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ABSTRACT
A hierarchical Bayesian model is applied to the Cosmicflows-3 catalogue of galaxy distances
in order to derive the peculiar velocity field and distribution of matter within z ∼ 0.054. The
model assumes the �CDM model within the linear regime and includes the fit of the galaxy
distances together with the underlying density field. By forward modelling the data, the method
is able to mitigate biases inherent to peculiar velocity analyses, such as the Homogeneous
Malmquist bias or the lognormal distribution of peculiar velocities. The statistical uncertainty
on the recovered velocity field is about 150 km s−1 depending on the location, and we study
systematics coming from the selection function and calibration of distance indicators. The
resulting velocity field and related density fields recover the cosmography of the Local Universe
which is presented in an unprecedented volume of our Universe 10 times larger than previously
reached. This methodology opens the doors to reconstruction of initial conditions for larger
and more accurate constrained cosmological simulations. This work is also preparatory to
larger peculiar velocity data sets coming from Wallaby, TAIPAN, or LSST.

Key words: methods: data analysis – galaxies: distances and redshifts – dark matter – large-
scale structure of Universe – cosmology: observations.

1 IN T RO D U C T I O N

Peculiar motions of galaxies are due to the gravitational interaction
with the underlying density field of matter. Thus peculiar velocities
of galaxies are a powerful and unbiased tool to study the dynamics
and structure of the Local Universe. Velocities have been used
as probes of cosmological parameters (e.g. Zaroubi et al. 1997;
Nusser & Davis 2011; Feix, Branchini & Nusser 2017; Howlett
et al. 2017; Nusser 2017; Wang et al. 2018), for cosmography studies
(Dekel et al. 1999; Tully et al. 2014; Courtois et al. 2017; Hoffman
et al. 2017), and to set initial conditions for constrained simulations
(Gottloeber, Hoffman & Yepes 2010; Sorce et al. 2016). In the past,
the Local Universe peculiar velocity field has been reconstructed
from the expected response to the observed redshift distribution of
galaxies taken as tracers of the mass distribution (Hudson et al.

� E-mail romain.graziani@clermont.in2p3.fr (RG);
h.courtois@ipnl.in2p3.fr (HMC)

2004; Nusser & Davis 2011; Davis & Scrimgeour 2014; Hong et al.
2014; Scrimgeour et al. 2016).

An alternate approach has been followed by the Cosmicflows pro-
gram. Peculiar velocities are inferred from departures of measured
distances from the expectations of uniform cosmic expansion. Cos-
micflows catalogues (Tully et al. 2008, 2013) have been analysed
through the Wiener Filter/Constrained Realizations methodology
(WF/CR; Zaroubi, Hoffman & Dekel 1999; Courtois et al. 2012).
The assumption is made with the WF/CR methodology that the
measured velocities have a Gaussian noise and that their two-point
correlations are given by the Lambda cold dark matter (�CDM)
model.

It is critical that steps be taken to mitigate the Malmquist bias that
arises from errors in distance. Objects are preferentially misplaced
from regions of higher sampling density to lower sampling density
(Strauss & Willick 1995). As an example, it can be anticipated
that galaxies assigned the greatest distances probably have large
positive errors. These galaxies will be attributed with large negative
peculiar velocities. The main objective of this paper is to explore
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a more rigorous solution than the previous approach of Hoffman,
Courtois & Tully (2015) in order to overcome this issue.

As a framework, Lavaux (2016) has developed a fully Bayesian
algorithm that incorporates the constrained realizations technique
within a statistical model accounting for the uncertainty on the
location of tracers. We use here a similar method to reconstruct
the 3D linear velocity field from Cosmicflows-3 (CF3) data up to
redshift z ∼ 0.054.

The paper is organized as follows: the CF3 data is briefly
described in Section 2 then the method is detailed in Section 3.
The results include an analysis on the reconstruction of the linear
velocity field in Section 4 and an overlook on the resulting cosmog-
raphy is given in Section 5. There are comments on outstanding
issues in Section 6.

2 DATA

2.1 Compilation of distance moduli

The reconstruction is based on the CF3 catalogue (Tully, Courtois &
Sorce 2016).1 CF3 provides a compilation of almost 18 000 galaxy
distances, with the high redshift ones computed for the most part
from three methodologies: the luminosity–linewidth relation of
spiral galaxies, TF (Tully & Fisher 1977), the Fundamental Plane of
early-type galaxies (Djorgovski & Davis 1987; Dressler et al. 1987),
and Type Ia supernovae (Phillips 1993). The absolute scale of the
global distance ladder of these methodologies is given by galaxies
that overlap with Cepheid variables (Leavitt & Pickering 1912) or
tip of the red giant branch (Da Costa & Armandroff 1990). The
Surface Brightness Fluctuation (Tonry & Schneider 1988) method
helps providing a bridge between the near and far field. The CF3
compilation is heterogeneous, unlike concurrent single methodol-
ogy samples (Springob et al. 2007, 2014; Hong et al. 2014). Indeed,
when available, CF3 incorporates the major literature contributions.
For inclusion in CF3, a source must usefully complement other
components while overlapping sufficiently to assure consistency of
scale. Each linkage has associated uncertainties. However, what is
lost in the ambiguities of linkages is surely more than compensated
by the dynamic range of the CF3 catalogue. Nearby, coverage
is dense and distances are accurate at the level of 5 per cent.
Farther away, Fundamental Plane contributions emphasize coverage
of major clusters. TF samples preferentially provide distances to
galaxies in the field. SNIa hosts are scattered serendipitously. The
methodologies converge in groups where there can be multiple
contributions. A group, or an individual galaxy where there is a
convergence, has a unique distance. Averaged over all such cases,
methodologies should agree.

2.2 Groups

Our goal is to derive the linear velocity field from the peculiar
velocities of galaxies. However, galaxies in groups or clusters are
affected by non-linear motions which are not modelled within our
�CDM linear framework. Our solution is to average information
over the small scale of groups. Tully (2015) provides a catalogue
of groups built from the 2MASS redshift survey complete to
Ks = 11.75 (Huchra et al. 2012). Candidate galaxies are either
directly linked to these groups as members of the 2MASS sample or
indirectly linked by close spatial and velocity association. A group

1Available as a table at http://edd.ifa.hawaii.edu

Figure 1. Histogram of the observed redshifts for the five subsamples
described in Section 2.2.

is assigned a velocity that averages over all known members and a
distance that is the weighted average over those constituents with
the necessary measurements. Uncertainties with N measures are
reduced roughly as

√
N (depending on the details of the contributing

methodologies), so groups are particularly high value entries in the
CF3 catalogue.

2.3 Selection function

Our Bayesian methodology (see Section 3) needs priors on the
statistical distribution of distances. Because it is a composite cata-
logue, CF3 is inhomogeneous both in distance and angular coverage.
Consequently it does not admit a unique and simple selection
function. Still, it is possible to identify five main subsamples based
on the original observational surveys:

(i) 6dFGSv data provides the most well-defined subsample: it has
a high degree of completeness up to a sharp cut-off at z = 0.054. The
subsample contains 5777 galaxies or groups with a median redshift
of z = 0.039.

(ii) Another reasonably well-defined subsample is based on the
TF method with near-infrared photometry from Spitzer Space
Telescope. This constituent gives particular emphasis to coverage
at low Galactic latitudes. The 1546 galaxies or groups included in
this subsample have a median redshift of z = 0.009.

(iii) TF data is particularly deep within the region covered by
Arecibo Telescope which observes galaxies of declination δ ∈ [0,
38]◦. The subsample contains 1628 galaxies or groups with a median
redshift of z = 0.023.

(iv) Other TF data than in the Arecibo declination range. The
subsample contains 1569 galaxies or groups with a median redshift
of z = 0.019.

(v) Other data coming from heterogeneous methodologies.
Cepheids, tip of the red giant branch and surface brightness
fluctuation contributions are local and of high accuracy. Groups
which have more than ten members with known redshifts are
included in this subsample. Group distances are mostly averaged
over Fundamental Plane and TF measures with occasional SNIa
contributions. Isolated SNIa lie over a wide range of redshifts up
to z = 0.1. This last subsample does not have a simple selection
function. This subsample contains 963 galaxies or groups with a
median redshift of z = 0.015.

The total number of tracers in the catalogue is N = 11 483. Fig. 1
shows the redshift histograms of all these subsamples. We see that
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6dF data plays a major role in CF3 and has a singular behaviour with
a sharp cut-off at redshift z = 0.054. Except for the last subsample of
heterogeneous inputs, the other subsamples’ redshift distributions
behave as expected: a growth at small distance due to the volume
effect and then a decrease due to selection effects. We will show in
Section 3.4.4 how we model these distributions.

3 ME T H O D O L O G Y

This section presents the methodology developed to reconstruct
the linear velocity field underlying CF3 data. Our framework is
assuming a �CDM model and a Gaussian error model on the
observations, the distance moduli {μi}, and redshifts {zi}. As it
will be described in the following sections, the parameter space �

includes the most probable luminosity distance of galaxies {di}, an
effective Hubble constant heff, a non-linear velocity dispersion σ NL,
and the linear velocity field itself v:

� = {{di}, heff, σNL, v} . (1)

The general idea is to derive from basic assumptions the posterior
probability of these parameters given the data P(�|{μi, zi}) and
then sample from it. The sampling will result in the posterior
distribution of the linear velocity field v from which we will extract
the mean and standard deviation. The first subsection reminds the
reader about the �CDM model of peculiar velocity statistics while
the next subsections will detail how the posterior probability is
constructed and the procedure for sampling from this complex
distribution.

3.1 Definitions and notations

The methodology relies on the assumption of a flat �CDM model
parametrized by the set of parameters (�m, H0). The �CDM model
assumes homogeneity and isotropy so that the cosmological redshift
z̄ of a galaxy is related to its luminosity distance d through the
Hubble law:

d(z̄) = c
1 + z̄

H0

∫ z̄

0

dz√
�� + �m(1 + z)3

, (2)

where �� = 1 − �m. Equation (2) can be numerically inverted,
giving z̄(d). In the following we make the dependence implicit and
note z̄ instead of z̄(d). The analysis assumes the linear regime where
the overdensity field δ(r) is small |δ(r)| � 1. In this case the linear
theory of perturbations predicts that the linear overdensity field is
Gaussian and is described by its power spectrum P(k):

〈δ(k)δ∗(k′)〉 = (2π)3δD(k − k′)P (k) , (3)

where δ(k) denotes the Fourier transform of δ(r) and δD is the Dirac
delta distribution. Gravitational dynamics in an expending universe
dictates that the rotational component of the velocity decays early
after the onset of the instability and to linear order the velocity v
and density fields are related by:

∇ · v = −H0f δ (r) , (4)

where f is the growth rate of structure and depends on the assumed
cosmological parameters. Equation (4) is linear as we can see by
transposing it into the Fourier space:

ik · v(k) = −H0f δ(k) . (5)

Consequently, the statistic of v is also Gaussian. The statistic of v is
described in the Appendix A.

Because of the peculiar velocity field v, the Hubble flow described
in equation (2) is distorted, and the observed redshift z of a galaxy
is a composition of the cosmological redshift and the Doppler effect
coming from the radial peculiar velocity:

1 + z = (1 + z̄(d))

(
1 + v (r) · r̂

c

)
, (6)

where r̂ � r/r . The velocity field v can be divided into a linear
and a non-linear part vtot = v + vNL and the non-linear part is
approximated here by an isotropic Gaussian probability distribution
function:

P (vNL|σNL) ∼ N (vNL; 0, σ 2
NL) , (7)

where N (x; m, s2) denotes the normal distribution of mean m and
variance s2 over a variable x and P(x|y) the conditional probability
of x given y. From the measurements of galaxy distance moduli
{μi} and redshifts {zi}, our goal is to infer the underlying peculiar
velocity field v. Since the measurement of extragalactic distances is
very noisy (most often about 20 per cent of relative error), we must
take into account the correlations between the observed redshifts
to extract information on the velocity field. Also, we need to
take into account the possible biases appearing when dealing with
peculiar velocity field reconstruction, which is done in Section 3.2.
Section 3.4 presents how to describe the observations given the
above model.

3.2 Malmquist bias

Our model is motivated by a rigorous treatment of homogeneous
and inhomogeneous Malmquist bias. The homogeneous Malmquist
bias is a statistical bias resulting from a combination of the
volume effect nearby and the selection effects far away. The
observational uncertainties on the measured distances scatter the
observed galaxies along the radial direction. Closeby, the number
of galaxies grows with the distance, so that overall it is more likely
to underestimate the galaxy distances, and as a consequence to
assign erroneously positive peculiar velocities (Strauss & Willick
1995). At large distances, the effect is the opposite: it is more
likely that the galaxies we observe are scattered away from us,
and so in average we overestimate their distances, and assign
erroneously negative peculiar velocities. Consequently, neglecting
the homogeneous Malmquist bias would create a fake outflow in
the central region and a fake inflow on the edges. To overcome
this bias, our statistical model fits the underlying most probable
luminosity distances of galaxies, together with the velocity field.
The bias is statistically handled by attributing a prior function to
these distances. The shape of the prior function will be detailed in
Section 3.4.4, and will be chosen so that both the volume effect and
selection effects are taken into account.

The related inhomogeneous Malmquist bias arises from structure
in the observed volume. In the vicinity of a dense region, galaxies
are more likely to be scattered from denser to less dense regions.
Consequently, the inferred peculiar velocities are biased towards a
stronger inflow on to the structures, and thus bias the reconstructed
velocity field. By introducing the luminosity distances as parame-
ters, our method is able to reduce this bias. Distances are inferred
by both the observations and the reconstructed velocity field, and at
each step the galaxies are relocated with respect to the velocity field
at their positions. Consequently, an inflow on a dense region will
shift the distances towards their true positions. For a more complete
analysis of the Malmquist bias, we refer the reader to Strauss &
Willick (1995).
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3.3 Observed radial peculiar velocities

The appropriate modelling of the distribution of errors on the
observed peculiar velocities is an another important concern. The
peculiar velocities are not directly measured but are usually derived
from the distance moduli and redshifts measurements through
equation (6), where the luminosity distances d are computed from
the distance moduli using:

μ = 5 log10
d

10 pc
. (8)

Since the errors on the distance moduli are supposed to be Gaussian,
the resulting distribution of peculiar velocities will not be Gaussian
distributed but rather lognormal distributed (Tully et al. 2016). An
example of treatment of this effect is given by Watkins & Feldman
(2015) who suggest the use of an unbiased estimator of peculiar
velocities with Gaussian distributed errors and which is valid at
distances d� 20 Mpc.

We use in this paper a different approach. Instead of analysing
the observed peculiar velocities, we rather choose to model the
distance moduli observations directly. To do so, the introduction
of the luminosity distances as free parameters allow us to take
into account the Gaussian distribution of distance moduli errors
including the relativistic effects of equation (6). The statistical
linkage between distance moduli and luminosity distances will be
explained in Section 3.4.1.

3.4 Statistical model

We aim at recovering the linear peculiar velocity field from the
CF3 observations. We work in a Bayesian framework and try to
estimate the posterior probability of v given the model described
above and the observations. We proceed in three steps. First, we
detail how the likelihood of our observations L is constructed
(Sections 3.4.1, 3.4.2, 3.4.3); second we impose priors on the fitted
parameters that come from the �CDM model presented in the above
section (Section 3.4.4). Third, we sample from from the posterior
probability (Section 3.5).

3.4.1 Distance moduli

Distance indicators used in CF3 are expressed as distance moduli
rather than luminosity distances. The link between the two is given
by equation (8). Our primary interest in this study concerns devia-
tions from cosmic expansion which are determined independently of
the absolute scaling of the extragalactic distance ladder. In addition,
our analysis is insensitive to a potential monopole term that might
reflect that we live in an overall under or overdense part of the
Universe. Tully et al. (2016) argued that the value of the Hubble
constant consistent with the 18 000 distances in CF3 is H0 = 75 km
s−1 Mpc−1 to within ∼3 per cent, discounting the irrelevant absolute
scaling. There is agreement at this level in the determination of H0

between the sample within z = 0.1 and samples of SNIa at z  0.1,
limiting concern of a substantial local monopole to flows.

Our conclusion regarding the matter of the Hubble constant is
that the value is relatively well determined but uncertainties at the
few per cent level remain that are relevant for our analysis. For this
reason, we introduce a dimensionless free parameter heff to model
this uncertainty in the constant:

μ = 5 log10
d

10 pc
+ 5 log10 heff . (9)

If the absolute scale is compatible with the assumed H0, then heff

should be unity.
Because the distance moduli are very noisy, we need to model

the observations by assuming that the error is Gaussian (noted σμ)
and choose to fit for the underlying true luminosity distance d :

P
(
μ|d, σμ

) = N
(

μ; 5 log10

heffd

10 pc
, σ 2

μ

)
. (10)

The parameter heff is correlated to the reconstructed velocity field
and is prone to systematics coming from shifts between zero-
point scales of different methodologies, non-linear effects, selection
functions, and possible external bulk flows. For this reason, one
needs to take this parameter with caution and not as direct measure
of H0. For the location of a galaxy in space, the angular position
is measured essentially without error. Hence, from the distance d
and the angular position, we can compute the spatial position of a
galaxy, which we denote r.

3.4.2 Redshifts

Equation (6) gives the relation between the observed redshift z

and the cosmological redshift z̄, which can be computed from the
luminosity distance d through equation (2). From these equations,
we can compute the radial peculiar velocity of a galaxy:

vr (z, d) = c
z − z̄(d)

1 + z̄(d)
. (11)

In CF3, the errors on individual redshifts are not provided, and we
chose to assume that they are measured with a Gaussian error of
cσ z = σ cz = 50 km s−1, the typical error for a spectroscopic redshift
measurement.

To model the redshifts measurements, we introduce the under-
lying linear velocity field v � v(rj )j∈[0,M3] sampled on a grid of
size M3 and volume L3. Since the sampled velocity field is linear,
we need to model the departure of the observed velocities from the
linearity. We do so by introducing a Gaussian dispersion σ NL around
the linear field which is to be evaluated. The introduction of a unique
parameter σ NL hence models the departure of the overall velocity
field from linearity and does not model high dispersion inherent
to non-linear environment such as clusters of galaxies. For this
reason the use of the grouped CF3 catalogue is mandatory. Applying
this model on the non-grouped catalogue would underestimate the
redshift errors and lead to unphysical results near high-density
regions. The probability of observing the redshift z knowing the
luminosity distance d and the velocity field v is

P (z|r, d, σz, v) = N
(
vr (z, d); v(r) · r̂, σ 2

cz(1 + z̄)−2 + σ 2
NL

)
, (12)

where vr(z, d) is defined by equation (11). Note that vr is here a
function of the parameter d and the observation z, and does not
correspond to a peculiar velocity measurement. The probability
distribution above describes the statistical link between the redshifts
and the model’s parameters. In practice, the linear velocity v in
equation (12) is computed on a finite-size grid {rj }. To evaluate it
at any position (such as the position of a galaxy), we use trilinear
interpolation between grid cells. We note from the error distribution
of equation (12) that σ cz and σ NL are strongly correlated, the two
dispersions being different by only the relativistic factor 1 + z̄ � 1.
As a consequence, an over (or under) estimation of σ cz will be
transferred to a under (or over) estimation of σ NL, and our results
will be insensitive to the choice of σ cz.
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3.4.3 Likelihood

The likelihood gives the conditional probability of our observations,
namely the observed redshifts z and distance moduli μ, given the
model and its parameters, namely the true luminosity distance d,
the linear velocity field sampled on a grid v, heff, and σ NL. Since the
conditional probabilities on μ and z are independent, the likelihood
is given by the combination of equations (10) and (12):

L = P
({μi, zi}|{di, σμ,i , σz,i}, heff, σNL, v

)
=

∏
i

P
(
μi |di, σμ,i , heff

) × P (zi |ri , di , σz, v)

= 1

2π

∏
i

1√
σ 2

μ,i

exp

⎛
⎜⎝−1

2

(
μi − 5 log10

heffdi

10 pc

)2

σ 2
μ,i

⎞
⎟⎠

× 1√
σ 2

cz(1 + z̄i)−2 + σ 2
NL

exp

×
(

−1

2

(vr (zi, di) − v(ri) · r̂i)
2

σ 2
cz(1 + z̄i)−2 + σ 2

NL

)
, (13)

where the index i denotes the ith galaxy or group. The likelihood
defined by equation (13) is similar to the one in Lavaux (2016)
but simplified because we do not aim to fit the power spectrum
properties such as the shape or the normalization. Another differ-
ence is that we directly sample the velocity field rather than the
overdensity field. We do so to avoid the use of Fourier Transform
to compute equation (4) and hence to not be subject to periodic
boundary conditions. Also, we use a trilinear interpolation to
compute the linear velocity field at any point in space, while
Lavaux (2016) developed a Fourier–Taylor algorithm to interpolate
using only series of Fast Fourier Transforms. We note that our
way of proceeding does not enforce the curl-free properties of the
linear velocity field. We a posteriori check that the curl part of the
reconstructed field is negligible.

From the likelihood (13), we can estimate the probability of
a given velocity field v (and associated parameters) from the
measurements of distance moduli and redshifts. This probability
is given by the Bayes theorem:

P ({di}, heff, σNL, v|{μi, zi}) ∝ L × P({di})P(heff)P(σNL)P(v) ,

(14)

where P(θ ) denotes the prior on the parameter θ , θ ∈
[{di}, heff, σNL, v]. The velocity field reconstruction is then obtained
by sampling v from this probability distribution. Before explaining
how the sampling is done, we turn now our attention to the
definitions of priors.

3.4.4 Priors

We assume uniform priors on heff and σ NL (see Table 1). Following
the model described in Section 3.1, we take into account the cor-
relations between the peculiar velocities by adopting the following
prior for δ:

P(δ̂) =
∏

k

1√
2πP (k)

exp

(
−|δ̂(k)|2

2P (k)

)
, (15)

where P(k) is the power spectrum and has been defined in equa-
tion (3). The corresponding prior on the linear velocity field is

P(v) = |2π	α,β |−1/2 exp
(−vα	−1

α,βvβ

)
, (16)

where (α, β) denoted Cartesian components and 	α,β is the
velocity–velocity correlation tensor and is defined in the Ap-
pendix A. Because of the aforementioned Malmquist biases, the
prior on the distances can play a significant role in the analysis.
We use two types of empirical priors. The first one is a piecewise
normal distribution defined by

P (1) (di |a, b, c)= 1√
2π(b + c)

⎧⎨
⎩

exp
(
− 1

2
(di−a)2

b2

)
if di ≤ a

exp
(
− 1

2
(di−a)2

c2

)
otherwise

,

(17)

where (a, b, c) are the shape parameters of the function.
The second one is a power law with an exponential cut-off, as

proposed by Lavaux (2016) :

P (2) (di |a, b, c) = 1

N (a, b, c)
(di)

a exp
(− (di/b)c

)
. (18)

The normalization factor N(a, b, c) is non-analytical and is computed
numerically.

These two priors have the properties that we expect for distance
priors: they are bell-shaped curves allowing an asymmetry and with
an exponential cut-off at large distance. The shape parameters (a, b,
c) allow for some flexibility of these priors and determine the mean
value, standard deviation, and skewness of the distributions. Since
we are not able to establish the selection function(s) of CF3, we
use an empirical approach and choose to fit the shape parameters
together with the other parameters of the current model. Leaving
these parameters free allows to take into account the volume and
selection effects while not imposing strong constraints on derived
luminosity distances. In practice, we attribute the prior P (2) to
distances of subsamples (ii), (iii), and (iv) described in Section 2.3,
and P (1) to distances of the 6dF subsample. Distances of subsample
(v) are given a uniform prior. We will see in Section 4 that they
describe correctly the posterior distribution of distances and in
Section 6.1 the effect of changing the prior functions. The model
parameters are summarized in Table 1.

3.5 Sampling

After we have constructed the likelihood and the priors of the
model, we need to sample v from the posterior distribution given by
equation (14). In this section, we briefly explain how this sampling
is done by a Markov Chain Monte Carlo (MCMC) method. For
more technical details, the reader is referred to Lavaux (2016).
The sampling method is the partially collapsed blocked Gibbs
sampling algorithm. Gibbs sampling is a MCMC method where
each parameter is drawn from its conditional probability given the
other parameters. Schematically, if we want to sample n parameters
{xi}, the sampling will be done using the following scheme down
to the Markov step j:

x1
0 ← P

(
x0|{x0

i }i∈[1:n]

)
· · ·

x1
i ← P

(
xi |{x1

i }i∈[1:i−1], {x0
i }i∈[i+1:n]

)
· · ·

x
j

i ← P
(
xi |{xj

i }i∈[1:i−1], {xj−1
i }i∈[i+1:n]

)
· · ·

Our parameter space is

� = {heff, v, σNL, {di}, {a, b, c}} (19)

and we need to compute each conditional probability from the
likelihood. However, we note that heff is strongly correlated with
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Table 1. Observations and parameters used in this model. For the observations, we specify the number and errors. For the parameters, we specify the
corresponding priors.

Fixed parameters Description Number Notes and priors

N Number of galaxy and groups 1 N = 11483
L Length of the box side 1 L = 800 Mpc h−1

75

M One dimensional size of the grid 1 M = 128
μ Distance moduli N Normally distributed with standard deviation σμ.
σμ Errors on distance moduli N
z Observed redshift N Normally distributed with standard deviation σz

σ z Error on the observed redshifts 1 σz = σcz

c
= 50 km s−1c−1

Free parameters

v The linear velocity field sampled on a grid M3 �CDM prior defined by equation (16)
d Luminosity distances N Empirical priors defined by equations (17) and (18) and/or

uniform, depending on the membership in the subsamples defined
in Section 2.2.

heff Effective shift of the distance moduli scale 1 Uniform prior within [0.5,1.5]
σNL Gaussian standard deviation modelling the

departure from linearity
1 Uniform prior within [50,1500] km s−1

(a, b, c) Hyperparameters defining the distance priors
shapes

3 × 4 Uniform priors depending on the prior function

the velocity field, and we draw this parameter from its conditional
probability marginalized over the velocity field to make the sam-
pling more efficient. This is called collapsed Gibbs sampling. At
the end, our sampling is the following procedure:

(i) We first sample heff from the probability distribution marginal-
ized over the velocity field:

P (heff|d, σNL) = N
(
vr (heff); 0,C(heff)

)
, (20)

where vr is the vector of the galaxies radial peculiar velocities and
C is the velocity autocorrelation matrix defined in the Appendix A.
Those two quantities implicitly depend on the parameters σ NL and
d.

(ii) We draw σ NL from the conditional probability:

P (σNL|heff, d, v) =
N∏
i

N
(
vr

i ; v(ri) · r̂i , σ
2
z,i(1 + z̄i)

−2 + σ 2
NL

)
.

(21)

(iii) We draw a constrained realization of v. This is done by
using the Hoffman–Ribak algorithm (Hoffman & Ribak 1991).
Appendix B reminds the reader about the algorithm.

(iv) From the sampled constrained realization, we generate a new
set of luminosity distances d with the following probability:

P (d|heff, σNL, v) ∝ L × P (d) . (22)

(v) Eventually we fit the hyperparameters (a, b, c) of the distance
prior functions over the generated distances.

This procedure is carried until convergence. At the end we have
a number of realizations of all parameters following the posterior
probability defined by equation (14). The reconstructed velocity
field is assumed to be the mean of the linear velocity field samples
〈v〉MCMC and the error is the standard deviation. The method has
been tested on different mocks by Lavaux (2016) and we test our
specific implementation as described in Appendix C.

Figure 2. The MCMC for three parameters: (top) the effective reduced
Hubble constant heff; (mid) the non-linear dispersion σNL; (bottom) the
reconstructed overdensity field near Virgo, at coordinates (SGX, SGY,
SGZ) = (−3.6, 15.6, −0.7) Mpc h−1

75. The three black lines represent
the 15.9th (dashed), 50th (plain), and 84.1th (dashed) percentiles.

4 THE COSMI CFLOW S-3 PECULI AR
VELOCI TY FI ELD

In this section we present the results of the method applied on CF3
catalogue. We chose to assume (�m, ��, H0) = (0.3, 0.7, 75.0).
We fit the distance priors by the empirical function defined by
equation (18) for the subsamples (ii, iii, iv) defined in Section 2.3.
The distances from the subsample (i) corresponding to 6dF data are
fitted assuming the function described by equation (17). We do so to
ensure the possibility for the prior function to model a sharp cut-off
in distances.

We fit for a global effective zero-point shift heff and assume the
intercalibration of distances determined by Tully et al. (2016) and
the CMB frame transformations given by Tully et al. (2008). Fig. 2
shows the resulting MCMC chain for the two parameters σ NL, heff

and for the overdensity field reconstructed near the Virgo Cluster
at location (SGX, SGY, SGZ) = (−3.6, 15.6, −0.7) Mpc h−1

75

and the corresponding histograms are given in Fig. 3. We see
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5444 R. Graziani et al.

Figure 3. The posterior distribution for three parameters: (left) the effective reduced Hubble constant heff; (mid) the non-linear dispersion σNL; (right) the
reconstructed overdensity at Virgo, of coordinates (SGX, SGY, SGZ) = (−3.6, 15.6, −0.7) Mpc. The value of m given in the legend corresponds to the mean
value of the posterior, while s corresponds to its standard deviation. The three black lines represent the 15.9th (dashed), 50th (plain), and 84.1th (dashed)
percentiles.

Figure 4. The normalized autocorrelation of the MCMC for three param-
eters: the effective reduced Hubble constant heff, the non-linear dispersion
σNL, and the reconstructed overdensity at Virgo, of coordinates (SGX, SGY,
SGZ) = (−3.6, 15.6, −0.7) Mpc. The black solid line corresponds to a null
autocorrelation.

from these two figures that the chain has globally converges and
result in approximately Gaussian posterior distributions. To further
evaluate the convergence of our Markov Chain, we plot in Fig. 4
the normalized autocorrelation of the chains for the two parameters
heff and σ NL. The autocorrelation of a parameter f for a correlation
length τ is defined by

cj (τ ) = 1

N − τ

N−τ∑
i=1

(fi − f̄ )(fi+τ − f̄ ) , (23)

where f̄ is the mean value of f computed on the N samples. The first
decorrelation for a chain corresponds to the intersection with zero.
We can see that the heff has a decorrelation length of about ∼80
and the non-linear dispersion around ∼20 steps. This suggests that
over our 1400 MC steps, there is some 20 independent samples. For
each parameter, the error on the mean of the distribution decreases,
as 1/

√
Nsample after convergence and running the chain further will

reduce this statistical error. We estimate here that the sampling
error on the mean overdensity field (typically ∼0.1) is sufficient
considering the computation cost of the sampling.

We find heff = 1.02 ± 0.01, which suggests that the calibration of
CF3 data is compatible with the assumed fiducial Hubble constant
H0 = 75 km s−1Mpc−1 within 2 per cent. The non-linear dispersion
parameter σ NL, which models our lack of knowledge about the non-
linear part of the velocity field, is found at σ NL = 280 ± 35 km s−1.
The fitted value of around 300 km s−1 appears to be high compared
to the typical value of 100–200 km s−1. This can be due to underes-
timation of distance modulus errors, or redshifts errors which were
set here at σ cz = 50 km s−1 for every galaxy. Also, this value depends
on the efficiency of the grouping described Section 2.2 at removing
entirely the non-linearities in groups of galaxies. Another possibility
is that the trilinear interpolation used to compute the reconstructed
radial velocity at the position of each galaxy artificially increases the
departure from linearity modelled by σ NL. Overall this parameter
absorbs uncertainties of our model.

Fig. 5 shows the fitted priors on the distances. Overall the shape of
the priors is in agreement with the underlying distance distribution.
The case of 6dF data might look surprising because there is a
discrepancy between the fitted distances and the original ones.
However, by considering the distribution in redshifts shown in
Fig. 1, we can see that the tail of the measured distance distribution
is only due to observational errors and results from the convolution
of the real distance distribution with the Gaussian of errors. This
particular case illustrates the importance of imposing priors to
model selection effects.

Eventually, the SGZ = 0 Mpc h−1
75 slice of the reconstruction

is shown in Fig. 6. In this figure, the colourmap corresponds to
the reconstructed overdensity field and the black arrows to the
tridimensional linear velocity field. We stress that the reconstructed
overdensity and velocity fields are not computed one from another
using equation (5), but rather sampled simultaneously.2 The original
field was computed in a box of width 800 Mpc h−1

75, and we show
here the central 500 Mpc h−1

75 where the signal over noise is non-
zero. We can see that the overdensity goes toward zero near the
edges, because there are no observed galaxies at large distances. By
eye, we can identify several cosmic structures that we will shortly
list in Section 5. We also qualitatively see the match between the

2For each MC step, we draw both a constrained realization of the velocity
field and overdensity field from a common random realization with equa-
tions (B2) and (B4).
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CF3 velocity field 5445

Figure 5. Histogram of measured (blue) and fitted (orange) distances for the
five subsamples described in Section 2. The green lines are the fitted priors.
From top to bottom: (1) 6dF sample, mixed Gaussian prior distribution; (2)
Spitzer galaxies, empirical prior distribution; (3) TF by Arecibo Telescope,
empirical prior distribution; (4) TF not covered by Arecibo Telescope,
empirical prior distribution. The empirical prior distribution is described
in equation (18).

overdense structures and the velocity infalls. These fields come with
statistical errors that can be computed from the resulting Markov
Chain. The standard deviation of the reconstructed fields δ and vr are
plotted in Fig. 7. At large distance, we recover the �CDM standard
deviation of the overdensity and velocity field. In particular, we
recover the value of 300 km s−1 deviation for the velocity field.
This is due to the absence of data points beyond z = 0.054, a
limit which is illustrated by the black circle. We can see that the
radial peculiar velocity field seems less noisy than the overdensity
field. The reason is that the velocity field is more correlated than
the overdensity as can be seen with equation (A3). Consequently,
the root mean square value of the posterior distribution does not
capture entirely the correlated errors of the velocity field, and these
errors correlate on larger scales. In the next section, we study the
reconstructed overdensity field shown in the left-hand panel of Fig. 6
and compare it with the actual distribution of galaxies to check the
consistency with other observables.

5 C O S M O G R A P H Y OV E RV I E W

In this section we show partial results on the reconstructed over-
density field. A full description will be made in an upcoming

cosmography paper. Main results are presented in Fig. 8 where
we plot the overdensity field in three different slices corresponding
to coordinates SGZ = 0 Mpc h−1

75 (twice), SGX = 0 Mpc h−1
75,

and SGY = −93 Mpc h−1
75 going from top left to bottom right.

We first look at the two top panels. On the left, the coloured
dots represent CF3 data within a slab of 10 Mpc h−1

75 thickness,
while on the right the dark dots are all available galaxies of the
LEDA data base located at their redshift positions within the same
depth. The coloured galaxies show the anisotropy of CF3 catalogue.
The Southern hemisphere is mainly covered by 6dF galaxies (in
red), while there are fewer data points in the northern hemisphere.
Looking at the right-hand panel, we can observe a good agreement
between the reconstructed overdensity field and the location of
galaxies. At large distances, we notice small discrepancies (for
example around SGY = −210 Mpc h−1

75, top right-hand panel).
The reconstructed structures seem to be shifted compared to the
redshift positions. This issue is tightly linked to the recovered value
of heff, which is prone to systematics. This might be a hint of
a shift between zero-point calibrations depending on the region
covered. We discuss this issue in Section 6.1. We add to the plots the
name of some known structures, such as Coma, Shapley, Perseus-
Pisces, Apus, and Pisces-Cetus. The two bottom panels correspond
to other slices of the Local Universe reconstruction. Again, there is
agreement between the reconstructed overdense regions and the
galaxy distribution. The bottom right-hand panel exhibits some
distant structures which are less known, such as the Southern Wall,
Telescopium, or Lepus.

6 D ISCUSSION

In this paper, we described our linear peculiar velocity field
reconstruction method. We then applied it to the CF3 catalogue,
considering generic modelling of the prior distance distributions
and potential shift on the zero-point calibration of all distances. We
saw in Section 5 how this reconstruction can be used to study our
local environment and the unbiased distribution of dark matter in
the �CDM framework. We now turn to the discussion of the limits
and possible improvements of the presented method.

6.1 The Hubble constant

We introduced an effective reduced Hubble constant heff to absorb
uncertainty on the calibration of the distance indicators and assumed
a Hubble constant of H0 = 75 km s−1Mpc−1. It is worth noticing
that the value of the effective Hubble constant is correlated with our
choice of distance priors. This systematic is studied in Appendix D
on a subsample of the CF3 catalogue. We find that imposing
uniform priors on the distances lowers the value of heff by around
5 per cent (equivalent of around 3 km s−1Mpc−1). This suggests that
the parameter heff not only absorbs uncertainties on the assumed
Hubble constant, but also compensate for residual homogeneous
Malmquist bias that is not modelled by the simple shape of our
distance priors.

The CF3 catalogue contains distances from six distinct method-
ologies. With each of these methodologies there are contributions
from multiple sources. It is fundamentally important that the dis-
tances from the diverse inputs be consistent in zero-point and free of
systematics with redshift. An important feature in the construction
of CF3 was large overlaps between sources. The complex interlacing
is discussed by Tully et al. (2016). The grounding assumption
was all measurements of the distance to a galaxy or a cluster
of galaxies should give the same value on average. The scale is
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5446 R. Graziani et al.

Figure 6. Central part of the CF3 velocity field reconstruction in the SGZ = 0 Mpc h−1
75 slice. The colour corresponds to the value of the overdensity

field while the black arrows represent the tridimensional reconstructed linear peculiar velocity field. The dotted black circle illustrates the edge of the data at
z = 0.054.

bootstrapped from fundamental Cepheid and RR Lyrae calibrators
in our Galaxy. Consequently the CF3 product is distances in Mpc
derived independently from knowledge of velocities.

There is one relatively weak link. The 6dF sample is a major
component of CF3 that explores a domain that is poorly covered by
other samples. The scale linkage is established through 84 individual
galaxies with alternate measures and 381 groups with distances to
members from alternate methods. Given the importance of the 6dF
contribution, in Appendix E we consider the possibility of a scale
mismatch by introducing an independent heff parameter associated
with the 6dF contribution. A small difference is found between
the optimal values for the 6dF component and the rest of the CF3
contributions, namely the effective Hubble constant is reduced by
3 per cent for the 6DF sample. We find that the reconstructed radial
velocity field is affected by the introduction of this additional
parameter, and that the non-linear dispersion parameter σ NL is
reduced by 20 per cent. It is not clear, though, that the addition of
a parameter has improved the model. The additional heff parameter
for the 6dF component could mask velocity streaming specific to
the sector uniquely sampled by 6dF. Our primary interest is to map

the velocity field so for that purpose the conservative assumption
is to not add an additional parameter. Rather, we assume that the
6dF distances were properly linked to the other CF3 components,
and model departures from the fiducial H0 are described by a single
value of heff.

6.2 Non-linearities

The modelling of non-linearities can also be a source of systematics
of our reconstruction. Our treatment involves the grouping described
in Section 2.2. The merging of data within groups has clear
advantages. While what we directly observe are individual galaxies,
the test particles we want to follow in a linear reconstruction are
collapsed haloes. If a halo contains multiple galaxies then we do
best to average over the constituent properties. The groups are
formulated from a large redshift catalogue (Tully 2015) and we
average over the redshifts of all associated members. Then we find
weighted averages of the distances from those group members in
CF3. Distances of groups with many contributions can have low
formal errors.
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Figure 7. Statistical standard deviation for the sampled overdensity (left) and velocity (right) fields in the SGZ = 0 Mpc h−1
75 slice over the full reconstructed

box. The standard deviation of the velocity field takes into account all three Cartesian components. The black circle represents the edge of the data at z = 0.054.

The remaining non-linearities (outside of the groups) at redshift
zero are modelled by a unique Gaussian dispersion to the observed
velocities. The width of this distribution, namely σ NL, is fitted with
the other parameters. This is an approximation: non-linear motions
are correlated down to k � 0.1 Mpc−1 scale and so are not randomly
independent. However, including non-linear correlations within the
actual method is a technical challenge since the correlations in
the non-linear regime are not isotropic anymore. An interesting
alternative is proposed by Hoffman et al. (2018) who try to use
constrained simulations in order to reconstruct the non-linear part
of the peculiar velocity field. Other options could also be tried like
fixing the σ NL parameter at a value constrained by �CDM non-
linear simulation, or adding a discrete parameter for each galaxies
to model their association to non-linear regions, such as in Lavaux
(2016). The advantage of the latter method is to model both non-
linearities and possible outliers.

6.3 Selection effects

Selection effects on distances play a considerable role in peculiar
velocity analyses even though less critical than in galaxy number
counts analysis. We described in Section 3.2 the Malmquist biases
appearing when the selection effects are not properly modelled.
In our Bayesian approach, the selection effects are modelled by
constructing the probability P(d) of a galaxy having a luminosity
distance d knowing that we observed it. Our model suppose that
this probability only depends on the actual distance d and fitted
hyperparameters (a, b, c). In particular, individual CF3 distances
are unbiased (Tully et al. 2016), and the probability P(d) does not
depend on the observed distance modulus μ.

We note however that selection effects would need further
investigation in future works on peculiar velocities. As suggested by
Hinton, Kim & Davis (2017), a proper model needs the introduction
of the generalized likelihood L′:

L′ = L × P(selection|data, parameters)∫
P(selection|D, parameters)P(D|parameters)dD

,

(24)

where the integration is over all possible observational data D.
Since the selection function of CF3 is not analytical it is challeng-
ing to write the term P(selection|D, parameters) representing the
probability of selecting a galaxy measurement given its overall
properties and the model’s free parameters. Sampling from the
extended likelihood L′ is consequently hard and unpractical for
the current analysis.

Our approach, while it is approximate, is robust and secure since
we fit the priors directly on the reconstructed distances. Doing so,
we value CF3 distances over eventual prior information. Also, it is
worth noticing that the CF3 catalogue benefits from the multiplicity
of methods included in it. The selection effects being different from
one methodology to another, the overall reconstructed velocity field
should not be subject to individual method specificity. As mentioned
in Section 6.1, we tested the effect of changing the priors on the
distances and the results are presented in Appendix D.

7 C O N C L U S I O N S

This article presents an algorithm to reconstruct the linear peculiar
velocity field up to z ∼ 0.054 from the CF3 catalogue. We have been
able to reconstruct for the first time the Local Universe velocity field
from CF3 data, and showed some results in terms of cosmography.
We also associated a corresponding map of statistical errors on
both the overdensity and velocity field. The reconstructed field
will be used for both cosmological analysis and cosmography. We
have stressed the limits of the current method, especially about the
model of non-linearities and selection effects. We showed that these
effects were not completely negligible and should be more precisely
modelled in future analyses.

Above all, this article highlights the ability of peculiar velocities
to probe the matter distribution. With only about 11 000 tracers,
we were able to map and identify overdense and underdense
regions in the Local Universe, and showed the good agreement
with redshift surveys containing more than 150 000 galaxies. As
suggested by Lavaux (2016), the model could be extended to
estimate cosmological parameters such as the Hubble constant H0

or the growth rate fσ 8. With upcoming large distance data sets,
coming from TAIPAN (da Cunha et al. 2017, ∼50 000 FP distances),

MNRAS 488, 5438–5451 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/488/4/5438/5289908 by C
N

R
S - ISTO

 user on 31 August 2021



5448 R. Graziani et al.

Figure 8. Four slices of the reconstructed overdensity field of CF3. The coloured dots represent galaxies from CF3 catalogue. The colour depends on the
appartenance of galaxies to subsamples defined in Section 2.3 and are coded the same way as in Fig. 1: (red) 6dF galaxies, subsample (i); (purple) Spitzer
TF data, subsample (ii); (green) Arecibo TF data, subsample (iii); (orange) Other TF data, subsample (iv); (brown) Remaining individual and groups data,
subsample (v). On other slices, the dark dot represents galaxies from LEDA located at their redshift position. Coordinates of slices: top left and top right
SGZ = 0 Mpc h−1

75; Bottom left SGX = 0 Mpc h−1
75; Bottom right: SGY = −93 Mpc h−1

75. We denominate major structures on the different shown slices.

WALLABY (Duffy et al. 2012, ∼60 000 TF distances), and LSST
(Lochner et al. 2018, ∼100 000 SNIa distances), peculiar velocity
analyses will need an accurate model to avoid systematics in the
determination of cosmological parameters. The method presented
here is to be considered as a baseline of such model.
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APPENDIX A : LINEAR PECULIAR V ELOCI TY
D I S T R I BU T I O N IN TH E λC D M M O D E L

Our framework is the linear theory of structure formation within
a flat �CDM model. The initial perturbations of such universe
are characterized by their Gaussian statistics as observed from the
CMB (Planck Collaboration XIII 2015). In the linear theory, the
Fourier modes of these perturbations has grown independently and
the overdensity field of our Local Universe can still be described by
its power spectrum P(k):

〈δ(k)δ∗(k′)〉 = (2π)3δD(k − k′)P (k) , (A1)

where δ(k) is the Fourier transform of δ(r). Such a linear approx-
imation is only valid at large scales, i.e. k � 0.2 h.Mpc−1, and
consequently this analysis aims at recovering only the very large-
scale structures, down to scales of few tens of Mpc. Given the

cosmological growth rate f (f depends on the adopted cosmology),
one can compute the velocity field v(r) by

∇ · v = −H0f δ , (A2)

which can be written in Fourier space as

v(k) = iH0f
k
k2

δ(k) . (A3)

Consequently, the velocity–velocity two-point correlation tensor is,
in configuration space:

	α,β (r) � 〈v(r′)v(r′ + r)〉αβ = (H0f )2

(2π)3

∫ ∞

0

kαkβ

k4
P (k)e−ik·rdk .

(A4)

In practice, 	α,β (r) can be expressed using the radial and transverse
correlations functions ψR and ψT (Gorski et al. 1989):

	α,β (r) = ψT(r)δK
α,β + (ψR(r) − ψT(r)) r̂α r̂β (A5)

ψR(x) � 1

2π2

∫ ∞

0

(
j0(kx) − 2j1(kx)

kx

)
P (k)dk (A6)

ψT(x) � 1

2π2

∫ ∞

0

j1(kx)

kx
P (k)dk (A7)

where j0 and j1 are the zeroth and first-order spherical Bessel
functions and δK is the Kroenecker delta. In practice, we use
tabulated ψR and ψT, and use linear interpolation between the
sampled positions. We also define the covariance matrix C of a set
of radial peculiar velocities by:

[C]i,j � 〈vr
i v

r
j 〉 + 〈εiεj 〉 =

∑
α,β

r̂i,α r̂j ,β	α,β + 〈εiεj 〉 . (A8)

Usually, the matrix of errors 〈εiεj〉 is taken as the sum of the error
on the redshift measurement plus a dispersion due to non-linearities
at z ∼ 0, σ NL :

〈εiεj 〉 = δK
ij (σ 2

cz + σ 2
NL) . (A9)

A P P E N D I X B: TH E H O F F M A N – R I BA K
A L G O R I T H M

The marginalized probability density for the overdensity field
P({δ(rj )}|{di}, σNL, heff) is

P(δ|{di}, σNL, heff)

∝
∏

i

1√
σ 2

cz(1 + z̄i)−2 + σ 2
NL

exp

×
(

−1

2

(vr (zi, z̄i(heffdi)) − v · r̂i)
2

σ 2
cz(1 + z̄i)−2 + σ 2

NL

)

×
∏

j

1√
2πP (kj )

exp

(
−|δ̂(kj )|2

2P (kj )

)
. (B1)

To sample δ from this probability density function Hoffman & Ribak
(1991) proposes the following. From the power spectrum P(k) is
generated a random realization δRR. Then, a constrained realization
is computed with the previous random part and a correlated one:

δCR = δRR + 〈δci〉〈cicj 〉−1(ci − cRR
i ) , (B2)
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where ci is a constraint on the sampled field, here the radial peculiar
velocities vr. The matrix 〈cicj 〉 = C is defined in Appendix A, and
the correlation between the overdensity field and the radial peculiar
velocity is

〈δci〉 = H0f

(2π)3

∫
k · r̂
k2

P (k)e−ik·rdk . (B3)

It is also possible to directly sample the velocity field using :

vCR
α = vRR

α + 〈vαci〉〈cicj 〉−1(ci − cRR
i ) , (B4)

where the index α corresponds to the Cartesian component. The
correlation 〈vαci〉 is given by

〈vαci〉 =
∑

β

	α,βrβ . (B5)

In this paper, we sample both the velocity and density field using
the same random realization. We thus do not need the periodic
boundary conditions implied by the use of fast Fourier transform to
evaluate equation (4).

APPENDIX C : TEST O N MOCK

We test the implementation of the algorithm on a mock catalogue
of 4000 tracers generated as follows:

(i) The angular positions are drawn from an uniform distribution,
(ii) The distances are drawn from a truncated normal distribution

within d ∈ [0, 200] Mpc,
(iii) We mimic the observations by computing the corresponding

distance moduli and scatter them following a normal distribution of
standard deviation σμ = 0.2,

Figure C1. MCMC chain for the mock. The upper panel shows the heff

parameter while the bottom one shows the non-linear dispersion σNL.

Figure C2. Comparison between the original radial peculiar velocities and

the reconstructed ones. The left-hand panel shows the residuals
vr−vr

RR
σvr

to
the original field in the z = 0 slice. The right-hand panel shows the histogram
of this quantity over the whole box. The black solid line is the unit Gaussian.

Figure C3. Same as Fig. C2 for the reconstruction using WF/CR technique
alone.

(iv) We input a shift in the distance moduli scale of heff = 1.0.
(v) From a random realization generated from a power spectrum

truncated at 0.1 Mpc (to avoid non-linearities), we draw the peculiar
velocities. We add a non-linear dispersion with σ NL = 150 km s−1,

(vi) From the original distances and peculiar velocities, we
compute the measured redshifts and add a Gaussian dispersion of
σ cz = 50 km s−1,

From the simulated distance moduli and redshifts, we reconstruct
the velocity field following the procedure described in Section 3.5.
We compute it on a grid of size 643 and box of 500 Mpc width.
Fig. C1 shows the resulting distribution for the two parameters
heff and σ NL, which both agree with their fiducial values. The
comparison between the original Gaussian random field and the
reconstructed radial velocity field is shown in Fig. C2. The left-
hand panel shows the pull distribution of the reconstructed radial
velocity field in the Z = 0 slice. On the left plot, we show the
histogram of these values within the white circle corresponding to
the data limit. Overall the distribution is close to a unit Gaussian,
showing the unbiased aspect of the reconstruction. Also, on the
left-hand panel, there is no clear sign of reconstructed structures
over more than 3σ . For comparison, the same plot is done using
the WF/CR technique alone, i.e. fixing the parameters d, σ NL, and
heff, is shown in Fig. C3. We can see the strong improvement from
the method. Homogeneous Malmquist bias affects the distances so
that there is excessive outflow in the center of the box and inflow
outside, as it is described in Section 3.2.

A P P E N D I X D : C H A N G I N G TH E D I S TA N C E
P R I O R S

We test the effect of changing the assumed priors on distances on
a subsample of the CF3 catalogue. The test catalogue is built by

Figure D1. The posterior distribution for three parameters in the case of
a reconstruction considering uniform priors en distances (except for 6dF
data, see text): (left) the effective reduced Hubble constant heff; (mid) the
non-linear dispersion σNL; (right) the reconstructed radial velocity at Virgo,
of coordinates (SGX, SGY, SGZ) = (−3.6, 15.6, −0.7) Mpc.
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Figure D2. Same as Fig. 6 in the case of three different reconstructions from the half CF3 catalogue (see text). Left: Nominal reconstruction; mid: reconstruction
with uniform priors except for 6dF subsample; right: reconstruction with an independent zero-point shift for 6dF subsample.

randomly taking half of the galaxies in each subsample defined in
Section 2.3. The reconstruction is done on a grid of size 643. The
reconstruction was carried in the case of uniform priors imposed on
all distances except the 6dF one. We treat 6dF as separate because
the sharp cut-off on their redshift makes the analysis unrealistic
with uniform prior. On 6dF, we fit an empirical prior defined by
equation (18). The calculation was carried on 800 MCMC steps and
the first 300 are considered as the warm-up phase. The Fig. D1 shows
the resulting histograms for the heff and σ NL parameters. One can see
that the effective Hubble constant has been minored compared to the
reconstruction shown in Fig. 3 by more than one sigma. This shows
the strong dependance of any Hubble constant determination with
this method on the prior distance distributions. Fig. D2 shows the
comparison between the reconstructed fields in the case of a nominal
reconstruction (empirical priors and unique shift in the zero-point)
(left) and the case of uniform priors (middle). The differences are
small, but one can notice the inflow on the SGX > 0 Mpc h−1

75 part
(data which is mainly not covered by 6dF data) has been increased.
Because we imposed no priors on the data, the distances are more
likely to be overestimated far away, and consequently the radial
velocities underestimated, biasing the field towards negative values.
This results shows that the prior distribution has an impact in our
Bayesian analysis and underlines the fact that selection effects have
to be properly modelled to extract cosmological parameters from
the velocity field reconstruction.

APPENDIX E: C ONSIDERING 6DF A S A
SEPARATE SUBSAMPLE

We try to fit two different reduced effective Hubble constants heff,
one for 6dF data and the other for the rest of the data. The distance
priors are kept to empirical prior functions defined by equation (18).
The resulting histograms are shown in Fig. E1. We see that the
values recovered for the two heff parameters are different while
still compatible. We can see that the non-linear dispersion has
decreased compared to the main and uniform priors reconstructions
(∼225 km s−1 compared to ∼270 km s−1). This suggests a better fit
of the underlying velocity field. However, it could also be due to the

Figure E1. The posterior distribution for three parameters in the case of a
reconstruction with two different effective Hubble constants (see text): (left)
the effective reduced Hubble constant heff for 6dF data; (mid) heff for the
other galaxies; (right) the non-linear dispersion σNL.

artificial reduction of a real flow between 6dF covered region and
the rest, which is why the main result of this article assumes a unique
zero-point shift. Again, Fig. D2 shows the comparison between the
reconstructed fields in the case of a fiducial reconstruction (empir-
ical priors and unique shift in the zero-point) (left) and the case
of two different heff (right). The differences are more pronounced:
The inflows in the regions SGX > 100 Mpc h−1

75 and SGX < 200
Mpc h−1

75 have been reduced. Also, we can see from the overdensity
field that the overall inflows on structures have changed between the
left-hand and right-hand panels, increasing in the case of a unique
zero-point. We stress that the difference of flows can be artificial
and the conservative approach taken in the main result of this paper
(empirical priors and unique zero-point shift) should be preferred.
However, this test shows that small shifts in distance indicators
calibrations change the mean inflow on structures, and could have an
impact on the determination of cosmological parameters, such as the
growth rate fσ 8 or the Hubble constant H0. This impact is however
beyond the work presented in this paper. Extending the model to
the determination of cosmological papers from peculiar velocities
is to be considered as a possible development of the current
methodology.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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