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Using a combined oxygen-supply and
substrate-feeding strategy to improve
2,3-butanediol production by metabolically
engineered Klebsiella oxytoca KMS005
Sitha Chan,a,b,c Sunthorn Kanchanatawee,a Sirima Suvarnakuta Jantama,c

Kaemwich Jantama,a* Claire Joannis-Cassanb and Patricia Taillandierb*

Abstract

BACKGROUND: There is much demand for and extensive application for 2,3-butanediol (2,3-BD) in various fields, and 
micro-aerobic and substrate-feeding conditions greatly affect microbial growth and production. The theoretical maximum of 
2,3-BD fermentative yield has rarely been reported. Therefore, our study aimed to develop an efficient combined oxygen-supply 
and substrate-feeding strategy to improve 2,3-BD production yield in metabolically engineered Klebsiella oxytoca KMS005.

RESULTS: The optimized oxygen consumption for 2,3-BD production by strain KMS005 was demonstrated at 9.2 g for 1 L working 
volume corresponding to KLa of 25.2 h−1. During fed-batch, a glucose feeding rate of 2 g h−1 starting at the end of the growth 
phase for 48 h followed by a final batch phase of 40 h was found likely to be satisfactory for 2,3-BD production by the strain 
KMS005. A final 2,3-BD concentration was obtained at 74.7 g L−1 with few by-products formation. A theoretical maximum of 
2,3-BD production yield of 0.5 g g−1 substrate used was also approached.

CONCLUSION: Our oxygen-supply strategy with the specific feeding pattern developed in this study allowed the highest 
fermentative production yield of 2,3-BD ever reported. The KMS005 strain may be used as a biocatalyst for cost-effective 2,3-BD 
production from renewable substrates. In addition, the outcome might bring a message for further developments of simple 
fed-batch fermentation under micro-aeration conditions into larger scales for 2,3-BD production by K. oxytoca KMS005 or even 
other microorganisms.

Keywords: biocatalysis; aeration; fermentation; metabolic engineering

INTRODUCTION
Bio-based bulk chemicals have been intensively developed
to replace fossil-based chemicals owing to gradually increas-
ing prices of petrochemical feedstocks and their diminishing
availability.1 Many derivatives of 2,3-butanediol (2,3-BD) have
been recognized on the global market in the forms of methyl ethyl
ketone (MEK), diacetyl, polyurethane-melamides, and others.
Their applications include fuel, additives and flavoring agents
for food and fragrances, pharmaceutical products, bio-plastics,
and solvent productions.2 2,3-BD production via fermentation
from biomass is a good option to supply the increasing global
market demand. Fermentative 2,3-BD production is required to
meet high final concentrations and yields but to minimize residual
sugars and by-products to limit the cost of downstream processes.
Some key factors of 2,3-BD production via fermentation process,
including microorganisms, inexpensive substrates and media,
simple modes of operation, and low costs of separation and purifi-
cation steps, need to be considered for the making of a profit on a
commercialized scale.

2,3-BD can be produced by anaerobic and facultative aerobic
microorganisms. Oxygen supply is the most important parameter

since the 2,3-BD pathway participates in the regulation of the
NADH/NAD+ ratio to maintain the redox balance in the cells.
Under less than fully aerobic cultivation, lactate dehydrogenase,
pyruvate-format lyase and 𝛼-acetolactate synthase enzymes
act upon pyruvate (Fig. 1). 2,3-BD is generally produced under
micro-aerobic conditions under slightly acidic pH.3 Several 2,3-BD
production runs were performed to optimize the oxygen supply
by various control strategies, including oxygen mass transfer
coefficient (kLa), respiratory quotient (RQ), or oxygen uptake
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Figure 1. Fermentation pathways in K. oxytoca KMS005 under micro-aerobic conditions. Central metabolism indicating genes deleted in the engineered
strain for 2,3-BD production. Solid arrows represent central fermentative pathways. Dashed arrow represents alternative acetate-producing pathway via
pyruvate oxidase (poxB). Circled-crosses represent the gene deletions performed to obtain KMS005. Genes and enzymes: ldhA, lactate dehydrogenase;
pflB, pyruvate formate-lyase; pta, phosphate acetyltransferase; ackA, acetate kinase; tdcD, propionate kinase; tdcE, threonine decarboxylaseE; adhE, alcohol
dehydrogenase; aldA, acetaldehyde dehydrogenase; ppc, phosphoenol- pyruvate carboxylase; mdh, malate dehydrogenase; fumABC, fumaraseisozymes;
frdABCD, fumaratereductase; fdh, formate dehydrogenase; poxB, pyruvate oxidase; budA, 𝛼-acetolactate decarboxylase; budB, 𝛼-acetolactate synthase;
budC, butanediol dehydrogenase and dar, diacetylreductase (modified from Jantama et al.10).

rate (OUR). Fages et al.4 attempted to use kLa to optimize 2,3-BD
production by Bacillus polymyxa. High (R,R)-2,3-BD concentration
of 44 g L−1 was obtained with a productivity of 0.79 g L−1 h−1

by varying the values of kLa during fermentation. A two-stage air
supply strategy by varying agitation speeds and aeration rates was
also reported. For example, a two-stage agitation speed strategy
was performed to supply different oxygen levels for optimizing
cell growth and 2,3-BD production by Klebsiella oxytoca.5 RQ was
also assigned to determine optimal oxygen supply. Zeng et al.6

employed an optimum RQ values ranging between 4 and 4.5 to
obtain a high 2,3-BD concentration of around 96 g L−1. Zhang
et al.7 also demonstrated 2,3-BD production at the concentration
of 140 g L−1 by Serratia marcescens by switching RQ values from
1–1.5 to 1.8–2.0.

A fed-batch strategy was also superior compared with batch and
continuous cultivations to obtain high concentrations of 2,3-BD.
This improves the final product concentration thus avoiding the
effect of substrate inhibition by the maintenance and supply of
additional sugar at a relatively low level.8 A fed-batch strategy
providing a constant feeding rate is commonly considered as
the simplest method, due to the lack of requirements for a com-
puter coupled with a peristaltic pump, substrate sensors, and
other sophisticated equipments for monitoring the fermentation
condition. However, the feeding pattern to maintain a constant
sugar residue concentration was likely to be preferential for 2,3-BD
production by Klebsiella spp.9

The aim of this study was to improve the 2,3-BD production
yield by a metabolically-engineered strain of K. oxytoca KMS005. In
this work, the oxygen supply for efficient 2,3-BD batch production
under micro-aerobic conditions was first optimized by varying kLa
values under conditions of either constant or two-stage aeration.

Then, several fed-batch conditions were carried out to investigate
the optimized feeding strategy for maximizing 2,3-BD yield and
concentration but minimizing substrate inhibition.

EXPERIMENTAL
Microorganism
A previously metabolically-engineered K. oxytoca KMS00510 was
used throughout this study. The strain KMS005 was developed by
deleting genes involved in NADH competing pathways, includ-
ing adhE (alcohol dehydrogenase E), ackA/pta (acetate kinase
A/phosphotransacetylase), and ldhA (lactate dehydrogenase A).
Luria-Bertani (LB) agar composed (per liter) of 5 g yeast extract,
5 g NaCl, 10 g peptone, and 20 g agar was used to maintain the
culture at 4 ∘C.

Culture method
For seed preparation, KMS005 was cultured on a Luria-Bertani (LB)
agar. The plate was incubated at 37 ∘C for 24 h. A full single loop
of the fresh seed was inoculated into 250 mL Erlenmeyer flasks
containing 60 mL LB medium. The inoculum was incubated at
37 ∘C, 250 rpm for 16–18 h. A simple AM1 mineral salts medium
(adapted from Martinez et al.11) in which KCl was excluded, was
used as the fermentation medium throughout this study. The
optimized glucose concentration at the concentration of 90 g L−1

was estimated from our previous study in 2,3-BD production from
maltodextrin.12

Batch fermentations
Fermentations were carried out in 2 L bioreactors (BIOFLO 110,
New Brunswick Scientific, USA) containing 1 L of AM1 medium



supplemented with 14% (w/v) glucose in duplicate. The seed cul-
ture was inoculated to the fermentation medium at the final OD550

of 0.1. The temperature was regulated at 37 ∘C. The pH of the
medium fermentation was maintained after being dropped to 6.0
by the automatic addition of 3 mol L−1 KOH. The inlet gas flow rate
was controlled at 0.8 or 1 vvm. Two Rushton turbines were agitated
at speeds of 250 or 400 rpm. The bioreactor was equipped with
an automatic gas analyzer (SERVOMEX 4100, UK) for on-line mea-
surement of CO2 and O2 concentrations in the exit gas. Dissolved
oxygen (DO) was measured by DO probe (Mettler Toledo 6800,
USA). Cell dry weight, and concentrations of glucose, 2,3-BD, suc-
cinate, acetate, and ethanol samples were determined every 24 h.

Batch operations (B) were performed to study effects of different
oxygen levels supplied during both growth and stationary phases
of 2,3-BD production. For one-stage oxygen supply (1), oxygen
was provided at the same level throughout the fermentation time
with either low (L: 400 rpm and 0.8 vvm; kLa: 25.2 h−1) or high (H:
400 rpm and 1.0 vvm; kLa: 36.1 h−1) aeration. The conditions were
designated as B1L and B1H, for batch-one stage oxygen supply
under low and high aeration, respectively. For two-stage oxygen
supply (2), levels of oxygen were provided at the same level as
conditions of one-stage oxygen (low or high) supply during the
growth phase. After that, levels of oxygen provided were switched
to lower values for both low aeration (L: 250 rpm and 0.8 vvm; kLa:
19.6 h−1) and high aeration (H: 400 rpm and 0.8 vvm; kLa: 25.2 h−1)
during the stationary phase. The conditions were designated as
B2L and B2H, for batch-two stage oxygen supply under low and
high aeration, respectively.

Fed-batch fermentations
At first, the fed-batch (FB) fermentation was carried out in the same
way as batch mode except for the initial sugar concentrations.
Initial glucose concentrations (S) were varied among experiments
(90, 120, or 140 g L−1). Then, the bioreactor was fed with a glucose
stock solution (800 g L−1 of glucose in a diluted AM1 medium
(1:4)) at constant flow rates depending on the targeted glucose
concentration in the medium. The starting and duration of the
feeding phase were varied among experiments. The feeding rate
was initially estimated based on the optimum sugar consumption
rate obtained from the batch condition, and was varied at rates of
1.25, 2.0, or 2.5 mL h−1. The feeding rate at 2 g glucose h−1 was
equivalent to 2.5 mL h−1 in this study. Each fed-batch condition
with different initial sugars and feeding patterns is indicated in
Table 2.

Analytical methods
Cell dry weight
The optical density (OD) at 550 nm of a 1 mL sample was measured
by a spectrophotometer Spekol®1500. Cell mass was estimated
from a linear equation derived from a plot of OD versus cell dry
weight (CDW).

Glucose, 2,3-BD, acetate, succinate, and ethanol concentrations
The fermentative culture broth was centrifuged at 13 500 rpm for
4 min to separate cells and supernatant. The supernatant was
filtrated through a 0.2 μm filter membrane. Twenty-five micro-liters
of injection volume were automatically analyzed by HPLC (Thermo
Scientific, France) equipped with a column, Rezex ROA organic
acid H+ (8%), 250×4.6 mm phase–reverse column (Phenomenex,
France) thermostated at 30 ∘C, and associated with a Refractive
Index detector in series with a UV detector. The elution with an

aqueous solution of 10 mmol L−1 H2SO4 was performed at 170 μL
per min.

Determination of volumetric oxygen mass transfer coefficient (kL.a)
The kLa values were estimated by a dynamic gassing-out method13

by monitoring an increase in DO concentration in AM1 medium
containing 14% (w v−1) glucose monohydrate without inoculation
at the working volume of 1 L in the bioreactor. Different gas flow
rates (between 0.8 and 1 vvm) and stirring speeds (between 250
and 400 rpm) were used as parameters for determining kLa values.

Calculation of respiratory quotient
The gas balancing method was used to calculate OUR (oxygen
uptake rate) and CPR (CO2 production rate) by an assumption of
well-mixed bioreactor under steady-state conditions.14 Concentra-
tions of O2 and CO2 in the inlet gas were approximately constant
and considered equal to 21% and 0%, respectively. The respiratory
quotient (RQ) was then calculated as:

RQ = CPR∕OUR
(

mol mol−1)

Calculation of total O2 consumed during batch fermentation
Mass balance for the DO can be written as:

dCL∕dt = kLa
(

C∗
L –CL

)
–OUR

where CL is the concentration of DO in the liquid phase and CL* is
the concentration at which the DO was saturated (CL*= 8×10−3 g
L−1). Since CL is constant and close to zero after approximately 8 h
of fermentation, it can be written as:

kLa
(

C∗
L

)
= OUR

O2consumed (g) = kLa.C∗
L .t.V for 8 < t < 52 h

where V is the volume of the liquid phase and t is the duration
of the oxygen limitation phase. For the first 8 h incubation, the
oxygen consumed was calculated by integration. Therefore, the
total amount of consumed oxygen could be estimated.

Carbon balances
Quantities (Q in gram unit) of glucose consumed and fermentative
products produced (2,3-BD, acetate, succinate, ethanol, CO2, and
biomass) were calculated during fermentation. For biomass, the
calculation was based on the average formula of K. oxytaca equiv-
alent to CH1.73O0.43N0.24.15 The percentage of carbon recovery was
calculated as:

%C recovery = Σ
[
ni

(
Qi∕Mi

)]
∕
[
6
(

Qglucose∕Mglucose

)]

where index i refers to fermentative products, ni is equal to the
number of carbon mole by mole of compound i, Qi is the mass of
compound i produced during fermentation, and Mi is the molecu-
lar weight of compound i. Qglucose (g) is the glucose consumed dur-
ing fermentation and Mglucose is the molecular weight of glucose.

Statistical analysis
The mean values and the standard errors were expressed from the
data obtained with duplicate experiments. Differences between
the sample means were analyzed by Duncan’s Multiple Range tests
at 𝛼 = 0.05, and 95% (P < 0.05) significance level by SPSS software
version 17.0.



Table 1. Comparison of the performance of batch fermentation for 2,3-BD production by the strain KMS005 from initial glucose concentration of
140 g L−1 with different aeration strategies

One-stage aeration Two-stage aeration

B1L B1H B2L B2H
Phases (Low aeration) (High aeration) (Low aeration) (High aeration)

kLa (h−1) [rpm, vvm] (min−1) Growth 25.2 36.1 25.2 36.1
(0–24 h) [400, 0.8] [400, 1.0] [400, 0.8] [400, 1.0]

Stationary 25.2 36.1 19.6 25.2
(24–52 h) [400, 0.8] [400, 1.0] [250, 0.8] [400, 0.8]

Max CDWa (g L−1) 4.9± 0.1e,μ 4.6± 0.2μ 5.1± 0.4μ 5.0± 0.4μ

2,3-BD (g L−1) 49.4± 3.0μ 45.1± 2.0𝛼 44.8± 5.5𝛼 50.2± 0.1μ

Yield b (g g−1) 0.37± 0.01μ 0.37± 0.01μ 0.36± 0.01μ 0.37± 0.01μ

Av. Prodc(g L−1 h−1) 0.95± 0.06μ 0.86± 0.04 0.78± 0.10𝛼 0.96± 0.01μ

%Sugar consumed 93 85 87 97
%Carbon balance 96 93 99 95
By-productsd(g L−1)

Succinic acid 0.4± 0.0μ 0.4± 0.0μ 6.1± 0.1𝛼 0.3± 0.1μ

Ethanol 0.1± 0.1μ 0.1± 0.0μ Not detected 0.1± 0.1μ

Acetic acid 1.8± 0.6μ 2.8± 0.1𝛼 1.9± 0.0μ 2.8± 0.1𝛼

a Cell dry weight (CDW) was determined at the end of growth phase.
b Yield was calculated as grams of 2,3-BD produced divided by grams of glucose consumed.
c Average productivity was calculated at 52 h incubation.
d No lactate was found in all tested conditions.
e All data represent the averages of two fermentations with standard errors. Values bearing different Greek symbols were significantly different
between columns (P < 0.05).

RESULTS AND DISCUSSION
Effect of oxygen supply strategy in batch fermentation
Oxygen transfer rate (OTR) is considered the most important oper-
ating parameter for 2,3-BD production. High levels of OTR usu-
ally result in high growth of cells leading to an increase in 2,3-BD
productivities. In contrast, even though the limitation in oxygen
increases 2,3-BD yield, a decrease in overall production rate of
2,3-BD is observed due to a lower cell density. In addition, at an
extremely low oxygen level, equal molar amounts of 2,3-BD and
ethanol are regularly formed by natural 2,3-BD producers.16 Hence,
conditions providing high 2,3-BD concentration and productiv-
ity do not guarantee the high production yield of 2,3-BD. With
these considerations, several oxygen supply strategies were ini-
tially screened in batch fermentations to obtain an optimized oxy-
gen level suitable for efficient 2,3-BD production. Table 1 shows
the kLa values at different aeration and stirring rates. Values of kLa
of 36.1, 25.2, and 19.6 h−1 were observed at stirring and aeration
conditions of 400 rpm with 1.0 vvm, 400 rpm with 0.8 vvm, and
250 rpm with 0.8 vvm, respectively.

In one-step aeration experiments, low (B1L) and high (B1H) OTR
conditions were applied (Table 1). For both conditions, the growth
phase of the strain occurred at 24 h (Fig. 2(a), (b)). At the begin-
ning, oxygen transfer was not a limiting parameter since DO values
did not reach zero. In addition, the specific growth rate reached
maximum (data not shown). After 8 h incubation, oxygen transfer
became limiting and the rate became linear. Meanwhile, 2,3-BD
production started (likely growth-associated production). During
the stationary phase (from 24 to 52 h), 2,3-BD production did not
follow the growth-associated pattern. The 2,3-BD productivity dur-
ing the growth phase (1.3 g L−1 h−1 for both B1L and B1H) was
also higher than those observed during the stationary phase (1.0 g
L−1 h−1 for B1L and 0.9 g L−1 h−1 for B1H). No significant difference
was observed in the maximum CDW but there was significance

in the final 2,3-BD concentration and the 2,3-BD productivity
between B1L and B1H conditions (Table 1). The significantly lower
productivity observed during the stationary phase for B1H may
be explained by the accumulation of more by-products and lower
consumption of sugar. In addition, high percentages of carbon bal-
ance (93–99%) obtained for each tested condition revealed that
the carbon distribution through the 2,3-BD production pathway
of KMS005 strain was nearly conserved in which all consumed
glucose was almost totally dedicated to the combined concen-
trations of 2,3-BD, cell biomass, by-products and carbon dioxide
(Table 1). RQ profiles were similar for both conditions (B1L and
B1H). They reached a maximum value during the growth phase
then started to decrease when oxygen started to deplete. Notice-
ably, the RQ value of the B1H condition was constant (around
3.5) until the end of the growth phase. In contrast, lower RQ val-
ues during the stationary phase were in the range of 1–2. It was
more likely that 2,3-BD was produced during both growth and
non-growth phases regardless of RQ values. However, higher RQ
values during the growth phase caused higher 2,3-BD produc-
tion rate compared with that of lower RQ values observed in the
stationary phase.

In two-step aeration experiments, decreased OTR conditions
during the stationary phase were applied. These were B2L with
lower aeration and B2H with higher aeration (Table 1). The B2L
condition resulted in decreased 2,3-BD concentration compared
with the one-stage lower aeration (B1L). However, the B2H con-
dition significantly improved 2,3-BD production and productivity
compared with observations under B2L and B1H conditions.
No significant differences in the 2,3-BD production yield were
observed for all conditions except for B2L where the yield was
lower. Results confirmed that oxygen supply during two-stage
experiments may be suitable for mixed growth-associated
2,3-BD production. The accumulation of by-products significantly
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Figure 2. Time course of 2,3 BD production by K. oxytoca KMS005 during batch fermentation with different aeration strategies: one-step aeration with
(a) low aeration and (b) high aeration, and two-stage aeration with (c) low aeration and (d) high aeration. The symbols represent: 2,3-BD ( ), dissolved
oxygen ( ), RQ ( ), cell biomass ( ), sugar consumed ( ). The vertical dashed line represents the change in aeration rate.
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Figure 3. Effect of oxygen consumption on final concentrations of 2,3-BD,
succinate, ethanol and acetate during batch fermentation (7.0 for B2L,
9.2 for B1L, 10.1 for B2H, and 12.4 for B1H). Bar graphs bearing different
lower case letters, Greek symbols, numbers and asterisks were significantly
different between treatments (P < 0.05) for 2,3-BD, succinic acid, acetic acid
and ethanol, respectively.

increased during the B2L two-stage aeration experiment com-
pared with those in the one-stage aerations.

Figure 3 shows variations in final concentrations of 2,3-BD and
by-products (mainly acetate and succinate) depending on total
O2 consumption by the strain KMS005 in batch fermentation.
According to these results, B1L appeared to be the best condi-
tion among others due to minimizing formation of by-products
but maximizing 2,3-BD concentration. However, no significant

difference in 2,3-BD production yield (around 0.37 g g−1 glucose
used) was observed among conditions. For the B1L condition, the
OUR value was 6.3 mmol L−1 h−1, which was equivalent to a total
oxygen consumption of 9.2 g. A kLa of 25.18 h−1 was obtained
under stirring and aeration of 400 rpm and 0.8 vvm, respectively.
The condition obtained in this study was comparable with the
findings of Ji et al.,5 in which a kLa value of 26.7 h−1 was obtained
under stirring and aeration of 300 rpm and 1.0 vvm, respectively.
Our findings were also supported by previous reports of the effect
of aeration strategy for improvement of 2,3-BD production.4,5,7 As
shown in Table 1, B2H resulted in the highest 2,3-BD concentra-
tion at 50.2± 0.1 g L−1, while low initial aeration conditions in B2L
significantly decreased 2,3-BD production to the lowest concen-
tration of 44.8± 5.5 g L−1. Interestingly, the highest 2,3-BD concen-
tration was achieved when total transferred oxygen supplied was
only in the range 9.2 to 10.1 g (Fig. 3). The RQ was able to reach the
range from 3.5 to 4.5 at 12 h during the growth phase and between
1 and 2 during the stationary phase (Fig. 2(c), (d)). Our results were
in an agreement with Zeng et al.6 who reported that the optimum
2,3-BD production was observed at an RQ between 4.0 and 4.5.
However, Zhang et al.7 claimed that the RQ should be separately
controlled at 1.0–1.5 for cell growth and at 1.8 to 2.0 for 2,3-BD
production by S. marcescens H30 based on the stoichiometric cal-
culation of sucrose metabolism under anaerobic or micro-aerobic
conditions. The different RQ values found in our study and the
work of Zhang et al.7 may result from the strains used. In addi-
tion, Zhang et al.7 performed 2,3-BD production from sucrose in
a complex medium supplemented with peptone and yeast extract
while our study employed K. oxytoca KMS005 to utilize glucose to



2,3-BD in a simple mineral salts medium without supplementation
of complex and rich nutrients. Metabolic responses among strains
to different supplemented nutrients might result in different RQ
values during 2,3-BD production.

Our finding may imply that the strain KMS005 preferred an
oxygen supply at the optimal level (kLa≈ 25.2 h−1) to drive
the 2,3-BD production pathway and to maintain proper regu-
lation of NAD+/NADH ratio inside the cells. Proper regulation
was observed when minimized concentrations of by-products
were obtained under appropriate micro-aerobic conditions. The
2,3-BD metabolism by the strain KMS005 become a partially
growth-associated product similar to those reported by Wong
et al.17 and Chan et al.12 In addition, 2,3-BD was produced at
different rates during growth and stationary phases. These obser-
vations may be explained with an understanding of enzymatic
pathways via mixed acid fermentation between wide type and
metabolically engineered strain KMS005. Klebsiella strains are
microorganisms growing and obtaining energy by respiration and
fermentation. Under excessive oxygen supply, the only products
from its metabolism are mostly CO2 and biomass. However, under
anaerobic conditions, mixed organic acids and ethanol serve as
major products. The strain KMS005 was metabolically engineered
via deletions of genes encoding alcohol dehydrogenase (adhE),
acetate kinase-phosphotrans acetylase (ackA/pta), and lactate
dehydrogenase (ldhA) enzymes. Thus, there are few amounts of
by-products such as lactic acid, acetic acid, and ethanol.10 Even
though the transferred oxygen amount was increased to over
9.2 g, increased acetate formations were observed in both B1H
and B2H conditions. Syu16 also reported that further increase in O2

availability caused higher production of acetic acid. Furthermore,
Jantama et al.10 claimed that the production of acetic acid was still
detectable, even though acetate kinase-phosphotrans acetylase
(ackA/pta) genes were successfully deleted in the strain KMS005.
This result may postulate the activation of other acetate-producing
pathways under micro-aerobic conditions instead. Abdel-Hamid
et al.18 stated that pyruvate oxidase (POXB encoded by poxB)
was necessary for cell survival during the stationary phase under
micro-aerobic conditions (Fig. 1). Therefore, this may imply that
POXB compensated ACKA-PTA activities and high oxygen supply
over 9.2 g stimulated this pathway for acetic acid production in
the KMS005 strain.

Unlike acetate, succinate sharply increased when the oxygen
amount consumed was lowered to 7.0 g in B2L (the lowest aera-
tion and kLa). In contrast, the succinate level was constant at very
low concentration when the amount of total oxygen consump-
tion increased from 9.2 to 12.4 g in the other three conditions (B1L,
B2H, and B1H). It suggested that low oxygen level in the B2L condi-
tion was preferable to succinate production compared with other
conditions, and thus might activate enzymes involving succinate
production in the strain KMS005. It was likely that the more aer-
ation increased, the more succinate decreased. Levanon et al.19,20

revealed that malate dehydrogenase (MDH) was usually respon-
sible for succinate production from oxaloacetate by the reduc-
tive branch of TCA cycle under anaerobic and micro-aerobic con-
ditions in E. coli and other bacteria in the family of Enterobacte-
riaceae including K. oxytoca. Then, lower succinate detection in
the strain KMS005 might result from very low malate dehydro-
genase (MDH) activity under high oxygen supply conditions. In
addition, Guest et al.21 suggested that putative fumarate-nitrate
reductase (FNR) proteins regulate transcription levels of functional
genes in 2,3-BD-producing pathways (bud operon). The operon
contains a cluster of genes encoding for 𝛼-acetolactate synthase,

𝛼-acetolactate decarboxylase, and acetoin reductase. FNR also
activated genes involved in succinate production anaerobically. In
the absence or with low amounts of oxygen (lower than 7.0 g), FNR
may down-regulate the expression of budABC genes resulting in
the highest production of succinate. By increasing the consumed
oxygen amount until micro-aeration (9.2 g), more oxygen stim-
ulated 𝛼-acetolactate synthase while FNR was down-regulated
resulting in low expression for genes involved in succinate produc-
tion. On the other hand, aerobic supply (more than 10.1 g oxygen)
resulted in the succinate production pathway being less active.
However, the conditions were more preferable for the activation
of acetate-producing pathways while 2,3-BD production declined
because of the inactivation of BudABC enzymes by high O2 levels.

Effects of feeding pattern in fed-batch fermentation
A series of fed-batch experiments was carried out with the objec-
tive to increase the final 2,3-BD concentration in comparison
with B1L batch experiment by extending the stationary phase
beyond 52 h. During all these experiments, aeration was constant
(kLa= 25.2 h−1) while sugar feeding rates, feeding times, and initial
sugar concentrations were varied (Table 2).

The first experiment (FB-S140-2.5) was similar to batch B1L
except that after 48 h, sugar started to be fed to the culture at a flow
rate of 2 g h−1 (2.5 mL h−1 of stock solution of 800 g L−1 of glucose).
This corresponded with the sugar consumption rate observed in
batch B1L during the stationary phase. The production of 2,3-BD
was similar to the B1L condition in the first 48 h (Fig. 4(a)). After
sugar feeding, the 2,3-BD production rate was maintained at 0.8 g
L−1 h−1 until 76 h while sugar and biomass concentrations were
constant. After 76 h, a decrease in 2,3-BD production rate (0.4 g
L−1 h−1) was observed. Simultaneously, sugar and DO concentra-
tions increased (data not shown). This indicated that the metabolic
activity of cells decreased. Consequently, the global productivity of
2,3-BD was lower than that observed in the batch experiment even
though the final concentration and yield were higher (Table 2).

In FB-S140-2.5b, sugar feeding began earlier (at 36 h) and the
flow rate was decreased when sugar concentration in the medium
increased (Table 2). This resulted in higher production of 2,3-BD
during the first part of feeding (until 75 h) thus providing a higher
final concentration (77 g L−1) compared with FB-S140-2.5. How-
ever, the global productivity was still lower because of decreasing
metabolic activity of the cells after 75 h. By calculating the global
production rate at time 75 h, when the final concentration was
similar to that obtained in FB-S140-2.5 (65 g L−1), the productiv-
ity was 0.88 g L−1 h−1. However, a 2,3-BD yield of 0.49 g g−1 glu-
cose used, which is close to the theoretical maximum of 0.5 g g−1,
was obtained. Besides, residual sugar concentrations in these two
fed-batches were very high (Table 2). This may cause a decrease in
the efficacy of the down-stream process.

For FB-S140-1.25, sugar feeding rate (started at 36 h) was
decreased to 1.25 mL h−1 to avoid substrate accumulation in the
bioreactor. During 36 to 56 h incubation, 2,3-BD production rate
was lower than that observed in FB-S140-2.5b (0.66 g L−1 h−1 for
FB-S140-1.25 and 0.9 g L−1 h−1 for FB-S140-2.5b). After 56 h, the
sugar concentration was constant at 20 g L−1 (Fig. 4(a)) and the
2,3-BD production rate decreased to 0.25 g L−1 h−1 at 120 h. Jan-
tama et al.10 found that butanediol dehydrogenase (BudC) activity
was up-regulated in the strain KMS005 in medium containing
100 g L−1 glucose compared with that in medium containing
50 g L−1 glucose. This was due to inactivation of other enzymes
involved in NADH re-oxidation including alcohol dehydrogenase



Table 2. Comparison of the performance of fed-batch fermentation for 2,3 BD production with different sugar feeding strategies. All experiments
were performed in duplicate

FB-S140-2.5 FB-S140-2.5b FB-S140-1.25 FB-S90-2.5 FB-S120-2.5

Max CDW, g L−1 (%g g−1)a 4.5 (3.1) 5.3 (3.4) 4.7 (3.0) 6.1 (3.5) 5.2 (3.5)
Initial sugar (g L−1) 140 140 140 90 120
Glucose 2.5 2.5 (36–75 h) 1.25 2.5 2.5
Feeding rate (48–120 h) 2.0 (75–100 h) (36–120 h) (24–76 h)c (20–68 h)d

(mL h−1) 1.25 (100–120 h)
2,3-BD g L−1, (%g g−1) 65.3± 2.1𝛽 (45.0) 77.3± 1.2μ (49.0) 60.4± 0.9 (39.0) 66.6± 3.2𝛽 (37.9) 74.7± 0.6𝛼 (50.0)
2,3-BD Yield (g g−1) 0.45± 0.01 0.49± 0.00μ 0.39± 0.02𝛽 0.38± 0.01e, 𝛽 0.50± 0.01μ

Overall Prod (g L−1 h−1) 0.56± 0.01μ 0.54± 0.02μ 0.51± 0.01 0.65± 0.01𝛽 0.64± 0.00𝛽

Residual sugar (g L−1) 67.3± 2.3𝛽 77.1± 3.6μ 17.8± 1.5𝛼 4.9± 0.1𝜋 32.4± 0.3¥

By-productb, g L−1 (%g g−1)
Succinate 0.4± 0.2μ (0.2) 0.2± 0.1𝛼 (0.1) 0.3± 0.3μ (0.2) 0.1± 0.1𝛼 (0.1) 0.5± 0.1μ (0.3)
Ethanol 0.6± 0.0𝛼 (0.4) 0.3± 0.0£ (0.2) 0.7± 0.0𝛼 (0.4) 0.1± 0.0μ (0.1) 0.2± 0.0𝜋 (0.1)
Acetate 2.6± 0.2𝜋 (1.8) 2.2± 0.1𝛽 (1.4) 2.3± 0.2𝛼 (1.5) 3.8± 0.1μ (2.2) 4.3± 0.1 (2.9)
% Carbon balance NA NA 116 90 105

a Yields (%g g−1) were calculated as grams of 2,3-BD, cells or by-products produced divided by grams of glucose consumed.
b By-products were ethanol, succinate, and acetate. No lactate was detected.
c Fermentation time from 76–100 h without sugar feeding.
d Fermentation time from 68–116 h without sugar feeding.
e All data represented the averages of two fermentations with standard errors. Values bearing different Greek symbols were significantly different
between columns (P < 0.05).

and lactate dehydrogenase. This suggested that the 2,3-BD pro-
duction rate may be increased at higher sugar concentrations.
High yield and 2,3-BD concentration may be correlated with high
residual sugar concentration in which the high glycolytic flux was
triggered. Therefore, this might activate enzymes involving NAD+

regeneration to relieve constraints to prevent halting glucose
consumption.

The two last experiments (FB-S90-2.5 and FB-S120-2.5) were
performed with the aim to decrease residual sugars. Two strate-
gies were proposed to vary different sugar concentrations during
the feeding phase (about 20 g L−1 for FB-S90-2.5 and 50 g L−1

for FB-S120-2.5). Also, feeding phases were shortened (52 h for
FB-S90-2.5 and 48 h for FB-S120-2.5) in which the feeding was
started at the end of the growth phase. The fermentation was
prolonged to ensure the complete utilization of substrate (Fig. 5).
Maximum biomass at 6.05 g L−1 was obtained in FB-S90-2.5 g
L−1. This was the highest cell concentration among all fed-batch
experiments. During the feeding phase, 2,3-BD production rate
was 1.0 g L−1 h−1 along with the residual glucose concentration of
50 g L−1 (FB-S120-2.5). In FB-S90-2.5, the 2,3-BD production rate
was only 0.72 g L−1 h−1 while the sugar concentration was 20 g
L−1. Therefore, the production rate decreased to 0.69 g L−1 h−1

for FB-S120-2.5 and 0.4 g L−1 h−1 for FB-S90-2.5 during the last
batch phase (Fig. 5). For FB-S90-2.5, the sugar was almost totally
consumed (< 5 g L−1) after 116 h whereas the residual sugar
concentration of 32 g L−1 was still found in FB-S120-2.5 (Fig. 5;
Table 2). Even though, 2,3-BD yield at FB-S120-2.5 approached
the theoretical maximum of 0.5 g g−1 substrate used; the carbon
balance was 105% for this experiment thus indicating a slight
experimental error. The approaching of theoretical maximum may
result from modification of the 2,3-BD metabolism in the modi-
fied strain KMS005 thus changing to partially growth-associated
production.17 A greater 2,3-BD production rate was observed
when the sugar concentration in the medium was maintained at
50 g L−1 (1.0 g L−1 h−1) rather than that at 20 g L−1 (0.72 g L−1 h−1).
Garge and Jain22 reported that the most commonly-used initial

sugar concentrations were in the range of 5 to 10%. Célinska
et al.3 also suggested that the range of sugars may be adjusted
depending on the type of substrates, inhibitory compounds, and
types of media. Remarkably, slight increases in acetate and higher
biomass concentrations were also detected in FB-S90 and FB-S120
conditions (Table 2). It can be observed in Fig. 4(b) that the RQ
profiles are similar to the batch experiments, with higher values
during the growth phase, except for experiment FB-S140.2.5b
with the highest residual sugar concentration. This suggested that
the feeding substrate in the exponential phase may affect the
metabolic activity of cells. This could be supported by the work of
Jantama et al.10 They reported that more activations of pyruvate
oxidase (PoxB) in which CO2 and acetyl-CoA are usually generated,
and acetolactate synthase (BudB) with butanediol dehydrogenase
(BudC) activities in the strain KMS005 were found when a higher
sugar concentration was supplied under micro-aerobic conditions
during mid and late exponential phases.

Our 2,3-BD concentration was lower than, but 2,3-BD yield was
superior to, those of other previous reports.23,24 They were also
higher than some using K. oxytoca as producers.25,26 Nevertheless,
all previous works in 2,3-BD production by Klebsiella species or
other microorganisms were mostly conducted with rich media
supplemented with EDTA, yeast extract and casamino acid. Media
increased the fermentation cost and caused more steps in the
purification process. Unlike the expensive complex nutrients, the
simple mineral salts medium with less inorganic nitrogen sources
and trace metals used in our study was expected to reduce some
obstacles to product recovery.

CONCLUSION
Klebsiella oxytoca KMS005 was optimized to evaluate suitable fer-
mentative parameters for 2,3-BD production under micro-aerobic
cultivation. Optimum oxygen supply and sugar feeding profile
improved the final concentration and yield of 2,3-BD. Employ-
ing a constant kLa at 25.2 h−1 under a constant feeding rate
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Figure 4. Fermentation profile of (a) 2,3-BD and sugar concentrations,
and (b) RQ during fed-batch fermentation with initial sugar concentra-
tion of 140 g L−1. The symbols represent (a): 2,3-BD for FB-S140-2.5 ( ),
FB-S140-2.5b ( ), and FB-S140-1.25 ( ); sugar consumption for FB-S140-2.5
( ), FB-S140-2.5b ( ), and FB-S140-1.25 ( ); feeding time for FB-S140-1.25
and 2.5 b ( ); feeding times for FB-S140-2.5 ( ). The symbols repre-
sent (b): FB-S140-2.5 ( ), FB-S140-2.5b ( ), FB-S140-1.25 ( ), FB-S90-2.5 ( ),
FB-S120-2.5 ( ).
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Figure 5. Fermentation profile of 2,3-BD and sugar concentrations during
fed-batch fermentation with varied initial sugar concentration and feeding
time. The symbols represent: 2,3-BD for FB-S90-2.5 ( ), and FB-S120-2.5 ( );
sugar consumption for FB-S90-2.5 ( ) and FB-S120-2.5 ( ); feeding period
for FB-S90-2.5 ( )., and FB-S120-2.5 ( ).

of 2 g h−1, fed-batch fermentation by starting the feeding at
the end of the growth phase (FB-S120-2.5) may enhance 2,3-BD
production to reach 74.7 g L−1 with less residual sugar con-
centration. In addition, 2,3-BD yield approached the theoretical
maximum of 0.5 g g−1 substrate consumed using this strategy.
The use of a simple medium and fed-batch mode in this study
may also reduce the 2,3-BD production costs related to medium

preparation, process operation, and waste disposal. Therefore, this
study may provide insights into development of fermentative con-
ditions for producing other microbial products by engineered or
non-engineered microorganisms under micro-aerobic conditions.
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