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Short Communication 

Influence of hydrogen on electrochemical behavior 

of Ni-based superalloy 718 

Grégory Odemer*, Eric Andrieu, Christine Blanc

CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, ENSIACET, 4 Allée Emile Monso, BP 44362, 31030 Toulouse 

Cedex 4, France 

ARTICLE INFO ABSTRACT 

Keywords: 

Nickel alloys 

Numerous studies have shown that Ni-based superalloy 718 may be sensitive to hydrogen 

embrittlement and have highlighted the dominant roles played by the hydrogen solubility 

and the hydrogen trapping. Samples were hydrogenated by cathodic polarization in molten 

salts under different conditions ta vary the diffusible hydrogen content and ta saturate the 

different hydrogen traps present in the microstructure strengthened by precipitation. Open 

circuit potential and galvanic coupling measurements were conducted in order to char­

acterize the effect of diffusible and trapped hydrogen on electrochemical behavior and to 

discuss the possibility of galvanic coupling between zones with different hydrogen 

contents. 

Hydrogen embrittlement 

Electrochemistry 

Galvanic coupling 

Introduction 

Alloy 718 is a Ni-based superalloy that is widely used for high­

temperature applications, particularly for structural compo­

nents in the aeronautic and nuclear industries, due to its good 

mechanical properties. This alloy is strengthened bath by 

structural hardening and by solid solution hardening [1]. The 

typical strengthening heat treatment applied to alloy 718 

consists of a dwell of 8 h at 720 °C, followed by cooling at 50 °C/ 

h and a final dwell of 8 h at 620 °C. This process leads to the 

precipitation of y" (metastable and coherent with the matrix, 

tetragonal D022 structure, Ni3Nb composition, disc-shaped 

(20 nm diameter x 10 nm thickness)) and y' (stable and 

coherent with the matrix, cubic L12 structure, (Al,Ti)Ni3 

composition, spherical shape (20 nm)) phases embedded in a y 
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matrix (volume fraction of y'-y" = 16% and y'/y" ratio= 1/4). 

Sorne primary carbides precipitates are also present in the 

microstructure [2). 

Under operating conditions, despite a good resistance to 

stress corrosion cracking (SCC), corrosion processes may 

induce local hydrogen enrichment at the material surface and/ 

or in the vicinity of localized corrosion defects. Consequently, 

a hydrogen-assisted SCC phenomenon can occur under com­

plex stress and strain states [3]. The hydrogen embrittlement 

(HE) of Ni-based alloys is generally exacerbated when the al­

loys are submitted to mechanical loading, suggesting that 

hydrogen diffusion occurs along stress gradients as well as 

hydrogen transport by dislocations during plastic deformation 

(4-14]. Hydrogen transport by mobile dislocations can lead to 

local hydrogen enrichment in the dislocation pile-ups close to 

precipitates/interfaces, which favors crack initiation. Galliano 

https:// doi.org/10.1016/j .ijhydene.2017 .11.081  



et al. have confirmed this point and have shown a strong 

susceptibility of the strengthened alloy 718 to HE after cathodic 

hydrogen charging [2]. 

Effect of hydrogen on rupture modes 

In this work, samples were hydrogenated by cathodic 

charging in molten salts at 150 °c as done by Galliano et al. [2]. 

Ali the characteristics of these chargings are detailed in this 

previous work as well as hydrogen content measurements 

using a Galileo Bruker analyzer and the procedure of hydrogen 

desorption tests [2). The fracture surfaces obtained after ten­

sile tests performed at 25 °C and ê= 10-3 s-1 for pre­

hydrogenated samples of strengthened alloy 718 are pre­

sented in Fig. 1 and showed both transgranular (cleavage) 

(Fig. la and b) and intergranular brittle fracture (Fig. le). 

Two main HE mechanisms in relation to the hydrogen­

trapping mechanism are generally considered to explain the 

fracture surfaces: the hydrogen-enhanced localized plasticity 

(HELP) and hydrogen-induced decohesion (HID) mechanisms 

[15]. The HELP mechanism corresponds to an increase in 

dislocation mobility by the reduction of the elastic in­

teractions between obstacles and perfect and partial disloca­

tions [16). Associated with a hydrogen transport phenomenon 

facilitated by dislocations, this mechanism leads to local 

segregation of hydrogen on {111) planes, inducing cleavage, as 

well as the decohesion of particles/matrix interfaces (HID 

mechanism) [17,18]. 

Intergranular brittle fracture suggested that hydrogen 

preferentially diffused/segregated along grain boundaries, 

partly due to the hydrogen-trapping mechanism on carbides 

that reduced the cohesive strength of the grain boundaries 

structure. But, the low density of intergranular carbides sug­

gested rather that the grain boundaries chemistry and crys­

tallographic relations could have a strong effect on 

intergranular rupture too as well as the possibility of inter­

granular element segregations such as Nb or P [19-21). 

Study of hydrogen trapping reversibility 

So these results have shown the strong influence of hydrogen 

traps on HE susceptibility of the alloy 718 and particularly on 

lOJ---�--�-----------�-� 

\ (a-2omn1 
� 1 1--+--

!/, 
:iu � 1 

t I (20.JOD.ir�n] 

1: \ ·t·········•· · ······ ········�········· .. ··· ·································=+• \ ·=1
i
.,, ----·-l20"C 

i.. .• , ..•.••• (�:��-�:. 
1 

[1>).3-00mlol -L_- ···+··············································--
"" '"' 

0.10rp4kladm1t(mlr.) 

Fig. 2 - Evolution of hydrogen content in 8 h H-charged 

alloy 718 during 300 min at 25 °C and 320 °C. 

the rupture modes. For a better understanding of the 

hydrogen desorption phenomena in relation with hydrogen 

trapping, desorption heat treatments were conducted at two 

temperatures, i.e. 25 °c and 320 °C, during 300 min for samples 

all pre-hydrogenated in molten salts at 150 °C for 8 h. To 

compare the evolution of the hydrogen content between each 

desorption temperature, the hydrogen content was measured 

relative to the initial hydrogen content [Ho) measured for a 

pre-hydrogenated sample immediately after charging. Ali 

hydrogen contents were measured using a Galileo Bruker 

analyzer [2). The results of this analysis are given in Fig. 2. 

For both temperatures, two successive regimes were 

characterized. A preliminary step characterized by a strong 

hydrogen desorption followed by a second step corresponding 

to a stagnation of the hydrogen content: 

- Hydrogen desorption regime: [0-20 min] at 25 °C and

[0-120 min] at 320 °C.

The hydrogen desorption was relatively rapid, and the level 

of desorption was dependent on the temperature. Considering 

that the main hydrogen traps characteristic of the strength­

ened alloy, i.e. carbides and strengthening precipitates/matrix 

interfaces, are irreversible [5,22], the rapid and strong 

hydrogen content decrease observed in the desorption curves 

Fig. 1 - Fracture surfaces observations of pre-hydrogenated samples of strengthened alloy 718 after tensile test. 

Transgranular rupture (cleavage) related to hydrogen trapping (a) on carbide/matrix interfaces and (b) on strengthening 

precipitates/matrix interfaces and (c) intergranular rupture related to hydrogen diffusion/segregation along grain 

boundaries. 



was related partially to the desorption of interstitial hydrogen, 

i.e. bulk diffusivity, and to a large extent to the hydrogen

diffusion by grain boundaries, which have been characterized

as short-circuit paths of diffusion in several studies

[12-14,23]. Indeed Harris and Latanision have shown that the

values of hydrogen diffusion coefficient in grain boundaries

could be 40 to 1000 larger than the lattice diffusion coefficient

at 30 °C for nickel with very small grain size (0.1 µm) [23]. In

this work, the grain size of the alloy 718 was around 9 µm that

remains small and could induce a significant difference be­

tween grain boundary and lattice diffusion coefficients.

However, this does not exclude that hydrogen desorption

could be partially related to the bulk diffusivity. Moreover, this

fast and significant hydrogen desorption could be enhanced

also by the fact that cathodic charging led to a strongly H­

enriched zone under the surface exposed to the molten salts

and finally to a high apparent solubility in hydrogen [2], higher

than data usually found in literature [24].

- Hydrogen content stagnation regime: (20-300 min] at 25 °c

and [120-300 min] at 320 °C.

The different dwells observed for each temperature 

correspond to the hydrogen still present in the lattice and in 

grain boundaries and to the hydrogen trapped irreversibly on 

y'-y" precipitates/matrix interfaces and carbides. These re­

sults regarding hydrogen desorption clearly suggested that 

precipitates/matrix interfaces were saturated in hydrogen 

after hydrogen cathodic charging, given that hydrogen 

desorption is mainly due to the partial desorption of intersti­

tial hydrogen and mainly to the hydrogen desorption by grain 

boundaries. Finally, after 300 min of desorption, samples heat 

treated at 320 °C presented a hydrogen content around 

10 ppmw, i.e. 6 times lower than samples desorbed at 25 °C 

(hydrogen content around 60 ppmw). This difference could be 

explained by the increase of the hydrogen diffusion co­

efficients with temperature (both grain boundary and lattice 

diffusion coefficients) and by the fact that hydrogen trapped in 

grain boundaries in relation with intergranular segregations 

such as Nb or P could egress at 320 °c. 

Effect of hydrogen on electrochemical behavior 

In a previous work, it was shown that hydrogen was able to 

modify the electrochemical behavior of different metallic al­

loys, and particularly their open circuit potential (OCP) [25] but 

also their local surface potential, measured by means of 

Kelvin probe force microscopy [26-28). Moreover, recently 

rigorous calibrations of the KFM technique confirmed the 

correlation between the corrosion potential and the inverted 

KFM potential measured by a scanning Kelvin probe (SKP) in 

80% relative humidity (29) and the relation, for dry surfaces, 

between the amount of available hydrogen with the work 

fonction which can be considered as an electrode potential 

[30]. 

Several works of Pound et al. have highlighted the role of 

hydrogen on electrochemical behavior of Ni-based alloys, in 

relation with diffusion and trapping phenomena. So they used 

a potentiostatic double-step technique to study hydrogen 

a tom ingress into a planar test electrode of the studied alloy. 

The technique involves generating hydrogen atoms at a con­

stant cathodic potential, then stepping the potential to a more 

positive value and recording the anodic current and charge 

associated with the removal of hydrogen atoms from the 

electrode [31). 

On the basis of all these results, the effect of hydrogen on 

OCP of alloy 718 was investigated by measuring the OCP vs. 

immersion time at 25 °C in 0.5 M NaCl medium for pre­

hydrogenated samples for different cathodic charging times, 

i.e. 0.5 h, 1 h, 8 h and 16 h and for a sample pre-hydrogenated

during 8 h and then heat treated during 300 min at 320 °C

before electrochemical characterization. The results of these

measurements are given in Fig. 3.

The evolution of OCP vs. immersion time is given for 

comparison for a H-free sample (Fig. 3) and highlighted that 

OCP after 450 min, i.e. 0.09 V/SCE, was not stabilized. A longer 

test duration was required, i.e. around 1000 min as shown in 

Fig. 4 in order to reach an OCP stabilization in relation with a 

slow passivation of the material surface and with the low 

aggressivity of the medium for this type of Ni-based superal­

loy. The measurements on H-charged samples allowed to 

confirm the effect of hydrogen on OCP values. It was shown 

that hydrogen shifted the OCP values towards more negative 

potentials in relation with the cathodic charging time and 

therefore with the hydrogen content in subsurface and that 

hydrogen stabilized quickly the OCP. Such a result raised the 

question of how hydrogen could affect the OCP. It is true that 

changes in OCP would be indicative of changes in the surface. 

For example, as suggested by Protopopoff et al. [32), the 

adsorption of hydrogen on the metallic surface should lead to 

a change in OCP. However, the relationship between the 

amplitude of the changes in OCP and the cathodic charging 

time suggested that the influence of hydrogen on OCP was 

more complex. As suggested in the literature, by modifying 

the electronic output work [26-30), the hydrogen should affect 

the Volta Potential as well as the OCP measured in solution. 

Although no clear mechanism explaining the role of hydrogen 

on the electronic output work was established, it was 

assumed that hydrogen distorts the metallic lattice leading to 

the variations observed. It could be assumed that the influ­

ence of hydrogen on OCP should depend on the precipitation 

state of the material. Indeed, the precipitates which act as 

trapping sites distort the lattice and/or create interfaces at 

which the hydrogen atoms will distort the lattice less. In this 

sense, the influence of hydrogen on OCP should give indica­

tion about the interaction between hydrogen and precipitates/ 

matrix interfaces in subsurface as recently shown by Oger 

et al. [33]. Further, analysis of the OCP curves requires to 

consider H desorption during OCP measurements at 25 °C, as 

shown in Fig. 2. According to the results of desorption treat­

ments (Fig. 2), after 20 min at 25 °C, for a sample hydrogenated 

for 8 h, the hydrogen content was stabilized with only strongly 

trapped hydrogen present inside the material. Since OCP 

curves for 1, 8 and 16 h of charging are similar (Fig. 3), it was 

possible to confirm that a cathodic charging of 1 h was suffi­

cient to saturate precipitates/matrix interfaces in subsurface. 

However, for a 0.5 h duration, the interfaces seemed to be only 

partially saturated that explained the less negative OCP values 

measured. Then, the evolution of OCP values at the beginning 
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Fig. 3 - OCP (V/SCE) vs. time (minutes) ofH-free, pre-hydrogenated (0.5 h, 1 h, 8 h and 16 h) and pre-hydrogenated + heat­

treated at 320 °C samples. 

of the electrochemical test performed on 8 h H-charged 

sample could be related to the strong hydrogen desorption at 

25 °C during the first minutes of desorption test: the time 

required for OCP stabilization was in the same order of 

magnitude than diffusible hydrogen desorption time, i.e. 

20-30 min, observed in Fig. 2. The most important desorption

range for 0.5 h H-charged sample could be explained by the

fact that OCP value was more susceptible to hydrogen

desorption given that precipitates/matrix interfaces were not

saturated for this duration of cathodic charging. It was also

observed that the OCP value of the sample pre-hydrogenated

Fig. 4 - Galvanic coupling tests for two H-free electrodes 

and a H-free electrode coupled with a hydrogen pre­

charged electrode. 

during 8 h and heat treated during 300 min was intercalated 

between the OCP values of a H-free sample and pre­

hydrogenated samples. According to the desorption tests 

(Fig. 2), the heat treatment performed at 320 °C led to the 

desorption of interstitial hydrogen and mainly of hydrogen 

trapped in grain boundaries in a larger extent than for 

hydrogen desorption occurring during OCP measurements at 

25 °C which explained the less negative OCP values observed. 

The role of diffusible hydrogen on OCP has already been 

observed by Shaller and Scully [28] and diffusible hydrogen 

undoubtedly contributes to explain the OCP values. But, the 

difference in OCP values between a H-free sample and a out­

gassed sample was probably related to the hydrogen still 

trapped at matrix/precipitates interfaces given it was 

assumed that diffusible hydrogen content was negligible after 

the heat desorption treatment according to the diffusion cal­

culations and the hydrogen content measurements and ten­

sile surface factures. Indeed hydrogen content for H-free, H­

charged and outgassed sample was respectively 0.5, 58 and 

5.2 ppmw. Mechanical tests performed on H-free and H­

charged tensile samples showed that hydrogen in grain 

boundaries induced intergranular rupture and hydrogen 

trapped at carbides and matrix/precipitates interfaces 

induced cleavage [2]. The fracture surface of the outgassed 

sample has shown only cleavage that reinforced the fact that 

hydrogen content after desorption treatment was mainly 

related to hydrogen trapped at matrix/precipitates interfaces 



and thus responsible for a large part for the OCP value ac­

cording to the work of Oger et al. (33]. 

These results have shown that hydrogen was able to 

modify the electrochemical behavior of alloy 718 in relation 

with diffusible and trapped hydrogen content. So it could be 

considered that, for a hydrogenated material presenting a 

heterogeneous microstructure, the local hydrogen content 

could strongly vary, so that local galvanic coupling between 

zones with different hydrogen concentrations could occur. To 

confirm this hypothesis, a galvanic coupling test was per­

formed in 0.5 M Na Cl at 25 °c between a sample pre-charged in 

hydrogen during 8 h and a H-free sample. A preliminary test 

was performed with two H-free samples as reference. The 

results are presented in Fig. 4. 

At first, the coupling tests performed with two H-free 

samples showed that the common potential measured was 

logically close to the value of the OCP of a H-free sample, i.e. 

0.11 V/SCE after 1000 min. Moreover, these tests allowed to 

determine the reference coupling current, i.e. 10-4 mA after

stabilization. The fact that this coupling current has a non­

zero value could be explained by the residual hydrogen con­

tent of H-free material, i.e. between 0.2 and 0.5 ppmw 

depending on the samples that could induce a slight coupling 

[2]. The common potential measured during coupling test 

between a H-free sample and a 8 h H-charged sample, i.e. 

-0.1 V/SCE, was logically comprised between OCPs of H-free

sample and 8 h H-charged sample, and corresponded to an

anodic polarization for the 8 h H-charged sample. This result

showed that the H-charged sample was the sacrificial anode

during the coupling test. This result was confirmed by the

galvanic coupling current measured, i.e. around 2 orders of

magnitude higher than the current obtained during coupling

of the two H-free samples. Moreover the increase of the dif­

ference between the coupling currents as the fonction of time

suggested that the galvanic coupling due to hydrogen led to a

self-catalyzed mechanism.

Conclusion 

Therefore, it was demonstrated that H enrichment led to a 

shift of the OCP of alloy 718 towards more negative values. 

This result is particularly important because it suggests that in 

a complex microstructure with a heterogeneous hydrogen 

distribution, local galvanic couplings could be active in par­

allel to classical SCC and HE phenomena, enhancing the 

resultant damage. Further local electrochemical analysis such 

as KFM will be performed to support these first conclusions. 
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