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Highlights

• Surface reconstruction under-uses topology constraints in
Computer Vision

• Start from a previous method enforcing manifoldness on a
sparse point cloud

• Simultaneously enforce visibility consistency and low
genus for the first time

• Improve the removal of surface singularities and the es-
cape from local extrema

• Experiment on long video sequences taken by a helmet-
held omnidirectional camera

Abstract

There are reasons to reconstruct a surface from a sparse cloud
of 3D points estimated from an image sequence: to avoid com-
putationally expensive dense stereo, e.g. for applications that do
not need high level of details and have limited resources, or to
initialize dense stereo in other cases. It is also interesting to en-
force topology constraints (like manifoldness) for both surface
regularization and applications. In this article, we improve by
several ways a previous method that enforces the manifold con-
straint given a sparse point cloud. We enforce lowered genus,
i.e. simplified topology, as a further regularization constraint for
maximizing the visibility consistency encoded in a 3D Delau-
nay triangulation of the points. We also provide more efficient
escapes from local extrema, an acceleration of the manifold test
and more efficient removals of surface singularities. We exper-
iment on a sparse point cloud reconstructed from videos, that
are taken by a helmet-held omnidirectional multi-camera mov-
ing in an university campus.

Keywords: Surface Reconstruction, Manifold, Genus, Visibil-
ity, Sparse Features, Environment modeling.

1. Introduction

The automatic surface reconstruction of an environment from
an image sequence is still an active research topic. Here we
present a method that generates a surface using topology con-
straints and given a sparse cloud of 3D points reconstructed
from the images. First Sec. 1.1 describes these constraints and
their importance, since they are under-explored in Computer
Vision. Then Secs. 1.2 and 1.3 summarize previous works that
reconstruct a surface from such a cloud or topology constraints,
respectively. Last Sec. 1.4 presents our contributions.

1.1. Why enforcing topology constraints ?

There are two reasons to enforce constraints on the computed
surface. First this regularizes the problem and helps to deal with
noisy and lacking input points. Second topological constraints
are needed in downstream processing and applications most of
the time. There are several topology constraints.
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Figure 1: Examples of manifold surfaces in R3 having different genuses g. Left:
sphere (with dotted equator) meets g = 0. Middle: simple torus meets g = 1.
Right: double torus meets g = 2.

1.1.1. Manifoldness
A surface is manifold if every of its point has a small neigh-

borhood in the surface that is mapped to R2 by a homeomor-
phism (a bijective and continuous function whose inverse is
continuous). If a surface point does not meet this condition,
the point is singular.

Now we briefly remind arguments of [22]. Method implicitly
assumes that surface is manifold if it estimates normal or cur-
vature. This holds not only for surface reconstruction methods
that regularize using smoothing ([12, 40]), but also for appli-
cations like rendering ([5]). The manifold constraint can be
seen as the weakest smoothing that can be applied to a surface,
even when the density of input points is too low to estimate re-
liable normal or curvature. According to experiments of [22],
the manifold constraint is necessary in our context: 25% of the
vertices at the surface are singular if we do not enforce it.

1.1.2. Low genus
Assume that we have a manifold surface in R3. Its genus g is

the number of surface handles, e.g. g = 0 for a sphere and g = 1
for a torus as shown in Fig. 1.

We say that there is topological noise ([42]) if the estimated
surface has a g excess compared to the true surface, i.e. if the
estimate has spurious handle(s). Both lack of points and point
noise in the input are reasons of topological noise. Enforcing
a low genus during surface computation can provide a strong
regularization ([49]), but most methods are unable to do this.

The topological noise is usually removed by a post-
processing. This is useful for downstream processing such as
smoothing, refinement and texture mapping ([42, 5]), which re-
quire low topological noise. An example is the dense stereo
refinement: the surface evolves in 3D such that it minimizes
a photo-consistency function without changing the genus ([12,
40, 33]). The lower the topological noise, the better the ex-
pected convergence. (Think about a torus that tries to approxi-
mate a sphere by minimizing a photo-consistency score.)

Last we provide theoretical remarks, which may motivate to
consider genus in Computer Vision methods that reconstruct
surface. First g and Gaussian curvature K meet

∫∫
S K = 4π(c −

g) if S is a manifold surface with c connected components ([7]).
This is consistent with intuition: we can reduce the (negative
Gaussian) curvature of the surface by removing handles if c �
g, and this looks like curvature-based regularization. Second
there are assumptions ([1]) on the input point cloud and the
true scene surface such that a 3D Delaunay triangulation based
surface reconstruction method can provide the good g.

1.1.3. Connectedness
Similarly as in the genus case, both noise and lack of points

can generate spurious connected components of the surface.
This is also topological noise. Thus connectedness can be used
as constraint ([30]).

1.2. Previous sparse methods

The sparse methods estimate a surface from a 3D point cloud,
which is sparse since it is computed from interest points and/or
contour points having uneven and low distributions in the im-
ages. Nevertheless the points have decent confidence thanks to
standard pipeline including point selections, robust and optimal
reconstruction by using RANSAC and non-linear least squares.

We shortly remind advantages of the sparse methods. First
they are interesting for both time and space complexities, es-
pecially for obtaining compact models of large scale environ-
ments. This is useful for computations with limited hardware
resource, or for applications that need high scalability and do
not need the level of details provided by dense stereo. Second
they can initialize dense stereo methods to improve accuracy
and obtain more detailed reconstructions, if the experimental
conditions are favorable to get enough texture in the images.

Most sparse methods use a 3D Delaunay triangulation of the
input points. This discretizes the space by a set T of tetrahe-
dra. Furthermore, every point has visibility information: a set
of line segments called rays linking the point and every camera
location that contributed to reconstruct the point. A biparti-
tion of T is obtained: the free-space is the set of the tetrahe-
dra intersected by at least one ray, the free-space complement
is the matter. The set of triangles separating free-space and
matter is a candidate surface ([26, 23]), but it is neither man-
ifold nor robust to bad points. This surface can be converted
into a manifold surface by vertex duplications ([10]) or pertur-
bations ([34]), but the result is not robust to bad points since
the geometry is (almost) the same. Thus previous sparse meth-
ods ([8, 31, 16, 40, 14, 36, 22, 25, 32]) estimate another bipar-
tition of T , that is the first one up to a regularization. Sec. 1.3.1
will summarize these works if they enforce the manifold con-
straint.

Other sparse methods ([27, 39, 37, 13, 18, 2]) use 2D (not
3D) Delaunay triangulations constrained in images by interest
points and image contours. However, [27, 39] are limited to
simple topology (plane/sphere), large scale scenes cannot be
computed efficiently by [37] due to the use of regular decom-
position of the 3D space, and [13, 18, 2] do not generate a glob-
ally consistent manifold surface but several (view-centered)
local models with redundancy. There are also methods that
need strong assumptions to segment the scene using planar re-
gions ([41, 9]) or swept surfaces for architectural scenes ([43]).

1.3. Previous works enforcing topology constraints

Sec. 1.3 excludes works that are far from our context, e.g. the
dense stereo refinements that deform a surface without topol-
ogy change. (Number of connected components and genus are
fixed.)
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1.3.1. Manifoldness
Here we focus on the surface reconstruction methods with

same input as ours: a sparse point cloud estimated from im-
ages and their visibility information. Works ([8, 22, 25, 32])
first compute a 3D Delaunay triangulation T of the points and
the free-space/matter bipartition of T (Sec. 1.2), then use the
manifold property as a constraint to search a surface interpolat-
ing most points. In works ([22, 25, 32]), a second bipartition
of T in outside tetrahedra and their inside complement is com-
puted by growing an outside set O in the free-space: O should
be as large as possible such that the set of the triangles separat-
ing outside and inside (i.e. the boundary of O) forms a mani-
fold surface. Visual artifacts of [22] are corrected by [25] and
are limited by [32], but the artifact problem is not completely
solved ([20]). The visibility is partly ignored by [8] since the
inside grows in the matter.

We note that methods ([22, 25, 32]) are shrink-wrapping
methods in the discrete space T guided by the visibility and the
manifold constraint. Previous shrink-wrapping methods ([17,
11]) ignore the visibility, [11] do not use the manifoldness as a
constraint on the surface since they use the method of [10], the
surface has zero-genus by [17].

1.3.2. Low genus
The topological noise is usually removed, or the genus de-

creases, by a post-processing of the surface reconstruction:
[42, 46] remove spurious handles (assuming that they are
smaller than true handles) and [11] provide multiresolution sur-
faces including topology simplifications. Now we focus on
methods enforcing a low genus during the surface reconstruc-
tion. This has been reported in very few literature.

Assuming that the surface topology is known (both number
of connected components and genus), [49] show that it is possi-
ble to reconstruct an accurate surface from a few planar cross-
sections. Note that a cross-section is nothing but a sparse cloud
of points forming closed curves in R3.

In a different context, [15] estimate a surface by using a regu-
lar grid of voxels (which is inefficient for large scale scenes like
ours) to discretize the unsigned distance function to the input
points. Compared to the other volumetric methods that use a
signed distance function, this method reduces topological noise
artifacts caused by misalignments of 3d scan points.

Our previous work ([22]) removes the largest (“visually crit-
ical”) handles generated by a step of the method. Such a handle
removal contributes to the visibility consistency optimization,
since the outside O increases in the free-space. (It is not like
a post-processing ignoring the visibility.) At first glance this
quantitatively enforces low genus during surface reconstruc-
tion, but we show that this is not the case.

1.3.3. Connectedness
The connectedness is enforced by [30] to preserve fine scale

details (such as a stick or a rope) without decreasing the genus.
First an approximate visual hull including the surface is com-
puted thanks to a green room. Then a convex optimization prob-
lem is solved: find an occupancy labeling (sampled in a regular

grid) that minimizes a photo-consistency score subject to linear
constraints on labeling derivative. The constraints are defined
from the visual hull such that the final surface and the visual
hull boundary have similar topology.

In contrast to the previous example which enforces inside
connectedness, we use outside connectedness like [22, 25]: the
outside O grows continuously in the free-space during most
computation. This constraint is legitimate assuming continu-
ous camera motion and opaque matter in the scene.

1.4. Our contributions

The surface reconstruction method of [22] is the basis of our
work. We improve it in different ways: acceleration thanks to a
new manifold test (Sec. 3), more efficient repair for singularity
removal (Sec. 4), enforce low genus (Sec. 5), more efficient
escapes from local extrema (Sec. 6). Only a part of Sec. 5 was
published by [25]. Now we describe the four contributions.

The new manifold test is important since it is used in almost
all operations of our methods. It is faster than the previous test
by [22] for reasons that were ignored before: the 3D Delaunay
triangulation is orientable and the number of surface triangles
including a vertex is small in practice. We also provide details
on the orientability itself since this property (in the 3D case) is
rarely described in the surface reconstruction bibliography.

The new repair operation succeeds more often than the old
repair by [22] since the former is guided by an analysis of the
surface singularities. (The latter is not.) The former is also
quite faster; the latter is the most time consuming operation
used by [22].

Euler’s formula (unused by [22, 25]) reveals that the genus
of the O boundary increases a lot due to operations of [22]. We
present two methods that greatly reduce the genus. The main
idea is to apply such an operation only if it generates a visually
non-negligible update of the O boundary at the camera loca-
tions used to reconstruct the input points. Up to our knowledge,
these methods are the only ones that simultaneously enforce
low genus and visibility consistency in surface reconstruction.

Local extrema are partly due to limitations of an operation
called “Shelling”, which adds one tetrahedron at once to the
growing set O. Although it provides most tetrahedra in O, it
can “get stuck” in unexpected cases ([20, 47]). We propose a
method based on the new repair to escape from local extrema.

In the experiments (Sec. 7), we check the four successive
improvements provided by Secs. 3, 4, 5 and 6. We also compare
our final method to a graph-cut method by [40]. Here we do
not focus on incremental surface reconstruction like [25, 32],
although our contributions can be applied to it. (Incremental
methods have their own topics.)

2. Prerequisites

2.1. Main notations and definitions

Our input is a set of 3D points and their visibility, i.e. every
point pi ∈ R3 is reconstructed from viewpoints c j ∈ R3 such
that j ∈ Vi. A line segment pic j is called a ray if j ∈ Vi. Let
T be the 3D Delaunay triangulation computed from the pi; T is
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a tetrahedron set that discretizes the convex hull of the pi. The
rays define a bipartition of T : the set F ⊆ T of the free-space
tetrahedra that are intersected by at least one ray, and the others
(the matter tetrahedra).

A simplex σ is the convex hull of k + 1 points v0 · · · vk in
general position in R3, i.e. v1 − v0 · · · vk − v0 are linearly inde-
pendent. If k is 0, 1, 2 or 3, σ is a vertex, edge, triangle, or
tetrahedron, respectively. A simplex σ′ is a face of σ if σ′ is
the convex hull of some of the vi above. (Thus σ′ ⊆ σ.) Two
tetrahedra are adjacent if they have a common triangle face.
Vertices have bold fonts, e.g. v is a vertex and ab is an edge.
We use the following notations: ∆ is always a tetrahedron, the
sets of the tetrahedra in T that include v or ab are

Tv = {∆ ∈ T, v ∈ ∆} and Tab = {∆ ∈ T, ab ⊆ ∆}. (1)

If W is a set of simplices, c(W) is the closure of W, i.e. the set
of the faces (including the vertices) of the simplices in W. We
have W ⊆ c(W). If K ⊆ c(T ), we sometimes write K instead of
the union |K| of its simplices, e.g. we say that K is connected.

If X ⊆ T , ∂X is the boundary of X, i.e. the set of every tri-
angle that is a face of exactly one tetrahedron in X. We have
∂X ⊆ c(X) and every triangle in c(X) \ ∂X is a face of exactly
two tetrahedra in X (one in each side of the triangle).

Let v ∈ c(∂X), i.e. v is a vertex of a triangle in ∂X. We say
that v is regular in ∂X if the triangles in ∂X including v form
a ring around v: the set {ab, abv ∈ ∂X} is a cycle ([3, 19]).
Otherwise, v is singular in ∂X. Furthermore, ∂X is manifold iff
(if and only if) every vertex in c(∂X) is regular in ∂X. In general,
∂F is not manifold. Let O be a set of outside tetrahedra: we
have O ⊆ F ⊆ T and ∂O is manifold. Let g be the genus of ∂O.

2.2. Operations on the set of outside tetrahedra

Here we summarize operations introduced by [22, 25]. They
are basic components of methods considered in this paper.
Technical details are omitted (as most as possible) to make eas-
ier the paper understanding.

2.2.1. Principles
The target of our methods is O ⊆ F that maximizes a vis-

ibility score function f (O) subject to the constraint that ∂O is
manifold. For efficiency, f (O) is defined as the sum for each
tetrahedron ∆ ∈ O of a positive real f (∆). We choose f (∆) as
the number of ray intersection(s) for ∆, but alternative defini-
tions of f could be investigated inspired by [31, 32] and others.
(This is not the topic of the paper.) Intuitively, a large O in F in
the inclusion sense is a good solution if ∂O is manifold.

Every operation tries to add to O tetrahedra that are in F \O.
It iteratively generates a series of tetrahedron sets O0,O1 · · ·On

where O0 is the initial value of O and n > 0. The operation is
successful iff ∂On is manifold and f (On) ≥ f (O0). It returns the
new value of O: On if success or O0 if failure.

2.2.2. Operations Sh., T.E., F.R., C.H.R.s, and S.G.
Almost all operations are local. Fig. 2 summarizes them in

the 2D case: tetrahedra are replaced by triangles. (The latter can

Figure 2: Local operations in the 2D case. (Tetrahedra are replaced by trian-
gles.) From top to bottom: Shelling (Sh.), Topology Extension (T.E.), Force-
Repair (F.R.) and Shrink-Grow (S.G.). Every line shows successive values of O
in gray. Sh. adds one tetrahedron at once to O and g does not change. T.E. adds
all tetrahedra around a vertex to O so that g can increase. F.R. adds tetrahedra,
a singularity is first created and then removed. S.G. first removes then adds
tetrahedra to O.

be seen as cross-sections of the former, e.g. the cross-section
inside a torus is an annulus or a disconnected set of triangles.)

Shelling (Sh.) adds one tetrahedron at once to O such that ∂O
is always manifold and the number of connected component(s)
of O does not change. The first line of Fig. 2 shows an example.
In more details, Sh. builds a tetrahedron series O0,O1, · · ·On

such that Oi+1 = Oi ∪ {∆i} and the tetrahedron ∆i ∈ F \ Oi has
at least one triangle face in ∂Oi (if Oi , ∅) and every ∂Oi is
manifold. We first consider ∆i candidates that have the largest
f (∆i), such that O globally grows from the most confident free-
space to the less confident one. Once ∆0 is selected, the other
∆i are selected in a growing neighborhood of ∆0 thanks to a
priority queue. In practice, Sh. is fast and adds almost all tetra-
hedra in O. A local Shelling is possible by specifying the first
added tetrahedron ∆0 as input. More details can be found in
algorithm 1 of [22].

However, Sh. is not sufficient since it cannot change g ([20]),
the genus of ∂O. If the genus of the true surface is not 0, e.g.
if the camera path (the c j series) includes a loop around a high
building, g should increase.

Topology Extension (T.E.) builds O1 = O0 ∪ Tv if a vertex
v ∈ c(∂O0) and Tv ⊆ F. It is successful if ∂O1 is manifold.
Now g can increase as shown in the second line of Fig. 2, since
T.E. adds to O several tetrahedra at once.

However, T.E. can also generate spurious handles as shown
in the left of Fig. 15. Thus another operation is needed; it takes
as input a tetrahedron set H ⊆ F \O that we would like to add to
O. For example, H is a cross section of a handle that we would
like to remove.

Force-and-Repair (F.R.) builds a series O0,O1, · · ·On defined
as follows. First we “force” O1 = O0 ∪ H and ignore singular
vertices in ∂O1. Then we try to “repair”. Let si be the number
of singular vertices of ∂Oi. We select a tetrahedron ∆i ∈ F \ Oi

having triangle face(s) in ∂Oi and set Oi+1 = Oi ∪ {∆i} while
si+1 ≤ si. F.R. is successful if sn = 0. More details on “repair”
can be found in Algorithm 3 of [22] (using notation G = H).
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The third line of Fig. 2 shows a F.R. example.
Steps Critical Handle Removals (C.H.R.s) of [22] and [25]

select several sets H and try to add each of them to O by using
F.R. The C.H.R.s remove spurious handles (Sec. 1.3.2) that are
visually important. More details can be found in Algorithm 2
of [22] and Sec. III.C of [25].

Now we note that all operations above (Sh., T.E., F.R.) and
their compositions (C.H.R.s) are O growing in the free-space
F. By combining them, we obtain a descent method for mini-
mizing function − f (O) such that ∂O is manifold, which can get
stuck to a local extremum. The following operation removes
some tetrahedra from O (Thus f (O) decreases temporarily.) to
kick the algorithm out of local extrema.

Shrink-and-Grow (S.G.) builds a series that is not 100%
growing as shown in the last line of Fig. 2. First O shrinks:
O1 = O0 \ Tv if a vertex v ∈ c(∂O0) and ∂O1 is manifold. Then
O grows: we try local Shelling O1,O2, · · ·On started by a tetra-
hedron ∆ ∈ F \ O0 that has the vertex v. S.G. is successful
if f (On) ≥ f (O0). In practice, S.G. is tried at several selected
vertices v ∈ c(∂O). More details can be found in algorithm of
Sec. III.B of [25]. (See also Appendix D.) In the paper remain-
der, we only need this composition of several S.G. operations
and directly use notation S.G. for the composition.

3. Directed edge-based manifold test

Manifold test at a vertex is important since it is used in all
operations in Sec. 2.2.2 except Shelling. (Shelling has its own
manifold test.) Sec. 3.1 and 3.2 are reminders about simplex
orientation and orientability of T . Then Sec. 3.3 introduces a
method that checks if a vertex is regular in ∂O. It is based on a
theorem, whose proof is in Sec. 3.4.

3.1. Simplex orientation

According to [48], an orientation of a simplex v0v1 · · · vk

is an equivalence class of its vertex orderings such that
(v0, v1, · · · vk) and (vπ0, vπ1, · · · vπk) are equivalent iff the permu-
tation π is even (using shortened notation πi = π(i)). We remind
that every permutation is a product of transposition(s), and a
permutation is even if it is the product of an even number of
transpositions. Furthermore, if there are distinct integers a and
b such that πa = b and πb = a and πc = c where c ∈ N \ {a, b},
π is a transposition and we use notation π = (a b).

Let Ak+1 be the set of the even permutations of {0, · · · k}. Thus

(v0, v1, · · · , vk) = {(vπ0, vπ1, · · · vπk), π ∈ Ak+1} (2)

is the equivalence class of (v0, v1, · · · vk) and we have

π ∈ Ak+1 ⇐⇒ (v0, v1, · · · vk) = (vπ0, vπ1, · · · vπk). (3)

Here are examples using π1 = (0 1)◦(2 3) and π2 = (0 2)◦(0 1):

(0 1) < A4 ⇒ (v0, v1, v2, v3) , (v1, v0, v2, v3) (4)
π1 ∈ A4 ⇒ (v0, v1, v2, v3) = (v1, v0, v3, v2) (5)
π2 ∈ A4 ⇒ (v0, v1, v2, v3) = (v1, v2, v0, v3) (6)

(v0, v1, v2) = (v1, v2, v0) = (v2, v0, v1). (7)

Figure 3: Left: triangle orientations induced by the tetrahedron orientation
(v0, v1, v2, v3). Front triangles have continuous arrows, back triangles have
dotted arrows. Right: two adjacent tetrahedra with consistent orientations
(a,b, c,d) and (b, a, c, e). (The triangle abc is duplicated for readability.) The
arrows in abc rotate in opposite directions.

We note that there are exactly two possible orientations if
k ≥ 1: (v0, v1, v2, · · · vk) and (v1, v0, v2, · · · vk). Here we swap
v0 and v1 as in Eq. 4, but other vertices can be swapped. We
also note that this orientation definition does not require ver-
tex coordinates, although it is related to orientation in vector

spaces: function (v0, · · · , vk) 7→ det
(
v0 · · · vk

1 · · · 1

)
is constant

in an equivalence class and changes its sign in the other class.

3.2. Orientability of T

We first provide the definition of induced orientation since it
helps to understand orientability. An orientation (v0, v1, · · · vk)
induces orientations of faces of simplex v0v1 · · · vk as follows:
the induced orientation of vπ1 · · · vπk is (vπ1, · · · vπk) if π ∈ Ak+1.
For example, a triangle orientation (v0, v1, v2) induces edge ori-
entations (v1, v2), (v2, v0) and (v0, v1) thanks to Eq. 7. Similarly,
a tetrahedron orientation (v0, v1, v2, v3) induces triangle orien-
tations (v1, v2, v3), (v2, v0, v3), (v0, v1, v3) and (v2, v1, v0). The
left of Fig. 3 shows these induced orientations by using a stan-
dard convention: the orientation (va, vb, vc) is represented by an
arrow that rotates in the same direction as va → vb → vc → va.

Now assume that we have orientations (v0, v1, v2, v3) and
(v′0, v

′
1, v
′
2, v
′
3) of adjacent tetrahedra ∆ and ∆′, respectively. We

say that ∆ and ∆′ are consistently oriented if there are π ∈ A4
and π′ ∈ A4 such that (vπ0, vπ1, vπ2) = (v′π′1, v

′
π′0, v

′
π′2) ([38]).

Fig. 3 shows tetrahedra abcd and abce with consistent orienta-
tions (a,b, c,d) and (b, a, c, e). We check1 that they induce dif-
ferent orientations (b, a, c) and (a,b, c) for their shared triangle
face abc. Intuitively, d and e “see” abc in opposite orientations.

Last T is orientable ([38, 4], see also Proofs.pdf in the sup-
plementary material), i.e.

Theorem 1. There are orientation choices for all tetrahedra in
T such that every pair of adjacent tetrahedra in T is consis-
tently oriented.

3.3. Manifold test

We first introduce notations and definitions to check that a
vertex v ∈ c(∂O) is regular in ∂O. Theorem 1 provides an ori-
entation o(∆) for every tetrahedron ∆ ∈ T . This is done once

1using equalities (a,b, c,d) = (d,b, a, c) and (b, a, c, e) = (e, a,b, c).
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before all manifold tests. We consider a set of directed edges:

D =
⋃
∆∈O

{(v2, v3), (v, v1, v2, v3) ∈ o(∆), vv2v3 ∈ ∂O}. (8)

If D = {(q1,q2), · · · (qm−1,qm), (qm,q1)} and m ≥ 3 and
q1 · · · qm are m distinct vertices, D is a directed cycle.

3.3.1. Theorem
Our test is based on the following theorem.

Theorem 2. The vertex v ∈ c(∂O) is regular in ∂O iff D is a
directed cycle.

We check Theorem 2 in simple examples to provide intuition.
In the first example, a tetrahedron vabc ∈ O and o(vabc) =

(v, a,b, c) and triangles vbc, vca, vab are in ∂O. Since

{(v, a,b, c), (v,b, c, a), (v, c, a,b)} ⊂ o(vabc), (9)

vabc has the following contribution to D: it adds directed edges
(b, c), (c, a) and (a,b) to D. If there is no other tetrahedron in
O with the vertex v and a triangle face(s) in ∂O, we see that
D is a directed cycle and v is regular. Otherwise, D is not a
directed cycle (It has supplementary directed edges.) and v is
not regular. (There are other triangles t such that v ∈ t ∈ ∂O.)

In the second example, tetrahedra vuab, vubc, vuca are
in O and triangles vab, vbc, vca are in ∂O. We choose
orientations o(vuab) = (v,u, a,b), o(vubc) = (v,u,b, c),
o(vuca) = (v,u, c, a) and check orientation consistency, e.g. we
have o(vuab) = (u, v,b, a) and o(vubc) = (v,u,b, c) for vuab
and vubc. Thus the contribution of the three tetrahedra to D is
the following: they add directed edges (a,b), (b, c) and (c, a) to
D. Now we do the same observations as in the first example.

3.3.2. Implementation
Here we summarize the implementation of the manifold test.

For every vertex w ∈ c(T ), Tw is stored in a table. We store D
in a table E of vertices where the i-th directed edge of D has
its start-vertex in E[2i] and its end-vertex in E[2i+1]. For every
tetrahedron ∆ = v∆

0 v∆
1 v∆

2 v∆
3 ∈ T , we store a vertex ordering

(v∆
0 , v

∆
1 , v

∆
2 , v

∆
3 ) such that o(∆) = (v∆

0 , v
∆
1 , v

∆
2 , v

∆
3 ). Thus,

D =
⋃
∆∈O

{(v∆
π2, v

∆
π3), π ∈ A4, v∆

π0 = v, v∆
π0v∆

π2v∆
π3 ∈ ∂O}. (10)

Thanks to Eq. 10, for every ∆ ∈ Tv ∩ O and π ∈ A4, we collect
in E the edges using a C-like line as
if (v∆

π0==v && v∆
π0v∆

π2v∆
π3 ∈ ∂O) { E[n++]=v∆

π2; E[n++]=v∆
π3; }

after initializing n=0. Last we check that D is a directed cycle
using a naive sorting algorithm: swap directed edges in the table
E to form path E[0]E[1], E[2]E[3] with E[1]==E[2], E[4]E[5]
with E[3]==E[4] and so on.

Appendix A gives more details about the algorithm. This
appendix also details a previous test algorithm of [22] that is
compared in our experiments. The efficiency of the new test is
based on facts that are not considered before: small D size and
consistent orientations in T . Thus the naive sorting in E is fast
in spite of its complexity (quadratic in the size of D).

3.4. Proof of Theorem 2
This paragraph only provides the principle of the proof; the

details are in Appendix B. The proof may look difficult at first
glance, but it should be stressed that the corresponding algo-
rithm is not: Algorithm 3 only reads directed edges and naively
sorts them in a table to detect a directed cycle.

The undirected version of D is

U = {ab, (a,b) ∈ D}. (11)

We note that U is a cycle (with undirected edges) if D is a di-
rected cycle (with directed edges), but the converse can be false.

First it is not difficult to see that

Lemma 1. U is the set of the v-opposite edges in the triangles
of ∂O: U = {ab, abv ∈ ∂O}.

Since v is regular iff {ab, abv ∈ ∂O} is a cycle,

Lemma 2. The vertex v is regular in ∂O iff U is a cycle.

The easy part of Theorem 2’s proof is the sufficient condition
“D is a directed cycle⇒ v is regular” thanks to Lemma 2, which
simplifies this to “D is a directed cycle⇒ U is a cycle”, which
in turn is straightforward. The necessary condition “v is regular
⇒ D is a directed cycle” is more difficult although Lemma 2
simplifies this to “U is a cycle ⇒ D is a directed cycle”. The
main part of the proof is to show that the consistent orientations
in T imply good edge directions in D; this is done by studying
consistent orientations of the tetrahedra sharing a common edge
face vu ∈ c(∂O).

4. Repair by analyzing the surface singularities

Sec. 4.3 presents a new repair operation that is guided by an
analysis of the surface singularities to be removed. The analysis
is done by using two Theorems in Sec. 4.2, which count the
connected components of adjacency graphs of tetrahedra. We
first extend T (Sec. 4.1) to avoid special cases in the Theorems.

4.1. Abstract extension T∞ of T
To avoid special cases in statements and proofs, i.e. if c(∂T )

includes singular vertices of ∂O, we extend T into T∞ such that
∂T∞ = ∅ like [4, 19].

First we replace every vertex of c(T ) by an integer that iden-
tifies the vertex. Then every simplex of c(T ) with 2,3,4 vertices
is replaced by a set of 2,3,4 integers that identifies its vertices,
respectively. (e.g. an edge becomes the set of the two integers
of its vertices.) The relation “is a face of” (inclusion) does not
change. Bold fonts and words vertex/edge/triangle/tetrahedron
are also used for this new “abstract” simplex definition.

Then we extend T . Let v∞ be an integer that is different to all
vertices of c(T ). For every triangle abc ∈ ∂T , we create a new
tetrahedron abcv∞ by adding v∞ to integer set abc. Let

T∞ = T ∪ {abcv∞, abc ∈ ∂T }. (12)

Now T ⊂ T∞ and every triangle in c(T∞) is a face of exactly
two tetrahedra in T∞. Fig. 4 shows v∞ and T∞. The tetrahedron
sets in T∞ that include a vertex v or an edge ab in c(T∞) are

T∞v = {∆ ∈ T∞, v ∈ ∆} and T∞ab = {∆ ∈ T∞, ab ⊆ ∆}. (13)
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Figure 4: v∞ and T∞ in the 2D case. (Tetrahedra are drawn as triangles, trian-
gles are drawn as edges.) The tetrahedra in T have continuous edges, those in
T∞ \ T have dotted edges. The bold edges form ∂T .

Figure 5: T∞v \O (top) and the corresponding gO
v restricted to T∞v \O (bottom)

in three cases. Case 1 (left): v is regular in ∂O and gO
v has one connected

component in T∞v \O. Cases 2 and 3 (middle and right): v is singular in ∂O and
gO

v has two connected component in T∞v \ O. The bold edge (middle of top) is
singular in ∂O.

4.2. Vertex singularities and edge singularities
Let vertex v ∈ c(∂O) and gv be the adjacency graph of the

tetrahedra in T∞v . (There is a bijection between the vertices of
gv and the tetrahedra in T∞v , every edge of gv links two ver-
tices if their corresponding tetrahedra are adjacent.) Let gO

v be
the graph obtained from gv by removing every edge between a
tetrahedron in T∞v ∩ O and a tetrahedron in T∞v \ O. Thus

Lemma 3. Every connected component of gO
v is included in

T∞v ∩O or included in T∞v \O. There is at least one component
in T∞v ∩ O and at least one component in T∞v \ O.

Proof. Since all edges between T∞v ∩O and T∞v \O are removed
from gO

v , the first assertion is true. There is a triangle t ∈ ∂O
including v; t is a face of a tetrahedron in T∞v ∩ O and is a face
of another one in T∞v \O. Thus the second assertion is true.

Theorem 3. The vertex v is singular in ∂O iff gO
v has at least

three connected components. (See Fig. 5, see also Fig. 4
of [19].)

Proof. Thanks to Lemma 3, gO
v has at least two connected com-

ponents. Thanks to Theorem 3 of [19], v ∈ c(∂O) is singular iff
gO

v has at least three connected components.

Similarly, let edge ab ∈ c(∂O) and gab be the adjacency graph
of the tetrahedra in T∞ab. Let gO

ab be the graph obtained from gab
by removing every edge between a tetrahedron in T∞ab ∩ O and
a tetrahedron in T∞ab \ O. Thus

Lemma 4. The graph gab is a cycle. The graph gO
ab has exactly

2n connected components: n in T∞ab∩O and n in T∞ab\O (Fig. 6).

Figure 6: T∞ab ∩ O (top) and the corresponding gO
ab (bottom) in three cases.

Case 1 (left): ab < c(∂O) and gO
ab = gab has one connected component. Case 2

(middle): ab ∈ c(∂O) is not singular in ∂O and gO
ab has two connected compo-

nents. Case 3 (right): ab ∈ c(∂O) is singular in ∂O and gO
ab has four connected

components.

Proof. Since T∞ is an (extended) 3D Delaunay triangulation,

T∞ab = {abc0c1, abc1c2, abc2c3, · · · abckc0} (14)

where the edges c0c1, · · · ck−1ck, ckc0 form a cycle. Thus gab is
a cycle. Furthermore, all edges between T∞ab ∩ O and T∞ab \ O
are removed in gO

ab. Thus every connected component of gO
ab is

a path in T∞ab ∩ O or in T∞ab \ O. Since every path in T∞ab ∩ O is
before a path in T∞ab\O in the cycle (or conversely), the numbers
of components in T∞ab ∩ O and T∞ab \ O are the same.

We say that the edge ab is singular in ∂O if gO
ab has at least

three connected components. Thus

Theorem 4. Assume that the edge ab is singular in ∂O. Then
gO

ab has at least four connected components (Fig. 6). Further-
more, both vertices a and b are singular in ∂O.

Proof. Thanks to Lemma 4, the first assertion is true. For the
second assertion, we assume that a is regular in ∂O and show
that gO

ab has exactly two connected components. Thanks to
Lemma 4, ∂O has exactly 2n triangles including ab. (Such a
triangle is between T∞ab ∩ O and T∞ab \ O.) Since a is regular,
there are exactly two triangles in ∂O having the edge ab ([19]).
Thus n = 1 and gO

ab has exactly two connected components.

4.3. Method

Singular vertices appears while adding to O a tetrahedron set
H ⊆ F \ O. Our repair tries to remove them by adding to O
other tetrahedra in F \O without creating new singular vertices.

4.3.1. Principle
If ab is a singular edge of ∂O, gO

ab has at least two connected
components in T∞ab \ O (right of Fig. 6). We can add to O such
a connected component if it is included in F and no additional
singular vertex appears. Then the number of connected com-
ponents of gO

ab decreases (middle of Fig. 6), and we progress
toward a non-singular ab thanks to Theorem 4. If ab becomes
non-singular, vertices a or/and b can become non-singular too.

If a is a singular vertex of ∂O, gO
a has at least one connected

component in T∞a \O (e.g. two on the right of Fig. 5). Similarly,
we can add to O such a connected component if it is included in
F and no additional singular vertex appears. Then the number
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of connected components of gO
a decreases (left of Fig. 5) and we

progress toward a non-singular a thanks to Theorem 3. If T∞a \O
becomes empty, a become non-singular since a < c(∂O).

At first glance, the adds near singular edges are useless since

• a singular edge is a special case of a pair of singular ver-
tices according to Theorem 4 and

• ∂O is manifold iff its vertices are non-singular (Sec. 2.1).

This is wrong: there are cases where a singular edge ab is only
removable by an add near the edge since the adds near vertices
a and b are impossible. For example, assume that T∞ab has four
tetrahedra: abc0c1 ∈ T \ F, abc1c2 ∈ O, abc2c3 ∈ F \ O and
abc3c0 ∈ O. Here {abc2c3} is a connected component of gO

ab that
can be added to O. If gO

a has only one connected component in
T∞a \ O, this component cannot be added to O since it includes
abc0c1 < F (and similarly for gO

b ).

4.3.2. Algorithm
First we need an auxiliary function ReduceSingularity, which

is detailed in Algorithm 1. Let V be the set of the singular
vertices of ∂O. ReduceSingularity adds to O a tetrahedron set
C ⊆ F \O if this does not add a new vertex to V . In this case, V
can decrease and C is added to A. (A is used at the repair end.)

Algorithm 1. ReduceSingularity(C,V,O,A)

01: Let {v0, v1, · · · vc} be the vertex set of C;
02: Let b0

i be true iff vi < V;
03: O← O ∪C;
04: Let b1

i be true iff vi is regular in ∂O; // use manifold test
05: for each i ∈ {0, 1, · · · c} // detect failures
06: if (b0

i = true && b1
i = f alse) { O← O \C; return 0; }

07: for each i ∈ {0, 1, · · · c}
08: if (b0

i = f alse && b1
i = true) V ← V \ {vi};

09: A← A ∪C;
10: return 1; // success

end

Then we detail our Repair2 method in Algorithm 2 (in C
style). It takes as input O and the set H that was just added
to O. (∂O was manifold before that.) It use a set E where the
singular edges are searched. It also use a set A that collects the
new tetrahedra added to O; A is used to restore O in case of
failure or to improve O in case of success. Repair2 examines
singular edges (special cases) before singular vertices. The set
V can only decrease and Repair2 is successful iff V = ∅. Fig. 7
shows an example of Repair2. The main loop is not infinite,
since its number of iterations is less than the number of tetrahe-
dra in F \O having a vertex in c(H). In our implementation, the
sets H, V , E, C and A are stored in tables.

Algorithm 2. Repair2

Figure 7: Repair2 in the 2D case. O is white and F \ O is the set of triangles
in gray. From left to right: ∂O is manifold, add H = {abc} to O and obtain
the singular vertex set V = {a,b, c}, add to O a connected components of gO

a
included in F \ O and obtain V = {b}, add to O a connected components of gO

b
included in F \ O and obtain V = ∅.

01: V = ∅;
02: for each vertex v ∈ c(H)
03: if (v is singular in ∂O) V ← V ∪ {v}; // use manifold test
04: E = ∅; // E includes all singular edges
05: for each vertices a and b in V
06: if (ab ∈ c(T )) E ← E ∪ {ab};
07: A = H; // A is the set of the tetrahedra added to O
08: do {
09: IsImproved= 0;
10: for each edge ab ∈ E
11 if (a ∈ V && b ∈ V) {
12: Let C1, · · · ,Ck be the connected components of gO

ab;
13: if (there is a Ci such that Ci ⊆ F \ O &&
14: ReduceSingularity(Ci, V , O, A)) IsImproved= 1;
15: } else E ← E \ {ab};
16: for each vertex a ∈ V {
17: Let C1, · · · ,Ck be the connected components of gO

a ;
18: if (there is a Ci such that Ci ⊆ F \ O &&
19: ReduceSingularity(Ci, V , O, A)) IsImproved= 1;
20: }
21: } while (IsImproved)
22: if (V , ∅) { O← O \ A; return 0; } // restore O if failure
23: // complete O using Shelling if success
24: for each tetrahedron ∆ ∈ A
25: for each 4-neighbor tetrahedron ∆′ of ∆

26: if (∆′ ∈ F \ O), try a Shelling started from ∆′;
27: return 1;

end

Last we explain why Repair (Algorithm 3 of [22]) is less
efficient than Repair2 above. Repair ignores the structure of
the singularities (in terms of connected components of adjacent
tetrahedra) and does not distinguish singular edges from gen-
eral singular vertices; it blindly adds tetrahedra one-by-one to
O such that no new singular vertices appears. Furthermore, Re-
pair is time consuming since it applies manifold tests before
and after adding every tetrahedron. Thanks to V , Repair2 only
needs to apply manifold tests after adding packs of tetrahedra.

5. Lowered genus during surface reconstruction

Sec. 5.1 shortly summarizes the method of [22] and explains
how the genus g of ∂O evolves during the computation. Sec. 5.2
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and 5.3 present two methods estimating ∂O with a smaller g.
We remember Euler’s formula ([5]) if ∂O is connected:

2(1 − g) = v − e + t (15)

where v, e and t are the numbers of vertices, edges and triangles
in c(∂O), respectively. If ∂O is not connected, its genus is the
sum of genuses of its connected components.

5.1. Previous method and g evolution

The previous method of [22] has several steps defined from
operations summarized in Sec. 2.2.2.

5.1.1. Step 1: Shelling plus Topology Extension
The set O is initialized by Sh., which tries to add first to O

the tetrahedra that have the largest number of ray intersections.
(The first tetrahedron in O maximizes f .) The resulting ∂O
meets g = 0 although the true surface has a non-zero genus,
e.g. if the camera path has loops around buildings. Then T.E.
is tried on every vertex v ∈ c(∂O). Now g > 0, but spurious
handles occur.

5.1.2. Step 2: Critical Handle Removal
C.H.R. in Sec. 4.3 of [22] is applied to remove critical han-

dles, i.e. spurious handles that the human eye cannot miss at
the camera locations c j where the images are taken. Here we
provide useful details on C.H.R.

First we define critical edges ab for a given angle threshold
α > 0: ab is a face of a tetrahedron in F \ O (which can be
added to O), it is only included in tetrahedra in F, it is large
enough such that angle âc jb > α. Thus the set of the critical
edges is concisely defined by

Lα = {ab ∈ c(F \ O) \ c(∂T ),Tab ⊆ F,∃ j, âc jb > α}. (16)

Then C.H.R. subdivides every critical edge by adding a Steiner
vertex at the middle to create new tetrahedra, such that ∂O is
still manifold. (A tetrahedron can be split in two new tetrahedra
that are in O or F iff the original one is.) A Steiner vertex is an
extra point that is not in the input cloud. Last F.R. tries to add to
O a tetrahedron set H included in Tv ∩ (F \O), for every vertex
v of the split edges.

Although critical handles are removed like this, our experi-
ment shows that g increases a lot during this step.

5.1.3. Step 3: post-processing including Peak Removal
The post-processing improves ∂O thanks to prior knowledge

of the scene. It includes a step Peak Removal (P.R), a Laplacian
smoothing and a process to remove triangles in the sky. The
two latters are not summarized since they do not change g. P.R.
removes bad points in the surface. It is tried on every vertex
v ∈ c(∂O) such that the ring of the triangles in ∂O including v
has a solid angle w in the T∞v \ O side such that w < w0. Then
it add to O the set Tv if ∂O remains a manifold. (The process is
similar in the T∞v ∩O side.) It looks like T.E. without condition
Tv ⊆ F. Our experiment shows that g decreases thanks to P.R.

5.2. Method 1: cancel C.H.R. tentatives
The first idea that comes to mind is to cancel C.H.R. if g in-

creases. Let δg be the g variation due to a successful F.R. opera-
tion during C.H.R. We also would like an efficient computation
of δg without a large traversal of ∂O. Since T is implemented
by the adjacency graph of the tetrahedra, large traversals in T
should be avoided.

Let c be the number of the connected components of ∂O. By
summing Eq. 15 for all connected components, we obtain

δv − δe + δt = 2(δc − δg) (17)

where δv, δe, δt and δc are the variations of v, e, t and c due
to a successful F.R. operation. Sec. 5.2.1 presents an efficient
computation of δv − δe + δt. Then Sec. 5.2.2 presents a method
to avoid the computation of δc which is not efficient.

5.2.1. Efficient computation of δv − δe + δt
Let H̃ ⊆ F \O be all tetrahedra that are added to the initial O

by a successful F.R. operation during C.H.R. (Note that H ⊆ H̃
by using the notation H in Sec. 2.2.2.) Let

J = (∂O \ ∂(O ∪ H̃)) ∪ (∂(O ∪ H̃) \ ∂O). (18)

We note that the triangles in ∂O ∩ ∂(O ∪ H̃)) do not contribute
to δt. (They add 0 to δt.) Similarly, the vertices and edges of
these triangles do not contribute to δv and δe. Thus we only
need a traversal of J to find all the vertices/edges/triangles that
contribute to δv − δe + δt.

Intuitively, we only need a traversal of H̃ to compute δv −
δe + δt since the boundary change |J| is included in the volume
change |H̃|. Indeed, Appendix C shows that

Lemma 5. We have ∂H̃ = J.

Thanks to a traversal of H̃, we access to the triangles in ∂H̃
and count those of them that are in ∂O. We also count those of
them that are in ∂(O ∪ H̃) and obtain δt. Similarly, we access
to the vertices and edges in c(∂H̃) and count those of them that
are in c(∂O) and those that are in c(∂(O ∪ H̃)), then we obtain
δv and δe. This computation is efficient since H̃ is quite smaller
than O and O ∪ H̃ and their boundaries.

5.2.2. Avoid inefficient computation of δc
At first glance, we accept a successful F.R. operation iff δg ≤

0. Here δg is estimated using Eq. 17 and Sec. 5.2.1 and the
computation of δc. Unfortunately, the δc computation is not
efficient. Indeed, the top row of Fig. 8 shows that we cannot
distinguish cases (δg = −1, δc = 0) and (δg = 0, δc = 1) by a
traversal of the small set H̃; a traversal of large set ∂(O ∪ H̃)
should be done instead.

Then we use condition δc − δg ≥ 0 instead of δg ≤ 0 for
three reasons. First both conditions are simultaneously true or
simultaneously false in all cases of Fig. 8. Second, the compu-
tation of δc−δg is efficient thanks to Eq. 17 and Sec. 5.2.1. Last
δg < 0 “almost” implies δc− δg ≥ 0 according to the following
theorem (proof in Sec. 5.2.3).

Theorem 5. The set H̃ is connected. If O is connected and ∂O
is manifold and H̃∩O = ∅, then δc ≥ −1 (in most cases δc ≥ 0).
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Figure 8: Increments (δg, δc) in four cases where we apply O ← O ∪ H̃. O is
white, H̃ is dark gray, T \ O is gray (light and dark). A gray region without
(resp. with) a white hole represents a surface in R3 that has the sphere (resp.
torus) topology. The case on the bottom right corner is rejected, the others are
accepted.

Figure 9: Examples for Theorem 5’s proof if k = 2: cases δc = 0 (left) and
δc = −1 (right). O is light gray, H̃ is dark gray. In the middle, R3 \ (|O| \
|∂O|) is white and has three connected components K0 (unbounded), K1 and K2
(bounded). ∂O has three connected components C0, C1 and C2. In the left and
right, H̃ ⊆ K2 and ∂(O ∪ H̃) has at least 2 connected components C1 and C0.

Indeed, the assumptions of Theorem 5 are “almost” meet dur-
ing C.H.R. of [22] since the number of connected components
of O (Note: this is not c.) is very low in practice.

5.2.3. Sketch proof of Theorem 5
The proof details are in file Proofs.pdf of the supplementary

material. First H̃ is connected since all tetrahedra in H share a
same vertex and H̃ is obtained by a continuous growing started
from H ([22]). Second we see that O is a “solid” ([35]): it
is like one piece of gruyere with one external boundary and k
internal boundaries, each of them is the manifold boundary of
a connected component Ki of R3 \ (|O| \ |∂O|). (See middle of
Fig. 9.) Third we see that H̃ is included in a single Ki. (Since
H̃ is connected and H̃ ∩ O = ∅.) Fourth, K j is unchanged by
the add of H̃ to O if j , i. Last there are at least k connected
components of ∂O that are unchanged by the add of H̃ to O, and
we conclude.

We note that δc ≥ 0 in most cases according to Fig. 9, i.e. iff
H̃ is strictly included in Ki. (We have δc = −1 iff H̃ = Ki.)

5.3. Method 2: replace T.E. and C.H.R. operations

This method has the same start (Sh. defined by Algorithm 1
of [22]) and same end (Sec. 5.1.3) as the previous method in
Sec. 5.1. T.E. is replaced by the step in Sec. 5.3.2, and C.H.R.
is replaced by the step in Sec. 5.3.3. The genus g moderately in-
creases thanks to these two new steps using ideas in Sec. 5.3.1.

Figure 10: Increase (top) or decrease (bottom) of g done by C.E.R. O is gray
and F \ O is the set of triangles filled in white. Left: a critical edge e (bold
edge) is detected in c(∂O). Middle: a singular vertex (black dot) appears when
applying O ← O ∪ (Te ∩ (F \ O)). Right: the singular vertex is removed by
repairing (growing) O.

5.3.1. Principle
According to Sec. 5.1, g increases due to T.E. and C.H.R.

We remind that T.E. is tried on every vertex in c(∂O), and F.R.
(during C.H.R.) is tried on every vertex of all (split) critical
edges. A reason of spurious handles and g excess is the lack of
selection of locations were these operations are done.

We moderate the g increase as follows. First, T.E. is replaced
by an operation that is applied only if it provides a visually non-
negligible change of ∂O. In our case, this operation removes a
critical edge from c(∂O). Second, the C.H.R. of [22] is replaced
by a new C.H.R. that is more selective on set H of tetrahedra
in F \ O that it tries to add to O. Intuitively, H is the set of the
tetrahedra in a handle that can be cut by a plane. Furthermore,
c(H) also includes a critical edge.

5.3.2. Critical Edge Removal (C.E.R.)
This step removes critical edges from c(∂O). For every edge

ab ∈ Lα ∩ c(∂O), F.R. (Sec. 2.2.2) is applied using H = Tab ∩

(F \ O). In more details, we first apply O ← O ∪ H, then
we try to remove the singular vertices in ∂O using Algorithm 3
of [22] with input G = H. If the final ∂O is not manifold, the
ab removal fails and we restore O to its initial value.

This step acts as T.E. at locations (critical edges) that are
selected by α, i.e. g can increase only if this provides a visually
important change of ∂O. Fig. 10 shows that g can increase or
even decrease by using C.E.R. Note that O is improved in both
cases since f (O) increases. Last we improve the result (without
g change) thanks to Sh., i.e. we try to start a local Shelling from
every tetrahedron ∆ ∈ F \ O.

5.3.3. Critical Handle Removal (C.H.R.)
A critical handle H meets several conditions ([25]). First,

H ⊆ F \ O. Second H is “critical”: there is a critical edge
ab ∈ Lα such that ab ∈ c(H). Third, there is a plane π such
that π ∩ ab , ∅ and π “cuts” H: H ⊆ Tπ where Tπ = {∆ ∈

T, π ∩ ∆ , ∅}. Last H is “surrounded” by O in π: we have
∆ ∈ O if ∆ ∈ Tπ \ H is adjacent to another tetrahedron ∆′ ∈ H.

The detection of H is done as follows. For every edge
ab ∈ Lα, we try several planes π that are orthogonal to ab or
horizontal. (These directions are expected for cross-sections of
H by π.) Then we search H by growing in Tπ∩(F \O) and start-
ing by H = Tab ∩ (F \ O). If the surrounding condition is not
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Figure 11: Our critical handle removal in the 2D case. O is white and F\O is the
set of triangles filled in gray. Left: a critical edge e (bold edges) is detected in
c(∂O), π is the dashed line, H is the set of three gray triangles cut by π. Middle:
a singular vertex (black dot) appears when applying O ← O ∪ H. Right: the
singular vertex is removed by repairing (growing) O.

meet at the growing end, the detection of H fails and another
pair (ab, π) is tried.

Once H is computed, we use F.R. as in C.E.R above: first
apply O ← O ∪ H, then try to remove the singular vertices in
∂O thanks to Algorithm 3 of [22] using input G = H. Fig. 11
shows an example of C.H.R.

At this point, we can remove remaining critical handles using
C.H.R. of [22] (summary in Sec. 5.1.2), but we would like to
moderate its g increase (due to small handles) and its use of
Steiner vertices. Let M be the set of tetrahedra obtained as the
union of the remaining handles detected as in the beginning of
Sec. 5.3.3. We simply use the C.H.R. summarized in Sec. 5.1.2
by replacing its input set Lα by Lα ∩ c(M).

Last we note that C.H.R. is preceded by S.G. in [25]. The
summary in Sec. 2.2.2 reminds us that S.G. is useful to es-
cape from local extremum of function f . Since our experiments
show that g is almost constant by using S.G., we also use S.G.
before C.H.R. (and after C.E.R) in method 2. Details on S.G.
are given in Appendix D.

6. Escape from local extrema due to Shelling blocking

First Sec. 6.1 asserts that Shelling alone cannot generate as
many surfaces as expected, then Sec. 6.2 provides examples.
Last Sec. 6.3 explains how to solve (partly) this problem.

6.1. Definition of Shelling blocking

Let O and O′ be tetrahedron sets such that ∅ , O ⊂ O′ ⊆ F,
∂O is manifold, |∂O| can be continuously deformed to |∂O′| by
moving in |O′ \ O| using an isotopy. (It is a continuous func-
tion h : |∂O| × [0, 1] → |O′ \ O| such that h(|∂O|, 0) = |∂O|,
h(|∂O|, 1) = |∂O′|, and x 7→ h(x, t) is homeomorphism ∀t.) Thus
∂O′ is manifold with the same genus as ∂O. Let n be the num-
ber of the tetrahedra in O′ \ O. We could expect to obtain O′

from O by a greedy Shelling algorithm: let O0 = O, then choose
tetrahedron series ∆i ∈ O′ \ Oi−1 for i varying from 1 to n and
set Oi = {∆i} ∪ Oi−1 (Sec. 2.2.2). However, this is not always
possible. In this case, we say that we have a Shelling blocking.

A Shelling blocking implies that there is i ≤ n such that no
tetrahedron ∆i ∈ O′ \ Oi−1 meets all required constraints to de-
fine Oi. In other words, ∂(Oi−1 ∪ {∆i}) has a singular vertex or
∆i has no triangle face in ∂Oi−1 for every tried ∆i ∈ O′ \ Oi−1.
This may look surprising since Shelling in the 2D case does not
have such a blocking according to [6]. (Replace tetrahedra by
triangles, 2-manifold by 1-manifold, as in the top line of Fig. 2.)

Figure 12: Notations for a shelling blocking. From left to right: O, O′, O′ \ O
is homeomorphic to {x ∈ R3, ||x|| ≤ 1}, c(O) ∩ c(O′ \ O) is a disc.

6.2. Examples of Shelling blocking
In a first example, ∂O′ is a sphere (i.e. ∂O′ is homeomorphic

to {x ∈ R3, ||x|| = 1}.) and we set O = {∆} with a tetrahedron
∆ ∈ O′. According to [47, 20], there are three cases. Case 1:
Shelling can success and can fail (This depends on its tetrahe-
dron choices.), e.g. if O′ is convex and large enough. Case 2:
Shelling always fails, whatever its tetrahedron choices. (An ex-
ample O′ has only 12 vertices and 25 tetrahedra.) Case 3: there
is never Shelling blocking, e.g. if the number of vertices in c(O′)
is less than 9.

In a second example, ∂O is a manifold, ∂(O′ \O) is a sphere,
and c(O) ∩ c(O′ \ O) is a disc. (i.e. it is homeomorphic to {x ∈
R2, ||x|| ≤ 1}.) Fig. 12 shows an example where ∂O is a torus.
Appendix E explains how to obtain a Shelling blocking in this
context if O′ \ O has only 5 tetrahedra.

6.3. Escape from Shelling blocking using other operations
T.E., C.H.R., F.R., C.E.R. and S.G. in Secs. 2.2.2 and 5.3.2

can escape from Shelling blocking, although they are not orig-
inally designed to do that. This means that they can reach O′

from O if we have a Shelling blocking. (Note that S.G. is not
designed to meet O ⊂ O′.) Appendix E.1 shows an example:
C.E.R. can escape from the last Shelling blocking in Sec. 6.2.

Here we present a method called Unlock to escape from re-
maining blockings. F.R. is used with two differences compared
to [22]. First Repair is replaced by Repair2 (in Sec. 4.3.2) which
is better. Second Repair2 is used without involving visually
critical edges to select locations where it is applied. We apply
Repair2 to a lot of small H. (Reminder: first force O← O ∪ H
then repair O in the neighborhood of H.) We try H = {∆} for
every tetrahedron ∆ ∈ F \ O and H = Tv ∩ (F \ O) for every
vertex v ∈ c(F \ O). However, this generates high topological
noise. A solution is to cancel the successful F.R. tentatives as
in Sec. 5.2, but this is time consuming.

We prefer to enforce a supplementary constraint on the tried
H before F.R.: the graph whose vertices are in c(H) ∩ c(O) and
whose edges are in c(∂O) must be non-empty and connected.
(The complete edge set is stored in an adjacency list before all
F.R. for efficiency.) Experiment shows that this heuristic con-
straint greatly reduces topological noise and we explain it in an
example. Assume that H = {∆} and F \ O is like a coin: a
cylinder with large diameter and small thickness (Fig. 13). The
constraint avoids almost all cases where ∆ has a vertex in one
side and another vertex in the other side of the coin. If F.R. is
applied and is successful in such a case (i.e. without the con-
traint), it creates a hole connecting both sides and the genus of
∂O increases.
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Figure 13: Without (left) and with (right) the supplementary constraint in Un-
lock. We have H = {abcd}, abcd ∈ F \O, F \O forms a coin, O is all around the
coin, ab is in the top side and cd is in the bottom side. Left: there are no edges
in c(∂O) connecting ab and cd, then Repair2 creates a torus and g increases.
Right: bc is in the edge of the coin, then Repair2 does not change g.

7. Experiments

7.1. Sparse input point cloud from images

We reconstruct complete environments thanks to videos
taken by helmed-held omnidirectional multi-cameras
and spherical cameras. First the multi-camera is self-
calibrated ([29]), and synchronized if needed, using global
shutter approximation. This involves a generic Structure-
from-Motion ([28]) based on local bundle adjustment, which
provides keyframes and matched Harris points that are used
latter. We also reduce the accumulated drift of the trajectory
thanks to detection and closure of loops inspired by [45, 44]:
detection using a vocabulary tree of the matched points, closure
using global bundle adjustment initialized by pose graph
optimizations.

Then the sparse cloud of points is completed for sur-
face reconstruction. For every keyframe, we detect Canny
curves and Harris points, match them to those of the previous
keyframe ([21] and the epipolar constraint. A Canny point is
ignored if the angle between its curve tangent and the epipo-
lar line at this point is less than a threshold (π/4). Both Canny
and Harris points are reconstructed by ray intersection (using
RANSAC and Levenberg-Marquardt methods). We only retain
one reconstructed Canny pixel over four consecutive ones in a
curve.

Last a pre-filtering is applied to remove gross outliers in the
point cloud. Point pi is reconstructed in keyframes located at c j

where j ∈ Vi (Sec. 2.1). The point is rejected if Vi has no more
than two elements or all apical angles are small: ĉ j1 pic j2 < ε
where ε > 0 is a threshold and jk ∈ Vi. This roughly means that
we reject a 3D point if the ratio of its uncertainty by its depth
is greater than a threshold ([18]). The choice of ε is a trade-off:
small values for selecting the scene background and large val-
ues for reducing noise in the foreground. We also reject points
that are too far in the sky or below the ground as follows. Let v
be an estimate of the vertical direction. (It is computed assum-
ing that the multi-camera trajectory is roughly horizontal.) We
reject pi if there is j ∈ Vi such that altitude v>pi is one of the
ten smallest or ten largest values in {v>pk, j ∈ Vk}.

7.2. Dataset, parameter setting, and initialization

We take four 1280 × 960 videos at 100Hz by walking during
16 minutes in an university campus using a DIY multi-camera.
The multi-camera has four GoPro Hero3 cameras enclosed in
a cardboard and mounted on a helmet (top of Fig. 14). The
trajectory is about 1500m. long, 3459 keyframes are selected,

reconstruction and pre-filtering provide 2.8M points and 13.6M
rays. The scene includes streets, cars, facades and vegetation.

We use ε = π/18 (i.e. 10◦ for point selection in Sec. 7.1),
α = π/16 (selection of critical edges in Sec. 5.1.2), w0 = π/2
(P.R. parameter in Sec. 5.1.3). The bottom of Fig. 14 shows
the points and the keyframe locations estimated by structure-
from-motion (Sec. 7.1) and the surface using the method of [22]
(Sec. 5.1). The surface has 4.2M triangles before sky removal.

All experimented methods have the same T , F and initial O
by Sh. There are 17.6M tetrahedra in T ; 53% of them are in F.
30% of the vertices in c(∂F) are singular in ∂F. Let O/F be the
ratio of the number of tetrahedra in F that are in O. Let c and g
be the number of connected components and genus of ∂O. Sh.
provides O/F = 83.29%, c = 1 and g = 0 in 13s. (We use a
I7-5500U 1600MHz DDR3L laptop.)

7.3. Comparison of manifold tests

Here we compare the computation times of the surface recon-
struction of [22] (summary in Sec. 5.1) by using different man-
ifold tests: the new test based on directed-edges (introduced in
Sec. 3) and the old test based on connected components (intro-
duced by [22]). Both tests check that a vertex is regular in ∂O;
their algorithms are detailed in Appendix A.

They obviously provide the same surface. There are three
successive operations after Sh.: T.E., C.H.R. and P.R. Using the
new test, their times are 3.8s, 27s and 15.6s. Using the old test,
their times are 3.9s, 34s and 16.5s. The main acceleration is for
the most time expensive operation C.H.R. These tests are done
30M times. Sh. does not change since it has its own test. We
also check that the number of edges in D is small (this is useful
for the complexity of the new test according to Sec. 3.3): the
mean is 8.2, the standard deviation and maximum are 5.9 and
189. The new test is used in the next sections.

7.4. Comparison of repairs for singularity removals

Now we compare the method of [22] by trying different re-
pairs used by C.H.R.: the new Repair2 based on singularity
analysis (introduced in Sec. 4) and the old Repair that adds
one tetrahedron at once (introduced by [22]). We remind that
C.H.R. tries to add a lot of sets H ⊆ F \O to O by using a repair
to remove the resulting singular vertices.

Before the use of repair, O/F = 83.54%. Repair2 provides
O/F = 85.31% in 10s. Repair provides O/F = 85.21% in 27s.
Repair2 has the best ratio and is quite faster than Repair. We
note that O/F does not increases a lot, but this is not a reason to
omit C.H.R. since it removes visually critical handle. (Fig. 15
shows examples.) Repair2 is used in the next sections.

7.5. Comparisons of topologies

Here we experiment three methods using Repair2 and the
new manifold test: M0 ([22], see also Sec. 5.1), M1 (Sec. 5.2)
and M2 (Sec. 5.3). We remind that M1 is M0 with a C.H.R. that
can be canceled, M2 is M0 such that T.E. is replaced by C.E.R.
and C.H.R. is replaced by S.G. and more selective C.H.R.
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Figure 14: Top: four GoPro Hero 3 cameras enclosed in a cardboard box and
resulting images of our multi-camera in the campus. Middle: top view of the
structure-from-motion result including loop closure. Bottom: surface by [22]
(best viewed in colors).

Figure 15: Examples of removals of spurious handles by [22] without (left) and
with (middle and right) C.H.R. involving Repair2.

7.5.1. Quantitative comparisons
First we check assertions in Sec. 5 about g using Tab. 1. For

M0, g is multiplied by about 4.6 due to C.H.R. For M1, g de-
creases by 35% thanks to C.H.R. For M2, C.E.R. provides g
that is about 20% greater than that of T.E. The genus g is the
same by S.G. and almost the same by C.H.R. Furthermore, P.R.
has similar effects in all cases: g decreases by 10%-16%. At
the end, both M1 and M2 provide quite smaller g than M0. (g
is divided by 7.6 and 3.7.)

Second we see that there is a trade-off between O/F (which
grows if the maximized visibility score function f (O) grows)
and small g (i.e. simplified topology): the larger the ratio O/F,
the larger the genus g. Indeed, M0 > M2 > M1 for both O/F
and g. The trade-off still holds if we use an alternative definition
of T.E. by [24], but there are differences: this T.E. provides a
quite larger g than the original T.E., which implies that M0 >
M1 > M2 for both O/F and g (more details in Appendix F).

Last we check the assumption of Theorem 5 used by M1. It
is not 100% meet: the number of connected components of O
(which is not c) is 41 after C.H.R. of M1. However, it is 100%
meet if we slightly modify C.H.R. (Add condition “vi ∈ c(∂O)”
in line 1 of Algorithm 2 of [22].); then we obtain a very similar
M1’s surface (only 281 different triangles) with same c and g.

7.5.2. Removing holes due to bad or lacking points
First we remind what is a “hole” in our context. Bad input

points are remaining after the pre-filtering in Sec. 7.1. Their
rays can intersect tetrahedra that become free-space and out-
side although they should be matter and inside. These tetrahe-
dra form holes. More precisely, there are two kinds of holes:
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Figure 16: Handles of M0 and their removals by M1, M2 and M3. From left to right: ∂F, M0, M1, M2, M3, and texture of M3. There are views from outside and
from inside of a building corner (rows 1&2) and a car (rows 3&4). The arrows are pointing to handles removed by M1/M2/M3.

Table 1: Labeling, surface topology (number of connected components and
genus) and times of methods M0-2. Reminders: both M0 and M1 successively
apply Sh.-T.E.-C.H.R.-P.R., M2 successively applies Sh.-C.E.R.-S.G.-C.H.R.-
P.R.

step method O/F c g time
T.E. M0 83.54% 368 377 3.9s

C.H.R. M0 85.31% 483 1759 10.4s
P.R. M0 79.87% 56 1549 15.6s
T.E. M1 83.54% 368 377 3.9s

C.H.R. M1 84.75% 499 243 16.5s
P.R. M1 79.14% 56 204 16s

C.E.R. M2 84.90% 154 454 4.9s
S.G. M2 84.99% 155 454 5.1s

C.H.R. M2 85.02% 171 459 5.6s
P.R. M2 79.45% 55 411 15.6s

concavities and handles. We explain them for a simple exam-
ple: a wall in a city such that both planar sides of the wall are
seen by the camera trajectory (the c j). In the first case, a con-
cavity deforms one side of the wall without topology change,
e.g. if the wall includes a bad point. Such holes can be removed
by P.R. if they are peaks (more details in Appendix C of [22]).
In the second case, a handle connects both wall sides, e.g. if a
ray of a bad point crosses the wall.

Second we show examples of holes surrounded by handles
(second case) that are removed by our lowered genus constraint.
In both Figs. 16 and 17, holes surrounded by handles of M0
(column 2) are removed by M1 (column 3) and/or M2 (col-
umn 4). M2 usually has the best visual result since M1 some-
times fills large holes that should not be (where there is a lot of
free-space F), i.e. its surface connects important scene compo-
nents that should not be. For example in row 2 of Fig. 17, the
space between the tree and the notice board and the ground is
in F but the M1 surface immediately connects these three scene
components. In row 2 of Fig. 16, we also see that large blunders
in F are greatly reduced by the manifold constraint (See M0 re-
sult.) and further reduced by the low genus constraint. (See M1
and M2 results.)

7.6. Details on C.E.R, S.G. and C.H.R. used in method M2
We note that O/F (Tab. 1) does not increase a lot by opera-

tions C.E.R., S.G. and C.H.R. However, this is not a reason to
omit them in M2. Fig. 18 shows examples of visual artifacts that
occur in the final surface if we omit one of them. If C.E.R. is
omitted, a porch forms a blind alley and there is a visual artifact
adjacent to a pillar of the porch (row 1). If S.G. is omitted, two
adjacent cars are connected by the surface (row 3). If C.H.R. is
omitted, spurious handles occur between another post and the
ground and a building (row 5). Fig. 18 also shows a top view of
all improvements (tetrahedra moved from F \ O to O) done by
each of these three operations, which are non negligible.
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Figure 17: Handles of M0 and their removals by M1, M2 and M3. From left to right: ∂F, M0, M1, M2, M3, and texture of M3. There are views of a small tree
(row 1), a notice board under a tree (row 2), an anti-parking post (row 3) and a pillar (row 4). The arrows are pointing to handles removed by M1/M2/M3.

7.7. Unlock shelling blocking
Now we study a method M3, which is M2 with an additional

step Unlock (Sec. 6.3) done after C.H.R. and before P.R. Fig. 19
shows examples of visual artifacts of M2 that are removed by
M3. It also shows a top view of all improvements (tetrahedra
moved from F \O to O) done by Unlock, which are non negligi-
ble. The ratio O/F increases from 85.02% to 85.39% thanks to
Unlock in 15.3s; the g of M3 is 517. (25% greater than the g of
M2.) We also check two assertions in Sec. 6.3. If Unlock does
not have the supplementary constraint, there is a lot of topologi-
cal noise: g of M3 is multiplied by 14 (g = 7279). If we replace
the supplementary constraint (before every use of Repair2) by
testing δc − δg ≥ 0 as in Sec. 5.2.2 (after every successful use
of Repair2), g of M3 decreases by 21% (g = 408), the compu-
tation time of Unlock is multiplied by 2.1, and O/F = 85.38%.

The video Video.mp4 in the supplementary material shows
walkthroughs in the surface generated by M3.

7.8. Comparison of accuracies
We compare the accuracies of M0-3’s surfaces with respect

to a ground truth surface: a synthetic urban scene with textures
of real images taken in a city. First a multi-camera video (4
GoPro cameras) is generated by ray-tracing of the scene. The
camera trajectory is a 621m long closed loop around buildings.
All methods have the same input generated as in Sec. 7.1: 601
keyframes and 687k points. Fig. 20 shows the images at a single
location, estimated and ground truth surfaces.

Table 2: Mean, standard deviation and quartiles of geometric error e(p) in cm,
c and g for the methods M0-3.

M. ē σe 70% 80% 90% c g
M0 34.73 103 14 26 76 3 82
M1 34.12 101 14 26 78 3 2
M2 32.89 100.8 14 24 70 3 17
M3 32.93 100.8 14 24 70 3 33

A geometric error e between the estimated and ground truth
surfaces is computed as follows. Let ci and cg

i be the esti-
mated and ground truth locations of the multi-camera at the i-th
keyframe. First we set the estimated surface in the coordinate
system of the ground truth thanks to the similarity transforma-
tion Z that minimizes

E(Z) =

600∑
i=0

||Z(ci) − cg
i ||

2. (19)

We obtain
√

E(Z)/601 = 9.1cm. Then e(p) is defined by the
distance between the point p and the ground truth surface; p is
randomly and uniformly sampled in the estimated surface.

Tab. 2 shows c, g and quartiles of e(p). The quartiles below
70% are the sames for all methods. We see that M0-3 have sim-
ilar accuracies (M2 and M3 are slightly better than M1, which
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Figure 18: Improvements done by C.E.R (top), S.G. (middle) and C.H.R. (bot-
tom) involved in method M2. In each case, there is a top view of tetrahedra
switched from F \O to O (in black) or from O to F \O (in grey, S.G. only), su-
perimposed by the camera trajectory. There are also local views of the surface
obtained without and with the operation.

Figure 19: Improvements done by Unlock involved in method M3. Top and
middle: local views of the surface without (left) and with (middle and right)
Unlock showing three wood posts, two cars, facade and ground, fire hydrant,
three and ground. Bottom: a top view of tetrahedra switched from F \ O to O
(in black) by Unlock, superimposed by the camera trajectory.
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Figure 20: Experiments using a synthetic urban scene. Top: images at a loca-
tion. Middle: top views of SfM result and M3 surface. Bottom: local views of
ground truth and M3 surfaces.

Table 3: Genuses obtained by the methods M0-3 and values of α.

α 0.1 0.15 0.2 0.25 0.3
M0 3774 2269 1531 1156 945
M1 194 199 207 220 225
M2 920 580 406 308 237
M3 1019 669 511 417 353

in turn is slightly better than M0.) using a similar number of tri-
angles (1.09M triangles) and times between 36s and 40s. The
main difference between methods is the genus g. Its ground
truth is 3 since the streets form 3 independent loops and the
buildings do not have handles. We see that the topological noise
of M0 is quite reduced by M1, M2 and M3. M1 provides the
best g but its surface approximates the two streets in the scene
center by (completely) blind alleys although they are not. These
streets are incompletely blind alleys but have spurious handles
in M0, M2 and M3 cases.

7.9. Varying α

The angle α is an important parameter since the set of the
critical edges depends on α (Lα in Eq. 16) and operations C.E.R,
C.H.R., S.G. take Lα as input. (Sh., T.E. and P.R. do not.)

Figure 21: Varying α for the method M3: α = 0.3 on the left and α = 0.1 on
the middle and right. There are views of a fence in front of a building, a light
post between two streets, and tall grass under trees.

First we detail a link between g and α. By varying α around
its default value π/16 ≈ 0.2, Tab. 3 shows that g increases if α
decreases for M0, M2 and M3. Indeed, new handles can be gen-
erated at the neighborhood of every critical edge in Lα where
operations C.E.R./C.H.R. are applied and the number of edges
in Lα increases if α decreases. In contrast to this, g slightly
decreases if α decreases for M1. There is a reason: the cancel-
lations of F.R. involved in C.H.R. of M1 prohibit g increments.
(This is the only differences between M0 and M1.) In all cases,
if α decreases from 0.3 to 0.1., c increases in range [47, 70] and
the computation time of C.H.R. is multiplied by about 3.5.

Second Fig. 21 shows surfaces differences for M3 between
α = 0.3 and α = 0.1. We see that a large value of α simplifies
the topology, e.g. holes/handles are removed in a fence (top).
However, this also degrades the O growing at some locations,
e.g. near a light post (middle) and below trees (bottom). As
in Sec. 7.5.1, there is a trade-off between visibility consistency
and topology simplicity.

7.10. Comparison with a graph-cut method

First we discuss a graph-cut method (named GC) of [40].
GC takes ours 3D Delaunay triangulation T as input, then com-
putes a closed surface S ⊂ c(T ) that minimizes a cost function
Evis + λEqual composed of a visibility term Evis and2 a surface
quality term Equal, last GC has a Laplacian smoothing. On the
one hand, we observe that thin structures (e.g. posts) and fo-
liages are removed from S if the weighting λ increases. On

2Addendum: using αvis = 1.
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the other hand, S is less robust to “bad” points if λ decreases.
These “bad” points can also includes a few good ones which
are not enough numerous to generate a descent shape, e.g. a
few good points inside a building or a car if the multi-camera
is outside. We choose λ = 2 as a trade-off. We also note that a
good surface quality in the sense of [40] implies a low number
of singular vertices. Indeed, the percentage of singular vertices
of S decreases if λ increases: 1.5% if λ = 1, 0.26% if λ = 2,
0.07% if λ = 3. The computation time of the graph-cut op-
timization also increases (from 25s to 64s) and the number of
triangles in S decreases (from 5M to 3.5M).

Second we compare GC and our method M3 using the default
value α = π/16. The number of triangles is 4.2M for M3 and
4.6M for GC. Rows 1-2 in Fig. 22 show that the GC surface
is noisier than that of M3 in textured walls. This is coherent
with an accuracy evaluation using the dataset in Sec. 7.8: the
mean error of M3 is lower than that of GC. (They are 0.33m and
0.43m respectively.) Furthermore, the most complete foliages
and trunks of trees are usually obtained by M3 (examples in
rows 3-4). However we observe in rows 5-6 that GC is usually
the most robust with respect to “bad” points inside buildings.
(In row 6, M3 generates a spurious handle connecting two win-
dows at a building corner.) We also note that GC has the best
result in row 7 by forcing to O several thin matter tetrahedra
that connect roofs of two cars.

8. Conclusion

Topology constraints (manifoldness, low genus, connected-
ness) are under-explored in Computer Vision methods that es-
timate a surface given points reconstructed from images, al-
though these constraints are useful for both surface estimation
and applications. This article presents the first surface recon-
struction methods that simultaneously enforce visibility consis-
tency and low genus. Starting from a previous work enforc-
ing manifoldness, we quantitatively reduce the genus and show
surface improvements including hole removals. A simple mod-
ification removes topological noise due to an operation of the
original method. A second method is more involved but ad-
justs the topology simplification thanks to an user parameter
during the visibility consistency optimization. Other contri-
butions include an acceleration of the manifold test by using
the orientability of the 3D Delaunay triangulation (of the input
points), a more efficient removal of surface singularities which
improves escapes from local extrema. This removal is based
on a study of non-manifoldness near a vertex or an edge of the
surface. The local extrema are partly due to limitations of an
operation called “shelling” in Combinatorial Topology.

We experiment in a context that we believe useful for appli-
cations. First the input point cloud is sparse. This is useful in
several contexts including large scale scenes, limited computa-
tional resources and initialization of dense stereo. Second the
points are reconstructed from videos taken by several consumer
cameras (or a spherical camera) mounted on a helmet and by
walking (or biking) in complex environments.

Future work includes improvements to escape from local ex-
trema of our optimization problem, e.g. by finding a (provably)

Figure 22: Differences between GC (left) and M3 (middle and right). M3 is the
best in rows 1-4 and GC is the best in rows 5-7 (details in the text). All views
are from the outside except those in rows 2 and 5.
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set of local operations that reach all manifold surfaces embed-
ded in the 3D Delaunay triangulation. Furthermore, we should
improve contour reconstruction, use of connectedness, surface
smoothing and visibility score function. Our contributions can
also be applied to the incremental surface reconstruction. (We
only experiment batch surface reconstruction.) Last a dense
stereo refinement should add surface details and reduce recon-
struction errors.
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Appendix A. Algorithms of manifold tests

Here we use shortened notations: t∆i is the face triangle of a
tetrahedron ∆ = v∆

0 v∆
1 v∆

2 v∆
3 that does not include v∆

i , i.e. t∆i is v∆
i -

opposite in ∆. In our implementation, every tetrahedron ∆ ∈ T∞

(Sec. 4.1) stores four booleans t∆i ∈ ∂O in addition to a boolean
∆ ∈ O. This redundancy accelerates all tests by reducing the
use of indices or pointers to neighboring tetrahedra.

Appendix A.1. Our manifold test

We remind that π ∈ A4 iff (π0, π1, π2, π3) ∈ Ã4 where

Ã4 = { (0, 1, 2, 3), (0, 2, 3, 1), (0, 3, 1, 2),
(1, 2, 0, 3), (1, 0, 3, 2), (1, 3, 2, 0),
(2, 3, 0, 1), (2, 0, 1, 3), (2, 1, 3, 0),
(3, 0, 2, 1), (3, 2, 1, 0), (3, 1, 0, 2) }. (A.1)

Algorithm 3 presents (in C style) our directed edge-based man-
ifold test (Sec. 3.3). In the first step (collect the directed edges),
lines 3-4 select ∆ ∈ Tv ∩ O, then lines 5-20 describe every
π ∈ A4 as follows. Lines {5,9,13,17} select the four cases of
π0 ∈ {0, 1, 2, 3}. Lines 6-8 are the three sub-cases of π0 = 0
based on tests t∆π1 ∈ ∂O where π1 ∈ {1, 2, 3}, then (v∆

π2, v
∆
π3) is

collected in every sub-case such that π is even. The other cases
of π0 are similar. In the second step (Check that D is a directed
cycle.), we permute the edges in E to check that D is a closed
path, then check that every vertex is traversed only once by this
path.

Algorithm 3. Directed edge-based manifold test for v

01: // collect the directed edges of D in a table
02: Let E be a table of vertex indices, and let n=0;
03: for each tetrahedron ∆ ∈ Tv
04: if (∆ ∈ O) {
05: if (v∆

0 ==v) {
06: if (t∆1 ∈ ∂O) { E[n++]= v∆

2 ; E[n++]= v∆
3 ; }

07: if (t∆2 ∈ ∂O) { E[n++]= v∆
3 ; E[n++]= v∆

1 ; }
08: if (t∆3 ∈ ∂O) { E[n++]= v∆

1 ; E[n++]= v∆
2 ; }

09: } else if (v∆
1 ==v) {

10: if (t∆2 ∈ ∂O) { E[n++]= v∆
0 ; E[n++]= v∆

3 ; }

11: if (t∆0 ∈ ∂O) { E[n++]= v∆
3 ; E[n++]= v∆

2 ; }
12: if (t∆3 ∈ ∂O) { E[n++]= v∆

2 ; E[n++]= v∆
0 ; }

13: } else if (v∆
2 ==v) {

14: if (t∆3 ∈ ∂O) { E[n++]= v∆
0 ; E[n++]= v∆

1 ; }
15: if (t∆0 ∈ ∂O) { E[n++]= v∆

1 ; E[n++]= v∆
3 ; }

16: if (t∆1 ∈ ∂O) { E[n++]= v∆
3 ; E[n++]= v∆

0 ; }
17: } else if (v∆

3 ==v) {
18: if (t∆0 ∈ ∂O) { E[n++]= v∆

2 ; E[n++]= v∆
1 ; }

19: if (t∆2 ∈ ∂O) { E[n++]= v∆
1 ; E[n++]= v∆

0 ; }
20: if (t∆1 ∈ ∂O) { E[n++]= v∆

0 ; E[n++]= v∆
2 ; }

21: }

22: }
23: if (n==0) return 1; // if v < c(∂O)
24: if (n< 6) return 0; // too short for a directed cycle
25: // does E form a closed path ?
26: for (i=0; i+3< n; i= i+2)
27: if (E[i+1]!= E[i+2]) {
28: for (j= i+4; j+1< n; j=j+2)
29: if (E[i+1]==E[j]) {
30: Swap(E[i+2], E[j]); Swap(E[i+3], E[j+1]);
31: break;
32: }

33: if (j+1≥ n) return 0;
34: }
35: if (E[n-1]!= E[0]) return 0;
36: // do we have distinct vertices in the path ?
37: for (i= 0; i+1< n; i= i+2)
38: for (j= i+2; j+1< n; j= j+2)
39: if (E[i]==E[j])
40: return 0;
41: return 1;

end

Furthermore, it can be shown that

• Theorem 1 is true if we replace T by T∞ in its statement

• we can replace “∆ ∈ O” by “∆ ∈ T∞ \O” in Eqs. 8 and 10,
then Theorem 2 is still true.

Thus the directed-edge based test in Algorithm 3 is the same if
we replace ∆ ∈ Tv by ∆ ∈ T∞v in line 03 (Store T∞w in a table for
every w ∈ c(T∞).) and replace ∆ ∈ O by ∆ < O in line 04.

Appendix A.2. A previous manifold test

Algorithm 4 is a previous test (the so-called Graph-based
Vertex Test of [22]), that we experiment and compare to Algo-
rithm 3. It checks that the vertex v is regular in ∂O by a traversal
of the adjacency graph of T∞v (proof in Theorem 3 of [19]). Ev-
ery tetrahedron ∆ has indices (or pointers) to its four adjacent
tetrahedra ∆i in T∞. (The notation ∆i meets ∆i ∩ ∆ = t∆i .)

Algorithm 4. Tetrahedron-based manifold test for v

01: // every tetrahedron ∆ has boolean f∆ = 0
02: for each tetrahedron ∆ ∈ T∞v
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03: f∆= 1;
04: c= 0;
05: let P be a table of tetrahedra indices, and let n= 0;
06: for each tetrahedron ∆′ ∈ T∞v
07: if ( f∆′ ) {
08: f∆′= 0;
09: P[n++]= ∆′;
10: while (n) {
11: ∆= P[--n];
12: if (v∆

0 ! = v && t∆0 < ∂O && f∆0 )
13: { f∆0 = 0; P[n++]= ∆0; }
14: if (v∆

1 ! = v && t∆1 < ∂O && f∆1 )
15: { f∆1 = 0; P[n++]= ∆1; }
16: if (v∆

2 ! = v && t∆2 < ∂O && f∆2 )
17: { f∆2 = 0; P[n++]= ∆2; }
18: if (v∆

3 ! = v && t∆3 < ∂O && f∆3 )
19: { f∆3 = 0; P[n++]= ∆3; }
20: }

21: c++;
22: }
23: return (c<3); // c<2 if v < c(∂O)

end

Appendix B. Proof of Theorem 2

First we show Lemma 1.

Proof. First assume that edge ab ∈ U and show that triangle
abv ∈ ∂O. Thus (a,b) ∈ D or (b, a) ∈ D. In both cases, Eq. 8
implies that abv ∈ ∂O.

Second assume that abv ∈ ∂O and show that ab ∈ U. There
is a tetrahedron ∆ ∈ O such that abv is a face of ∆. Let x
be a vertex such that ∆ = vxab. Since there are exactly two
possible orientations, (v, x, a,b) = o(∆) or (v, x,b, a) = o(∆).
Since X = o(∆) ⇐⇒ X ∈ o(∆), Eq. 8 implies (a,b) ∈ D in
the first case and (b, a) ∈ D in the second case. In both cases,
ab ∈ U.

Then we show Lemma 2.

Proof. According to [3, 19], a vertex v ∈ c(∂O) is regular in
∂O iff the v-opposite edges in the triangles of ∂O (having v as
vertex) form a cycle. Now we use Lemma 1 and obtain the
result.

We also need the two following lemma.

Lemma 6. If (x, y) ∈ D, (y, x) < D.

Proof. If (x, y) ∈ D, there are a tetrahedron ∆ ∈ O and a vertex
v1 such that (v, v1, x, y) = o(∆) and vxy ∈ ∂O. Assume (re-
ductio ad absurdum) that (y, x) ∈ D. There are a tetrahedron
∆′ ∈ O and a vertex v′1 such that (v, v′1, y, x) = o(∆′). Since
vxy ∈ ∂O, vxy is included in a single tetrahedron of O. Thus
∆ = ∆′ and v1 = v′1. Now we have (v, v1, y, x) = (v, v1, x, y),
which is impossible.

Lemma 7. Let uva1a2 · · · uvakak+1 be a series of k distinct
tetrahedra in T . If (v,u, a1, a2) = o(uva1a2), (v,u, ak, ak+1) =

o(uvakak+1).

Proof. First we show that if tetrahedra ∆ = v0v1v2v3 and ∆′ =

v0v1v2v′3 are consistently oriented,

(v0, v1, v2, v3) = o(∆)⇒ (v1, v0, v2, v′3) = o(∆′). (B.1)

We have (v0, v1, v2, v′3) = o(∆′) or (v1, v0, v2, v′3) = o(∆′). As-
sume (reductio ad absurdum) that the former is true. Thanks
to Theorem 1, ∆ and ∆′ are consistently oriented by using ori-
entations o(∆) and o(∆′): there are π ∈ A4 and π′ ∈ A4 such
that (vπ0, vπ1, vπ2) = (vπ′1, vπ′0, vπ′2). Thus π0 = π′1, π1 = π′0,
π2 = π′2 and π3 = π′3, i.e. (π′)−1 ◦π = (0 1) < A4 (impossible).

Then we show that

(v,u, ai, ai+1) = o(vuaiai+1)⇒
(v,u, ai+1, ai+2) = o(vuai+1ai+2). (B.2)

We have (u, v, ai+1, ai) = (v,u, ai, ai+1) = o(vuaiai+1). Now we
use Eq. B.1 with adjacent tetrahedra uvai+1ai and uvai+1ai+2,
which are consistently oriented, and obtain (v,u, ai+1, ai+2) =

o(vuai+1ai+2).

Last we show Theorem 2.

Proof. Assume that D is a directed cycle and show that v is
regular in ∂O. U is a cycle since D is a directed cycle. Then
Lemma 2 implies that v is regular in ∂O.

Conversely, assume that v is regular in ∂O and show that D
is a directed cycle. Thanks to Lemma 2, U is a cycle. Since D
cannot include two inverse edges (Lemma 6), we only need to
show that there are edges (a,u) and (u,b) in D for every vertex
u ∈ c(U).

Let a vertex u ∈ c(U). Since T is a 3D Delaunay triangula-
tion, there are distinct vertices ai such that

Tuv = {uva0a1,uva1a2,uva2a3, · · · uvakak+1}, (B.3)

with a possible exception a0 = ak+1. Thanks to Lemma 1, if
uvaiai+1 ∈ O and uva j ∈ ∂O and j ∈ {i, i + 1}, ua j ∈ U. Since
U is a cycle, the number of such uva j is exactly 2. Thus we
have l and m such that

Tvu ∩ O = {vuaiai+1, l ≤ i < i + 1 ≤ m} (B.4)

and vual ∈ ∂O and vuam ∈ ∂O. Fig. B.23 shows Tvu ∩ O if
l = 1 and m = 4. Now we have two cases : o(vualal+1) is
(v,u, al, al+1) or (u, v, al, al+1).

In case 1, (v,u, al, al+1) = o(vualal+1) and we show that
(u, al) ∈ D and (am,u) ∈ D. According to Eq. 8 and since
(v, al+1,u, al, ) = (v,u, al, al+1) and vual ∈ ∂O, (u, al) ∈ D.
Thanks to Lemma 7 and (v,u, al, al+1) = o(vualal+1), we
have (v,u, am−1, am) = o(vuam−1am). Since (v, am−1, am,u) =

(v,u, am−1, am) and vuam ∈ ∂O, Eq. 8 implies (am,u) ∈ D.
In case 2, (u, v, al, al+1) = o(vualal+1) and we show that

(al,u) ∈ D and (u, am) ∈ D. According to Eq. 8 and since
(v, al+1, al,u) = (u, v, al, al+1) and vual ∈ ∂O, (al,u) ∈ D.
Thanks to Lemma 7 and (u, v, al, al+1) = o(vualal+1), we
have (u, v, am−1, am) = o(vuam−1am). Since (v, am−1,u, am) =

(u, v, am−1, am) and vuam ∈ ∂O, Eq. 8 implies (u, am) ∈ D.
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Figure B.23: Notations for Theorem 2 proof with l = 1 and m = 4. Left: the
triangles in ∂O including the vertex v. Here v is regular in ∂O. Right: the
tetrahedra in Tuv ∩ O. We have uvaiai+1 ∈ O where 1 ≤ i < 4, vua1 ∈ ∂O,
vua4 ∈ ∂O. In both cases, the bold edges are the U edges, i.e. the v-opposite
edges in triangles of ∂O.

Appendix C. Proof of Lemma 5

First let a triangle t ∈ ∂(O ∪ H̃) \ ∂O and show t ∈ ∂H̃. Let
∆ be the only tetrahedron in O ∪ H̃ including t. (i.e. t is a face
of ∆.) Since t < ∂O, ∆ < O. Thus ∆ is the only tetrahedron in
H̃ including t: t ∈ ∂H̃.

Second let a triangle t ∈ ∂O \ ∂(O∪ H̃) and show t ∈ ∂H̃. Let
∆ be the only tetrahedron in O including t. If ∆ is the only tetra-
hedron in O∪ H̃ including t, t ∈ ∂(O∪ H̃), which is impossible.
Thus there is another tetrahedron ∆′ ∈ O∪ H̃ including t. Since
∆ is unique, ∆′ < O. Thus ∆′ ∈ H̃. Furthermore H̃ ⊆ F \ O and
∆ ∈ O imply ∆ < H̃. We obtain t ∈ ∂H̃.

Last let a triangle t ∈ ∂H̃ and show t ∈ J. Let ∆ be the only
tetrahedron in H̃ including t. If ∆ is the only tetrahedron in
O ∪ H̃ including t, t ∈ ∂(O ∪ H̃). Since ∆ ∈ H̃ ⊆ F \ O, ∆ < O.
Thus t < ∂O. We obtain t ∈ ∂(O∪H̃)\∂O ⊆ J. Otherwise, there
is another tetrahedron ∆′ ∈ O∪H̃ including t. Since ∆ is unique,
∆′ < H̃. Thus ∆′ ∈ O. Since ∆ < O, t ∈ ∂O \ ∂(O ∪ H̃) ⊆ J.

Appendix D. Shrink-Grow (S.G.) algorithm

Algorithm 5 is Shrink-Grow. (S.G. is summarized in
Sec. 2.2.2.) This algorithm is repeated until f (O) does not
change or a maximum number of iterations is reached. It uses
a function Growing(∆) which updates O by Shelling using ∆

as the first tetrahedron that we try to add to O (i.e. Algorithm 1
of [22] with inputs Q0 = {∆} and O , ∅). The function Growing
also returns the set of tetrahedra that it adds to O.

Algorithm 5. Shrink-Grow (one iteration)

01: Let Lα be defined by Eq. 16;
02: Let Gα = {∆ ∈ F, c(∆) ∩ Lα , ∅};
03: for each vertex v ∈ c(∂O) ∩ c(Gα) {
04: Lsub = (Tv ∩ O);
05: Lseed = (Tv \ O) ∩Gα;
06: O← O \ Lsub;
07: if (Lseed , ∅ && Lsub , ∅ &&
08: every vertex in c(Lsub) is regular in ∂O) {
09: Ladd = ∅;
10: for each tetrahedron ∆ ∈ Lseed

11: Ladd ← Ladd ∪ Growing(∆);
12: Rsub =

∑
∆∈Lsub

f (∆); // f is defined in Sec. 2.2.1
13: Radd =

∑
∆∈Ladd

f (∆);

Figure E.24: Illustration for Theorem 6. From left to right: O∪P, O, c(O)∩c(P),
c(O) ∩ c(P) and a tetrahedron ∆ ∈ P and all singularities of ∂(O ∪ {∆}) in the
5 cases. Bold edges and black dots are singular. In this example, O ∪ P is a
cylinder with an octagonal base.

14: if (Rsub > Radd) // abandon if f (O) decreases
15: { O← O \ Ladd; O← O ∪ Lsub; }
16: } else O← O ∪ Lsub; // abandon if ∂O is not manifold
17: }

end

Appendix E. Shelling blocking using five tetrahedra

Let P ⊆ F be defined (as in Sec. 6.1 of [20]) by

{a0a1b1c0, a0a1b0c0, a1b0b1c0, a0a1b1c1, a0b1c0c1} (E.1)

using distinct vertices a0, a1,b0,b1, c0 and c1. We summarize P:
it has one “internal” tetrahedron a0a1b1c0 since every triangle
face of a0a1b1c0 is included in another tetrahedron of P having
vertex b0 or c1. Furthermore,

∂P = {a0b0c0, a1b1c1} ∪ {a0a1b0, a1b0b1}∪

{b0b1c0,b1c0c1} ∪ {a0c0c1, a0a1c1}. (E.2)

is homeomorphic to a sphere. (∂P is an octahedron.) Assume
that O ⊆ F such that ∂O is a manifold and

c(O) ∩ c(P) = c({a0a1b0, a1b0b1, a0c0c1, a0a1c1}). (E.3)

Let O′ = O ∪ P. Since O ∩ P = ∅, P = O′ \ O. Using
these choices, all conditions in Sec. 6.2 are meet: we have ∅ ,
O ⊂ O′ ⊆ F, ∂O is a manifold, ∂(O′ \ O) is a sphere, and
c(O) ∩ c(O′ \ O) is a disc.

Theorem 6. If ∆ ∈ P, then ∂(O ∪ {∆}) has a singular vertex.

According to Fig. E.24 and Theorem 6 (proof in file
Proofs.pdf of the supplementary material), the Shelling cannot
start from O by using tetrahedra in O′ \ O. Theorem 16 of [20]
provides other examples of Shelling blocking.

Appendix E.1. Escape thanks to Critical Edge Removal
Here we check that the growing from O to O′ can be done

thanks to C.E.R. (Sec. 5.3.2): apply C.E.R. to the edge a0a1 if
a0a1 ∈ Lα. Let O0 = O. The Force step of C.E.R. provides

O1 = O0 ∪ {a0a1b1c0, a0a1b0c0, a0a1b1c1, }. (E.4)

The Repair(2) step can choose O2 = O1 ∪ {a1b0b1c0} and O3 =

O2 ∪ {a0b1c0c1}, or O2 = O1 ∪ {a0b1c0c1} and O3 = O2 ∪

{a1b0b1c0}. Let Vi be the set of the singular vertices of ∂Oi.
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Figure E.25: Illustration for Theorem 7. From left to right: O3 = O ∪ P,
O0 = O, c(O)∩ c(P), c(O)∩ c(P) and O1 \O0 and V1, c(O)∩ c(P) and O2 \O0
and V2, O3 \ O0 and V3. Bold edges are singular and black dots are in Vi. In
this example, O ∪ P is a cylinder with an octagonal base.

Table F.4: We redo Tab. 1 by using T.E. of [24] instead of T.E. of [22]. The
former generates a lot of topological noise compared to the latter.

step method O/F c g time
T.E. M0 84.41% 978 2137 20s

C.H.R. M0 85.44% 1034 3072 9.3s
P.R. M0 80.01% 59 2672 15.9s
T.E. M1 84.41% 978 2137 20s

C.H.R. M1 85.16% 1049 1892 11.9s
P.R. M1 79.65% 60 1616 15.8s

Theorem 7. We have ∅ = V3 ⊆ V2 ⊆ V1.

According to Fig. E.25 and Theorem 7 (proof in file
Proofs.pdf of the supplementary material), the Repair(2) step
of C.E.R. is successful.

Appendix F. Use T.E. of [24] instead of T.E. of [22]

In this paper, we use T.E. of [22]: if v ∈ c(∂O) and Tv ⊆ F
and ∂(O ∪ Tv) is manifold, then update O ← O ∪ Tv. However
there is another T.E. in algorithm IV.2 of [24]: if v ∈ c(∂O) and
∂(O ∪ (Tv ∩ F)) is manifold, then update O ← O ∪ (Tv ∩ F).
Since the latter is less constrained than the former, it provides
the largest O growing. (See Tab. F.4.) However the latter gen-
erates a lot of topological noise (g is multiplied by 5.7.) and its
computation time is 5 times larger than that of the former. As a
consequence, the g of M0 increases by 72% and the g of M1 is
multiplied by 4. M2 is unchanged since it does not use T.E. As
in Sec. 7.5.1, we see a trade-off between visibility consistency
and topology simplicity: M0 > M1 > M2 for both O/F and g.
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