∂CKS(S(t̂)) = {0} and ∂CKR(S(t̂)) ⊂ R?+ (by Assumption 1 and Lemma 1), and thus (43)

cannot be satisfied. So, one has necessarily S(t̂) ≥ Sw. Note that one has also λS(t̂)k1 − 1 < 0.
As S(·) is decreasing on (t1, t2), K ′S(S(t)) and K ′R(S(t)) exist for almost any t ∈ (t1, t2). The function KS ,

resp. KR, being concave, resp. convex, on (Sw, S
?), and as S(t) ∈ (Sw, S

?) for any t ∈ (t1, t̂), one has the property

S(t) > S(t̂) ⇒
{
ξ ≥ K ′S(S(t)) > 0, ∀ξ ∈ ∂CKS(S(t̂)) and K ′R(S(t)) ≥ ζ > 0, ∀ζ ∈ ∂CKR(S(t̂)),

}
(44)

for almost any t ∈ (t1, t̂). Now, λ̇S(t) exists for a.e. t ∈ (t1, t̂) and one can write

λ̇S(t) = ϕ(t)(λS(t)k1 − 1)K ′S(S(t)) + (1− ϕ(t))λS(t))k1K
′
R(S(t))

≥ ϕ(t)(λS(t̂)k1 − 1)K ′S(S(t)) + (1− ϕ(t))λS(t̂))k1K
′
R(S(t)),

for almost any t ∈ (t1, t̂). Finally, as the function ϕ is increasing and positive, one obtains with (44) the inequality

λ̇S(t) ≥ ϕ(t̂)(λS(t̂)k1 − 1)ξ + (1− ϕ(t̂))λS(t̂))k1ζ, ∀ξ ∈ ∂CKS(S(t̂)), ∀ζ ∈ ∂CKR(S(t̂)),

for almost any t ∈ (t1, t̂). From (43), one gets λ̇S(t) ≥ 0 for almost any t ∈ (t1, t̂), which contradicts λS(t̂) being a
minimum of λS on (t1, t2). The set C is thus connected.

The set C being non-empty connected and λS(·) continuous, C is an closed interval [tm, tM ] and u(t) = 0 for
a.e. t /∈ C. From Proposition 2 and Lemma 1, we have that tm ≥ t and Sm = S(tm) belongs to (Sh, S

?]. Moreover,
from Corollary 4, we have tM < T . Then, at any t ∈ C, the switching function φ(t) is non-negative. Therefore, for
a.e. t ∈ C, either u(t) = 1 or u(t) = ũS̃(t) with S̃ ∈ (Sw, S

?) a corner point (Proposition 5)). Consequently, V (·)
is increasing on C and S(·) non decreasing on C, composed of increasing parts u = 1 and possibly singular ones
S = S̃i with S̃i ∈ C(Sm). As V (·) is increasing, the time ti when the solution S(·) leaves S = S̃i is equivalently
defined by the value Vi = V (ti) reached by the variable V (·). If S̃j is not reached, we can set by convention
Vj = V̄ .

At t = tM , Proposition 2 gives S(tM ) ≤ S? and V (tM ) = V̄ . Then, either one has S(tM ) /∈ C(Sm) and
S? = S̃n(Sm) is not reached, or S(tM ) = S̃j ∈ C(Sm) with j ∈ {1, · · · , n(Sm)} and Vj = V̄ . In any case there exists
i ∈ {1, · · · , n(Sm)} such that Vi = V̄ . Finally, one can easily check that u(·) fulfills u(t) = ψSMS

Sm,{Vi}(t, S(t), V (t))

for a.e. t ∈ [0, T ], and property iii of Proposition 2 imposes that the Sm and the Vi are such that the equality (42)
is satisfied.

Let us underline that the structure of the feedback (41) does not depend on the shape of the radiation inter-
ception efficiency function ϕ, although the optimal switching times do depend on the values of this function.
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5.4 The SOS strategy

When the functions KS , KR have no corner on the interval (Sw, S
?), as it is the case for Assumption 1bis, the

SMS strategy takes a simpler expression, that we define as a “saturated one slot” (SOS) strategy as follows.

Definition 7. For Sm ∈ (Sh, S
?], define the time-varying feedback control

ψSOSSm
(t, S, V ) :=

 0 if V = V̄ or S > Sm with V = 0,
ũS?(t) if S = S? with V < V̄ ,
1 otherwise.

(45)

This strategy consists of irrigating crops at once when the humidity rate S(t) gets equal to Sm. The water is
delivered at the maximal flow rate (u = 1) as long as the humidity rate S(·) is below S?, or maintain it S = S?

(with the singular control ũS?(·)), until the entire water budget V̄ has been used up. This strategy is parameterized
by the single value Sm or equivalently the time when irrigation starts. This explains the wording ”saturated one
shot”. One has the following result about the optimality of this strategy.

Theorem 2. Under Assumptions 1bis, 2, 3, 4 and Hypothesis 1, there exists a value Sm ∈ (Sh, S
?] such that the

SOS strategy (45) with ∫ tM

0

ψSOSSm
(t, S(t), V (t)) dt = V̄ for some tM < T, (46)

is optimal.

Proof. Under Assumption 1bis, one has n(S) = 1 for any S ∈ (Sh, S
?) with V1 = V̄ . Therefore, the SMS feedback

(41) has only one parameter Sm which gives the simpler expression (45).

6 Numerical simulations and discussion

In this section, we compare numerically three irrigation strategies on two examples: the SMS and SOS previously
introduced and the “One Shot” (OS) strategy which consists of delivering water at maximum flow rate during a
single irrigation period at a triggering humidity level Sm.

Definition 8. For Sm ∈ (Sh, S
?], we denote by tS the irrigation triggering time associated to an humidity level

Sm (tS = S−1(Sm)) and define the OS open-loop control as follows :

uOSSm
(t) :=

{
0 if t < tS or t > min(tS + Q̄/Fmax, T )),
1 if t ∈ [tS ,min(tS + Q̄/Fmax, T )).

The OS strategy is a pure ”bang-bang” control that is implemented in open-loop (once the irrigation starts,
it lasts Q̄/Fmax)). It represents a class of widely used irrigation strategies, typically when drip irrigation is
not available. For this strategy, we shall look for the triggering humidity level Sm that give the best biomass
production, to be compared with the biomass obtained with the best SMS and SOS strategies.

The optimal SMS (and SOS) strategy can be numerically determined, characterizing the parameters (Sm, V1, · · · , Vn)
in the set

P := (Sw, S
?]× {V ∈ Rn; 0 ≤ V1 ≤ V2 ≤ · · · ≤ Vn = V̄ }

where n ≥ 1 is the number of distinct corner points S̃ of the functions KS or KR in the interval (Sw, S
?]. For

each (Sm, V1, · · · , Vn) in P, the SMS feedback (41) is well defined and generates an unique solution of equations
(1)-(2), for which we associate the cost B(T ), even though the constraint (42) might be not satisfied. Indeed, when
looking for values of the parameters in P that give the largest B(T ), we know that the optimal ones necessarily
satisfy the equality (42), according to Proposition 2.

In order to compare different irrigation strategies by their triggering level, we also introduce the partially
optimized control SMS∗, parameterized by a humidity level Sm, which corresponds to the best SMS strategy for
a given triggering level Sm. This strategy can thus be obtained numerically by the approach presented above but
optimizing with respect to the only parameters (V1, · · · , Vn). This allows us the compare the crop productions
provided by the three strategies SMS, SOS, OS for the same triggering level Sm. For each of them, their optimal
production is then obtained for their best value Sm.

14



The performances of these strategies are compared for two kinds of configurations: one with the simplest Ks, Kr

functions that fulfill Assumption 1bis, (see Fig.1) and a second one when the function Ks exhibits a more complex
shape (see Fig. 4). For illustrative purposes only, we have considered dimensionless parameters (by normalizing
the units), functions ϕ in the family of t 7→ (t/T )α (α > 0) and functions f as logistic laws B 7→ rB(1 − B

Bmax
)

parameterized by (r,Bmax, B0). The optimal solutions have been verified with the Bocop-HJB solver [2] that
provided with a very good accuracy the same optimal trajectories, but in open-loop.

6.1 Under Assumption 1bis

We recall that under this assumption, the SMS and SOS strategies coincide. We present in Fig. 5 the simulations
performed with irrigation strategies SOS and OS and with inputs data given in Table 1.

T k1 k2 S? Sw Sh Fmax Q̄ α r Bmax B0

1 2.1 5 0.7 0.4 0.2 1.2 0.1 4 25 1 0.0005

Table 1: Normalized parameters used for the simulations under Assumption 1bis

The best OS strategy was obtained for a triggering level Sm = 0.338 and produced a biomass B(T ) = 0.022.
The corresponding humidity dynamics are plotted in Fig. 5c. It can be seen that some values of S are above S?.
It can be therefore concluded from the application of Proposition 2 that an OS strategy cannot be optimal. This is
further illustrated by applying the SOS strategies for the same input data. We find that the optimal SOS strategy
gives a final biomass B(T ) = 0.0388 which is 77% higher than what gives the best OS strategy. The associated
control is a bang-singular-bang (see Fig. 5b).

6.2 Under Assumption 1 without Assumption 1bis

In this example, we consider that the function Ks presents an additional corner point Sc in between Sw and S?

(see Fig. 4). We present in Fig. 6 the simulations performed with irrigation strategies SMS, SOS and OS and with

S 1

1

0
S

S*S

K
S

w c 1

1

0
S

R
K

Sh

Figure 4: Graphs of the functions KS and KR that fulfill Assumption 1 but not Assumption 1bis

inputs data given in Table 2. The biomass levels obtained when optimizing these strategies were 0.111 for SMS,
0.094 for SOS and 0.052 for OS. The best production is obtained with the SMS strategy (as expected by Theorem
1) and corresponds to the highest triggering humidity level (S = 0.43) among the three tested strategies (Fig. 6a).
This level corresponds to the earliest irrigation triggering time (tS = 0.392, see Fig. 6b).

We have shown that the optimal solution may have a singular arc corresponding to intermediate corner points.
When looking at the humidity profile in Fig. 6c, we can see that indeed two arcs do occur in this setting: one at
S = Sc and another one later at S = S?.

6.3 Discussion

The structure of SMS strategies differs from the structure of solutions obtained by the authors in [16] with a
comparable methodological approach but different model, criterion and constraint: their optimal irrigation policy
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T k1 k2 S? Sw Sh Fmax Q̄ α r Bmax B0 Sc
1 2.5 5 0.7 0.4 0.2 1.2 0.09 3 25 1 0.0005 0.43

Table 2: Normalized parameters used for the simulations under Assumption 1.
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Figure 5: Comparison of OS and SOS controls strategies with model parameters given in Table 1.
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Figure 6: Comparison of the SMS control with OS and SOS controls with Ks having three corner points. Model
parameters used are given in Table 2.

.

consists of bringing the soil moisture from its initial level to an optimal target value as fast as possible and
maintaining it until harvesting time when irrigation ceases. In a different context (with rainfall inputs and no
water quota), the authors of [12] study on a simple irrigation model the optimal control minimizing the total
quantity of water to ensure the soil humidity to remain above a given threshold Smin. They found an optimal
control policy whose structure is an SOS strategy with S̄ = Smin but with a triggering level equal to S̄. We believe
that these differences between these models, their criterion, and their optimal solutions are of interest and make
our mathematical analysis worth of interest.
Note finally that the practical implementation of an SMS (OR SOS) strategy on a real irrigation system requires
an adaptive controller to maintain the humidity level constant at the values of the singular arcs (differently to the
OS strategy), which needs the on-line measurement of the variable S. Moreover, differently to the OS strategy, it
gradually changes the input flow rate during the singular arc phase. Therefore, the SMS (or SOS) strategy can be
considered more ”sophisticated” than the OS one, as it requires a humidity sensor for its concrete application.
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7 Conclusion

We have introduced a simple crop irrigation model in order to study optimal irrigation scheduling using mathe-
matical analysis. We have first shown, using a comparison tool, that the state constraint of this model is never
activated for the optimal control problem solutions.

Moreover, we have demonstrated that, under water scarcity, an optimal trajectory has to reach as fast as possible
the domain for which the relative humidity is below or equal to the threshold of maximal crop transpiration, and
then to maintain it in this domain until the harvesting time. However, due to water scarcity, it has to be strictly
below this threshold at some stage. We have then proved that the optimal strategy consists of irrigating once but
with possible multiple steps (”SMS strategy”) and not necessarily with a single shot (”OS strategy”) as commonly
used in practice. Moreover, we have shown that when the water-stress functions do not present any corner in
between their extreme values, the SMS strategy has at most one step which is necessary at the maximal crop
transpiration threshold (that we called ”SOS strategy”). The SOS strategy is simpler to apply than the SMS one
(with more than one step) as the soil moisture has simply to be maintained at the transpiration threshold until
the water quota is reached. A remarkable feature is that the structure of the optimal strategy does not depend on
the radiation interception efficiency function (although optimal trigger threshold and step values do rely on this
function).

We have then compared the three control strategies: the open-loop one-shot (OS), commonly used in practice,
the feedback saturated one-shot (SOS), that could exhibit a singular arc, and the more sophisticated feedback
strategy with multiple increasing shots (SMS), that could exhibit several singular arcs. We have shown numerically
the superiority of this last strategy. We guess that the SMS strategy (that coincides with the SOS one for simple
water-stress functions) could also be the best one in real situations. This would be a promising result since
SMS/SOS irrigation schemes are not such intuitive control strategies, that could also be tested on simulations of
more detailed models. This shall be the matter of future work.
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[21] Trélat, E. and Zuazua, E., The turnpike property in finite-dimensional nonlinear optimal control, Journal
of Differential Equations, 258, 81–114, 2015.

[22] Vico, G. and Porporato, A., Probabilistic description of crop development and irrigation water require-
ments with stochastic rainfall, Water Resources Research, 49, 3, 1466–1482, 2013.

[23] Allen, Richard G. and Pereira, Luis S. and Raes, Dirk and Smith, Martin et al., Crop evap-
otranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56,
Fao, Rome, 1998.

[24] Vinter, R. Optimal Control, Systems & Control: Foundations & Applications, Birkhäuser, 2000.
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