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A B S T R A C T

With the current expansion of cities, urban trees have an important role for preserving the health of its in-
habitants. With their evapotranspiration, they reduce the urban heat island phenomenon, by trapping CO2

emission, improve air quality. In particular, street trees or alignment trees, create shade on the road network, are
structuring elements of the cities and decorate the roads. Street trees are also subject to specific conditions as
they have little space for growth, are pruned and can be affected by the spread of diseases in single-species
plantations. Thus, their detection, identification and monitoring are necessary. In this study, an approach is
proposed for mapping these trees that are characteristic of the urban environment. Three areas of the city of
Toulouse in the south of France are studied. Airborne hyperspectral data and a Digital Surface Model (DSM) for
high vegetation detection are used. Then, contextual information is used to identify the street trees. Indeed,
Geographic Information System (GIS) data are considered to detect the vegetation canopies close to the streets.
Afterwards, individual street tree crown delineation is carried out by modeling the discriminative contextual
features of individual street trees (hypotheses of small angle between the trees and similar heights) based on
Marked Point Process (MPP). Compared to a baseline individual tree crown delineation method based on region
growing, our method logically provides the best results with F-score values of 91%, 75% and 85% against 70%,
41% and 20% for the three studied areas respectively. Our approach mainly succeeds in identifying the street
trees. In addition, the contribution of the angle, the height and the GIS data in the street tree mapping has been
studied. The results encourage the use of the angle, the height and the GIS data together. However, with only the
angle and the height, the results are similar to those obtained with the inclusion of the GIS data for the first and
the second study cases with F-score values of 88%, 79% and 62% against 91%, 75% and 85% for the three study
cases respectively. Finally, it is shown that the GIS data only is not sufficient.

1. Introduction

The world urban population will increase to nearly 5 billions by
2030, and at the same time the urban land cover will increase by 1.2
millions km2 (Seto et al., 2012). With this expansion of urban areas,
urban canopies have an important role to play as they improve air
quality (Yang et al., 2005), reduce heat islands (Doick et al., 2014),
promote biodiversity and have a relaxing psychic action (Chiesura,
2004). Urban tree structures including street trees and park ones do not
have necessarily the same functions/roles in the urban context (Bolund
and Hunhammar, 1999). In addition to the properties mentioned above
(Vailshery et al., 2013; Gillner et al., 2015), the street trees create

shade, are structuring elements of the cities and decorate the roads
(McPherson et al., 2016). They are also subject to specific conditions as
they have little space for growth and are pruned, most often to be
adapted to the constraints of the sites, and can be affected by the spread
of diseases in single species plantations (Sebestyen et al., 2008). As a
case in point, a pruned lime tree (Tilia) has a life expectancy of
150 years against 800 years without constraint (Baraton, 2014; Fini
et al., 2015). In order to highlight the crucial place of the street trees in
the urban environment, the example of Paris, France can be cited with
nearly 100,000 street trees (about half of the trees). These street trees
cover around 700 km of roads and concern approximately 1600 roads
out of 6000. Especially, the shadow produced by the street trees
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represents 3% of the area of Paris (Rol Tanguy et al., 2010). The
managers of the urban environment have to consider the distinctive
characteristics of the street trees for a specific urban planning and a
specific monitoring, and a first step is the individual street tree iden
tification. Nowadays, this type of procedure is carried out manually, by
field campaign or by photointerpretation (Pulighe and Lupia, 2016),
and does not allow to cover large scales of continuous urban area with
regular time basis.

Remote sensing opens the way to automate the individual street tree
mapping. Indeed, airborne remote sensing sensors can cover entire ci
ties with a spatial resolution of an order of magnitude of 1m and with
regular time basis (Alonzo et al., 2014). Airborne multispectral and
hyperspectral sensors measure the spectral radiance and thus allow the
vegetation to be detected (Xiao et al., 2004). Active sensors as Light
Detection And Ranging (LiDAR) or passive sensors in stereoscopic
configurations can be used to measure the height and makes it possible
to characterize the vertical structure of the objects (MacFaden et al.,
2012). With the association of these remote sensing technologies, the
urban canopy considered as high vegetation can then be mapped
(Ramdani, 2013). On the other hand, Geographic Information System
(GIS) data, especially vector data, constitute an important source of
information and are often available at a city scale from the urban
managers, but also more and more on a global scale from open data
bases such as OpenStreetMap (OSM). In a perspective of street tree
identification, such vector data are of interest because an information
such as the road network is often available and would allow the ca
nopies close to the streets to be detected (Wen et al., 2017).

From these remote sensing data, individual tree mapping, con
ventionally termed Individual Tree Crown Delineation and Detection
(ITCD), has been addressed for many years and several ITCD methods
have been proposed (Zhen et al., 2016). Raster based methods such as
valley following (Leckie et al., 2003), region growing (Adeline, 2014),
watershed segmentation (Chen et al., 2006) and template matching
(Gomesa and Maillarda, 2014) have been developed. Point cloud based
and tree shape reconstruction approaches like K means clustering
technique (Gupta et al., 2010) and Hough transform (Van Leeuwen
et al., 2010) have been explored respectively. Finally, there are
methods combining raster, point, and a priori information such as
Markov random fields (Ardila et al., 2011), Marked Point Process (MPP)
approaches (Perrin et al., 2006) which can use a prior contextual in
formation on the trees (Van Lieshout, 2000). Even if these methods
have exhibited good performance in the literature, complicated urban
and non urban forests are still challenging (mainly in case of important
overlaps) (Zhen et al., 2016). Focusing on the urban environment, of
the 207 studies identified in the recent review of Zhen et al. (2016) on
the ITCD methods, only 18 have been applied in urban areas. The ob
jective of these studies was to map the urban trees individually, and no
distinction is made between the different structures of the trees in the
urban context such as street trees and park trees.

However, these structures are of interest for the urban managers for
a specific urban planning and a specific monitoring, with the example
of the street trees highlighted previously. In addition, this information
could be used in order to improve not only the individual tree mapping
itself (by taking advantage of a prior contextual information knowledge
about the urban trees depending on their structure), but also the tree
species classification for example (by defining specific categories of
urban trees depending on their structure because street trees have not
necessarily the same spectral traits than park ones). To our knowledge,
this consideration of the tree structures in the urban canopy mapping is
the subject of only one study, Wen et al. (2017) where an approach for
classifying the urban canopies (patch level classification) in three
classes (park, roadside and residential institutional canopies) has been
proposed. GIS data and specific spectral, textural, shape and contextual
features (such as the proximity to the road) are considered in order to
characterize these classes. Shenzhen and Wuhan (China) constitute the
study sites and the method is based on WorldView 2 satellite imagery

(spatial resolution of 2m for the multispectral mode). F score values of
76%, 89% and 87% are obtained for park, roadside and residential
canopies respectively. In such a patch level framework, there are con
fusions between the street trees and the other populations of trees be
cause of the spatial connections between the canopies, which could be
probably better handled with an individual detection approach.

Summarizing the existing literature, there is minimal consideration
of the specific tree structures in the urban environment such as street
trees and park trees. In particular, no individual tree mapping which
takes into account the structure of the alignment trees has been pro
posed. To alleviate this issue, the aim of this paper is to map the trees
which belong to an alignment individually. Airborne data and con
textual information are used in an approach based on MPP, which al
lows a prior information to be modeled. For that purpose, the following
issues are addressed:

1. What are the discriminative contextual features of the street trees?
2. How to model these features for individual street tree mapping?
3. Which features contribute the most in individual street tree map

ping?

The paper is organized as follows. Section 2 presents the study area
and the data used for individual street tree mapping, followed by Sec
tion 3 with the description of the proposed method and a baseline ITCD
method used for comparison. Afterwards, the results are showed in
Section 4 and discussed in Section 5. Finally, main conclusions of the
study are detailed and the perspectives of the work highlighted in
Section 6.

2. Materials

2.1. Study area

The study is carried out in Toulouse city located in the South West
of France (43.6°N, 1.44°E). With about 500,000 inhabitants, Toulouse is
the fourth city in France. The climate of Toulouse is temperate with
oceanic, Mediterranean and continental characteristics. Concerning the
urban vegetation, Toulouse would have approximately 140,000 trees
with at least 20,000 street trees according to urban managers. Three
areas in Toulouse downtown are selected in this study (Fig. 1).

The three study cases are presented in Fig. 2. In all cases, the street
trees form lines along roads and are pruned as it will be highlighted in
Section 3.1. This results in small angle between the street tree trunks
and similar tree heights. The first study site is located in the center of
Toulouse and includes street and park trees. The street trees do not
overlap and are silver linden trees (Tilia tomentosa). The second site is
also located in the center of Toulouse and also includes street and park
trees. However, this case is more challenging than the first one because
the number of trees is higher and the street trees overlap more and are
organized in two adjacent lines. In this case, the street trees are plane
trees (Platanus× hispanica). The third site is situated in a quarter of
private properties. For this site, the number of trees is high with a
complex spatial organization because of the presence of many garden
trees. The majority of the trees are not aligned, and spread over a great
extent. The street trees do not overlap and are plane trees (Pla
tanus× hispanica).

2.2. Airborne and GIS data

Airborne data were acquired on October 24, 2012 at 11:00 UT
(Universal Time) during the UMBRA campaign (Adeline et al., 2013)
organized by the French Aerospace Lab (ONERA) and the French
Mapping Agency (IGN). The flight height was approximately 2000m
over the study area. The HySpex Visible Near Infrared (VNIR) system
(Köhler, 2016) was used and consists of an hyperspectral push broom
camera with 160 spectral bands (0.4 1μm). About the spatial
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resolution, the VNIR camera data are acquired with a spatial resolution
of 0.4 m and 0.8m across and along tracks, respectively. In order to
build a DSM, the French Mapping Agency CAMv2 system was used
(Souchon et al., 2010) for performing stereoscopic acquisitions with an
overlap of 80%. A vector layer of roads derived from the OSM database
is used and identified as “GIS data” in the next sections. In OSM, each
road of the road network is characterized by the attribute type which
describes the type of road (motorway, primary, path, etc.). Only the
primary, secondary, tertiary, residential and service roads are con
sidered because we assume that the street trees are only planted along
roads with motor vehicle traffic (Fig. 3).

2.3. Preprocessing

Geometric and radiometric preprocessing is carried out. From the
stereoscopic measurements, the French Mapping Agency provides us a

georeferenced DSM with a spatial resolution of 12.5 cm. Then, the VNIR
image is registered on the DSM by defining Ground Control Points
(GCP) on QGIS and by using the function gdalwarp from GDAL. Nearest
neighbor resampling is applied in order to preserve the original spectral
data. Also, the Thin Plate Spline (TPS) transformation (Duchon, 1977)
is applied for its ability to correct the deformations locally. Because the
VNIR pixels have rectangular shapes with the longer side along track, a
square grid with a spatial resolution of 0.4m (minimum between the
rectangle sides) is chosen to preserve the original data. Visual assess
ment suggests that the error is less than a pixel for the whole data set.
Furthermore, the hyperspectral data are atmospherically corrected to
deal with spectral reflectances with COCHISE (Poutier et al., 2002)
based on MODTRAN and assuming a flat scene. The DSM is resampled
to the VNIR image resolution (0.4 m×0.4m) with the nearest neighbor
resampling. In order to get a normalized DSM (nDSM) and assuming a
flat ground, the ground altitude is estimated as the altitude corre
sponding to the maximum of the DSM histogram and we make the
difference between the DSM and the estimated altitude (Adeline, 2014).
The size of the bins of the histogram is 1m.

3. Methods

The description of the proposed method is carried out in Section 3.1,
followed by Section 3.2 with the description of a baseline ITCD method
used for comparison.

3.1. Proposed street tree mapping

Fig. 4 presents the proposed street tree mapping scheme. First, the
high vegetation close to the streets is detected (Section 3.1.1). Secondly,
the street tree crowns are delineated based on MPP which allow a prior
contextual information to be modeled via an interaction term (Section
3.1.2). In this paper, we assume that the street trees can be character
ized by the following discriminative contextual features:

• A street tree is close to a road.

• A street tree is aligned with its neighbors.

• A street tree has the same height as its neighbors.

3.1.1. High vegetation detection
Four masks (vegetation, shadow, height and optionally distance) are

combined (geometric intersection, i.e. logical operator and) in order to
generate a high vegetation mask. This last one is then used for com
puting the data energy U x( )d of the MPP, defined in Section 3.1.2
(Fig. 4). The mask is the MPP input data that allows to reduce the

Fig. 1. Study area with the three study cases represented on a Google Earth
image. The yellow rectangles correspond to each study case. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 2. Description of the study cases. At the top, field view is showed for each case. At the bottom, Google Earth images illustrate each case.
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computational time, by restricting the search space P (introduced in
Section 3.1.2). For the vegetation mask, the NDVI (Normalized Differ
ence Vegetation Index) index (Rouse et al., 1974) is computed for each
pixel of the VNIR image from a red and an infrared hyperspectral bands.
Above a threshold determined automatically with the Otsu method
(Otsu, 1975), the pixels are kept. About the shadow mask, the spectral
reflectance cannot be retrieved in shadows, as the atmospheric

correction method is based on a flat scene hypothesis (Fig. 3 near trees
and buildings). To avoid errors from these shadow regions, a literature
index defined as: = ∗ ∗ + + + ∗I R G B NIR1/6 (2 2 ) (Nagao et al., 1979)
is used for its efficiency and simplicity in the same way as the NDVI.
Regarding the height mask, all the pixels with a nDSM value higher
than 5m are filtered (the minimum height value of the alignment trees
in Toulouse according to urban managers). Finally, a distance to the

Fig. 3. Illustration of the data used in this study for the first site. Left: VNIR reflectance image. Right: DSM. The GIS data is represented by blue and violet lines
indicated over the airborne data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Principle of the street tree mapping method.
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roads mask is optionally used to assess the contribution of the GIS data
to the street tree mapping. Below a distance threshold of 20m, the
pixels are retained. Indeed, from the width of the roads and the rules for
planting the trees along the roads in France, street tree trunks can be at
more than 10m from the middle of the roads. A margin of 10m is taken
in order to consider all the pixels of the crowns. For building the high
vegetation mask, the NDVI and the shadow index could be computed
from multispectral data. For next sections, the use of the GIS data is
referred as “with GIS”, “without GIS” otherwise (with or without road
network information).

3.1.2. Street tree crown delineation based on MPP
The street tree map can be viewed as a space where positions and

attributes of street trees are a specific realization of a marked point
process noted x (Van Lieshout, 2000). The proposed method assumes
that the street tree crowns can be represented as disks. In this context, a
state space χ in which x is a realization can be defined such as:

= × = × ×χ P M X Y r r[1, ] [1, ] [ , ]M M m M (1)

where P and M correspond to the position space and the space of the
marks, respectively. Regarding the positions, XM and YM are the column
and line numbers of the VNIR image. About the marks, rm and rM are the
minimum and maximum radius of the disks (2 m and 8m respectively
because the street trees are pruned and have their radius included in
this range according to urban managers). To find the realization of x
which corresponds to the street tree map, the issue becomes an energy
minimization including two energy terms called the data energy U x( )d
and the interaction energy U x( )i (Perrin et al., 2006). In the context of
the street tree mapping, the data term models individual street trees
(tree level) while the interaction term models the discriminative con
textual features of the street trees (alignment level with hypotheses of
small angle between the trees and similar heights).

The data energy U x( )d is the sum of the individual data energies
U x( )d i of each street tree xi (xi is defined by its position and radius). The
computation of U x( )d i is taken from Zhou et al. (2010). Instead of
computing a grey level radiometric distance between the pixels in the
disk and the pixels in the concentric annulus around the disk (i.e.
outside the possible crown) corresponding to xi, a simple difference
between the proportion of high vegetation pixels (from the high vege
tation mask) in the disk and the proportion of high vegetation pixels in

the concentric annulus is computed. We consider that xi corresponds to
a street tree if this distance exceeds a certain threshold d0 (0.2 fixed
after testing multiple values between 0 and 1) (Eq. (2)).
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with Nxi and Nt x, i the number of high vegetation pixels and the total
number of pixels in the disk (i.e. N

N
xi

t xi,
is a proportion of high vegetation

pixels in the disk). Similarly, Naxi and Nt a, xi are the number of high
vegetation pixels and the total number of pixels in the concentric an
nulus whose radius is fixed to 1m in order to include pixels all along the
annulus.

The interaction energy U x( )i is the sum of an energy U x( )is that
ensures the stability of the process and the street tree feature energy
U x( )if that models the features of the street trees. As in Perrin et al.
(2005), the energy U x( )i is for a street tree xi is defined according to the
intersected areas between the street tree crowns and avoids an ex
cessive overlap of the trees (for example trees located almost in the
same place) (Eq. (3)).

∑=
∩

≠

U x
A A

A A
( )

min( , )i i
j i

x x

x x
s

i j

i j (3)

where Axi and Axj refer to the areas of xi and xj. Concerning the street
tree feature energyU x( )if , it is defined by considering the features of the
street trees in the urban environment illustrated in Fig. 5. Whereas the
not street trees have no particular spatial organization and different
heights, the street trees form lines and are pruned in the same way,
most often to adapt the trees to the constraints of the sites. This results
in a small angle between the trees and similar shapes (here we only
consider the height to model the shape). In order to model these fea
tures, we define the street tree feature energy U x( )i if for a street tree xi
based on its features and the features of two of its neighboring street
trees, i.e. an alignment is modeled from three street trees (Fig. 5 and Eq.
(4)). We choose three trees because such a model is more flexible in
case of curved roads for example.

Fig. 5. Illustration of the contextual features used to compute the interaction energy. At the top, the case of street trees is described (similar height, tree species and
alignment). At the bottom, the case of trees which are not street trees is presented (various height, different tree species and no alignment).
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and the boolean a and b are used to study the contribution of the angle
between the trees (first term) and the heights (second term) in the street
tree mapping. For next sections, =a 1 is referred as “with θ” whereas is
referred as “without θ” (with or without angle information). Similarly,

=b 1 is referred as “with h” whereas =b 0 is referred as “without h”
(with or without height information). φijk is the angle between the two
segments joining the center of xi with the centers of xj and xk. In par
ticular,U x x x[ , ( , )]i i j kf is computed for all pairs of neighbors xj and xk in
the neighborhood Vxi of xi (radius of 25m because the distance between
two trees in an alignment does not exceed 10m according to urban
managers and the first and last trees have to be considered). The
minimum U x x x[ , ( , )]i i j kf is then retained as U x( )i if . If there is no pair of
neighbors,U x( )i if is equal to 1 (penalized), because an alignment tree is
never isolated. When there is a small angle between the street tree xi
and its neighboring street trees of similar heights, U x( )i if is close to 0.
Other configurations are penalized as they result in higher values of
U x( )i if .

For the energy minimization, the simulated annealing Multiple
Births and Deaths process (MBD) (Descombes et al., 2009) is chosen as
the optimization algorithm because it has proven good performance in
the literature when applied in combination with MPP for mapping tree
plantations in a rural environment (Perrin et al., 2005). The principle of
this algorithm is to alternate phases of “birth” (proposal of street trees)
and phases of “death” (removal of the street trees that are not relevant
in the sense of the defined energy). A temperature term that decreases
during the process is used to explore different tree configurations. This
is necessary in order to reach the global minimum of the energy and not
to stop at a local minimum. First, we initialize the temperature T (fixed
to 0.01) and the birth rate δ (equal to 200 which corresponds to the
order of magnitude of the number of trees in the scenes). Concerning
the value of the initial temperature which is similar to the one used in
Descamps et al. (2009), the minimized energy distributions resulting
from higher initial temperature values (tests from 0.01 to 0.05) are
similar. The lowest is then kept to reduce computational time. There
fore, this choice is empirical and may thus be specific to our dataset and
study areas. Then, the algorithm is defined as follows:

1. Birth of the street trees: For each pixel s of the VNIR image, if there
is not already a street tree at this position, we place a street tree with
the probability ∗δ B s r( , ) at this position. B s r( , ) is proportional to
the data energy U x( )d i corresponding to a disk placed at the pixel s
with a radius r and is used to reduce computational time as in
Descombes et al. (2009). Otherwise, the street trees would be ran
domly positioned uniformly.

2. Sorting of the street trees according to their energy:We compute
the data energyU x( )d i for each street tree xi in the current street tree
map. Then, the street trees are sorted according to decreasing data
energy.

3. Death of the irrelevant street trees: For each street tree xi taken in
this order, we compute the death rate as follows:
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with α β, and γ corresponding to the weights of the different en
ergies (fixed to 1, 1 and 3.5 respectively after testing multiple

These three steps are repeated 1000 times as the street tree map
does not change from one iteration to another at this stage of the
process. In other words, the convergence is reached at this stage. In
order the reduce computational time, γ is set to 0 for the first 600
iterations to map the trees without distinction between the street trees
and the not street trees. From the 600th iteration, γ is set to 3.5 to map
the street trees. At the end of each iteration, T and δ are multiplied by a
factor of 0.997 (similar to that used in Descombes et al. (2009)).

3.2. Baseline tree crown delineation used for comparison

To our knowledge, no individual street tree mapping has been
proposed. Thus, as a baseline for comparison, we chose a standard tree
crown delineation that is today the only available solution for the
purpose of that paper, even if the objectives are not exactly the same.
The baseline tree crown delineation considered as the reference method
is a region growing method developed in Adeline (2014) and inspired
from the work of Iovan et al. (2008). This type of approach is chosen as
a baseline because it is commonly used in the literature (Zhen et al.,
2016). In particular, a Canopy Height Model (CHM) is derived from a
high vegetation mask obtained similarly to the one generated with the
proposed method and the DSM. The CHM is smoothed with a Gaussian
filter whose standard deviation sGauss is equal to 2 here as in Adeline
(2014). This allows the irregularities at the surface of the trees to be
removed. Indeed, because of the foliage structure at the top of the trees,
there can be multiple local maximums that do not correspond to mul
tiple trees. The high vegetation mask is then treated such that the
smallest regions are removed. This is done according to a parameter
Nmin

tree which defines the minimum number of pixel per tree (here equal to
5 as in Adeline (2014)). From this step, every pixel of the CHM is as
signed to a particular tree by decreasing height. As an initialization
step, the highest pixel of the CHM is chosen as the first pixel of the first
delineated tree. Then the height is decremented and the corresponding
pixel is either assigned to that first tree if it is at a distance dadj less than
2m here as in Adeline (2014), or assigned to a new tree, and so on.

3.3. Accuracy assessment

In order to assess the results of the methods and compare their
performances, a confusion matrix is built by visual interpretation
(Table 1).

From the confusion matrix, the Producer Accuracy (PA), the User
Accuracy (UA) and the F score are used to assess the performance
specifically for the street trees: =PA (%) =+ +UA100· , (%) 100·TP

TP FN
TP

TP FP

and F score- = +(%) 100· PA UA
PA UA
2· · .

Table 1
Description of the confusion matrix. “True” refers to the real street trees and not
street trees in the scene while “Predicted” refers to the predicted street trees and
not street trees by the method under consideration. The “–” symbol signifies
that we do not take into account the “True Negative” trees (well predicted not
street trees). To consider the “True Negative” trees, it would be necessary to
have the number of park trees in the first and second study cases, and the
number of trees in private properties for the third study case, an information
that is not available.

Predicted

Street tree (st) Not street tree (st) Total

True Street tree (st) True Positive (TP) False Negative (FN) TP+ FN
Not street tree (st) False Positive (FP) –

Total TP+ FP

J. Aval et al.

values). γ = 0 refers to “without θ and without h” (without angle 
information and without height information).





improvements of 15p.p., 17p.p. and 59p.p. compared to the case where
no feature is used). However, using only θ and h gives already good
results. On the other hand, using only the GIS data is not appropriate
and needs the integration of θ and h. Focusing on θ and h, they have to
be used together. Fig. 10 illustrates the contribution of the angle be
tween the trees and the heights. With the integration of these features,
the majority of the street trees are mapped correctly. This result is ex
pected because the street trees form lines and are mostly the same
height which is highlighted in the interaction energy defined in the
proposed method.

In order to go further in the analysis, Fig. 11 shows the confusion
matrices of the three main configurations of features. The F score im
provements obtained with the integration of the street tree features is
mainly explained by a decrease of the number of “True Negative” trees.
Nevertheless, the evolution of the number of “False Negative” among
the configurations of features shows that the “False Negative” tree
number is increasing with the integration of θ and h. Especially, there
are 3 further “False Negative” trees (PA decreases of 6p.p. and 4p.p.)
with the integration of these features for the first and second cases
when using the GIS data. Even if these errors are marginal, this trend is

observed among the set of simulations. In fact, the street trees do not
form perfectly straight lines and that they do not have strictly the same
heights (hypothesis not always verified). Thus a too strong integration
of these features (via the parameter γ in the proposed method, Section
3.1.2, Eq. (5)) can result to consider some “non perfect” street trees as
not street trees. In the second case, the number of “False Negative” trees
is particularly high when using GIS data. Indeed, in the GIS data, there
is no considered road at the right side of the square as it is a pathway in
the park (Fig. 10, pink road). As a consequence, all the street trees along
this pathway are filtered at the high vegetation detection step when
using GIS data as they are too far from the closest roads (other sides of
the square).

5. Discussions

5.1. Individual tree detection in its context

These results demonstrate the ability of the proposed method to
detect the street trees in three different circumstances, while a standard
tree crown delineation obviously does not allow the specific urban tree
structures to be identified. This performance is consistent with that of
Wen et al. (2017) who obtained a F score of 89% when mapping
roadside canopies with a patch level approach. However, our scheme
maps the trees individually, which is essential for an individual health
monitoring of the street trees. Indeed, the prevention of the fall of sick
trees cannot be carried out if the trees are not mapped individually. In
the urban environment, the alignment trees are subject to specific
conditions as they have little space for growth, are pruned and can be
affected by the spread of diseases in single species plantations (Fini
et al., 2015; Sebestyen et al., 2008).

The proposed study also highlights the interest of considering the
tree in its context, i.e. considering tree structures. In addition to their
usefulness for urban managers, the tree structures could be used in
order to improve not only the individual tree mapping itself (by taking
advantage of a prior contextual information knowledge about the urban
trees depending on their structure), but also the tree species classifi
cation for example (by defining specific categories of urban trees

Fig. 8. Comparison of the produced maps for the baseline method and the
proposed method for the third case. The colors under “Baseline method” and
“Proposed method” refer to the colors used in Fig. 6. (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)

Fig. 9. Contribution of the angle, the height and the GIS data in terms of F-score
for each study case. Each color corresponds to a combination of (if GIS
used), (if θ used) and (if h used) colors. The color under “Baseline
method” and the white color refer to the colors used in Fig. 6. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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mapping other types of vegetation such as hedges which form lines and
have similar heights. The same statement can be made regarding the
detection of the vineyards.

However, using more and more features requires logically the de
finition of as many parameters. In this study, the MPP parameters are
the same for the three cases which demonstrates that the proposed
scheme is robust from a case to another, but that the set of parameters
could be better estimated for each case. The parameter estimation is an
important step which effectively impacts the performance of the
methods based on MPP (Chatelain et al., 2009; Hadj et al., 2010). On
the other hand, the MBD optimization algorithm has been chosen, in
particular for its very good speed of convergence and its simplicity of
implementation. Instead, other algorithms such as Reversible Jump
MCMC (RJMCMC) or Multiple Birth and Cut (MBC) could have been
used. While the MBD outperforms the RJMCMC in terms of speed of
convergence, the MBC reaches a lower energy level than the MBD but in
longer time (Descombes et al., 2009; Gamal Eldin et al., 2010). Thus the
MBC could be considered as another optimization algorithm in order to
get a more accurate street tree map.

5.3. Applicability of the proposed method in other cities

The proposed framework has been applied to three study areas and
the observed trends are the same among these different conditions. But
of course, the applicability of the method in other cities is not assessed
here.

In order to get an idea of its applicability, the proposed method
(with GIS, θ and h) is tested on the ISPRS dataset (Cramer, 2010),
keeping the same set of parameters than for Toulouse city for assessing
the robustness of the method. The Vaihingen data corresponding to the
2D semantic labelling benchmark test are considered. Initially equal to
8 cm and 9 cm respectively, the spatial resolutions of the digital aerial
images and DSM are resampled (nearest neighbor) to 50 cm, in order to
reduce computational time. On the other hand, as the ground is not flat,
the DSM is normalized using the histogram based thresholding detailed
in Section 2.3, except that the histogram is computed in a 60m window
(instead of the whole DSM initially) to ensure that we include ground
areas in cases of overlapping canopies. The results of this test are illu
strated in Fig. 13. The proposed approach reaches a F score value of
61%, against 55% (−6p.p.) for the baseline. UA values of 89% and 40%
are obtained, while PA values of 47% and 88% are achieved, respec
tively. Fig. 13 illustrates these accuracies. The proposed approach leads
to only few false positive cases, while the baseline one detects all the
trees that are close to the streets, leading to many false positive trees.
For that reason, the alignment trees are not omitted by the reference
method. However, our approach omits many street trees, for example

an alignment of very small tree crowns in the lower right corner of
Fig. 13. This is the same behavior as in Toulouse: the proposed ap
proach does not confuse the street trees and the other ones, but tends to
underestimate the number of street trees, especially because the street
trees are not perfectly circular, aligned and of the same height. Overall,
from the user’s point of view, our method only detects street trees,
which is the objective of this study. In addition, our method allows
curved alignments to be identified, thanks to the flexibility of using
triplets of trees.

Moreover, we have computed the street tree feature energy (Section
3.1.2, Eq. (4)) of all the inventoried street trees in the tree database of
Paris (Fig. 14). This database contains, among other information, the
location of the street tree trunks and the heights. This histogram shows
that the street trees of Paris have overall the discriminative contextual
features highlighted in this paper. In particular, the peak near 0 cor
responds to around 8000 street trees that are perfectly aligned with
their neighbors and have exactly the same heights than their neighbors.
And knowing that the height resolution of the Paris tree database is 1 m,
the other local peaks highlight recurrent differences in height. For ex
ample, the peak around 0.08 corresponds to perfectly aligned street
trees with a height of 12m and two neighbors with heights of 11m, or a
neighbor with a height of 11 m and the other with a height of 13m, or a
neighbor with a height of 14m and the other with a height of 12m, etc.
On the other hand, the flexibility of the alignment model based on three
trees should allow to deal with curved roads. This is encouraging with a
view to doing the street tree map of Paris and this attests the potential
of the proposed method for other cities.

Another key element when talking about the applicability of the
proposed method in other cities is the computational burden of the
method. Table 2 highlights the duration of the baseline and proposed
approaches, knowing that the baseline is written in Interactive Data
Language (IDL) and the proposed one in python. The baseline method is
the best in terms of computational burden with execution times of
approximately 10 s, 10min and 30min (10 s, 1 min and 20min with the
GIS data) for the three study cases, instead of 20min, 50min and 3 h
(20min, 30min and 1.5 h with the GIS data) for the proposed method.
Logically, the execution time decreases when using the GIS data be
cause the high vegetation mask covers a smaller area. This table
highlights also that the behavior of the baseline and proposed ap
proaches are different according to the increasing surface covered by
the high vegetation mask from the first to the third case. Indeed, using
the GIS data, the baseline approach is 120 times faster than the pro
posed one for the first study case, whereas the baseline becomes 30 and
4.5 times faster for the second and third cases, respectively. From a
small scene to a larger scene, the number of pixels increases more than
the number of trees. The baseline approach suffers from its pixel to

Fig. 12. Street tree maps obtained with the proposed method for different values of NDVI thresholds in the first study case. All the features (with GIS, θ and h, Section
3.1.2, Eq. (4)) are used. Values of shadow, height and distance thresholds are fixed.
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pixel approach which implies the consideration of each pixel during the
delineation process. As the data energy can be computed in advance for
the proposed method, it can benefit from its object oriented principle.
Finally, even if the computational burden is not an issue for a city wide
application (because it does not need very frequent updating), and that
the baseline gives better execution times for the cases under con
sideration in this study, the proposed framework may be more appro
priate for scenes larger than those considered here.

5.4. Limits of the proposed approach

In summary, the limits of the proposed approach are illustrated in
Fig. 15. On the one hand, the first limit of the proposed method occurs
for cases of significant overlaps between the tree crowns (Fig. 15, left).
In such a situation, the crowns are difficult to discern in the high ve
getation mask, and it is accentuated in our autumn based experiment
because of certain trees having a lot of senescent leaves (Fig. 15, left).
Thus this implies having data outside winter/autumn. For these cases,
nDSM based features modeling the 3D shape of the trees could make
the approach more accurate. An alternative would be also to consider

the radiometric levels of the optical images directly, for example, by
considering that the boundaries of the crowns appear darker in the
images. On the other hand, a significant spatial connection between the
street trees and the other ones can lead to failure cases, as illustrated in
Fig. 15, middle. Focusing on this figure, the magenta individual is
aligned with one of its neighboring street trees, and has the same
height. Including that the street trees are aligned along the roads, in
addition to be close to them, could be an effective solution. However,
this is an unlikely thus less critical issue. Moreover, the street trees can
have different heights. This is the case in Fig. 15, right, and the smallest
tree is omitted by our approach. This happens when new trees are
planted. A solution could be to consider that a tree aligned with its
neighbors along a road is probably a street tree, even if it has a different
height. Finally, the results of the proposed method on the Vaihingen
data demonstrate that very small crowns can be omitted. While de
grading the spatial resolution allows to reduce computational time, this
leads very small crowns to have few pixels, thus a non circular shape
which is not well handled by our approach. A solution would be to
improve the modeling of the crown shape.

Fig. 13. Comparison of the produced maps for the baseline method and the proposed method for the ISPRS dataset. The colors under “Baseline method” and
“Proposed method” refer to the colors used in Fig. 6. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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5.5. Improving tree species classification in urban alignment

For several applications such as state of health monitoring, tree
species information is essential (Fassnacht et al., 2016). Remote sensing
gives encouraging results in tree species classification, especially thanks
to hyperspectral data (Alonzo et al., 2014), but in urban environment it
remains a challenging task because of the large tree diversity (species,
age, life conditions, pruning, etc.) (Welch, 1982). As a case in point, we
propose to map the species of the third study area, whose alignment is
composed of Platanus× hispanica trees. In particular, the tree crowns
are first estimated thanks to the proposed method with all the features
(with GIS, θ and h, Section 3.1.2, Eq. (4)). Then, the tree species are
classified thanks to an object based approach similar to that used in
Alonzo et al. (2014). In fact, the VNIR pixels within the tree crowns are
classified, followed by a majority vote for each crown. The learning step
is carried out from pixels of a reference site situated near the first study
area, and the Minimum Noise Fraction (MNF) components are used as
feature vector. Focusing on Fig. 16 (top: before regularization), there
are mainly errors in the right part of the alignment (18 trees on the

basis of 69 detected are misclassified). From that baseline, the proposed
method can be used in order to regularize the species estimation within
the alignment. Indeed, the different tree triplets identified thanks to the
street tree feature energy U x( )if (Section 3.1.2, Eq. (4)) can easily be
linked to form networks. The majority species of each network can then
be assigned to the corresponding trees. With 100% of correct predic
tions (over the 69 detected trees) for this study case, Fig. 16 (bottom:
after regularization) demonstrates the potential of the proposed method

Fig. 14. Histogram of the street tree feature energy (Section 3.1.2, Eq. (4))
computed from 43,168 street trees of the tree database of Paris. Only the main
species are taken into account: plane tree, horse chestnut, pagoda tree and lime
tree (Platanus× hispanica, Aesculus hippocastanum, Sophora japonica and Tilia
tomentosa).

Table 2
Comparison of the baseline and proposed methods in terms of computational
burden.

Framework Case 1 Case 2 Case 3

Without GIS Baseline ∼10 s ∼10min ∼30min
Proposed ∼20min ∼50min ∼3 h

With GIS Baseline ∼10 s ∼1min ∼20min
Proposed ∼20min ∼30min ∼1.5 h

Fig. 15. Illustration of the limits of the proposed approach. Left: overlapping with an illustration of the corresponding high vegetation mask in the bottom right-hand
corner, showing that the street trees are difficult to discern. Middle: spatial connection. Right: different heights.

Fig. 16. Improvement of tree species classification in urban alignment thanks to
the proposed method for the third case (whose alignment is mainly composed of
Platanus× hispanica tress).

J. Aval et al.



for improving tree species classification within urban alignment. Even if
a limit of that approach occurs for cases of alignments with multiple
species, the proposed method could be modified in order to handle
these cases, only if the trees are planted in a specific way (bispecific
alignment whose species is alternated one in two for example).

6. Conclusions

The objective of this study is to map the street trees using airborne
data and contextual information based on MPP method. Three test sites
are considered for assessing the performance of the proposed method
under different conditions. Airborne hyperspectral data, a DSM and GIS
data which included the roads are used, but multispectral data could be
used instead of the hyperspectral data. From these data, the vegetation
canopies close to the streets are detected thanks to simple thresholds of
NDVI, shadow index, height and distance to the streets respectively.
The obtained high vegetation mask is then treated through a scheme
based on MPP. In particular, the discriminative contextual features of
the street trees (hypotheses of small angle between the trees and similar
heights) are modeled in the interaction energy of the MPP. As a baseline
for comparisons, a standard region growing crown delineation ap
proach is considered.

Regarding the results, the proposed method logically outperforms
the reference method with overall F score values on the three study
sites of 85% with all the features against 44% with differences of
15p.p., 38p.p. and 65p.p. respectively in favor of the proposed method.
It demonstrates the ability of the proposed method to map the street
trees in three different circumstances. Focusing on the contributions of
the discriminative contextual features in the individual street tree
mapping, the F score values are 91%, 75% and 85% with all the fea
tures (with GIS, θ and h). Without GIS but with θ and h, the F score
values become 88%, 79% and 62% (−3p.p., +4p.p. and −23p.p.). It is
thus more appropriate to exploit together the GIS data, the angle be
tween the trees and the heights. Nevertheless, using only θ and h gives
already good results (76% overall on the three study sites). Finally, the
GIS data alone is not sufficient.

Further work is necessary and there are many perspectives. In this
paper, we see that the proposed method can be improved in the case of
significant overlap. In addition, the same set of parameters have been
used for the three cases. Compared to the obtained results, it shows that
the proposed approach is robust but highlights the importance of the
parameter estimation step. Also, other features could be used in order to
model the street trees. Moreover, the method will be applied on more
difficult cases, like area with street trees forming a homogeneous ca
nopy. In theses cases, it is often impossible to distinguish the crowns
from the spectral data and from the DSM, which encourages the use of
another technology. For example, multitemporal data acquired during
the winter could help. In the long term, the proposed approach could be
improved to map the other populations of trees such as park trees. The
species and the state of health of the trees will be also of interest.
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