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NEARLY FREE CURVES AND ARRANGEMENTS:

A VECTOR BUNDLE POINT OF VIEW

S. MARCHESI, J. VALLÈS

Abstract. Many papers are devoted to study logarithmic sheaves associated to reduced divi-

sors, in particular logarithmic bundles associated to plane curves since forty years in differential

and algebraic topology or geometry. An interesting family of these curves are the so-called free

ones for which the associated logarithmic sheaf is the direct sum of two line bundles. When the

curve is a finite set of distinct lines (i.e. a line arrangement), Terao conjectured thirty years

ago that its freeness depends only on its combinatorics. A lot of efforts were done to prove

it but at this time it is only proved up to 12 lines. If one wants to find a counter example

to this conjecture a new family of curves arises naturally: the nearly free curves introduced

by Dimca and Sticlaru. We prove here that the logarithmic bundle associated to a nearly free

curve possesses a minimal non zero section that vanishes on one single point P , called jumping

point, and that characterizes the bundle. Then we give a precise description of the behaviour

of P . In particular we show, based on detailed examples, that the position of P relatively to

its corresponding nearly free arrangement of lines may or may not be a combinatorial invariant,

depending on the chosen combinatorics.

1. Introduction

Given a reduced curve C in P2 = P2(C) of degree d defined as the zero locus of a homogeneous

polynomial f = 0, we define the Jacobian ideal of f , denoted by I∇f as the image of the map

OP2
∇f−→ OP2(d− 1),

where ∇f is the matrix whose entries are given by the partial derivatives of f with respect to

the three variables x, y, z, i.e. ∇f = [∂f∂x
∂f
∂y

∂f
∂z ]. Its kernel TC is a rank two reflexive sheaf,

therefore a vector bundle on P2, defined by the following short exact sequence

0 −→ TC −→ O3
P2 −→ I∇f (d− 1) −→ 0.

In [9] Saito introduced the notion of free divisor in affine and projective spaces of any dimension.

In the same volume Terao studied arrangements of hyperplanes that are free divisors (see [10]).

In this paper we restrict our study to curves in the projective plane.

Definition 1.1. A reduced curve C ⊂ P2 is called free with exponents (a, b) ∈ N2, with a ≤ b

if the associated vector bundle TC is free i.e. if TC = OP2(−a)⊕OP2(−b).

Relatively few free curves are known. When the curve C is a finite set of lines (i.e. a line

arrangement) an important invariant attached to C is its combinatorics. This combinatorics

is described by an incidence graph of points and lines (for details we refer to [8] which is

the reference book on the hyperplane arrangements). Probably the main conjecture about

hyperplane arrangements, still open on any field and in any dimension ≥ 2 is the so-called
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Terao’s conjecture, stated in [8, Conjecture 4.138], which says in substance that the freeness of

an arrangement depends only on its combinatorics. On the complex projective plane it is proved

only up to 12 lines (see [5, Corollary 6.3]).

If Terao’s conjecture is not true then one can find two arrangements C0 and C with the

same combinatorics such that C0 is free but C is not. In P2 it implies in particular that

TC0 = OP2(−a)⊕OP2(−b) and H0(TC(a− 1)) 6= 0 (see [5], Lemma 3.2). In particular, assuming

here that H0(TC(a− 2)) = 0, we obtain

0 −→ OP2(1− a) −→ TC −→ IZ(−1− b) −→ 0,

where Z ⊂ P2 is a 0-dimensional scheme of length b− a+ 1 ([2, Lemmas 1 and 2].

In order to explain the role of Z let us recall some basic facts concerning the restriction of a

rank vector bundle E on a line. By Grothendieck’s theorem its restriction to any line L splits

as a sum of two line bundles

E ⊗OL = OL(α)⊕OL(β), with α+ β = c1(E).

The couple (α, β) ∈ Z2 is called the splitting type of E on L; the positive integer δL(E) := |α−β|
is its gap. It is known that, see [7, page 29] for a reference, this gap is minimal on an open

set of the dual projective plane and we will denote its value by δ(E). The lines L such that

δL(E) > δ(E) are the jumping lines of E and we denote the set of jumping lines by S(E). The

positive integer o(L) := δL(E)−δ(E)
2 is the order of the jumping line L.

Now let us explain the key role of Z in the context of Terao’s conjecture. When a line

arrangement C has the same combinatorics than a free line arrangement C0 but is not free, one

associates to C a 0-dimensional scheme Z characterizing its non-freeness in the following sense:

since C0 is free we have clearly δL(TC0) = δ(TC0) for any L; on the contrary, δL(TC) > δ(TC) for

any line L meeting Z.

The first case to be studied is naturally the case Z = {P} is a single point (i.e. a = b). We

will see in Theorem 2.1 that the corresponding curve (or the corresponding bundle) is a nearly

free curve introduced by Dimca and Sticlaru in [3].

Definition 1.2. A reduced curve C ⊂ P2 is called nearly free with exponents (a, b) ∈ N2, with

a ≤ b if the associated vector bundle TC has a resolution of type

(1.1) 0 −→ OP2(−b− 1)
M−→ OP2(−a)⊕OP2(−b)2 −→ TC −→ 0.

Remark 1.3. Dimca and Sticlaru gave another definition and obtained this previous one as a

characterization of nearly free curves ([3, Theorem 2.2]).

Throughout this paper, the vector bundle TC , associated to a nearly free curve, will be called

a nearly free vector bundle. Following the seminal work of Dimca and Sticlaru [3] on nearly

free divisors, many works were done and published and it is our belief that, in order to better

understand nearly free divisors it is important to clarify what are the nearly free vector bundles.

In particular, since this point P , called jumping point, characterizes the failure of freeness

for a nearly free arrangement it is important to understand its behaviour relatively to the

corresponding arrangement. This will be studied in section 2.

We will then focus, in the same section, on the study of the splitting type of a nearly free

vector bundle, which has first been considered in the work of Abe and Dimca, see [1]. In their
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paper, the authors prove, among other results, that we only have two possible splitting types for

a nearly free vector bundle ([1, Theorem 5.3]). In this work, we retrieve their result, using the

resolution of these vector bundles, and we complete it by describing the geometry of the set of

jumping lines. Indeed we show in Proposition 2.4 that the locus of jumping line is the line P̌ of

all lines through P and that the order of any jumping line is 1 (except of course for the tangent

bundle that is nearly free but have no jumping line). Reciprocally we classify in Theorem 2.8

rank two vector bundles E such that S(E) is a line in the dual projective plane P̌2 and such that

the order of any jumping line is 1. We show that this configuration of the jumping locus actually

characterizes nearly free vector bundles in the unstable and semistable case. In the stable case

another very specific family of bundles arises, which we also classify completely, this family does

not concern directly our discussion because it is straightforward to notice that the only stable

nearly free vector bundle with exponents (a, b) is the tangent bundle twisted by OP2(−b− 1).

This description of the jumping locus allows us to answer some natural questions regarding

the relation between the jumping lines of TC and the lines of the arrangement C (see Corollary

2.6).

In section 3, we prove that each nearly free vector bundle can be seen as an extension of a line

bundle on a line with a free vector bundle. This construction can be geometrically interpreted

as the deletion of a line of the free arrangement passing through a specific amount of triple

points (see Proposition 3.1). We will also show that each nearly free bundle can be defined as

the kernel of a surjective morphism between a free vector bundle and a line bundle on a line (see

Proposition 3.2). This construction translates in the addition of a line to the free arrangement,

passing again through a specific amount of triple points. If N is the number of lines of the

arrangement, n the number of intersection points on one line of the arrangement and t the

number of triple points on the same line, then it is easy to verify that t = N −n− 1. According

to this equality the previous two propositions give another formulation of [1, Theorem 5.7]. Such

two techniques suggest that we can construct any nearly free vector bundle by adding a line to

a properly chosen free arrangement and also by deleting one from a different free arrangement.

In section 4 we give explicit examples of these two constructions, for each nearly free vector

bundle.

Finally, in section 5 we prove that there is no explicit relation between the combinatorics of

the arrangement and the jumping locus. Indeed, we provide examples to show that the jumping

point of a nearly free vector bundle TC coming from an arrangement C can be on exactly one

line or on many lines of C or outside C. Such examples show how the jumping points variates in

the projective plane when shifting a line in order to maintain its combinatoric, see Example 5.1.

They also prove that in some case the combinatorics forces the jumping point to belong to one

or multiple lines of the arrangement, see Example 5.2; while for some other fixed combinatorics,

see Example 5.3, the point can either belong or not to the arrangement.
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2. Nearly free arrangements and vector bundles

Directly from Definition 1.2 we have that c1(TC) = −a − b + 1 and c2(TC) = ab − a + 1.

Moreover, it is possible to compute the first non vanishing degree of its global sections then,

according to [2, page 132], we can remark the following

• TC is stable (in the sense of Mumford-Takemoto) if and only if a = b, and in this case

the bundle is the tangent bundle twisted by OP2(−b− 1), i.e. TC ' TP2(−b− 1),

• TC is semistable if and only if a = b− 1,

• TC is unstable if and only if a < b− 1.

In any case, stable, semistable or unstable, we prove the following characterization of nearly free

vector bundles or curves.

Theorem 2.1. TC is nearly free with exponents (a, b) ∈ N2, with a ≤ b, if and only if there

exists a point P ∈ P2 such that TC splits in the following exact sequence

0 −→ OP2(−a) −→ TC −→ IP (−b+ 1) −→ 0.

Proof. Let us consider a section s ∈ H0(TC(a)). Since H0(TC(a−1)) = 0, it defines the following

short exact sequence ([2, Lemmas 1 and 2]

(2.1) 0 −→ OP2(−a) −→ TC −→ IZ(−b+ 1) −→ 0

with Z ⊂ P2 a 0-dimensional scheme of length c2(TC(a)) = 1. In other words Z is a point P ∈ P2

and we have actually the following commutative diagram

0

��

0

��
0 //

��

OP2(−a)

��

' // OP2(−a)

��

// 0

0 // OP2(−b− 1)

'
��

// OP2(−a)⊕OP2(−b)2 //

��

TC //

��

0

0 // OP2(−b− 1)

��

// OP2(−b)2 //

��

IP (−b+ 1)

��

// 0

0 0 0

This diagram is constructed considering an element of Hom(OP2(−a), TC) which necessarily

comes from an element of Hom(OP2(−a),OP2(−a)⊕OP2(−b)2), being

Ext1(OP2(−a),OP2(−b − 1)) = 0, and we get the first two rows of the diagram. We complete

using the Snake Lemma. �
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Remark 2.2. As it will be explained with more details in Proposition 2.7, a nearly free vector

bundle is then completely determined by the data of its exponents (a, b) and a point P ∈ P2.

From now on, we will call the point P the jumping point of the nearly free vector bundle.

Example 2.3. Consider the union of six lines through four non aligned points (see Figure 1).

This line arrangement is free with exponents (2, 3). It is well known and there are many ways

to prove it; one of them consists in seeing these six lines as the three singular conics of a pencil

of conics (see [11],[12, Theorem 2.7]).

Figure 1.

Let us remove now a singular conic and replace it by a smooth one which lies in the pencil

determined by the four singular points (see Figure 2). Let C be this curve formed by the union

of two singular conics and one smooth conic of the same pencil. Then the associated logarithmic

bundle TC is nearly free with exponents (2, 4) since it verifies

0 −→ OP2(−2) −→ TC −→ IP (−3) −→ 0

where the point P is the singular point of the removed singular conic (see [11], [12, Theorem

2.8] for details).

Through the previous description it is possible to prove the following result

Proposition 2.4. Let TC be a nearly free vector bundle with exponents (a, b), with a ≤ b, and

jumping point P . Then for every line L 63 P , we have TC |L ' OL(−a) ⊕ OL(−b + 1) and for

every line L 3 P we have TC |L ' OL(−a + 1) ⊕ OL(−b). Hence, we have only two possible

splitting type.

Remark 2.5. Since the gap of the splitting type increases for lines through the jumping point

P these lines are called jumping lines of TC .
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Figure 2.

Proof. It comes directly considering the restriction of IP (−b + 1). Indeed, if L 63 P , (IP (−b +

1))|L ' OL(−b+ 1) and, being b ≥ a, we have TC |L ' OL(−a)⊕OL(−b+ 1). If L 3 P , we get

(IP (−b+ 1))|L ' OL(−b)⊕OP , implying that TC |L ' OL(−a+ 1)⊕OL(−b). �

Observe that the fact that a bundle associated to a nearly free curve has only two possible

splitting types was already proved by Abe and Dimca in [1, Theorem 5.3]. However they did not

determine the set of jumping lines, and ask in [1, Remark 2.6] whether a line of the arrangement

has the generic splitting type. As an immediate consequence of the previous result we answer

their question.

Corollary 2.6. Let TC be a nearly free vector bundle associated to an arrangement of lines.

Then, at least one of the lines of the arrangement has the generic splitting type.

Proof. The previous theorem tells us that a nearly free vector bundle is either stable with no

jumping lines (it is the tangent bundle) or its jumping lines are the ones passing through a fixed

point. It is well known that a vector bundle associated to an arrangement of N lines through a

fixed point is a free vector bundle with exponents (0, N − 1), therefore it cannot be our original

TC . �

Then we obtain a characterization of nearly free vector bundles.

Proposition 2.7. Given a point P ∈ P2 and a couple of integers (a, b) ∈ N2 with a ≤ b, there

exists, up to isomorphism, one and only one nearly free vector bundle with exponents (a, b) whose

pencil of jumping lines has P as base point. Moreover, we can think the matrix M , defining the

nearly free vector bundles in Definition 1.2, as

tM = [x, y, zb−a+1].

Proof. We have that, due to Theorem 2.1, TC corresponds to an element of

Ext1(IP (−b+ 1),OP2(−a)) ' H1(IP (−b+ a− 2))∨.
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Using Serre duality, and having supposed that b ≥ a, we have that h1(IP (−b + a − 2)) = 1,

therefore we have a unique non trivial extension.

Moreover, by a change of coordinates we can choose a simple presentation of TC . Indeed,

given the short exact sequence in (2.1), we can apply a change of coordinates such that the

point P is defined by {x = y = 0}. This means that the matrix M defining the bundle TC is of

the form

M = [x, y, zb−a+1 + h]t

with h = xh0 + yh1, where h0 and h1 are homogeneous polynomials of degree b − a in the

coordinates x, y, z. Indeed, the third column of the matrix is a homogeneous form f of degree

b−a+ 1 in the variables x, y, z. Because of the fact that M defines a vector bundle, we get that

zb−a+1 must be a summand of f , or else M would vanish when evaluated at the point (0 : 0 : 1).

The part h describes the other summands, which necessaly have a x or a y in each summand;

notice that h can be zero. This implies that we have the following commutative diagram

0 // OP2(−b− 1)

1

��

M // OP2(−a)⊕OP2(−b)2 //

A
��

TC //

'
��

0

0 // OP2(−b− 1)
[x, y, zb−a+1]t

// OP2(−a)⊕OP2(−b)2 // T̃C // 0

with A =

 1 0 0

0 1 0

−h0 −h1 1

. �

Let us now prove how the special configuration of the jumping lines observed before actually

characterizes a nearly free vector bundle, in the non stable case.

Theorem 2.8. Let P ∈ P2 be a point and E be a rank 2 vector bundle on P2 that we can assume

to be normalized, c1(E) = 0 or c1(E) = −1. Assume that S(E) = {L,L 3 P} and that o(L) = 1

for any L ∈ S(E). Then, we have the following options

• if E is either unstable or semistable then E is a nearly free vector bundle;

• if E is stable, then c1(E) = −1, c2(E) = 4 and it is defined by the resolution

0 −→ OP2(−4)
A−→ OP2(−1)⊕OP2(−2)2 −→ E −→ 0,

where, after choosing P = (0 : 0 : 1), A = (f(x, y, z), x2, y2)) for any cubic form f not

passing through P .

Proof. Let us consider the integer a ∈ Z such that h0(E(a)) 6= 0 and h0(E(a−1)) = 0. It implies

that we have a short exact sequence

0 −→ OP2 −→ E(a) −→ IZ(2a+ c1(E)) −→ 0,

where Z ⊂ P2 is a 0-dimensional scheme of length c2(E(a)).

• If E is not stable, i.e. a ≤ 0, then for every line L such that L∩Z = ∅, we have that E|L '
OL(−a)⊕OL(a+c1(E)) which gives δ(E) = |2a−c1(E)|. Indeed E|L corresponds to an element

of Ext1(OL(a+ c1(E)),OL(−a)) ' H1(OL(−2a− c1(E))) = 0. Moreover, each line L such that

L∩Z 6= ∅ is a jumping line for the bundle E since the surjective map E|L → OL(a− 1 + c1(E))

induced by the restriction to L gives δL(E) > δ(E). Therefore, since we have assumed that any
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jumping line L contains the point P and has o(L) = 1, Z is the simple point P ∈ P2, or else we

would have at least one line with a bigger jump. This forces E to be nearly free.

• Let us suppose now that E is stable and consider the following diagram

P̃2

p
��

q // P̌

P2

where P̃2 denotes the blow-up of the projective plane along P and P̌ the pencil of all lines

passing through P . Recall that, from our assumptions, we have that E|H ' OH ⊕ OH(c1(E))

for the generic line H and for a jumping line L, i.e. passing through P , we have E|L ' OL(1) +

OL(−1 + c1(E)). In particular this means that, for any line L ∈ P̌ , we have h0(E|L(−1)) = 1,

which implies that q∗p
∗E(−1) is an invertible sheaf on P̌ , which we will denote by OP̌ (−n).

Therefore, we have a nonzero morphism

q∗OP̌ (−n)
φ 6=0−→ p∗E(−1).

This morphism does not vanish at any point; indeed, if it does, it would also vanish at some

point in at least one fiber q−1(L). On the other hand, we know that its restriction to q−1(L) is

of the form (see [7, page 53])

φq−1(L) : OL −→ EL(−1).

Since, by assumption, for any L 3 P , we have E|L(−1) ' OL ⊕OL(−2 + c1(E)), the morphism

φq−1(L) cannot vanish.

Then, we obtain the following exact sequence

0 −→ q∗OP̌ (−n) −→ p∗E(−1) −→ p∗OP2(−2 + c1(E))⊗ q∗OP̌ (n) −→ 0

and hence

0 −→ q∗OP̌ −→ p∗E(−1)⊗ q∗OP̌ (n) −→ p∗OP2(−2 + c1(E))⊗ q∗OP̌ (2n) −→ 0.

Using the projection formula and recalling that p∗q
∗OP̌ (n) ' InP (n) (see [5, Section 4]), we

obtain the following commutative diagram

0 // OP2

'
��

// E ⊗ InP (n− 1)

��

// InP (2n− 2 + c1(E))

��

// 0

0 // OP2 // E(n− 1) // IΓ(2n− 2 + c1(E)) // 0

which forces n ≥ 2 because, having supposed E to be stable, we have that h0(E(t)) = 0 for

t ≤ 0 (see again [2, page 132]). The diagram is constructed considering the composition of the

injective sheaf maps

OP2 −→ E ⊗ InP (n− 1)

and

InP (n− 1) −→ OP2(n− 1)

and we denote by Γ the 0-dimensional scheme given by the zero locus of the section s defined

by the composition.

It means that Γ contains the fat point of multiplicity n defined by InP and that the set theoretic
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support of Γ is given by the point P . This implies that Γ is a local complete intersection sup-

ported on P , and therefore a global complete intersection. Moreover, because of the mentioned

properties, the ideal defining Γ is (g, h), with g and h two homogeneous n-forms, each one prod-

uct of n linear forms, all representing lines passing through P .

As a consequence, we have the following two short exact sequences

0

��
OP2

s

��
E(n− 1)

��
0 // OP2(−2 + c1(E)) // OP2(n− 2 + c1(E))2 α // IΓ(2n− 2 + c1(E)) //

��

0

0

After that, we apply the functor Hom
(
OP2(n− 2 + c1(E))2,−

)
to the right column, and be-

ing Ext1
(
OP2(n− 2 + c1(E))2,OP2

)
= 0, we can lift the morphism α to an element α̃ ∈

Hom
(
OP2(n− 2 + c1(E))2, E(n− 1)

)
. Combining it with the section s 6= 0, we obtain

0

��

0

��
OP2

��

λ // OP2

��
OP2 ⊕OP2(n− 2 + c1(E))2

��

(s,α̃)
// E(n− 1)

��
0 // OP2(−2 + c1(E)) // OP2(n− 2 + c1(E))2 //

��

IΓ(2n− 2 + c1(E)) //

��

0

0 0
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with λ 6= 0, which leads to the following commutative diagram

0

��

0

��
OP2

��

' // OP2

��
0 // OP2(−2 + c1(E))

[f, h,−g]t
//

'
��

OP2 ⊕OP2(n− 2 + c1(E))2

��

// E(n− 1)

��

// 0

0 // OP2(−2 + c1(E))
[h,−g]t

// OP2(n− 2 + c1(E))2 //

��

IΓ(2n− 2 + c1(E)) //

��

0

0 0

Directly from the previous diagram, consider an element of Hom (OP2(n− 2 + c1(E)), E(n− 1))

and notice that Ext1 (OP2(n− 2 + c1(E)),OP2(−2 + c1(E))) = 0, then it is possible to induce

the following one

0

��

0

��
OP2(n− 2 + c1(E))

��

' // OP2(n− 2 + c1(E))

��
0 // OP2(−2 + c1(E))

[f, h,−g]t
//

'
��

OP2 ⊕OP2((n− 2 + c1(E)))2

��

// E(n− 1)

��

// 0

0 // OP2(−2 + c1(E))
[f, h]t

// OP2 ⊕OP2((n− 2 + c1(E))) //

��

IΛ(n) //

��

0

0 0

where Λ := {f = h = 0} is a non empty 0-dimensional scheme of length 2n when c1(E) = 0 or 3n

when c1(E) = −1. Moreover, since the matrix [f, h, −g]t defines a vector bundle, P /∈ supp(Λ).

Tensoring the right column by OP2(1− n) we get the short exact sequence

(2.2) 0 −→ OP2(−1 + c1(E)) −→ E −→ IΛ(1) −→ 0.

Let us divide the study in two cases, c1(E) = 0 and c1(E) = −1.

Let us consider first c1(E) = 0.

Notice that Λ is a complete intersection of a conic f = 0 that does not contain P and a curve

h = 0 consisting of n ≥ 2 lines through P ; moreover, we can suppose that the curve defined by

h contains at least two distinct lines (this can be done substituting h with a linear combination

of the two previous forms g and h). Hence there exists a line L such that P /∈ L and |L∩Λ| ≥ 2.

Any line L with |L∩Λ| ≥ 2 is necessarily a jumping line and this leads to contradiction because

we would have found a jumping line not passing through P .
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Let us now consider the case c1(E) = −1.

In this case the bundle E is defined by the following short exact sequence

(2.3) 0 −→ OP2(−2− n) −→ OP2(1− n)⊕OP2(−2)2 −→ E −→ 0.

Our goal is to prove that the only possible case is n = 2.

For n = 2, taking P = (0 : 0 : 1) one can assume that (g, h) = (g(x, y), h(x, y)) and more

particularly (g, h) = (x2, y2). Indeed, a pencil of conics in P1 with no common factor always

contains two squares. After dualizing the sequence (2.3) and tensoring by OP2(−2) we obtain

0 −→ E(−1) −→ OP2(−1)⊕O2
P2 −→ OP2(2) −→ 0.

A line L is a jumping line for E if and only if H0(E|L(−1)) 6= 0, which is equivalent for the map

H0(O2
L) −→ H0(OL(2))

not to be injective.

If L is a line not passing through P , i.e. defined by an equation of type z = ax + by, then the

restrictions to L of the quadratic forms x2 and y2 are linearly independent, which implies that

the line L is not a jumping line.

On the other hand, it is immediate to see that the restrictions of the two quadratic forms on

any line passing through P are linearly dependent, and therefore the line L is a jumping line.

Let us now finish the proof, showing that, if n ≥ 3, we always have a jumping line that does

not contain P , contradicting our assumption on S(E).

After dualizing the sequence (2.3) and tensoring by OP2(−2) we obtain

0 −→ E(−1) −→ OP2(n− 3)⊕O2
P2 −→ OP2(n) −→ 0.

A line L is a jumping line for E if and only if H0(E|L(−1)) 6= 0, in other words if and only if

the following map, between two vector spaces with dimension respectively n and n+ 1,

H0(OL(n− 3)⊕O2
L)

M−→ H0(OL(n))

is not injective.

Let g(x, y) =
∑

i αix
n−iyi, h(x, y) =

∑
i βix

n−iyi be two n forms defined by n lines through

P = (0 : 0 : 1) and f(x, y, z) be a cubic form such that f(0 : 0 : 1) 6= 0, i.e. f = z3 + · · · . Since

we are looking for a line L that does not pass through P = (0 : 0 : 1), we can assume that its

equation is given by z = ax+ by.

Substituting the equation of the line in the cubic form we have f(x, y, ax+by) =
∑

0≤i≤3 γi(a, b)x
3−iyi

where γi(a, b) are degree 3 polynomials (non homogeneous). Notice that we must have γ0(a, b) =

a3 + · · · and γ3(a, b) = b3 + · · · . Therefore, the matrix M has the following form:

M =



α0 β0 γ0(a, b)

α1 β1 γ1(a, b) γ0(a, b)

α2 β2 γ2(a, b) γ1(a, b)
. . .

α3 β3 γ3(a, b) γ2(a, b)
. . . γ0(a, b)

...
... γ3(a, b)

. . . γ1(a, b)
...

...
. . . γ2(a, b)

αn βn γ3(a, b)


.
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Since the g and h vanish simultaneously only at the point P , we have necessarly that α0 ·βn 6= 0

or αn · β0 6= 0 and, without loss of generality we can assum to be in the first case. By linear

combination of lines and the first two columns, we see that this matrix is equivalent to

[
I2 ∗
0 N

]
,

where I2 =

[
1 0

0 1

]
and N is a (n−1)×(n−2) matrix of degree 3 polynomials in (a, b). Consider

Nh = Nh(a, b, c) the “homogenization” of N in order to have a matrix of cubic forms. Thom-

Porteous formula tells us that the scheme where the rank of N is less than n− 2 (which implies

that the rank of M is less than n) is a scheme of length (n−2)(n−1)
2 32 when finite, or it contains

a curve.

We will now show that in either case we have a solution of type (a : b : 1), which corresponds to

a jumping line not passing through P .

If it is finite, then it cannot have more than 3n−2 points at the infinity line, given by the degree

of each maximal minor of Nh(a, b, 0) (which corresponds to the restriction at the infinity line).

Notice that

3n− 2 <
(n− 2)(n− 1)

2
32 when n > 2,

which shows that we must have at least a point in the affine plane where the rank of N , and

therefore M , drops and this corresponds to a jumping line not passing through P .

If it contains a curve, with no solutions of type (a : b : 1), then all points of type (a : b : 0) are

a solution.

In this case, we get that rkNh(a, b, 0) < n− 2 for all (a, b) 6= (0, 0), which implies that

rk

[
I2 ∗h(a, b, 0)

0 Nh(a, b, 0)

]
< n.

Applying the inverse transformation that sent M to the upper triangular block form, we get

that

rk



α0 β0 a3

α1 β1 3a2b a3

α2 β2 3ab2 3a2b
. . .

α3 β3 b3 3ab2
. . . a3

...
... b3

. . . 3a2b
...

...
. . . 3ab2

αn βn b3


< n.

Notice that such matrix is exactly the matrix M when we choose f = z3. This would imply

that all lines of P2 are jumping lines for the vector bundle defined by

0 −→ OP2(−2− n)
[g,h,z3]−→ OP2(1− n)⊕OP2(−2)2 −→ E −→ 0

This gives a contradiction, because a vector bundle E defined in this way is stable and, according

to the Grauert-Mülich theorem (see [7, page 206]), its splitting type is balanced on the generic

line.

�
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Corollary 2.9. Consider a family of 0-dimensional complete intersection schemes Λ = (λg +

µh, f), with g = g(x, y), h = h(x, y) of degree n with no common factor, and a cubic form f

such that f(0, 0, 1) 6= 0, parametrized by (λ : µ) ∈ P1.

Then, it exists an element (λ0 : µ0) ∈ P1 such that the complete intersection Λ0 = (λ0g+µ0h, f)

has at least one 3-secant line not passing through (0 : 0 : 1).

Proof. The existence of a Λ0 with a 3-secant line, not passing through P , is equivalent to have

a jumping line, again not passing through P , for the vector bundle defined by

0 −→ OP2(−2− n)
A−→ OP2(1− n)⊕OP2(−2)2 −→ E −→ 0

with A = [f, g, h]. Indeed, considering the sequence (2.2), relating Λ0 and E, a 3-secant line L

to Λ0 is clearly a jumping line for E.

Conversely, let L be jumping line not passing through P . Since there is a pencil Λ of complete

intersections, L meets at least one element Λ0 of the pencil. Considering again the exact sequence

(2.2) defining Λ0, and its restriction to L, we must have |L ∩ Λ0| = 3.

�

2.1. Restriction on one line. In many cases we can decide if an arrangement is free by

computing the Chern classes of its logarithmic associated vector bundle and determining its

splitting type on one line. This can be done thanks to [4, Corollary 2.12]. Indeed their result,

concerning vector bundles on any Pn, implies in particular that a rank two vector bundle E over

P2 such that c1(E) = −a− b and c2(E) = ab is the free bundle OP2(−a)⊕OP2(−b) if and only

if there exists one line L such that E|L = OL(−a)⊕OL(−b).
We give now a similar statement for nearly free vector bundles. Thanks to this we can,

knowing its splitting type on one line, determine if a vector bundle is nearly free or not.

Proposition 2.10. Let E be a rank-2 vector bundle on P2 and assume c1(E) = −r for some

r ≥ 0 and c2(E) = 1. Then, the following are equivalent:

(1) the bundle E is nearly free with exponents (0, r + 1),

(2) there is a line L of P2 such that E|L ' OL ⊕OL(−r).

Proof. Condition 1 clearly implies 2. It remains to show that 2 implies 1.

Let t be the smallest integer such that H0(P2, E(t)) 6= 0. If t < 0 it is clear that there is

no line L such that E|L ' OL ⊕ OL(−r). Then we have t ≥ 0. Also, it is well-known (cf. [2,

Lemmas 1 and 2]) that any non-zero global section s of E(t) vanishes along a subscheme W of

P2 of codimension ≥ 2 and of length:

(2.4) c2(E(t)) = t(t− r) + 1 ≥ 0.

We have an exact sequence:

0→ OP2
s→ E(t)→ IW (2t− r)→ 0.

So t = 0 would imply W = {P} is one point and for any value of r, E is nearly free with

exponents (0, r + 1).

Hence, we assume t > 0. Since c2(E(t)) = t(t − r) + 1 ≥ 0 it implies t = r or t > r. Let us

consider first the case t = r > 0. Since c2(E(r)) = 1 the scheme W is a single point P . Since

H0(P2, IP (r − 1)) = H0(P2, E(−1)) = 0 this implies r = 1 and E is again the tangent bundle
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which is nearly free. Since h0(E(−1)) = 0 we have h0(P2, IW (2t−r−1)) =
(

2t−r+1
2

)
−t(t−r)−1 ≤

0 ; when t > r this never occurs. �

3. Addition and deletion

In this section we study the behaviour of an arrangement obtained by deleting or adding a

line to a free arrangement. In particular, we characterize when the obtained arrangement is

nearly free and in this case we describe its pencil of jumping lines. The description we present

will recover some results of Section 5 in [1] (see in particular Theorems 5.7, 5.10 and 5.11).

In the following proposition we describe how to construct a nearly free vector bundle deleting

a line, satisfying specific properties, from a free arrangement. This process is known as deletion.

Proposition 3.1. A rank two vector bundle E is nearly free with exponents (a, b) if and only

if it can be constructed as an extension in Ext1(OL(−b),OP2(−a)⊕OP2(−b)) where L is a line

and a, b are integers such that 0 ≤ a ≤ b.
Moreover, considering any vector bundle E given by an element of Ext1(OL(−t),OP2(−a) ⊕
OP2(−b)) where L is a line and t, a, b are integers such that 0 ≤ a ≤ b, then E is a nearly free

vector bundle if and only if t = b, which forces its exponents to be (a, b).

Proof. Let us consider a nearly free vector bundle defined by the resolution (1.1). Therefore we

can choose an injective map OP2(−a)⊕OP2(−b) −→ E which gives us the following commutative

diagram

(3.1) 0

��

0

��
OP2(−a)⊕OP2(−b)

��

' // OP2(−a)⊕OP2(−b)

��
0 // OP2(−b− 1) //

'
��

OP2(−a)⊕OP2(−b)2

��

// E

��

// 0

0 // OP2(−b− 1) // OP2(−b)

��

// OL(−b)

��

// 0

0 0

Focus on the left column and let us discuss its geometrical meaning in the arrangement. Let

L ∈ C where C is a free arrangement such that TC = OP2(−a) ⊕ OP2(−b). According to [5,

Proposition 5.1], we have a short exact sequence

0 −→ OP2(−a)⊕OP2(−b) −→ TC\{L} −→ OL(−t) −→ 0

where t counts the number of triple points in the line L. If we suppose TC\{L} to be nearly free

with exponents (a, b), we get t = b by computing the second Chern classes for instance. It shows

that we can construct a nearly free arrangement with exponents (a, b) by deleting a line in a

free arrangement with the same exponents when this line passes through exactly b triple points.

That is why this process is known as deletion.
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To prove the second part of Proposition 3.1, consider a vector bundle E fitting in the following

short exact sequence

0 −→ OP2(−a)⊕OP2(−b) −→ E −→ OL(−t) −→ 0.

Considering its dual exact sequence, we get a surjective map OP2(a) ⊕ OP2(b) → OL(t + 1),

which forces us to have either t = a− 1 or t ≥ b− 1. If t = a− 1 or t = b− 1 then E would be

free (see for instance [5, Proposition 5.2]), therefore we can only focus on t ≥ b. If t > b then E

cannot be nearly free since the surjective restriction map

E|L −→ OL(−t) −→ 0

implies that the splitting type on L for E has gap bigger than allowed by Proposition 2.4.

Finally if t = b, we can recover Diagram (3.1), which implies that E is nearly free by its

resolution. �

In the second part of the section we describe the second operation on the arrangement, dual

to the previous one, which is known as addition. Similarly to the previous case, its geometrical

interpretation corresponds to adding a line passing through a specific number of triple points of

the original arrangement.

Proposition 3.2. A rank two vector bundle E is nearly free with exponents (a+ 1, b+ 1) if and

only if it can be constructed as the kernel of surjective map in Hom(OP2(−a)⊕OP2(−b),OL(1−a))

where L is a line and a, b are integers such that 0 ≤ a ≤ b.
Moreover, considering any kernel E of the surjective map given by an element in Hom(OP2(−a)⊕
OP2(−b),OL(−t)) where L is a line and t, a, b are integers such that 0 ≤ a ≤ b, then E is a

nearly free vector bundle if and only if t = a− 1, which forces its exponents to be (a+ 1, b+ 1).

Proof. If TC is nearly free, we can consider the right column in Diagram (3.1) and, taking its

dual, we obtain what required.

In order to prove the other implication, we take a vector bundle who is defined by the short

exact sequence

0 −→ E −→ OP2(−a)⊕OP2(−b) f−→ OL(−t) −→ 0

Notice that in order for the map f to be surjective, we must have t = b or t ≤ a. Once again,

taking its dual and applying Proposition 3.1, we get that E is nearly free if and only if t = a−1.

As before t can be interpreted as the number of triple points through which the line added in

the arrangement must pass. �

We end this section relating the jumping point of a nearly free vector bundle with the two

operations described above.

Proposition 3.3. Let TC be a nearly free vector bundle whose associated arrangement C is

constructed adding or deleting a line L in a free arrangement. Then the jumping point of TC
belongs to the line L.

Proof. The result comes immediately from Diagram (3.1) for the deletion operation. For the

addition, we consider the dual exact sequence of the one defining the bundle and again, we

conclude using the same commutative diagram. �
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Remark 3.4. It is not always possible to add or to delete a line from a given free arrangement

in order to find a nearly free arrangement. For instance it is not possible to find a nearly free

arrangement by deleting a line from the Hesse arrangement (12 lines through the nine inflexion

points of a smooth cubic curve) since there is no line containing 7 triple points.

On the other hand, consider the following free arrangement with exponents (4, 4) consisting

in two sets of four lines, the first one passing through the point (1 : 0 : 0) and the second one

through (0 : 1 : 0) plus the infinity line, i.e. the line defined by the two previous points. Choose

the eight “finite” lines in order not to have three points, coming from the intersections, aligned.

Then it is not possible to add a line to the previous arrangement that passes through three triple

points, and therefore, by Proposition 3.2, it is not possible to obtain a nearly free arrangement

starting from the free given one.

In the following section we give a family of free arrangements from which we can always build

a nearly free arrangement by deletion or addition.

4. Nearly free arrangements obtained by addition and deletion from a free one

The previous sections give us necessary and sufficient conditions in order to construct a nearly

free vector bundle with exponents (a, b) starting from a free vector bundle and applying addition

or deletion. Indeed, in this section we will show specific examples that realize such construction.

Moreover, we will be able to determine which lines of the associated arrangement are jumping.

In order to determine the jumping order on lines of the given arrangement, we will use the

multiarrangements introduced by Ziegler in [14].

Let us recall some results about these multiarrangements on lines. Let C be an arrangement

of N lines. Let L ∈ C. We denote by n the number (without multiplicity) of intersection points

on L and m1 ≥ · · · ≥ mn their multiplicities. We have of course
∑

imi = N − 1. If there is no

triple point of C on L then n = N − 1, if L contains some triple points then n < N − 1. Now,

according to Case 2.1, Case 2.2 on page 3 and Theorem 3.1 in [13], we have:

• If m1 ≥
∑n

i=2mi then the splitting type is (
∑n

i=2mi,m1).

• If 2n− 1 ≥ N then the splitting type on L is (N − n, n− 1).

• If 2n − 1 ≤ N then the splitting type is balanced when the n intersection points are in

general position but can be unbalanced for special positions.

Let us consider an arrangement C0 of a+b+1 lines (0 ≤ a ≤ b as usual) consisting in one line

at infinity, b parallel lines, a−1 parallel lines in another direction and one isolated line containing

a − 1 triple points (see Figure 3). This arrangement is free with exponents (a, b). Indeed the

associated vector bundle has the Chern classes of OP2(−a)⊕OP2(−b) and the splitting type on

a vertical line is (a, b) since n = b+ 1.

4.1. Deletion. A nearly free arrangement is obtained by deleting one line passing through b

triple points of the free arrangement C0. The dotted line (see Figure 4) passes through b − 1

triple points at infinity and one in the affine plane. Deleting this line we obtain a nearly free

arrangement with exponents (a, b) as it is proved in Proposition 3.1.

The two red lines are the only lines of the arrangement that are jumping lines. Indeed the

multiplicities of the multiarrangement on the diagonal line are m1 = · · · = ma−2 = 2 and

ma−1 = · · · = mb+1 = 1. Then n = b+ 1 and since 2b+ 1 > a+ b, the splitting type is (a− 1, b).

In the same way the multiplicities of the multiarrangement on the vertical red line are m1 = a−1
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Figure 3.

and m2 = · · · = mb+1 = 1. Then n = b+ 1 and the splitting type is (a− 1, b).

On the contrary, since the multiplicities on a horizontal line that does not pass through P and

that does not contain a triple point out of infinity (it exists since a ≤ b) are m1 = b − 1 and

m2 = · · · = ma+1 = 1, its splitting type is (a, b− 1).

It shows that the generic splitting is (a, b − 1), that the two lines through P determine the

jumping point, which will of course be P itself, and that these two lines are the only jumping

lines in C.

4.2. Addition. We build now a nearly free vector bundle with exponents (a+1, b+1) by adding

one line (the blue line in Figure 5) passing through a− 1 triple points to the free arrangement

C0 (see Proposition 3.2).

The point P of intersection of the diagonal line of C0 and the blue line is the jumping point of

the nearly free arrangement. Indeed, P belongs to the added line by Proposition 3.3 and since

the multiplicities on the diagonal line are m1 = · · · = ma−1 = 2 and ma = · · ·mb+2 = 1 the

splitting type is (a, b+ 1) which proves that P belongs also to the diagonal line.

On the contrary, the splitting type on a horizontal line that does not contain nor P neither

a triple point is (a + 1, b) since the multiplicities are m1 = b and m2 = · · · = ma+2 = 1. This

proves that the generic splitting is this one and that the two lines of C through P are the only

jumping lines of C.

As a consequence of Proposition 2.7, we obtain the following result

Corollary 4.1. Any nearly free vector bundle can be obtained from a free arrangement by

addition or deletion.

Proof. We have seen that, up to isomorphism, a nearly free vector bundle depends only on the

exponent (a, b) and the jumping point. Fixing them, it is always possible to construct with the
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Figure 4.

Figure 5.

two previous techniques a nearly free vector bundle with the given jumping point and exponent,

this last depending on the number of lines. �



NEARLY FREE CURVES AND ARRANGEMENTS: A VECTOR BUNDLE POINT OF VIEW 19

5. Behaviour of the jumping point

Let us consider now a line arrangement C that is nearly free. Then there exists an associated

jumping point P . A natural question in the context of Terao’s conjecture is the following one:

Does this jumping point depend on the combinatorics of C?

Actually the answer itself depends on the combinatorics we choose. Some combinatorics de-

termine the position of the jumping point when some other combinatorics are not enough to

determine its position. We give now some examples which tell us that we can have all possibilities

for the position of P relatively to C:

• the jumping point of TC is the intersection of at least two lines of the arrangement,

• the jumping point is on one and only one line of the arrangement,

• the jumping point does not belong to the arrangement, i.e. all the lines of the arrange-

ment have generic splitting type.

We will show how the jumping points variates in the projective plane when shifting a line in

order to maintain its combinatoric, see Example 5.1. Moreover, we will show that for some fixed

combinatorics, the jumping points will be forced to belong to the arrangement, see Example 5.2,

while for another fixed one, the jumping point can either belong or not to the arrangement, see

Example 5.3.

Example 5.1. Consider the arrangement of lines in P2 defined by

C := xyz(x− z)(x+ z)(y − z)(y + z)(x− y)(x+ y)(x+ ty − (1 + t)z) = 0

with t ∈ C and represented in Figure 6.

Notice that, in the figure, we omit the line at infinity, which nevertheless it is present in the

Figure 6.

arrangement, and the red line depends on the choice of the value t. It is possible to compute,

for example using Macaulay2 (see [6]), that for any choice of t except for the ones that give us

the lines passing through Q or R or any line already present in the arrangement, the associated
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vector bundle is nearly free and the jumping point is given by the unique point in the projective

plane which is the solution of the linear system{
x+ y + z = 0

x+ ty − (1 + t)z = 0.

We first remark that this arrangement is obtained by adding the line Lt to the free arrangement

(called B3 in the literature; its exponents are (3, 5)) consisting of the 9 remaining lines. As shown

in section 3, the point always belongs to the line Lt. Therefore any such arrangement defining a

nearly free vector bundle contains only one jumping line. If we consider the line passing either

through the point Q or R, we obtain a free arrangement. In conclusion this example gives a

family of nearly free vector bundles which are parametrized by an open subset U of the line

x + y + z = 0, where each point of the open subset considered represents the jumping point of

the associated nearly free vector bundle. Indeed, the arrangement will determine a nearly free

vector bundle if and only if the line Lt does not pass through any triple points except for O.

This means that the cases we have to exclude are five: the line passing through O and Q, the

line passing through O and R and when Lt coincides with a line already in the arrangement, i.e

the lines x − y = 0, x − z = 0 and y − z = 0. Therefore, U = {x + y + z = 0} \ {Q,R, (1 : 1 :

−2), (1 : −1 : 1), (−1 : 1 : 1)}.

The following example will be constructed by adding one line to a free arrangement. We have

already notice that this choice implies that the jumping point will belong to it. Nevertheless, in

the first part of the example we will show that jumping point can either be on one or multiple

lines of the arrangement. In the second part we will show that a well chosen combinatorics forces

the jumping point to belong to one and only one line of the arrangement.

Example 5.2. Consider the arrangement defined by

C := xyz(x2 − z2)(y2 − z2)(x− y)(x− y + 2z) = 0.

The associated vector bundle TC is nearly free (the line x − y + 2z = 0 is added to the free

arrangement with exponents (3, 4) and contains two triple points) and it is given by the following

resolution

0 −→ OP2(−6)
A−→ OP2(−4)⊕OP2(−5)2 −→ TC −→ 0

with

A =
[

9y2 + 9yz, −4x− 5y + z, 5x+ 13y − 8z
]t

and its jumping point is P = (−1 : 1 : 1). In Figure 7, we can see the arrangement, from which

we omit the infinity line. The red lines are the jumping lines in the arrangement. In this case

the jumping point is an intersection of two jumping lines.

Let us consider now an arrangement with the exact same combinatorics of the previous one,

but obtained for it by sliding two perpendicular lines, i.e.

C ′ := (x+
1

2
z)(y +

1

2
z)z(x2 − z2)(y2 − z2)(x− y)(x− y + 2z) = 0.

The associated vector bundle TC′ is also nearly free and it is given by the following resolution

0 −→ OP2(−6)
A−→ OP2(−4)⊕OP2(−5)2 −→ TC −→ 0
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Figure 7.

with

A =
[

18y2 + 27yz + 9z2, 5x− 13y − 2z, −8x− 10y − 4z
]t

and its jumping point is P ′ = (−4 : 2 : 3). Notice that jumping point has moved along the

line x− y + 2z = 0 but it is no long intersection of two jumping lines of the arrangement. This

situation is described in Figure 8. Notice that these two arrangements are constructed by adding

a line (x− y + 2z = 0 in both cases) to a free arrangement.

Figure 8.

Generalizing the previous example taking more lines, the combinatorics of the arrangement

can determine if the added line is the only jumping one.

Indeed, consider a free arrangement A with exponent (4, 5) given by two groups of four parallel

lines, in the affine plane, having two different directions, one diagonal line passing through 4
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points of intersection of the grid formed by previous ones and the line at infinity. Obviously, we

can choose z = 0 for the line at infinity, and the grid formed by vertical and horizontal lines, i.e.

x = αiz and y = βiz (1 ≤ i ≤ 4). Then in order for the diagonal line to contain 4 triple points,

we must have αi = βi.

Let us add a further line D, parallel to the diagonal one, passing through 2 intersection points

of the grid.

By Proposition 3.2, we obtain a nearly free arrangement A∪D with exponents (5, 6), depicted in

Figure 9. We claim that in this case, the combinatorics does not allow the jumping point, which

Figure 9.

we already know belongs to the added line D, to be on any another line of the arrangement.

Observe that if we move the lines H1 and V 1, maintaining their direction and the point M as

a triple point of the arrangement, we keep the same combinatorics and the jumping point P ,

associated to the obtained arrangement, moves along the line D.

Let us explain why P /∈ A. We must prove that the splitting type is (5, 5) for any line of A.

Directly the multiplicity of the points given by the other lines of the arrangement determine the

splitting type for the red lines in the picture and for the line at infinity; indeed their splitting is

(5, 5).

Let us consider now the black horizontal and vertical lines, where the points defined on them by

the other lines of the arrangement have multiplicities, up to order, (1, 1, 2, 2, 4). Consider one of

such black lines, which we will denote by L, with C[x, z] as its homogeneous ring of coordinates.

The line L contains three multiple points and two simple points.

Since PGL(2) acts transitively on three points we can assume that the point (1, 0) has multiplicity

4, (0, 1) and (1, 1) have multiplicity 2. The remaining points (t1, 1) and (t2, 1) are simple points.

If L is a jumping line, there exist, according to [13], two polynomials P and Q with degree 4

such that :

z4|Q, x2|P, (x− z)2|(P −Q), (x− t1z)|(P − t1z) and (x− t2z)|(P − t2z).

We obtain that, by direct computation, Q(x, z) = z4, P (x, z) = x2(x2 − 4xz + 4z2), t1 = 3−
√

5
2

and t2 = 3+
√

5
2 .
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But considering this special position of points on L, it is impossible to recover the required

combinatorics; in particular, it is not possible to find a line, parallel to the main diagonal

line, through two triple points of the grid. Figure 10 explains the behaviour of this special

arrangement.

Figure 10.

The next example shows us that we can find a specific combinatorics for which the jumping

point can belong or not to the arrangement. Indeed, we will see that shifting properly the lines

of the arrangement, in order to maintain its combinatorics, the jumping point will either be

inside or outside the arrangement.

Example 5.3. Let us consider the arrangements defined by

Ct := xyz(x− z)(x− 2z)(x− tz)(y − z)(y − 2z)(y − (t+ 1)z)(x− y)(x− y + z) = 0.

If t = 1/2, the associated nearly free bundle is defined by the matrix

A = [−7x+ 11y − 7z 14x− 134y + 161z 4y2 − 7yz]

and the jumping point P = (17 : 21 : 16) does not belong to the arrangement C1/2.

On the contrary, if we take t = 2/3, then the associated nearly free bundle is defined by the

matrix

A = [−5x+ 8y − 5z 15x− 144y + 165z 6y2 − 10yz]

and the jumping point P = (4 : 5 : 4) belongs to the arrangement C2/3.

In Figure 11, the black lines are the ones in common between the two arrangements, while the

red ones belong to C2/3 and the blue ones to C1/2. It can be checked directly from the picture

that the two arrangements have the same combinatorics.
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Figure 11.
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