Transport and dispersion across wiggling nanopores - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nature Physics Année : 2018

Transport and dispersion across wiggling nanopores

Résumé

The transport of fluids at the nanoscale has achieved major breakthroughs over recent years 1-4 ; however, artificial channels still cannot match the efficiency of biological porins in terms of fluxes or selectivity. Pore shape agitation-due to thermal fluctuations or in response to external stimuli-is believed to facilitate transport in biochannels 5-9 , but its impact on transport in artificial pores remains largely unex-plored. Here we introduce a general theory for transport through thermally or actively fluctuating channels, which quantifies the impact of pore fluctuations on confined diffusion in terms of the spectral statistics of the channel fluctuations. Our findings demonstrate a complex interplay between transport and surface wiggling: agitation enhances diffusion via the induced fluid flow, but spatial variations in pore geometry can induce a slowing down via entropic trapping , in full agreement with molecular dynamics simulations and existing observations from the literature. Our results elucidate the impact of pore agitation in a broad range of artificial and biological porins, but also, at larger scales, in vascular motion in fungi, intestinal contractions and micro-fluidic surface waves. These results open up the possibility that transport across membranes can be actively tuned by external stimuli, with potential applications to nanoscale pumping, osmosis and dynamical ultrafiltration.
Fichier principal
Vignette du fichier
MarbachNP2018_Postprint.pdf (3.08 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01990486 , version 1 (23-01-2019)

Licence

Paternité - Pas d'utilisation commerciale - Pas de modification

Identifiants

Citer

Sophie Marbach, David S. Dean, Lydéric Bocquet. Transport and dispersion across wiggling nanopores. Nature Physics, 2018, 14 (11), pp.1108-1113. ⟨10.1038/s41567-018-0239-0⟩. ⟨hal-01990486⟩
86 Consultations
367 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More