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Introduction

Soit D une conique lisse de P 2 = P 2 (C). On dira qu'une conique lisse C est n-circonscrite à D s'il existe un polygone à n cotés inscrit dans C et circonscrit à D. Le théorème de Poncelet affirme alors qu'il existe une infinité de tels polygones, en d'autres termes que tout point de C est le sommet d'un polygone à n cotés vérifiant cette propriété. Les nombreuses démonstrations de ce résultat sont regroupées dans l'article [START_REF] Bos | Poncelet's closure theorem, its history, its modern formulation, a comparison of its modern proof with those by Poncelet and Jacobi, and some mathematical remarks inspired by these early proofs Expo[END_REF]. Il semble que Cayley soit le premier à avoir donné une condition explicite exprimant qu'une conique est n-circonscrite à une autre ; cette condition fait apparaître que l'ensemble C n des coniques n-circonscrites à D est une hypersurface de l'espace projectif des coniques et permet de déterminer l'équation de cette hypersurface (voir l'article "On Cayley's explicit solution to Poncelet's porism" de Griffiths et Harris, [START_REF] Griffiths | On Cayley's explicit solution to Poncelet's porism[END_REF]). Cette hypersurface n'est évidemment pas irréductible dès qu'il existe un entier naturel r vérifiant 3 ≤ r < n et divisant n (elle contient alors l'hypersurface des coniques r-circonscrites à D). Il est naturel d'introduire alors l'hypersurface M n des coniques strictement n-circonscrites à D (strictement voulant dire que le polygone à n cotés n'est pas décomposable en polygones plus petits). [START_REF] Manaresi | On the jumping conics of a semistable rank two vector bundle on P 2[END_REF]) Soit E un fibré vectoriel stable de rang deux normalisé (i.e. c 1 (E) = 0 ou -1) sur le plan projectif complexe. Une conique C est une conique de saut pour

E si E C = 2O C lorsque c 1 = 0 ou h 0 (E C ) = 0 lorsque c 1 = -1.
On note J(E) l'ensemble des coniques de saut. C'est une hypersurface de P(H

0 (O P 2 (2))) de degré degJ(E) = c 2 + c 1 (où c 2 = c 2 (E) et c 1 = 0 ou -1, [6] thm 1.8).
Dans P(H 0 (O P 2 (2))) une autre hypersurface est naturellement attachée à la conique D, c'est l'hypersurface J(E n ) des coniques de saut du fibré de Schwarzenberger, associé à D,

de classes de Chern c 1 (E n ) = n -1 et c 2 (E n ) = n 2 .
Rappelons à ce sujet que lorsque n ≥ 3 les droites de saut de E n (i.e. les droites L telles que h 0 (E n|L (-[ n 2 ] -1)) = 0) sont les droites tangentes à D ( [START_REF] Schwarzenberger | Vector bundles on the projective plane[END_REF], prop.8). Enfin par construction E n est invariant sous l'action de SL 2 (C) Aut(D). Pour plus d'informations je renvoie le lecteur à [START_REF] Schwarzenberger | Vector bundles on the projective plane[END_REF], [START_REF] Trautmann | Poncelet curves and associated theta characteristics[END_REF], [START_REF] Vallès | Fibrés de Schwarzenberger et coniques de droites sauteuses[END_REF].

-Nous montrons tout d'abord que J(E n ) = C n (thm. 2.1).

-Puis nous explicitons le lieu des coniques singulières n-circonscrites à D (thm. 2.2) et des coniques singulières de saut de E n (coro. 2.4).

Bien entendu on ne parlera de coniques de saut de E n et de coniques n-circonscrites que pour n ≥ 3.

Quelques notations.

Considérons le morphisme ψ : P 2∨ × P 2∨ → P 5 qui a un couple de droites associe la conique union des deux droites. On considère le solide ψ(P 2∨ × D ∨ ) constitué des coniques singulières dont l'une au moins des droites du support est tangente à D. Le morphisme ψ restreint à la diagonale est le morphisme de Veronese v : P 2∨ → P 5 . Rappelons que la variété Sec(v(D ∨ )) des bisécantes de v(D ∨ ) est un solide de degré 3 obtenu en intersectant l'hypersurface des coniques singulières ψ(P 2∨ × P 2∨ ) (qui est aussi la variété Sec(v(P 2∨ )) des bisécantes à la Veronese) et l'hyperplan engendré par v(D ∨ ).

Etant donnés une conique lisse Γ et un point x /

∈ Γ, une droite générale passant par x coupe Γ en deux points distincts. L'homographie qui échange ces deux points est appelée involution de Frégier sur Γ associée au point x.

Notons P m l'ensemble des racines primitives m-ième de l'unité et φ(m) son cardinal.

2 Coniques de saut d'un fibré de Schwarzenberger.

Théorème 2.1 J(E n ) = C n
Preuve. On remarque avant toute chose que les deux hypersurfaces ont même degré et que l'hypersurface des coniques n-circonscrites est réduite. Il suffit donc de montrer l'inclusion C n ⊂ J(E n ) sur l'ouvert des coniques lisses. Soit C une conique lisse n-circonscrite à D. Les n 2 sommets définis par la donnée des n droites tangentes à D sont les zéros d'une section s ∈ H 0 (E n ) ([9], proposition 1.4). La restriction de la suite exacte

0 → O P 2 s -→ E n -→ I Z(s) (n -1) → 0 à la conique C prouve que E n|C = O C ( n 2 ) ⊕ O C ( n- 2 
2 ). Le diviseur J(E n ) contient des coniques singulières. Lorsque n est impair les coniques dont une droite du support est tangente à D sont les seules ([6], remarque 1.2 et lemme 1.3). Lorsque n est pair celles-ci sont encore sauteuses mais il peut y en avoir d'autres. Nous nous proposons de déterminer lesquelles dans cette deuxième partie. Pour le faire nous étudions les intersections M n ∩ {coniques singulières} 2.1 Les coniques singulières de saut.

Soit C une conique singulière rencontrant D en quatre points distincts. Comme deux quadruplets de points de D ont mêmes birapports λ, 1 λ , 1 -λ, 1 1-λ , λ λ-1 et λ-1 λ si et seulement s'ils sont équivalents sous SL 2 (C), on en déduit que deux coniques singulières associées aux birapports {λ, 1 λ } où λ ∈ C -{0, 1} sont dans une même orbite sous l'action de SL 2 (C). Notons C λ un représentant de cette orbite. La fonction c(λ) = ( λ+1 λ-1 ) 2 est invariante par la transformation λ → 1 λ . On associe de cette façon le nombre complexe c(λ) = 1 à la conique C λ . On note Ω c(λ) l'orbite sous SL 

(i) [M 2n+1 ∩ Sec(v(P 2∨ ))] red = ψ(P 2∨ × D ∨ ) (ii) [M 2n ∩ Sec(v(P 2∨ ))] red = ψ(P 2∨ × D ∨ ) ∪ z∈P 2n Ω( 1+z 2 2z ) 2
Remarque. La fraction ( 1+z 2 2z ) 2 est invariante par les transformations z → -z et z → 1 z . On en déduit que lorsque z parcourt P 2n , la fonction ( 

i) C = l ∪ d ∈ M 2n ii) (uv) n-1 = id et (uv) n = id iii) l ∪ d ∈ z∈P 2n Ω ( 1+z 2 2z ) 2
Preuve. On montre i) ⇔ ii) puis ii) ⇔ iii). Si uv est d'ordre n le résultat est évident. Réciproquement, l'existence d'un polygone circonscrit à D implique l'existence d'un polygone (dual) inscrit dans D ∨ . Soit x un des 2n sommets de ce polygone inscrit, on a (uv) n (x) = x. Comme 2n ≥ 3 on en déduit que uv est d'ordre n. Ce qui prouve l'équivalence de i) et ii).

Théorème 2 . 2

 22 2 (C) de la conique C λ . Le nombre complexe c(λ) est nul si et seulement si le birapport des quatre points sur D est -1. Dans ce cas les deux droites formant la conique singulière C sont conjuguées harmoniquement i.e. C appartient à un pinceau de coniques (l 2 , d 2 ) où l et d sont tangentes à D. Cette remarque prouve que Ω0 = Sec(v(D ∨ )). Les coniques singulières strictement circonscrites à D sont :

  1+z 2 2z ) 2 ne prend que φ(n) valeurs distinctes. Preuve. On montre tout d'abord que ψ(P 2∨ × D ∨ ) ⊂ M n . Les deux hypersurfaces M n et Sec(v(P 2∨ )) se rencontrent le long d'un solide, sinon tout point de la Veronese serait une conique de saut de E n ce qui contredirait les résultats de Manaresi et de Hulek ([6], remarque 1.2, lemme 1.3 et [5], Thm 3.2.2). De plus si une conique singulière appartient à M 2n+1 elle est une conique de saut de E 2n+1 , par conséquent une droite de son support est tangente à D. Comme M 2n+1 ∩ Sec(v(P 2∨ )) est invariant sous l'action de SL 2 (C) on en déduit (i). Les deux hypersurfaces M 2n et M 2n-1 se rencontrent le long d'un solide formé de coniques singulières. D'après (i) on en déduit que [M 2n ∩ M 2n-1 ] red = ψ(P 2∨ × D ∨ ), et donc ψ(P 2∨ × D ∨ ) ⊂ M 2n . On conclut en utilisant le lemme suivant Lemme 2.3 Soient l et d deux droites de P 2 avec l ∨ , d ∨ / ∈ D ∨ , u (resp v) l'involution de Frégier définie sur D ∨ par le point l ∨ (resp d ∨ ). Les conditions suivantes sont équivalentes (n ≥ 2) :

  Barth et Bauer calculent le degré de M n ([1], Thm 3.3) à la suite, entre autre, de Halphen ([4] chap. IV première partie et chap. X deuxième partie). Il résulte immédiatement de leur démonstration que M n est réduite et que le degré de C n est la somme des degrés des hypersurfaces M r pour 3 ≤ r < n et r | n, à savoir n 2 -4 Comme M n ∩ M m pour m = n ne contient que des coniques singulières d'après le théorème de Poncelet cité plus haut, on en déduit que C n = r≥3,r|n M r et que C n est réduite.

	4	lorsque n est pair, n 2 -1 4	lorsque n
	est impair. Définition 1.1 (d'après Manaresi		

Montrons tout d'abord que l ∪ d rencontre D en quatre points distincts. Sinon les involutions u et v définies par les points l ∨ et d ∨ ont un point fixe commun car la droite passant par ces deux points et tangente à D ∨ . De plus ce point fixe commun est l'unique point fixe du produit uv, ce qui prouve que uv est une translation, i.e. n'est pas d'ordre n. On en déduit que l ∪ d ∈ Ω η pour un nombre complexe η. Soit z un complexe vérifiant

Le deuxième point fixe de v est donc (1, -iz). Les involutions sont alors

Le produit uv est d'ordre n si et seulement si z est une racine 2n-ième primitive de l'unité, ce qui prouve l'équivalence de ii) et iii).

Corollaire 2.4 Les coniques singulières de saut sont

Preuve. Les points (i) et (ii) sont des conséquences immédiates du théorème précédent et du fait que

Enfin, on montre sans difficulté la proposition suivante qui exprime que les coniques de ψ(P 2∨ × D ∨ ) sont "plus" sauteuses que les autres.