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Contemporary Mathematics

Random Phase Infinite Coherent States:
Construction and Dynamics

Alain Joye and Marco Merkli

Abstract. We consider an infinitely extended reservoir of Boson coherent

states characterized by a given spatial density of modes and i.i.d. random

phases. We construct its Hilbert space representation which has a random
part and is expressed by means of Ito stochastic integrals. We study the open

system dynamics of an N -level system coupled to the random infinite coherent

state by an energy conserving interaction. We show that the coherent state
reservoir induces faster system decoherence than a thermal reservoir.

1. Introduction

Coherent states have played an important role in quantum mechanics since the
early days of the theory. Schrödinger discussed them as early as 1926 and noted that
they behave in many respects like classical states [20]. Later on, thanks to the work
of Glauber [7, 8], it was realized that these states are particularly suited to describe
optical coherence, which gave them their name. In particular, the electromagnetic
radiation generated by a classical current is a multimode coherent state, and so is
the light produced by a laser in certain regimes [13, 14]. Therefore, coherent states
are building blocks of modern quantum optics [13, 6, 21], they lie at the heart of
semiclassical analysis, see e.g. [12, 4], and more recently, they found applications
in quantum information experiments [9].

We focus in the current text on the discussion of coherent states with random
phases, which is just one aspect of the analysis of [11], where the infinite volume-
(or thermodynamic) limit of the quantized radiation field in multimode coherent
states is considered in more generality.

Consider a free bosonic quantum field confined to a finite box Λ ⊂ R3. As usual,
we associate to each discrete mode k a creation and an annihilation operator a∗k
and ak, respectively, satisfying the canonical commutation relations [ak, a

∗
` ] = δk,`

(Kronecker symbol). Also, to each k corresponds a family of normalized coherent
states |α〉k, indexed by α ∈ C, defined as eigenvectors of the annihilation operator
ak: ak|α〉k = α|α〉k. The state |α〉k is not an eigenvector of the number operator

N̂ =
∑
k a
∗
kak and the average of N̂ in |α〉k is |α|2. The phase θ ∈ (−π, π] of

the coherent state, defined by α = |α|eiθ, is considered to be a random variable.
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The action of the displacement operator Dk(α) = eαa
∗
k−ᾱak on the vacuum vector

Ω of the quantum field yields the coherent state: |α〉k = Dk(α)Ω. In order to
produce multimode coherent states, one selects N modes k1, . . . , kN , and defines
Dk1(α1) · · ·DkN (αN )Ω, for any choice of αj ∈ C, j = 1, . . . , N .

We consider the thermodynamic limit Λ→ R3 of the radiation field. Our main
physical motivation for doing this is to thus construct a “large quantum system”
which serves as a model for an environment, or reservoir. When we couple a “small
system” of “ordinary size” (much smaller than Λ) to the reservoir, then we obtain an
open quantum system. On the one hand, the infinite nature of the reservoir causes
irreversible dynamical effects in the small system, such as thermalization, decoher-
ence and disentanglement, see Section 1.1. On the other hand, taking the infinite
volume limit of the quantum field alone is an interesting mathematical challenge,
which uncovers new Hilbert space representations of the canonical commutation re-
lations, see Section 1.2. Similar representations for quantum fields in thermal states
(as opposed to coherent states) have been constructed before by Araki and Woods
and Araki and Wyss [1, 2]. The resulting thermal representations of the canonical
commutation relations have found important applications in mathematical physics.

1.1. Irreversibility and limit of continuous modes. Quantum systems
whose dynamics is generated by a Hamiltonian H having purely discrete spectrum

spec(H) = {Ej}j∈N
show quasi-periodic dynamics. Namely, the expectation of an observable A in a
state ρ(t) = e−itHρ(0)eitH is given by

〈A〉t = Trρ(t)A =
∑
j,k∈N

e−it(Ek−El)ck,l,

which is a quasi-periodic function of time t. This setup cannot describe irreversible
processes, such as the approach to a final state for large times t→∞. To capture
irreversible effects, one has to consider a limiting situation. An illustrative example
is a quantum particle moving freely within a one-dimensional interval [−L,L]. The

Hamiltonian is HL = − d2

dx2 with, say, periodic boundary conditions. The spectrum

is purely discrete, spec(HL) = {π
2n2

L2 }n∈N and has gaps of the order 1/L2. Averages
of observables are oscillating in time and only in the limit L→∞ can one observe
irreversibility. For instance, suppose that the particle is initially in the state ρ(0) =
|ψ〉〈ψ|, localized in a bounded region [−l, l] of R (with l < L, so that the support of
the wave function ψ(x) is inside [−l, l]). Then the probability of finding the particle
at time t inside a bounded interval I ⊂ R is given by

pI(t) =

∫
I

dx |e−itHLψ(x)|2

and satisfies limt→∞ limL→∞ pI(t) → 0 (use the Fourier transform to diagonalize
HL). The irreversibility is physically due to the fact that the particle can escape
to spatial ±∞ when L→∞, and it is accompanied by the fact that the spectrum
of HL becomes continuous in that limit (the gap size 1/L2 → 0).

It becomes thus apparent that in order to describe irreversible effects in a
quantum system, at least some component of that system should ‘become infinitely
extended’ or show ‘continuous energy values’. In the above example, taking the
infinite volume limit L → ∞ is a rather simple procedure. The Hilbert space for
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the confined system is L2([−L,L], dx) (with periodic boundary conditions) and as
L→∞, the Hilbert space of the infinite system is L2(R,dx). The relation between
the ‘finite L’ and the ‘infinite L’ Hilbert spaces can be very complicated though,
for other systems of interest.

To see a simple example illustrating this phenomenon, consider a system com-
posed of K independent harmonic quantum oscillators, each one described by its
own Hilbert space of pure states Hosc. Such oscillator arrays are ubiquitous in
the physics literature on open quantum systems. They model ‘reservoirs’, compo-
nents of open systems having many degrees of freedom (K large). A pure state of
the oscillator array is given by a normalized vector in the Hilbert space ⊗Kj=1Hosc.
Suppose now that the frequencies of the K oscillators are ω1, . . . , ωK , and that we
want to create a model which shows irreversibility. We must then take K → ∞
and a frequency spectrum that becomes continuous. What is the Hilbert space of
the oscillators in this limit of continuous modes? This question does not have an
obvious answer at all. Indeed, in the wanted limit, the cardinality K of the number
of modes (frequencies) will increase to c = |R|, the cardinality of R. Then we do not
even have a candidate for a Hilbert space, since we do not know how to make sense
of ⊗Kj=1Hosc in this limit! It turns out that one can construct a Hilbert space for
the infinite system following a general procedure, but the Hilbert space will depend
on a ‘reference state’ with respect to which the infinite mode limit is taken.

1.2. Continuous mode limit and reconstruction of a Hilbert space.
As discussed in Section 1.1 it is not in general clear how to perform a continuous
mode limit. The issue is that such a limit cannot be taken directly on the states
(wave functions, density matrices) of a sequence of discrete mode systems. The idea
is then to implement the following procedure, which we explain here heuristically
and treat in more detail in Sections 2.3 and 2.4.

1. Consider observables A belonging to a (quasi-)local algebra A0 of observables
and a sequence of states ρL, with L describing the system ‘size’ (spatial volume,
1/gap between energy values...).

2. Take the limit L→∞ of the average of A in ρL,

lim
L→∞

〈A〉L ≡ lim
L→∞

Tr(ρLA) =: 〈A〉.

Assuming the existence of this limit, it defines a state 〈·〉 on the algebra A0. (Here,
a state is defined as a positive, linear, normalized functional on the C∗-algebra A0

as is usual in algebraic quantum theory.)
3. While we have constructed now the continuous mode limit state 〈·〉 by the

values it takes on the algebra A0 in step 2., we have lost the notion of Hilbert space
of the state. However, the general Gelfand-Naimark-Segal reconstruction theorem
[3] ensures that to the given pair (〈·〉,A0) is assciated a unique triple (the ‘GNS
triple’) (H, π,Ω) of a Hilbert space H, a ∗-representation map π : A0 → B(H)
(bounded operators on H) and a unit vector Ω ∈ H, satisfying

〈A〉 = 〈Ω, π(A)Ω〉 .

This restores the ‘usual’ picture of quantum theory, where the state is determined
by a unit vector in a Hilbert space. Of course, it is not clear a priori what the
concrete realization of the GNS representation Hilbert space is for a given system.
For example, Araki and Woods [1] have found the following explicit representation
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for the infinite volume limit (R3) of a free bose gas in thermal equilibrium at
temperature T = 1/β:

HAW = F ⊗ F
πAW (a∗(f)) = a∗(

√
1 + µf)⊗ 1l + 1l⊗ a(

√
µf̄)

ΩAW = Ω⊗ Ω

Here, F is the Fock space over the one-particle space L2(R3, d3k) (Fourier space,
see also Section 2.1), Ω is the vacuum vector in F , µ = µ(k) = (e−βε(k)−1)−1 with
k 7→ ε(k) the dispersion relation, and a(f), a∗(f) are the annihilation and creation
operators (smoothed out with a form factor f ∈ L2(R3)). A detailed textbook-style
derivation of the Araki-Woods representation is given in [17].

1.3. Why look for a Hilbert space representation? In the physics liter-
ature on open quantum systems, it is customary to calculate expressions of interest
for discrete mode systems and then take the continuous mode limit of those expres-
sions ‘by hand’ (e.g. by turning sums over frequencies or energies into corresponding
integrals). In this way, the question of the Hilbert space for the continuous mode
system is completely avoided. This procedure cannot be carried out rigorously as
most often, considerations involve, on top of the continuous mode limit, a limit of
weak coupling or long times, making it impossible to control remainder terms. Even
more fundamentally, not all quantities of interest have a form for which the above-
mentioned continuous mode limit ‘by inspection’ can be found (not all quantities of
interest have the convenient form of a ‘Riemann sum’ over discrete energies which
can be turned into an integral in the continuous mode limit, see e.g. [15]). Knowing
the continuous mode state itself, by following the GNS procedure we outlined in
Section 1.2 (rather than only the expectation of some observables in it), gives in
principle full access to the analysis of all quantities. It enables a mathematically
rigorous treatment of the dynamics of open quantum systems.

One of the main goals of [11] is to construct the Hilbert space representation
of coherent state reservoirs (with continuous modes), similar to the work of Araki
and Woods and Araki and Wyss [1, 2], who did that for thermal Bose and Fermi
reservoirs.

1.4. Overview of some of the results in [11]. We provide in this section
an informal overview of the results to be stated more precisely below. We consider
the quantized radiation field in a finite box Λ ⊂ R3, choose modes k1, . . . , kN
and consider the multimode coherent state Dk1(α1) · · ·DkN (αN )Ω. Our goal is to
analyze this state in the limit Λ → R3. As Λ changes, the eigenmodes of the field
change accordingly, and in the limit of infinite volume, the values of the modes
becomes a continuum, k ∈ R3, similarly to the discussion in Section 1.1. It turns
out that any state ω of the radiation field (in finite or infinite volume) is determined
uniquely by its expectation functional E(f) = ω(W (f)), where W (f) is the Weyl
operator smoothed out with a test function f . Thus, it is natural to consider
convergence of a sequence of states ωΛn (with Λn → R3) to mean convergence of
the associated En(f), for all f .

(A) Thermodynamic limit.

• For N fixed modes k1, . . . , kN ∈ R3, we obtain an explicit formula for
the limiting state when Λ→ R3 while keeping the particle densities ρj =
|αj |2/|Λ|, and the phases θj ∈ S1 fixed.
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• A continuous mode limit is characterized by a mode density distribution
ρ(k), meaning that ρ(k)d3k is the spatial density of particles (number
of particles per unit volume in direct space) having momenta in an in-
finitesimal volume d3k around k. We show that the infinite volume and
continuous mode limit (taken jointly or not) of the multimode coherent
state does not exist.

• Despite the lack of convergence of the expectation functional in the limits
of infinite volume and continuous modes, we show that if the phases of the
coherent states are random and iid, then the state converges in distribution
for the above limits. Mathematically, the convergence is due to the central
limit theorem. As explained in Subsection 1.2, we now have the infinite
volume, continuous mode state as a functional on a suitable algebra of
observables. The next step is to reconstruct a Hilbert space representation
for this state.

(B) Hilbert space representation.
We construct explicit Gelfand-Naimark-Segal (GNS) Hilbert spaces of the finite-
mode infinite volume states, and for the state of continuous modes and random
phases. They are regular representations of the canonical commutation relations,
defining (represented) field-, creation- and annihilation operators. As mentioned
in Section 1.3, the explicit representations provide a rigorous way to analyze the
dynamics of a small quantum system coupled to the coherent state reservoir (see
point (D) below).

(C) Dynamics of the infinite coherent state.
The Heisenberg dynamics of the quantum field alone is a Bogoliubov transformation
on Weyl operators, W (f) 7→ W (eitεf), where t denotes time and ε = ε(k) is the
dispersion relation. Coherent states are not eigenstates of this dynamics and so the
reservoir has a nontrivial dynamics on its own. We show that the random iid phase
state is driven into a final state for large times. The latter corresponds to an iid
random phase state in which the phases are uniformly distributed. In this sense,
the uniform phase distribution is the stable one.

(D) Coupling to an open quantum system.
We consider anN -level quantum system in contact with the infinite volume coherent
reservoir having uniformly randomly distributed phases, the dynamically stable
reservoir state as explained in point (C) above. We consider an energy conserving
coupling between the N -level system and the reservoir so that the interaction term
in the Hamiltonian describing the coupled evolution commutes with the system
Hamiltonian. This model is explicitly solvable in the sense that we can calculate
the exact density matrix of the N -level system at all times. We find that the
expectation of the off-diagonal density matrix elements (in the energy basis) have
Gaussian time decay due to the coupling with the coherent reservoir. This is a
striking difference relative to the thermal reservoir case, where this decay is only
exponential. We conclude that a small system placed in a random phase coherent
reservoir undergoes much faster decoherence than in a thermal environment.1 The

1The name “coherent states” refers to the quantum field and is motivated by the fact that

correlation functions of the field factorize in those states, which is the same as for classical coherent

fields [13]. On the other hand “decoherence” of a quantum system is an entirely different notion,
which refers to a system losing quantum correlations and becoming close to a classical one [10].
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very rapid loss of “quantumness” encoded by coherence of the small system is yet
another manifestation of the classical character of coherent states.

Besides the energy conserving coupling considered here, which serves as a
benchmark to measure the decay of coherence in the small system, it is desirable to
analyze the dynamics of an N -level system coupled in a generic, not necessarily en-
ergy conserving fashion to the infinite random coherent reservoir. This turns out to
be a difficult task. However, if one is interested in specific properties of the coupled
system in an average sense with respect to the randomness of the reservoir only,
one might hope for certain simplifications to occur when taking expectation values
over the randomness. This hope is substantiated by the fact that the randomness
in the reservoir state is completely captured by a Gaussian complex valued random
variable.

2. Setup and main results

We now turn to the description of the general setup and concrete statements.
Consider non-interacting quantum particles confined to a box of sidelength L in d
dimensions,

Λ = [−L/2, L/2]d ⊂ Rd.
The wave function of a single particle is an element of L2(Λ,dx) with periodic
conditions at the boundaries. The space of pure states of the system of particles is
the symmetric Fock space [3]

F ≡ F
(
L2(Λ,dx)

)
=
⊕
n≥0

L2
symm(Λn,dnx).

Elements of F have the form ψ = ⊕n≥0ψ
(n), where ψ(n)(x1, . . . , xn) is a symmetric

function of n variables xj ∈ Rd which is periodic in Λn. The summand n = 0
of the Fock space is called the vacuum sector, spanned by the vacuum vector Ω
characterized by Ω(0) = 1, Ω(n) = 0 for n ≥ 1.

The generator of the Schrödinger equation

ψt = e−iHtψ0,

is the self-adjoint Hamiltonian given by the second quantization of a one-body
Hamilton operator. For photons (massless relativistic particles), the Hamiltonian
writes

(Hψ)(n)(x1, . . . , xn) =

n∑
j=1

√
−∆xjψ

(n)(x1, . . . , xn),

understood as a self-adjoint operator with periodic boundary conditions.
The creation operator a∗(f) is defined for f ∈ L2(Λ,dx) by

(a∗(f)ψ)(n)(x1, . . . , xn) =
√
nSf(x1)ψ(n−1)(x2, . . . , xn),

where S is the operator of symmetrization over the variables x1, . . . , xn. The an-
nihilation operator a(f), given by

(a(f)ψ)(n)(x1, . . . , xn) =
√
n+ 1

∫
Λ

f̄(x)ψ(n+1)(x, x1, . . . , xn)dx,

is the adjoint of the creation operator. We also introduce the the self-adjoint field
operators

Φ(f) =
1√
2

(
a∗(f) + a(f)

)
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and the unitary Weyl operators

W (f) = eiΦ(f).

The following equivalent canonical commutation relations hold:

[a(f), a∗(g)] = 〈f, g〉
[Φ(f),Φ(g)] = i Im 〈f, g〉
W (f)W (g) = e−

i
2 Im〈f,g〉W (f + g).(2.1)

A normalized vector ψ in F determines an expectation functional, defined by
E(f) := 〈ψ,W (f)ψ〉, f ∈ L2(Λ,dx). Conversely, any functional E : L2(Λ,dx)→ C
satisfying the three conditions

(E1) E(0) = 1

(E2) E(f) = E(−f)

(E3)
∑K
k,k′=1 zkzk′e

i
2 Im 〈fk,fk′ 〉E(fk − fk′) ≥ 0, for all K ≥ 1, zk ∈ C, fk ∈

L2(Λ,dx)

determines a state ρ on the C∗-algebra generated by the Weyl operators by the
relation ρ(W (f)) = E(f), see e.g. [17].

We pass to the momentum space representation, the Fourier transformation of
the Fock space F , in order to define coherent states of the particles in the volume
Λ.

2.1. Momentum space representation. The single-particle Hilbert space
L2(Λ,dx) is unitarily equivalent to l2( 2π

L Zd) via the Fourier transform F : L2(Λ,dx)→
l2( 2π

L Zd),

(2.2) (Ff)(k) = f̂k = L−d/2
∫

Λ

e−ikxf(x)dx,

with inverse
(F−1f̂)(x) = L−d/2

∑
k∈ 2π

L Zd
eikxf̂k.

The expression, kx denotes the dot product k · x and the factors L−d/2 guarantee
that F is unitary. In turn, the Fock space F is unitarily equivalent to its momentum
version

F̂ ≡ F
(
l2( 2π

L Zd)
)

=
⊕

n≥0

(
l2( 2π

L Zd)
)⊗nsymm

,

with Ω and Ω̂, the vacua of the Fock spaces F and F̂ , respectively. The unitary
map between the Fock spaces is characterized by

Fa∗(f1) · · · a∗(f`)Ω = a∗(f̂1) · · · a∗(f̂`)Ω̂.

Accordingly, the creation operators transform as Fa∗(f)F−1 = a∗(f̂) and we write

a∗(f̂) =
∑

k∈ 2π
L Zd

f̂ka
∗
k.

The field- and Weyl operators are transported to the momentum space as

FΦ(f)F−1 = Φ(f̂) and FW (f)F−1 = W (f̂),

where Φ(f̂) = 1√
2

∑
k∈ 2π

L Zd(f̂ka
∗
k + f̂kak) and W (f̂) = eiΦ(f̂).
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2.2. N-mode coherent states in finite volume. In line with Section 1.4,
the coherent state associated to the collection of N modes k′1, . . . , k

′
N ∈ 2π

L Zd and
N complex numbers α1, . . . , αN is the normalized vector

(2.3) Ψ̂ = e

∑N
j=1 αja

∗
k′
j
−ᾱjak′

j Ω̂ ∈ F̂ .

The expectation functional corresponding to the coherent state (2.3) is thus

(2.4) EΛ
N (f) =

〈
Ψ̂,W (f̂)Ψ̂

〉
,

for all f̂ ∈ l2( 2π
L Zd). The number operator a∗k′j

ak′j of the mode k′j ∈ 2π
L Zd has

average in the coherent state given by〈
Ψ̂, a∗k′jak

′
j
Ψ̂
〉

= |αj |2,

which is interpreted as the intensity of the mode considered.

2.3. Infinite volume and continuous mode limits, random phases.
2.3.1. Infinite volume. The momenta in the finite-volume coherent state are of

the form k′j = 2πnj/L, for nj ∈ Zd, so that as L increases, their spacing becomes

increasingly small. Consider now k1, . . . , kN ∈ Rd, N arbitrary target momenta
and take nj = nj(L) ∈ Zd so that k′j(L) = 2πnj(L)/L satisfies limL→∞ k′j(L) = kj ,
j = 1, . . . , N . We want to take the thermodynamic limit of (2.4),

(2.5) lim
L→∞

EΛ
N (f) ≡ EN (f).

This means we take limL→∞ k′j = k′j(L), while keeping fixed the particle densities
ρj ≥ 0 which count the (average) number of particles in mode k′j per unit volume,

for j = 1, . . . , N . This imposes |αj |2 = Ldρj , or

(2.6) αj(L) = Ld/2
√
ρj eiθj ,

where θj is the phase of the complex number αj , which is arbitrary so far.

Proposition 2.1 (Thermodynamic limit for N modes, [11]). Let k1, . . . , kN ∈
R and ρ1, . . . , ρN ≥ 0 be arbitrary momenta and arbitrary particle densities and
suppose that f ∈ L1(Rd,dx) ∩ L2(Rd,dx). Then the limit (2.5) exists and

(2.7) EN (f) = EFock(f) ei Re
∑N
j=1 e−iθj

√
2ρj f̂(kj),

where EFock(f) = e−
1
4‖f‖

2

and f̂(k) =
∫
Rd e−ikxf(x)dx.

Here, EFock(f) is the usual Fock expectation functional, determined by the
vacuum state,

EFock(f) = 〈Ω,W (f)Ω〉 = e−
1
4‖f‖

2
2 = e−

1
4 (2π)−d‖f̂‖22 ,

where ‖ · ‖2 is the L2-norm (of functions of k ∈ Rd or x ∈ Rd),

‖f‖22 =

∫
Rd
|f(x)|2dx and ‖f̂‖22 =

∫
Rd
|f̂(k)|2dk.
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2.3.2. Continuous modes. One may perform the infinite-volume limit and the
continuous mode limit simultaneously, or one can take the continuous mode limit
of (2.7). The result is the same [11] and we do the latter. Let ρ(k) be a prescribed
mode density distribution. Therefore, given a cube I ⊂ Rd, the integral

∫
I
ρ(k)dk

is the spatial density of particles in the infinite volume state, having momenta in I.
Assume ρ is be supported in a finite cube [−R,R]d. Discretize the cube by setting
kj = (−R+ j1

2R
N , . . . ,−R+ jd

2R
N ) ∈ Rd, where j1, . . . , jd ∈ {1, 2, . . . , N}, and N is

large. One gets the following form for the sum in the phase of the infinite volume
expectation functional (2.7),

(2.8)
∑

j∈{1,...,N}d
e−iθj

√
2ρj f̂(kj) = (2R/N)d/2

∑
j∈{1,...,N}d

e−iθ(kj)
√

2ρ(kj) f̂(kj).

Here, θ(k) is an arbitrary function which determines the phase of the mode k. For
N large, a Riemann sum argument yields that (2.8) equals approximately

(2.9) (N/2R)d/2
∫

[−R,R]d
e−iθ(k)

√
2ρ(k) f̂(k)dk ∼ Nd/2,

which diverges as N → ∞, and so the infinite volume discrete mode expectation
functional EN (f), (2.7), does not have a continuous mode limit in this simple sense.

2.3.3. Random phases. Considering the scaling involved, one sees that the cen-
tral limit theorem might help in case the phases are independent random variables:

Let θj = θj(ω), j ∈ {1, . . . , N}d be iid random variables, so that Ψ̂ = Ψ̂ω given in
(2.3) is a random pure state defining the random expectation functional (in infinite
volume, by Proposition 2.1)

(2.10) EN,ω(f) = EFock(f) eiN−d/2
∑
j∈{1,...,N}d ξj(ω),

where

(2.11) ξj(ω) = (2R)d/2
√

2ρ(kj) Re e−iθj(ω) f̂(kj).

We know from (2.9) that EN,ω(f) does not converge almost everywhere w.r.t. ω as
N →∞. However, we have the following result.

Proposition 2.2 ([11]). Let µ be the distribution function of the phase and
suppose that its Fourier transform satisfies µ̂(1) = 0. Then, in the sense of conver-
gence in distribution,

(2.12) N−d/2
∑

j∈{1,...,N}d
ξj(ω)

D−→ Nω
(
0, σµ(f)2

)
, as N →∞.

The right hand side is a normal random variable with mean zero and variance

(2.13) σµ(f)2 =

∫
Rd
ρ(k)

(
|f̂(k)|2 + Re{µ̂(2)f̂(k)2}

)
dk.

The function x 7→ eix is bounded and continuous and so (2.10) implies that

(2.14) EN,ω(f)
D−→ Eω(f) ≡ EFock(f) eiNω(0,σµ(f)2), as N →∞.

Since the convergence in Proposition 2.2 is only in distribution, it is not guar-
anteed that Eω defined in (2.14) satisfies properties (E1)-(E3) which are necessary
for Eω to define a state. Among all random functionals having the distribution
given by the right hand side of (2.14), we must make sure that there is one which
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satisfies (E1)-(E3). We construct such an explicit representation by means of Itô
stochastic integrals.

For f ∈ L2(Rd,dx), we define χω as an Itô integral

(2.15) χω(f) =

∫
Rd

dBω1 (k)S1(k)f̂(k) + i

∫
Rd

dBω2 (k)S2(k)f̂(k),

where

(2.16) S1(k) =

√
ρ(k)

1 + Reµ̂(2)
(1 + µ̂(2)), S2(k) =

√
ρ(k)

1 + Reµ̂(2)

√
1− |µ̂(2)|2.

Here, Bω1 and Bω2 are two independent Brownian motions of dimension d and µ̂ is
the Fourier transform of the measure µ.

Theorem 2.3 ([11]). Suppose that µ̂(1) = 0. Then
(1) For all f ∈ L2(Rd,dk) we have Reχω(f) ∼ Nω

(
0, σµ(f)2

)
, where σµ(f)2

is given in (2.13).
(2) Let EN,ω(f) be the functional (2.10). Then we have, for all f ∈ L2(Rd,dx),

EN,ω(f)
D−→ Eω(f) := EFock(f)eiReχω(f), as N →∞.

(3) Eω(·) satisfies (E1)-(E3) in the following sense:

– Eω(0) = 1 a.e.(ω)

– for all f ∈ L2(Rd, dx), Eω(f) = Eω(−f) a.e.(ω)
– for all K ≥ 1, zk ∈ C, fk ∈ L2(Rd, dx), k = 1, . . . ,K, we have∑K

k,k′=1 zkzk′e
i
2 Im〈fk,fk′ 〉Eω(fk − fk′) ≥ 0 a.e.(ω)

Remark. For each f we have Eω(f) ∈ L2(O,dP), where we call the sample space
O. So there is an Of ⊆ O with P(Of ) = 1 s.t. Eω(f) ∈ C for all ω ∈ Of . (That is,
we can choose a representative of the L2 function which is well defined and finite
on a set of full measure.) Given f1, . . . , fK we thus find Of1 , . . . ,OfK , all of full

measure, so that
∑k
j=1Eω(fj) is well defined and finite for all ω ∈ ∩Kj=1Ofj , again a

set of full measure. The latter sum then defines again an element in L2(O,dP). In
this sense, we can form finite (or countably infinite) linear combinations of Eω(fj).
The set of ω of full measure on which (E3) above holds generally depends on the
functions fj .

2.4. Hilbert space representation. Given a state ρ on a C∗-algebra A,
there exists a unique (up to unitary equivalence) GNS triple (H, π,Ψ) [3] consisting
of a Hilbert space H, a representation map π : A → B(H) and a normalized and
cyclic vector Ψ ∈ H, such that for all A ∈ A,

(2.17) ρ(A) = 〈Ψ, π(A)Ψ〉 .

Consider now the family Eω given in Theorem 2.3, (2). Being an element of
L2(O,dP), Eω(f) is only well defined (represented by a function with finite complex
values) for ω ∈ Of ⊆ O for some Of with P(Of ) = 1. The range over which ω
varies thus depends on f . Therefore, it is not clear that there is any ω ∈ O for
which one can define simultaneously Eω(f) for all f ∈ L2(Rd,dx). However, we can
restrict the range of f to a countable subset of “test functions” D ⊂ L2(Rd,dx).
For each f ∈ D, there is an Of ⊆ O, P(Of ) = 1, on which Eω(f) is well defined,
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that is, for which one can choose a representative of the L2(O,dP) function which
is finite on Of . Being a countable intersection of sets of measure one, the set

O(D) = ∩f∈DOf
has also measure one. Furthermore, for every ω ∈ O(D) fixed, Eω(f) is well defined
for all f ∈ D. Without loss of generality, we may assume that D is a vector space
over the countable field Q + iQ. (If an original D is not, then we can consider the
set of all finite linear combinations of elements of D, with scalars from Q+iQ. This
is again a countable set and we can take that set for D.)

We show in [11] that there exists an O(D) ⊆ O of full measure, such that
∀ω ∈ O(D), Eω is an expectation functional on the Weyl algebra with test functions
f ∈ D, i.e., the Weyl algebra (over the field C of scalars) generated by all W (f),
f ∈ D.

Theorem 2.4 (GNS representation [11]). Let D ⊂ L2(Rd,dx) be a test function
subspace with associated O(D) satisfying P(O(D)) = 1. For every ω ∈ O(D), the
GNS representation of Eω(·) (c.f. Theorem 2.3(2)) as a functional of the Weyl
algebra with test functions in D, is given by

H = HD ⊆ F(L2(Rd,dx))

πω(W (f)) = WFock(f)eiReχω(f)

Ψ = ΩFock.

Recall that a representation π is called regular if α 7→ π(W (αf)) is differentiable
at α = 0, in the strong sense on a dense domain in H. For regular representations,
one defines the represented Weyl operators

Wπ(f) = π(W (f))

and the represented field operators by

Φπ(f) = −i∂α|α=0 π(W (αf)).

Similarly, the creation and annihilation operators are defined by

a∗π(f) = 2−1/2
[
Φπ(f)− iΦπ(if)

]
,(2.18)

aπ(f) = 2−1/2
[
Φπ(f) + iΦπ(if)

]
= (a∗π(f))∗.

The representation of Theorem 2.4 is actually regular, so that the field and creation
operators associated to Eω, for all ω ∈ O(D) and all f ∈ D, are given by

Φω(f) = ΦFock(f) + Reχω(f)

a∗ω(f) = a∗Fock(f) + 1√
2
χω(f).

2.5. Reservoir dynamics. We can now address the dynamical aspects of
our construction. The dynamics on the Weyl algebra is given by a Bogoliubov
transformation on the functions f ∈ L2(Rd,dk), given by f 7→ eitεf , where ε = ε(k)
is a real function of k ∈ Rd. For photons, ε(k) = |k|. Thus, the dynamics of the
random phase expectation functional Eω, (2.14) satisfies

(2.19) Eω(eitεf) = EFock(f) eiNω(0,σµ(eitεf)2).

Now, the Riemann-Lebesgue Lemma and (2.13) show that

(2.20) lim
t→∞

σµ(eitεf)2 = ‖√ρf̂‖22
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and therefore,

Nω(0, σµ(eitεf)2)
D−→ Nω(0, ‖√µf̂‖22), t→∞.

Consequently, we reach the following conclusion:

Proposition 2.5 (Phase uniformization under reservoir dynamics, [11]). Let
µ be a phase distribution satisfying µ̂(1) = 0. Given any f ∈ L2(Rd,dx), we have,
as t→∞,

Eω(eitεf)
D−→ Eω,unif(f).(2.21)

The convergence in (2.21) is in distribution of random variables. Here, Eω,unif(·) is

the expectation functional in which the phase distribution is uniform, dµ(θ) = dθ
2π .

2.6. Coupling to an open quantum system. We are now in a position
allowing us to consider an N -dimensional quantum system in contact with the
reservoir of coherent states. We consider that the phases are uniformly randomly
distributed. The Hilbert space of pure states of the system is CN , that of the
reservoir is the GNS space given in Theorem 2.4. The system dynamics is generated
by a self-adjoint Hamiltonian with energy levels e1, . . . , eN ,

HS = diag(e1, . . . , eN ),

and the state of the reservoir is invariant under its own dynamics by Proposition
2.5. The dynamics is implemented as

πω(W (eitεf)) = WFock(eitεf)eiReχω(f) = eitHRπω(W (f))e−itHR ,

where the reservoir Hamiltonian is

HR = dΓ(ε).

Therefore, the uncoupled dynamics is given by the Hamiltonian

H0 = HS ⊗ 1lR + 1lS ⊗HR.

To define a coupled dynamics between the system and the reservoir, one makes use
of Dyson’s expansion. The free dynamics is given by the group of ∗automorphisms
αt0 on the algebra of observables A = B(CN )⊗W (where W is the Weyl algebra),
defined by

αt0(AS ⊗W (f)) = eitHSASe−itHS ⊗W (eitεf).

Then one defines a coupled dynamics by specifying an interaction operator V ∈ A
and using the Dyson series

(2.22) αt(A) = αt0(A)+
∑
n≥1

∫ t

0

dt1 · · ·
∫ tn−1

0

dtn [αtn0 (V ), [· · · [αt10 (V ), αt0(A)] · · · ]].

It turns out the series converges in the topology of A and thus defines the interacting
dynamics αt, again a group of ∗automorphisms on A. Applying the representation
map πω (more precisely, 1lS ⊗ πω) to (2.22), we obtain

πω(αt(A)) = τ t0(πω(A))

+
∑
n≥1

∫ t

0

dt1 · · ·
∫ tn−1

0

dtn [τ tn0 (πω(V )), [· · · [τ t10 (πω(V )), τ t0(πω(A))] · · · ]],

where
τ t0(·) = eitH0(·)e−itH0 .
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The right side of (2.23) defines a group of ∗automorphisms on the represented
algebra of observables which is generated by the self-adjoint operator

H = H0 + πω(V ),

acting on CN ⊗F(L2(Rd,dx)). Physical considerations would lead us to take V =
G⊗Φ(g), where G is selfadjoint and Φ(g) is a field operator. However, this V does
not belong to A and the above construction cannot be carried out. Nevertheless, one
can “regularize” the interaction by introducing Vη, depending on a small parameter
η, such that Vη ∈ A and in any regular representation π of the algebra A, π(Vη)→
G⊗Φπ, as η → 0 (strongly on a dense domain). One can then, for η > 0, carry out
the above construction and finally remove η once placed in a representation. Such a
procedure is decribed in [5] – and other approaches are possible. This shows we can
consider that the dynamics of the coupled system is generated by the Hamiltonian

(2.23) H = H0 +G⊗ Φω(g) = H0 +G⊗
(
ΦFock(g) + Reχω(g)

)
,

acting on CN ⊗F(L2(Rd,dx)).
We take an energy conserving (non-demolition) interaction [10, 19] between

the system and the reservoir, which consists in taking an operator G that commutes
with HS,

G = diag(g1, . . . , gN ).

Such models are used to investigate “phase decoherence” of the small system.
The initial system-reservoir state is disentangled, given by a density matrix

P0 = ρS ⊗ |Ω〉〈Ω|,
acting on the Hilbert space CN ⊗ F(L2(Rd,dx)). Here, ρS is an arbitrary intial
system density matrix and the reservoir is in the state Ω, which represents the infin-
itely extended continuous mode coherent state with uniformly distributed phases.
The state of the coupled system at any later time t is given by

P (t) = e−itHP0 eitH .

Taking the partial trace over the reservoir Hilbert space yields the reduced system
density matrix,

ρS(t) = TrRP (t).

We denote its matrix elements in the energy eigenbasis {ϕj}Nj=1 (with HSϕj = ejϕj)
by

(2.24) ρk,l(t) = 〈ϕk, ρS(t)ϕl〉 = TrP (t)|ϕl〉〈ϕk|.
As [HS, G] = 0 the populations (diagonal matrix elements) are time-independent.
The off-diagonal ones exhibit time decay (“phase decoherence”). For the energy
conserving model at hand, the matrix elements (2.24) can be evaluated exactly.
The calculation yields (see Appendix D of [16])

ρk,l(t) = e−it(ek−el)e−it(gk−gl)Reχω(g)(2.25)

×e
i
2 (g2k−g

2
l )〈g, sin(εt)−εtε g〉e−

1
2 (gk−gl)2〈g, 1−cos(εt)

ε2
g〉(2.26)

×ρk,l(0).

The contribution on the right side of (2.25) is given by the free dynamics and by
a random “renormalization” of the system energy due to the interaction with the
coherent bath (coming from the term G ⊗ Reχω(g)1lR in the Hamiltonian (2.23)).
The two factors (2.26) are the same as in the case of a system coupled to a free bose
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gas in equilibrium at zero temperature. Therefore, the coherent states character
of the reservoir is encoded entirely in the part e−it(gk−gl)Reχω(g). The expecta-
tion of this oscillating factor is the characteristic function of the random variable
Reχω(g) ∼ N (0, ‖√ρg‖22),

E
[
e−it(gk−gl)Reχω(g)

]
= e−

t2

2 (gk−gl)2‖
√
ρg‖22 .

This shows that the averaged (reduced system) density matrix E[ρS(t)] acquires
Gaussian time-decay of off-diagonals at all times, due to the coupling with the
coherent reservoir, namely

(2.27)
∣∣E[ρk,l(t)]

∣∣ = e−
t2

2 (gk−gl)2‖
√
ρg‖22 e−

1
2 (gk−gl)2Γ(t) |ρk,l(0)|,

with

(2.28) Γ(t) =

〈
g,

1− cos(εt)

ε2
g

〉
= 2

〈
g,

sin2(εt/2)

ε2
g

〉
.

For small times, Γ(t) ∼ 1
2 t

2‖g‖22 is quadratic in time, but for large t, its behaviour as
a function of t depends on the infrared behaviour of the form factor g, |g(k)| ∼ |k|p
for |k| ∼ 0. For instance, in d = 3 dimensions and for ε(k) = |k|,

Γ(t) = 2

∫ ∞
0

|k|2d|k|
∫
S2

dΣ|g(|k|,Σ)|2 sin2(|k|t/2)

|k|2
∼ πt

2
lim
r→0+

r2

∫
S2

dΣ|g(r,Σ)|2,

assuming that the latter limit exists and is non-vanishing, meaning that |g(r,Σ)| ∼
r−1 for small r. Note also that for p > −1/2, we have limt→∞

〈
g, cos(εt)/ε2g

〉
= 0

by the Riemann-Lebesgue lemma, so that limt→∞ Γ(t) = ‖g/ε‖22. For this infra-red
behaviour of the form factor, the coupling to the (zero temperature) reservoir does
not induce (complete) decoherence, but the coupling to the coherent reservoir does.
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20. E. Schrödinger: “Der stetige Übergang von der Mikro- zur Makromechanik”, Naturwis-

senschaften 14, 664-666 (1926)
21. M. Schlosshauer: Decoherence and the Quantum-to-Classical Transition, The Frontiers Col-

lection, Springer Verlag 2007
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