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Abstract

Superconductivity in strongly correlated systems is a remarkable phenomenon
that attracts a huge interest. The study of this problem is relevant for materials
as the high Tc oxides, pnictides and heavy fermions. In this work we study a
realistic model that includes the relevant physics of superconductivity in the
presence of strong Coulomb correlations. We consider a two-band model, since
most of these correlated systems have electrons from at least two different atomic
orbitals coexisting at their Fermi surface. The Coulomb repulsion is taken into
account through a local repulsive interaction. Pairing is considered among quasi-
particles in neighbouring sites and we allow for different symmetries of the order
parameter. In order to deal with the strong local correlations, we use the well
known slave boson approach that has proved very successful for this problem.
Here we are interested in obtaining the zero temperature properties of the model,
specifically its phase diagram and the existence and nature of superconducting
quantum critical points. We show that these can arise by increasing the mixing
between the two bands. Since this can be controlled by external pressure or
doping, our results have a direct relation with experiments. We show that
the superconductor-to-normal transition can be either to a metal, a correlated
metal or to an insulator. Also we compare the relative stability of s and d-wave
paired states for different regions of parameter space and investigate the BCS-
BEC crossover in the two-band lattice model as function of the strength of the
pairing interaction.
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1. Introduction

The study of superconductivity in strongly correlated electron systems
(SCES) is one of the most exciting area in condensed matter physics. It en-
compasses many interesting materials and also those which are most promising
for practical applications. The high Tc cuprates, the iron pnictides and the
heavy fermion materials are among the superconductors where the electronic
correlations play an important role. The majority of these systems are multi-
band with electrons from different atomic orbitals coexisting at their common
Fermi surface. A model to describe these materials must include this feature
and also the strong local Coulomb repulsion among electrons of the narrow d or
f -bands. The most favorable conditions for the appearance of superconductivity
involve an attractive interaction which pairs quasi-particles in neighboring sites
and in this way avoids the strong on-site repulsion. This type of pairing is often
attributed to intersite exchange interaction. It allows for different symmetries of
the superconducting order parameter and experimentally it is well known that
in the case of the cuprates, they adopt a d-wave pairing in which on-site pairing
vanishes.

An interesting and challenging observation in strongly correlated supercon-
ductors is the existence of a new type of quantum phase transition associated
with a superconducting quantum critical point (SQCP) [1, 2]. Varying an ex-
ternal parameter, such as, doping or pressure these systems can be driven to a
non-superconducting state, in most of the cases a metallic state. This metal-
lic state close to the SQCP is susceptible to the fluctuations arising from the
proximity of the superconducting state and these may give rise to non-Fermi
liquid type of behavior [1]. It is a challenging new problem, both experimental
and theoretical, to characterize the universality classes of these new SQCP and
compare them with the well studied case of magnetic quantum critical points.

In multi-band systems, hybridization, which is due to the overlap of wave
functions, is sensitive to doping or external pressure. In this way it can be
modified and to act as an important control parameter, which allows explor-
ing the phase diagram of different materials. However, a complete description
of a given system requires including additional ingredients in the model. For
example, the k-dependence of hybridization is important: it is known both, ex-
perimentally [1, 3], and theoretically [4], that when hybridization is constant
or has even-parity in k-space, it acts in detriment of superconductivity and can
even destroy it at a SQCP. On the other hand, anti-symmetric or odd-parity hy-
bridization, which occurs when hybridization mixes orbitals with different pari-
ties, enhances superconductivity [5, 6]. It turns out that this effect is important
since it includes the cases of s-p, p-d and d-f orbitals mixing, which are relevant
for semiconductors, pnictides, oxide superconductors and heavy fermion materi-
als. We found similar behavior for our model for s and d-wave superconductors
depending on the band filling and the intensity of the hybridization [7].

The Anderson lattice model (ALM) is generally accepted as an appropriate
model for describing both magnetic and superconducting instabilities [8, 9, 10,
11, 12] in strongly correlated multi-band systems. Many studies have shown
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that the pairing between the nearly localized d of f -electrons is the responsible
for the appearance of superconductivity [13, 14]. Since, in this model, the bare
energy of these electrons is dispersionless, superconductivity must be the result
of the hybridization between these localized electrons and a wide electronic
band of c-electrons [8, 15, 16]. Here we consider an extended or two-band
Anderson type model, since we add an exchange interaction Jij and include a
small dispersion for the f -electrons. For the extended model considered here
hybridization can also be detrimental to superconductivity and the competition
between these two effects of the mixing is one of the important mechanisms
contributing to the appearance of the SQCP. Another important ingredient
that may give rise to superconducting quantum critical behavior [1, 17, 18] in
strongly correlated systems is of course the competition between repulsive and
attractive interactions. Then, it is very important to take into account and
discuss the effect of this additional competition and how it interferes with that
associated with hybridization in giving rise to a SQCP.

We focus on different aspects of the problem, with special emphasis on the
zero temperature phase diagrams and the existence and nature of any eventual
SQCP. We also investigate the crossover in the lattice model from weak coupling
BCS superconductivity to Bose-Einstein condensation of pairs, as a function of
the inter-site attractive interaction. We obtain both s and d-wave stable SC
states in different parameter regions, while most of the authors have studied
only d-wave SC in the presence of strong local repulsive interactions [19].

It is not our purpose here to apply our results for any specific system but to
identify general mechanisms that can destroy superconductivity in strongly cor-
related multi-band superconductors. Our study is limited to zero temperature
properties and since the superconducting quantum critical points we discover
are most probably above the upper critical dimension [20], the slave boson mean-
field approach that we use gives a reasonable description of the ground state
properties. On the other hand our approach is clearly inappropriate to describe
the ground state of the cuprates in the underdoped region of the phase diagram
where at finite temperatures there is evidence for a pseudogap.

2. The model

We consider a two-dimensional, inter-site attractive, two-band lattice model
where local repulsive correlations are explicitly assumed between the f -electrons.
Notice that f -electrons here refer generically to the quasi-particles in the narrow
band. They can be either d-electrons as for the Fe and Cu superconductors, or
f -electrons as for the actinides and rare-earth heavy fermions. The Hamiltonian
of the model is given by,

H =
∑

k,σ

ǫckc
†
k,σck,σ +

∑

k,σ

ǫfkf
†
k,σfk,σ + V

∑

i,σ

(c†i,σfi,σ + h.c.)

+ U
∑

i

f †
i,↑fi,↑f

†
i,↓fi,↓ +

1

2

∑

〈ij〉,σ

Jijf
†
j,σf

†
j,−σfi,−σfi,σ, (1)
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where c†iσ and f †
iσ are creation operators for the c and f electrons in the wide,

uncorrelated band, and in the narrow band, respectively. These bands are
described by the dispersion relations, ǫck and ǫfk , for c and f -electrons in an
obvious notation. The 〈i, j〉 refer to lattice sites and σ denotes the spin of the
electrons. U is the on-site repulsive interaction (U > 0) among f -electrons.
The two types of electrons are hybridized, with a k-independent matrix element
V [16, 21]. This one-body mixing term can be tuned by external parameters
such as pressure permitting the exploration of the phase diagram and quantum
phase transitions of the model. The last term explicitly describes an effective at-
traction between f -electrons in neighboring sites (Jij > 0), which is responsible
for superconductivity [9]. Notice that this term also describes antiferromagnetic
(AF), xy-type, exchange interactions between these electrons, such that, mag-
netic and superconducting ground states are in competition. In this work we
are only interested in the latter. We have neglected in this interaction an Ising
term that when decoupled in the superconducting channel leads to p-wave pair-
ing that is not considered here. It is worth to point out that all terms included
in Eq. (1) are of main importance in influencing qualitatively the superconduct-
ing properties. The order of magnitude of these terms can vary substantially
for one specific class of systems to another. In particular the interactions Jij
should be small for the case of rare-earth heavy fermions due to the localization
of the f -orbitals in these systems. We have neglected an inter-band attractive
interaction among the c and f -electrons, and an intra-band term between the
c-electrons. Also we did not include [22] an inter-band pair hopping term which
arises in second order in the hybridization when applying a Schrieffer-Wolf trans-
formation for the Anderson lattice model [23]. Inter-band pairing gives rise to
ground states with finite q-pairing states but also to anisotropic s-wave super-
conductivity [23]. The main difference concerning the effect of hybridization for
intra-band and inter-band pairing is that in the latter case hybridization favors
superconductivity [23] while for intra-band pairing it is mostly deleterious.

Slave-boson formalism has been introduced to deal with strongly correlated
systems under some constraints, considering a projection method that employs
slave bosonic particles [24, 25]. While, in the original version, slave bosons
were referring only to empty and doubly occupied states at any given lattice
site, the method was later extended by Kotliar and Ruckenstein (KR) [26] who
also assigned slave bosons to the singly occupied states. This four-slave-boson
method maps the physical fermion (destruction) operator fi,σ, with spin com-
ponent σ at site i, onto the product of a (pseudo) fermion fi,σ and a bosonic
operator Zi. This formalism is especially suited to deal with models of strongly
correlated systems, like the ALM and the Hubbard model, in principle, for any
value of the strength of the interactions. Besides, it is also particularly appeal-
ing for the treatment of magnetic phases, which can already be approached at
the mean-field level owing to the presence of the single-occupancy bosons. For
these reasons, the method has been generally adopted to treat SCES, both at
its mean-field level [27] and with the inclusion of fluctuations [28]. Specifically,
it has been found that the KR slave-boson mean-field solution is in remarkable
agreement with more elaborated Monte Carlo results over a wide range of inter-
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actions and particle densities [29]. Thus, armed with this powerful tool, we will
examine the competition between superconductivity and metallic or insulating
states due to the presence of hybridization and different types of interactions
in multi-band systems. Although a similar approach was carried out for the
superconducting properties of the ALM [9], here we consider a more realistic
model where the correlated band has a finite dispersion.

3. Slave bosons formalism

Let us now come to the derivation of the effective Hamiltonian in the KR
slave bosons formalism. Considering a finite on-site interaction U , f -states can
be empty, singly or doubly occupied on each site, i.e., the number of f -electrons
per site, nf can be nf = nf

i↑ +nf
i↓=0, 1 or 2. In order to describe all these states

that the f -electrons can occupy, KR introduced four bosons e, d, p↑, and p↓,
where e, d are associated with empty and doubly occupied sites, respectively, and
the bosons p↑ (p↓) with a singly occupied site with spin component ↑ (↓). For
the purpose of establishing a one-to-one correspondence between the original
Fock space and the enlarged one, which also contains the bosonic states, the
following constraints must be satisfied:

1 = e†iei + p†i,↑pi,↑ + p†i,↓pi,↓ + d†idi, (2)

f †
iσfiσ = p†iσpiσ + d†idi, (3)

where Eq. (2) represents the completeness of the bosonic operators and Eq. (3)
the local particle (boson+fermion) conservation at the f sites. The constraints,
Eq. (2) and Eq. (3) are imposed in each site by the Lagrange multipliers λi and
αi,σ, respectively. In the physical subspace, the operators fi,σ are mapped, such
that, fi,σ → fi,σZi,σ where Zi,σ is defined as,

Zi,σ =
(e†ipi,−σ + p†i,σdi)

√

(1 − d†idi − p†i,σpi,σ)(1 − e†iei − p†i,−σpi,−σ)
. (4)

The square root term in Eq. (4) ensures that the mapping becomes trivial at
the mean-field level in the non -interacting limit (U → 0). The usual procedure
consists in taking a mean-field approach where we assume the slave bosons to
be condensed [10]. Then all bosons operators are replaced by their expectation

values as, Z = 〈Z†
i,σ〉 = 〈Zi,σ〉 = Zσ, e = 〈ei〉 = 〈e†i 〉, pσ = 〈pi,σ〉 = 〈p†i,σ〉, and

d = 〈di〉 = 〈d†i 〉. Due to translation invariance these expectation values take the
same value on all sites.

Neglecting any form of magnetic order, the model given by Eq. (1) at mean-
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field level reduces to,

Heff =
∑

k,σ

(ǫck − µ)c†k,σck,σ +
∑

k,σ

(ǫ̃fk − µ)f †
k,σfk,σ +

∑

k,σ

ZV (c†k,σfk,σ + h.c.)

−N
|∆|2
J

+
Z2

2

∑

k,σ

(∆ηkf
†
k,σf

†
−k,−σ + h.c.) + λ

∑

k,σ

(p2σ + p2−σ)

− α
∑

k,σ

(p2σ + d2) + Nλ(e2 + d2 − 1) + NUd2, (5)

where ǫck = −2t(cos(kxa) + cos(kya)) in 2D square lattice, ǫfk = ǫf0 + γǫck, and

ǫ̃fk = ǫfk + α is the renormalized energy level of the f band, being ǫf0 its bare
energy level. We have considered homothetic bands, such that γ = tf/t (γ < 1)
is the ratio of the hopping terms in the c and f -bands, and the lattice parameter
a = 1. Also in the 2D square lattice, ηk = cos kx+cosky and ηk = cos kx−cosky
for s-wave and d-wave symmetries, respectively.

The ck,σ and fk,σ destruction operators refer to conduction and f -electrons
and obey the usual anti-commutation relations, N is the number of lattice sites

and ∆ = Z2J
N

∑

k ηk〈f−k,−σfk,σ〉 represents the superconducting order param-
eter for s or d-wave symmetry. We have added also the chemical potential µ
to fix the total electronic density, ntot. Besides, since we are interested in non-
magnetic solutions, we have neglected the Hartree-Fock correction, U〈nf 〉 to
the energy of f -quasiparticles. To add this term simply will shift the energy
level of the f -band, which in any case is determined self-consistently.

3.1. Spectrum of Excitations

Within a BCS decoupling for the many-body attractive interaction, the
quasi-particle excitations in the superconducting phase of the model described
by Eq. (1) can be obtained exactly. For this purpose, we use the equations of
motion for the Green’s function [6, 30, 31]. The poles of the Green’s functions
yield the spectrum of excitations in the superconducting phase. The energies of
these modes are given by, ±ω1,2, where,

ω1,2 =

√

Ak ±
√

Bk (6)

Ak =
εck

2 + εfk
2

2
+ Ṽ 2 +

(∆̃ηk)2

2
, (7)

Bk =

(

εck
2 − εfk

2

2

)2

+ Ṽ 2(εck + εfk)2 +
(∆̃ηk)4

4

− (∆̃ηk)2

2
(εck

2 − εfk
2
) + (∆̃ηkṼ )2, (8)

where, Ṽ = ZV , ∆̃ = Z2∆, εck = ǫck − µ, and εfk = ǫ̃fk − µ.
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Following the slave boson mean-field approximation, we replace all boson
operators by their expectation values, such that, the Z operator given by Eq.
(4) becomes, Z = p(e+ d)/

√

(d2 + p2)(e2 + p2). The parameters introduced, e,
p, d, α and λ, can then be obtained by minimization of the ground state energy
of Eq. (5) [9]. This together with the number and gap equations,

ntot = 1 +
1

N

∑

k

∑

ℓ=1,2

(−1)ℓ

2
√
Bk

1

2ωℓ

{

(

εck + εfk

)(

ω2
j + Ṽ 2 − εckε

f
k

)

− ∆̃2η2kε
c
k

}

,

(9)

1

J
=

Z4

N

∑

k

∑

ℓ=1,2

η2k(−1)ℓ

2
√
Bk

(

ω2
ℓ − εck

2

2ωℓ

)

, (10)

respectively, yield a set of equations that will be solved self-consistently.

4. Analysis of Results

From the solution of the self-consistent coupled equation we study the zero
temperature phase diagram of the model taking into account both s-wave and d-
wave symmetries of the superconducting order parameter. In all figures below,
we assume ǫf0 = 0, γ = 0.1. Furthermore, we renormalize all the physical
parameters by the c-band hopping term t = 1.

4.1. Superconducting order parameter as a function of the on-site Coulomb re-

pulsion and pairing interaction

Figs. 1(a) and 1(b) show the superconducting order parameters as functions
of the repulsive on-site Coulomb interaction U , considering s-wave and d-wave
symmetries, respectively. The order parameters are displayed for several values
of the attractive inter-site interaction J and for fixed parameters ntot = 2 and
V = 1. Both figures show that the on-site Coulomb repulsion is detrimental
for superconductivity, and specifically in the d-wave case this influence is more
notorious than for the s-wave case. However, in both cases we observe a mono-
tonic decrease of the superconducting order parameter as the intensity of the
local Coulomb repulsion increases, with no sign of critical behavior. The results
of Figs. 1(a) and 1(b) were obtained for ntot = 2 at which superconductivity
is rather unstable, as will be discussed below. As shown in these figures even
large values of U do not totally suppress superconductivity but rather cause a
continuous and progressive decrease of the amplitude of the Cooper pairs. This
suggests that the suppression of superconductivity by U may not be associated
with a quantum critical phenomenon, at least within our mean-field solution.
In any case, U is a difficult parameter to control experimentally in condensed
matter physics. A different situation will appear when we discuss the effect
of hybridization on superconductivity in the section 4.3. Fig. 1(b) seems to
suggest that there is a minimum critical value of |J | to support d-wave super-
conductivity, even in the absence of Coulomb repulsion. Below we show that
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Figure 1: (Color online) ∆s and ∆d as functions of U for several values of J and fixed values
of V = 1 and ntot = 2.

this is not really the case. Fig. 2 shows the increase of the gaps for different
symmetries as functions of the pairing interaction for different total number of
electrons and typical fixed values of U and V . The gap rises smoothly as the
absolute value of |J | increases. We have checked that for values of |J | & 0.2 this
rise is exponential with 1/J . This is expected from the mean field character
of our approximations. For smaller values of J there are deviations from this
behavior probably due to numerical accuracy. Notice that the same mean field
approximation implies that in case there is a critical value of J , that the order
parameter should grow as ∆ ∝ (J −Jc)

β , with β = 1/2, which is clearly not the
case. We notice from this figure that ∆s and ∆d can attain physical values for
not too large values of J . The d-wave gap for ntot = 1 is the most unfavorable,
requiring large values of |J | to produce a sizable Tc (assuming Tc ∝ ∆).

4.2. Superconducting order parameter as a function of the total density of par-

ticles

Figs. 3(a) and 3(b) show the superconducting order parameters as func-
tions of the total density of particles ntot, for s-wave and d-wave symmetries,
respectively. They are displayed for several values of the attractive inter-site in-
teraction J and considering U = 1 and V = 1. For s-wave symmetry we obtain
a rather symmetric superconducting dome, at least for |J | ≤ 2, with an optimal
density around ntot ≈ 2. However, in the d-wave case the optimal densities are
close to ntot ≈ 1 and ntot ≈ 3. We have calculated the contributions for the
pairing amplitudes from the different electrons. We find that the f -electrons
contribute most for the pairing, specially at the borders of the dome, i.e., for
small and large ntot. This is the case for both s and d-wave symmetries. As ex-
pected, increasing the strength of the attractive interaction increases the region
of the superconducting phase in the phase diagram. Taking the amplitude of
the order parameters as a measure of the stability of the different s or d-wave
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Figure 2: (Color online) ∆s and ∆d as functions of the pairing interaction J for different
values of the total number of particles.We used U = 1, V = 1, ǫf = 0 and α = 0.1.

ground states, we can easily verify that s-wave ordering is preferred for occu-
pations close to ntot ≈ 2, while a d-wave type superconductivity is favoured
for occupations corresponding to a total number of particles close to ntot ≈ 1
and ntot ≈ 3. This criterion for stability among these phases is clearly valid,
at least for the weak coupling regime where the critical temperature is directly
proportional to the amplitude of the order parameter. We will return to this
point when we present the results for the ground state energy of the model in
Section 5. In Figs. 4(a) and 4(b) we show the superconducting order parameters
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Figure 3: (Color online) The zero temperature superconducting order parameters ∆s and ∆d

as functions of the band-filling ntot for several values of J and fixed values of U = 1 and
V = 1.
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for s-wave and d-wave symmetries, respectively, as functions of ntot. However,
differently from the previous figures, we now fix the values of the attractive in-
teraction and Coulomb repulsion (J = −2 and U = 1) and vary the intensity of
the hybridization V . As this increases, for both symmetries, the region of super-
conductivity in the phase diagram decreases showing the detrimental behavior
for the superconducting ground state of large values of the mixing between the
bands. For sufficiently large values, we notice that hybridization can more easily
destroy superconductivity close to ntot = 2, for both s and d-wave symmetries.
In the s-wave case it substantially reduces the range of occupations for which
the system is superconductor.

An extremely relevant question concerns the nature of the ground state that
appears close to ntot = 2, as superconductivity is destroyed when hybridization
increases. Is this a metallic or an insulating state? We delay the answer to
this question to further below when we study in more detail the influence of
hybridization on superconductivity.
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∆d

ntot

Figure 4: (Color online) ∆s and ∆d as functions of the band-filling ntot for several values of
V and fixed values of U = 1 and J = −2.

4.3. Superconducting order parameter as a function of the hybridization

Figs. 5(a) and 5(b) show the zero temperature superconducting order pa-
rameters as functions of hybridization for several values of the filling ntot, con-
sidering U = 1 and J = −2 for s and d-wave symmetries, respectively. This
phase diagram is of special interest, since hybridization can be tuned using
pressure or doping [1].

4.3.1. s-wave case

For the s-wave case, Fig. 5(a) shows clearly the suppression of supercon-
ductivity at a quantum second-order phase transition for a critical value of
the hybridization Vc that depends on the band-filling. The order parameter
∆s ∼ |V − Vc|β vanishes at the SQCP at Vc with a critical exponent β = 1/2
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as expected from the mean-field character of our approach. In order to inves-
tigate the nature of the normal state, for V > Vc, after superconductivity is
destroyed, we calculate the density of states per spin direction (DOS) of the
system in this region of the phase diagram. At half-filling, i.e., for ntot = 2, the
transition is to an insulating state with a gap at the Fermi level in the normal
phase for V > Vc, as can be verified from the DOS shown in Fig. 6. Besides, for
ntot = 2.2 the superconducting phase remains finite as V increases and we do
not have any evidence of superconductivity die in a SQCP. We will return to
this point latter. On the other hand, for lower and higher fillings, for instance,
for ntot = 1 and ntot = 3 the transition as hybridization increases is from an
s-wave superconductor to a metallic state. This can again be verified from an
analysis of the DOS (Fig. 7 for ntot = 1). Furthermore this metal has a peak
in the density of states at the Fermi level at ω = 0, a feature associated with
correlated electronic systems. Our results for the nature of the hybridization
induced quantum superconductor-to-normal phase transition in the case of s-
wave symmetry can be summarized by the density plot shown in Fig. 11(a) for
∆s as a function of hybridization, for different band-fillings and fixed values
of the Coulomb repulsion U = 1, and the attractive interaction J = −2. An
analysis based on calculation of the DOS as discussed above shows that, except
for ntot = 2, the transition to the normal state is always to a metallic state.
Only when the commensurability condition of one electron per site per orbital
is satisfied the normal state for large values of V is an insulator with a band gap
at the Fermi level. We notice from Fig. 11(a) that in the vicinity of this half-

filling occupation there are regions of superconductivity which are quite robust,
surviving for large values of the mixing. For these near half-filling occupations
the decay of the order parameter with V is smooth. This will be shown for the
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Figure 5: (Color online) The zero temperature s-wave and d-wave order parameters as func-
tions of the intensity of the hybridization considering several values of ntot, J = −2 and
U = 1. The fit in panel (b) is to an equation, ∆d ∝

√
Vc − V , with an exponent β = 1/2, as

expected for the vanishing of the order parameter in a mean-field theory.
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Figure 6: (Color online) DOS analysis of c and f electrons ρc(ω) and ρf (ω) respectively, for
s-wave symmetry with ntot = 2 and different values of V for U = 1 and J = −2. Notice
the opening of a gap at the Fermi energy (ω = 0) for V > Vc (∼ 1.9) at the superconductor-
insulator transition.
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Figure 7: (Color online) DOS analysis of c and f electrons ρc(ω) and ρf (ω) respectively, for
s-wave symmetry with ntot = 1 and different values of V for U = 1 and J = −2. In this
case the transition at Vc (∼ 0.87) is from a superconductor to a strongly correlated metal as
evidenced by a peak in the density of states at the Fermi level (ω = 0).
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Figure 8: (Color online) DOS analysis of c and f electrons ρc(ω) and ρf (ω) respectively, for
d-wave symmetry with ntot = 2 and different values of V for U = 1 and J = −2. In this case
the transition at Vc (∼ 1.12) is a superconductor-insulator transition, with the opening of a
gap at Fermi level in the normal phase.

d-wave case discussed next, although in this case this type of smooth behavior
occurs for different occupations.

4.3.2. d-wave case

Fig. 5(b) shows the behavior of the zero temperature d-wave order parame-
ter, ∆d, as a function of V for the same numerical parameters as in Fig. 5(a).
As before, from an analysis of the DOS in Fig. 8, we find at half-filling (ntot = 2)
a quantum phase transition at a critical value of hybridization, from a d-wave
superconductor to an insulator with a gap in the density of states at the Fermi
level. Besides, at any other filling the normal state is always a metallic state.
This is shown, for example for ntot = 2.1, from the DOS analysis in Fig. 9. This
quantum second-order phase transition is such that ∆d ∼ |V −Vc|β with β = 1/2
close to Vc. As in the s-wave case we find regions where superconductivity is
very stable, but now these lie close to the occupations ntot = 1 and ntot = 3.
Along these regions, as shown in Fig. 10 for ntot = 3, the decay of the order
parameter is smooth and monotonic, with no sign of a SQCP up to the large
values of V investigated. The same occurs for s-wave symmetry for band-fillings
close to ntot = 2. As for the s-wave case, these results can be summarized by
the density plot shown in Fig. 11(b) where the amplitude of the d-wave order
parameter is plotted as function of the hybridization for different band-fillings.
Finally, in Fig. 12, we show the effect of increasing Coulomb repulsion (U = 10)
on the zero temperature phase diagram of the two-band system. When com-
pared with the case of U = 1, shown in Fig. 11, we can see substantial changes in
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the phase diagram. The more remarkable is the appearance of a robust region of
superconductivity for band-fillings ntot > 3, for both s and d-wave symmetries.
Naively, we could expect that in this region of the phase diagram, superconduc-
tivity would be associated with a band splitted by Coulomb repulsion from the
filled singly occupied bands. However this is not the case as there is no splitted
doubly occupied band in the present approach. Superconductivity at these large
values of U is associated with pairing among quasi-particles in doubly occupied
sites and involves essentially pairing of electrons with f -character.

The results above confirm and expand previous theoretical results [16, 32]
on the role of hybridization on superconductivity, putting in solid ground our
understanding of the mechanisms for the appearance of a SQCP in multi-band
correlated systems under pressure, as experimentally observed [1].

4.4. BCS-BEC crossover

For completeness we study the change from a Bardeen-Cooper-Schrieffer
(BCS) to a Bose-Einstein condensation (BEC) type of superconductivity that
occurs in our model as a function of the strength of the attractive interaction.
This may be crucial for the understanding of high Tc-superconductivity [31, 6,
13], and of the pseudo-gap state [33]. First we notice that in a lattice there
is a natural wave-vector cutoff that avoids any possible ultraviolet divergence
common to models in the continuous limit [6, 31]. So, in this case it is not
necessary to introduce any regularization procedure to study the BCS-BEC
crossover
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Figure 9: (Color online) DOS analysis of c and f electrons ρc(ω) and ρf (ω) respectively, for
d-wave symmetry with ntot = 2.1 and different values of V for U = 1 and J = −2. The
transition at Vc (∼ 1.3) is a superconductor-metal transition.
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Figure 10: (Color online) DOS analysis of c and f electrons ρc(ω) and ρf (ω) respectively, for
d-wave symmetry with ntot = 3 and different values of V for U = 1 and J = −2.
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Figure 11: (Color online) Density plots of ∆s and ∆d varying ntot and V , for fixed values of
J = −2 and a moderate Coulomb repulsion U = 1. The transition at Vc is to an insulating
state only for the commensurate filling ntot = 2, for both s and d-wave symmetries. Otherwise
it is always to a metallic state. There are regions of great stability for the superconductor for
ntot = 1 and ntot = 3 in the case of d-wave symmetry. For s-wave these regions are close to
the insulator at ntot ≶ 2.

In Figs. 13(a)-(d) we plot the superconducting order parameters and the
chemical potential of the system, for several values of the filling ntot and fixed
parameters V = 1 and U = 1, as functions of the intensity of the attractive
inter-site interaction J . In both cases the BCS-BEC crossover, characterized
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Figure 12: (Color online) Density plots of ∆s and ∆d varying ntot and V , for fixed values of
J = −2 and a strong Coulomb repulsion U = 10. Notice the regions of stability associated
with pairing of electrons of mainly f -character in doubly occupied sites for ntot > 3.

by an increase of the gap and decrease of the chemical potential occurs as we
increase the strength of the attractive interaction. For concentrations below
half-filling, we see in Fig. 13 that the more dilute the system the larger is the
decrease of the chemical potential for negative values with increasing interaction.
Then, as it is showed in Fig. 13, as J increases the chemical potential drops and
becomes negative signaling a change of regime from BCS superconductivity to
Bose-Einstein condensation of pairs. It is worth to point out that the evolution
from the BCS to the BEC limit may occur also increasing the intensity of
hybridization (not shown) [6]. Notice also from Fig. 13, that this crossover
occurs as one dilutes the system. This can be seen from Fig. 13 considering
a fixed value of the strength of the interaction and decreasing the density of
quasi-particles [34, 35].

5. Ground state energy

We have shown above that a strongly correlated, hybridized, multi-band
system may exhibit superconductivity of both s-wave and d-wave symmetries
in a large region of its phase diagram. In particular, both phases can exist in
the same region of the phase diagram. A general criterion to decide the stable
phase and that avoids the calculation of the ground state energy is to compare
the amplitude of the order parameters associated with different symmetries.
Here we check the validity of this criterion by a direct comparison with the
calculated ground state energies. The results are shown in Fig. 14. The panel
(a) shows the amplitude of the order parameters for different symmetries as
functions of the band-filling for fixed values of U = 1 and V = 1. We notice
that according to these amplitudes, the s-wave symmetric superconductor is
more stable for concentrations near half-filling, i.e., ntot = 2. As the band-
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Figure 13: (Color online) The zero temperature order parameters, ∆s and ∆d, and the chem-
ical potential for s and d-wave symmetries as functions of the strength of the attractive
inter-site interaction considering several values of ntot, for V = 1 and U = 1.

filling moves away from ntot = 2 we observe an exchange of stability towards
the d-wave superconductor. Specially for ntot = 1 and ntot = 3 the d-wave
superconductor is the more stable phase. These results are directly confirmed
by the calculation of the ground state energy shown in the panel (b) of Fig. 14.
It also shows that the superconducting phases are more stable compared with
the normal phase. Then, we can conclude that the more stable, s or d state,
corresponds to that with the larger ∆ as is often the case in mean-field.

6. Conclusions

In this work we have studied the superconducting properties of multi-band
strongly correlated systems in the presence of nearest neighbors attractive inter-
actions. We considered that the most important interactions leading to super-
conductivity are those among the quasi-particles in the narrow band (intra-band
case). Our model is sufficiently general to account for many systems of actual
interest as high-Tc, Fe-pnictides and heavy fermion superconductors. Further-
more, it considers different symmetries for the order parameter. In order to
treat the strong correlations we have used a generalized slave-boson approach
that has proved to be very successful for this problem. Then, we could proceed
with a thorough study of our problem that had to be dealt numerically due to
its complexity (seven coupled self-consistent equations). Our concern in this
paper was mainly with the zero temperature phase diagram of the model as a
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function of the different parameters of the model. One main motivation was
to investigate the existence of SQCP that can be reached and studied in real
systems. This lead us to consider the influence of the strength of the mixing
between different orbitals on superconductivity. For condensed matter systems
this is a parameter that can be easily tuned, either by applying external pres-
sure or doping the system. Indeed, differently from cold atom systems, U and
J are difficult to control in condensed matter materials. We have shown that
hybridization can drive a superconducting instability to an insulator, a normal
metal or a correlated metal with a peak in the DOS at the Fermi level. The
superconductor-insulator transition was found to occur only at half-filling, i.e.,
for ntot = 2. For any other filling the hybridization driven superconductor-
normal phase transition is always to a metallic state. We have also investigated
the effect of the local Coulomb repulsion in the superconducting state, even
though this is not a realistic control parameter for condensed matter systems,
as pointed out above. Its effect is deleterious to superconductivity, as expected,
reducing the region for superfluidity in the phase diagram.

We have shown the relevance of the concept of BCS-BEC crossover for our
study. We pointed out that it can occur by increasing the strength of the
attractive interactions, but probably more relevant, it can occur as a function
of band-filling for fixed values of the attractive interaction.

We have studied the stability of the superconducting ground states with re-
spect to the normal state and for different symmetries of the order parameters.
We have shown that, in general, the s-wave state is preferred for occupations
near half-filling, while there is an exchange of stability for a d-wave supercon-
ductor as the occupation goes to ntot = 1 or ntot = 3.

Finally, it would be very interesting to study this same problem in the pres-
ence of inter-band and pair hopping pairings since these pairing are affected dif-
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ferently by hybridization, and also the Fermi surface deformation [36] induced
by a nodal pairing in the superconducting gap.
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