A Numerical Model of the SEIS Leveling System Transfer Matrix and Resonances: Application to SEIS Rotational Seismology and Dynamic Ground Interaction - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Space Science Reviews Année : 2018

A Numerical Model of the SEIS Leveling System Transfer Matrix and Resonances: Application to SEIS Rotational Seismology and Dynamic Ground Interaction

Brigitte Knapmeyer-Endrun
Aron Kramer
  • Fonction : Auteur
Pierre Delage
Sylvain Tillier
  • Fonction : Auteur
  • PersonId : 765340
  • IdRef : 157241122
Ken Hurst

Résumé

Abstract Both sensors of the SEIS instrument (VBBs and SPs) are mounted on the mechanical leveling system (LVL), which has to ensure a level placement on the Martian ground under currently unknown local conditions, and provide the mechanical coupling of the seismometers to the ground. We developed a simplified analytical model of the LVL structure in order to reproduce its mechanical behavior by predicting its resonances and transfer function. This model is implemented numerically and allows to estimate the effects of the LVL on the data recorded by the VBBs and SPs on Mars. The model is validated through comparison with the horizontal resonances (between 35 and 50 Hz) observed in laboratory measurements. These modes prove to be highly dependent of the ground horizontal stiffness and torque. For this reason, an inversion study is performed and the results are compared with some experimental measurements of the LVL feet’s penetration in a martian regolith analog. This comparison shows that the analytical model can be used to estimate the elastic ground properties of the InSight landing site. Another application consists in modeling the 6 sensors on the LVL at their real positions, also considering their sensitivity axes, to study the performances of the global SEIS instrument in translation and rotation. It is found that the high frequency ground rotation can be measured by SEIS and, when compared to the ground acceleration, can provide ways to estimate the phase velocity of the seismic surface waves at shallow depths. Finally, synthetic data from the active seismic experiment made during the HP3 penetration and SEIS rotation noise are compared and used for an inversion of the Rayleigh phase velocity. This confirms the perspectives for rotational seismology with SEIS which will be developed with the SEIS data acquired during the commissioning phase after landing.

Mots clés

Fichier principal
Vignette du fichier
Fayon_21697.pdf (4.81 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01990999 , version 1 (23-01-2019)

Identifiants

Citer

Lucile Fayon, Brigitte Knapmeyer-Endrun, Philippe Lognonné, Marco Bierwirth, Aron Kramer, et al.. A Numerical Model of the SEIS Leveling System Transfer Matrix and Resonances: Application to SEIS Rotational Seismology and Dynamic Ground Interaction. Space Science Reviews, 2018, 214 (119), pp.1-39. ⟨10.1007/s11214-018-0555-9⟩. ⟨hal-01990999⟩
122 Consultations
154 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More