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Abstract. Deep learning on graphs has become a popular research topic with
many applications. However, past work has concentrated on learning graph embed-
ding tasks, which is in contrast with advances in generative models for images and
text. Is it possible to transfer this progress to the domain of graphs? We propose to
sidestep hurdles associated with linearization of such discrete structures by having
a decoder output a probabilistic fully-connected graph of a predefined maximum
size directly at once. Our method is formulated as a variational autoencoder. We
evaluate on the challenging task of molecule generation.

1 Introduction

Deep learning on graphs has very recently become a popular research topic [3]. Past
work has concentrated on learning graph embedding tasks so far, i.e. encoding an input
graph into a vector representation. This is in stark contrast with fast-paced advances
in generative models for images and text, which have seen massive rise in quality of
generated samples. Hence, it is an intriguing question how one can transfer this progress
to the domain of graphs, i.e. their decoding from a vector representation. Moreover, the
desire for such a method has been mentioned in the past [5].

However, learning to generate graphs is a difficult problem, as graphs are discrete non-
linear structures. In this work, we propose a variational autoencoder [9] for probabilistic
graphs of a predefined maximum size. In a probabilistic graph, the existence of nodes
and edges, as well as their attributes, are modeled as independent random variables.

We demonstrate our method, coined GraphVAE, in cheminformatics on the task of
molecule generation. Molecular datasets are a challenging but convenient testbed for
generative models, as they easily allow for both qualitative and quantitative tests of
decoded samples. While our method is applicable for generating smaller graphs only
and its performance leaves space for improvement, we believe our work is an important
initial step towards powerful and efficient graph decoders.

2 Related work

Graph Decoders in Deep Learning. Graph generation has been largely unexplored in
deep learning. The closest work to ours is by Johnson [8], who incrementally constructs
a probabilistic (multi)graph as a world representation according to a sequence of input
sentences to answer a query. While our model also outputs a probabilistic graph, we do
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Fig. 1: Illustration of the proposed variational graph autoencoder. Starting from a
discrete attributed graph G = (A,E, F ) on n nodes (e.g. a representation of propylene
oxide with 3 carbons and 1 oxygen), stochastic graph encoder qφ(z|G) embeds the
graph into continuous representation z. Given a point in the latent space, our novel
graph decoder pθ(G|z) outputs a probabilistic fully-connected graph G̃ = (Ã, Ẽ, F̃ ) on
predefined k ≥ n nodes, from which discrete samples may be drawn. The process can
be conditioned on label y for controlled sampling at test time. Reconstruction ability of
the autoencoder is facilitated by approximate graph matching for aligning G with G̃.

not assume having a prescribed order of construction transformations available and we
formulate the learning problem as an autoencoder.

Xu et al. [23] learns to produce a scene graph from an input image. They construct a
graph from a set of object proposals, provide initial embeddings to each node and edge,
and use message passing to obtain a consistent prediction. In contrast, our method is
a generative model which produces a probabilistic graph from a single opaque vector,
without specifying the number of nodes or the structure explicitly.

Discrete Data Decoders. Text is the most common discrete representation. Generative
models there are usually trained in a maximum likelihood fashion by teacher forcing
[22], which avoids the need to backpropagate through output discretization but may lead
to expose bias [1]. Recently, efforts have been made to overcome this problem by using
Gumbel distribution [10] or reinforcement learning [24]. Our work also circumvents the
non-differentiability problem, namely by formulating the loss on a probabilistic graph.

Molecule Decoders. Generative models may become promising for de novo design of
molecules fulfilling certain criteria by being able to search for them over a continuous
embedding space [14]. While molecules have an intuitive and richer representation as
graphs, the field has had to resort to textual representations with fixed syntax, e.g. so-
called SMILES strings, to exploit recent progress made in text generation with RNNs
[14, 16, 5]. As their syntax is brittle, many invalid strings tend to be generated, which has
been recently addressed by [11] by incorporating grammar rules into decoding. While
encouraging, their approach does not guarantee semantic (chemical) validity, similarly
as our method.
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3 Method

Our method is formulated in the framework of variational autoencoders (VAE) [9]. The
main idea is to output a probabilistic fully-connected graph and use a graph matching
algorithm to align it to the ground truth. We briefly recapitulate VAE below and continue
with introducing our novel graph decoder together with an appropriate objective.

3.1 Variational Autoencoder

Let G = (A,E, F ) be a graph specified with its adjacency matrix A, edge attribute
tensor E, and node attribute matrix F . We wish to learn an encoder and a decoder
to map between the space of graphs G and their continuous embedding z ∈ Rc, see
Figure 1. In the probabilistic setting of a VAE, the encoder is defined by a variational
posterior qφ(z|G) and the decoder by a generative distribution pθ(G|z), where φ and θ
are learned parameters. Furthermore, there is a prior distribution p(z) imposed on the
latent code representation as a regularization; we use a simplistic isotropic Gaussian
prior p(z) = N(0, I). The whole model is trained by minimizing the upper bound on
negative log-likelihood − log pθ(G) [9]:

L(φ, θ;G) = Eqφ(z|G)[− log pθ(G|z)] + KL[qφ(z|G)||p(z)] (1)

The first term of L, the reconstruction loss, enforces high similarity of sampled generated
graphs to the input graph G. The second term, KL-divergence, regularizes the code
space to allow for sampling of z directly from p(z) instead from qφ(z|G) later. While
the regularization is independent on the input space, the reconstruction loss must be
specifically designed for each input modality.

3.2 Probabilistic Graph Decoder

In a related task of text sequence generation, the currently dominant approach is character-
wise or word-wise prediction [2]. However, graphs can have arbitrary connectivity and
there is no clear way how to linearize their construction in a sequence of steps: Vinyals
et al. [21] empirically found out that the linearization order matters when learning on
sets. On the other hand, iterative construction of discrete structures during training
without step-wise supervision involves discrete decisions, which are not differentiable
and therefore problematic for back-propagation.

Fortunately, the task can become much simpler if we restrict the domain to the
set of all graphs on maximum k nodes, where k is fairly small (in practice up to the
order of tens). Under this assumption, handling dense graph representations is still
computationally tractable. We propose to make the decoder output a probabilistic fully-
connected graph G̃ = (Ã, Ẽ, F̃ ) on k nodes at once. This effectively sidesteps both
problems mentioned above.

In probabilistic graphs, the existence of nodes and edges is modeled as Bernoulli
variables, whereas node and edge attributes are multinomial variables. While not dis-
cussed in this work, continuous attributes could be easily modeled as Gaussian variables
represented by their mean and variance. We assume all variables to be independent.
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Each tensor of the representation of G̃ has thus a probabilistic interpretation. Specifi-
cally, the predicted adjacency matrix Ã ∈ [0, 1]k×k contains both node probabilities Ãa,a
and edge probabilities Ãa,b for nodes a 6= b. The edge attribute tensor Ẽ ∈ Rk×k×de in-
dicates class probabilities for edges and, similarly, the node attribute matrix F̃ ∈ Rk×dn
contains class probabilities for nodes.

The decoder itself is deterministic. Its architecture is a simple multi-layer perceptron
(MLP) with three outputs in its last layer. Sigmoid activation function is used to compute
Ã, whereas edge- and node-wise softmax is applied to obtain Ẽ and F̃ , respectively.
At test time, we are often interested in a (discrete) point estimate of G̃, which can be
obtained by taking edge- and node-wise argmax in Ã, Ẽ, and F̃ . Note that this can result
in a discrete graph on less than k nodes.

3.3 Reconstruction Loss

Given a particular instance of a discrete input graph G on n ≤ k nodes and its proba-
bilistic reconstruction G̃ on k nodes, evaluation of Equation 1 requires computation of
likelihood pθ(G|z) = P (G|G̃).

Since no particular ordering of nodes is imposed in either G̃ or G and matrix
representation of graphs is not invariant to permutations of nodes, comparison of two
graphs is hard. However, approximate graph matching described further in Subsection 3.4
can obtain a binary assignment matrix X ∈ {0, 1}k×n, where Xa,i = 1 only if node
a ∈ G̃ is assigned to i ∈ G and Xa,i = 0 otherwise.

Knowledge of X allows to map information between both graphs. Specifically,
input adjacency matrix is mapped to the predicted graph as A′ = XAXT , whereas the
predicted node attribute matrix and slices of edge attribute matrix are transferred to the
input graph as F̃ ′ = XT F̃ and Ẽ′·,·,l = XT Ẽ·,·,lX . The maximum likelihood estimates,
i.e. cross-entropy, of respective variables are as follows:

log p(A′|z) = 1/k
∑
a

A′a,a log Ãa,a + (1−A′a,a) log(1− Ãa,a)+

+ 1/k(k − 1)
∑
a6=b

A′a,b log Ãa,b + (1−A′a,b) log(1− Ãa,b)

log p(F |z) = 1/n
∑
i

logFTi,·F̃
′
i,·

log p(E|z) = 1/(||A||1 − n)
∑
i 6=j

logETi,j,·Ẽ
′
i,j,·

(2)

where we assumed that F and E are encoded in one-hot notation. The formulation
considers existence of both matched and unmatched nodes and edges but attributes of
only the matched ones. Furthermore, averaging over nodes and edges separately has
shown beneficial in training as otherwise the edges dominate the likelihood. The overall
reconstruction loss is a weighed sum of the previous terms:

− log p(G|z) = −λA log p(A′|z)− λF log p(F |z)− λE log p(E|z) (3)
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3.4 Graph Matching

The goal of (second-order) graph matching is to find correspondences X ∈ {0, 1}k×n
between nodes of graphs G and G̃ based on the similarities of their node pairs S :
(i, j)× (a, b)→ R+ for i, j ∈ G and a, b ∈ G̃. It can be expressed as integer quadratic
programming problem of similarity maximization over X and is typically approximated
by relaxation of X into continuous domain: X∗ ∈ [0, 1]k×n [4]. For our use case, the
similarity function is defined as follows:

S((i, j), (a, b)) = (ETi,j,·Ẽa,b,·)Ai,jÃa,bÃa,aÃb,b[i 6= j ∧ a 6= b]+

+ (FTi,·F̃a,·)Ãa,a[i = j ∧ a = b]
(4)

The first term evaluates similarity between edge pairs and the second term between
node pairs, [·] being the Iverson bracket. Note that the scores consider both feature
compatibility (F̃ and Ẽ) and existential compatibility (Ã), which has empirically led
to more stable assignments during training. To summarize the motivation behind both
Equations 3 and 4, our method aims to find the best graph matching and then further
improve on it by gradient descent on the loss. Given the stochastic way of training deep
networks, we argue that solving the matching step only approximately is sufficient. This
is conceptually similar to the approach for learning to output unordered sets [21], where
the closest ordering of the training data is sought.

In practice, we are looking for a graph matching algorithm robust to noisy corre-
spondences which can be easily implemented on GPU in batch mode. Max-pooling
matching (MPM) by [4] is a simple but effective algorithm following the iterative scheme
of power methods. It can be used in batch mode if similarity tensors are zero-padded,
i.e. S((i, j), (a, b)) = 0 for n < i, j ≤ k, and the amount of iterations is fixed.

Max-pooling matching outputs continuous assignment matrix X∗. Unfortunately, at-
tempts to directly useX∗ instead ofX in Equation 3 performed badly, as did experiments
with direct maximization of X∗ or soft discretization with softmax or straight-through
Gumbel softmax [7]. We therefore discretize X∗ to X using Hungarian algorithm to
obtain a strict one-on-one mapping. While this operation is non-differentiable, gradient
can still flow to the decoder directly through the loss function and training convergence
proceeds without problems. Note that this approach is often taken in works on object
detection, e.g. [19], where a set of detections need to be matched to a set of ground truth
bounding boxes and treated as fixed before computing a differentiable loss.

3.5 Further Details

Encoder. A feed forward network with edge-conditioned graph convolutions (ECC)
[17] is used as encoder, although any other graph embedding method is applicable. As
our edge attributes are categorical, a single linear layer for the filter generating network
in ECC is sufficient. As usual in VAE, we formulate the encoder as probabilistic and
enforce Gaussian distribution of qφ(z|G) by having the last encoder layer outputs 2c
features interpreted as mean and variance, allowing to sample zl ∼ N(µl(G), σl(G))
for l ∈ 1, .., c using the re-parameterization trick [9].
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Disentangled Embedding. In practice, rather than random drawing of graphs, one
often desires more control over generated graphs. In such case, we follow [18] and
condition both encoder and decoder on label vector y associated with each input graph
G. Decoder pθ(G|z,y) is fed a concatenation of z and y, while in encoder qφ(z|G,y),
y is concatenated to every node’s features just before the graph pooling layer. If the size
of latent space c is small, the decoder is encouraged to exploit information in the label.

Limitations. The proposed model is expected to be useful only for generating small
graphs. This is due to growth of GPU memory requirements and number of parameters
(O(k2)) as well as matching complexity (O(k4)), with small decrease in quality for high
values of k. In Section 4 we demonstrate results for up to k = 38. Nevertheless, for
many applications even generation of small graphs is still very useful.

4 Evaluation

We demonstrate our method for the task of molecule generation by evaluating on two
large public datasets of organic molecules, QM9 and ZINC.

4.1 Application in Cheminformatics

Quantitative evaluation of generative models of images and texts has been troublesome
[20], as it very difficult to measure realness of generated samples in an automated and
objective way. Thus, researchers frequently resort there to qualitative evaluation and
embedding plots. However, qualitative evaluation of graphs can be very unintuitive for
humans to judge unless the graphs are planar and fairly simple.

Fortunately, we found graph representation of molecules, as undirected graphs with
atoms as nodes and bonds as edges, to be a convenient testbed for generative models. On
one hand, generated graphs can be easily visualized in standardized structural diagrams.
On the other hand, chemical validity of graphs, as well as many further properties a
molecule can fulfill, can be checked using software packages (SanitizeMol in RDKit
[12]) or simulations. This makes both qualitative and quantitative tests possible.

Chemical constraints on compatible types of bonds and atom valences make the
space of valid graphs complicated and molecule generation challenging. In fact, a
single addition or removal of edge or change in atom or bond type can make a molecule
chemically invalid. Comparably, flipping a single pixel in MNIST-like number generation
problem is of no issue.

To help the network in this application, we introduce three remedies. First, we make
the decoder output symmetric Ã and Ẽ by predicting their (upper) triangular parts only,
as undirected graphs are sufficient representation for molecules. Second, we use prior
knowledge that molecules are connected and, at test time only, construct maximum
spanning tree on the set of probable nodes {a : Ãa,a ≥ 0.5} in order to include its edges
(a, b) in the discrete pointwise estimate of the graph even if Ãa,b < 0.5 originally. Third,
we do not generate Hydrogen explicitly and let it be added as ”padding” during chemical
validity check.
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4.2 QM9 Dataset

QM9 dataset [15] contains about 134k organic molecules of up to 9 heavy (non Hydro-
gen) atoms with 4 distinct atomic numbers and 4 bond types, we set k = 9, de = 4 and
dn = 4. We set aside 10k samples for testing and 10k for validation (model selection).

We compare our unconditional model to the character-based generator of Gómez-
Bombarelli et al. [5] (CVAE) and the grammar-based generator of Kusner et al. [11]
(GVAE). We used the code and architecture in [11] for both baselines, adapting the
maximum input length to the smallest possible. In addition, we demonstrate a conditional
generative model for an artificial task of generating molecules given a histogram of
heavy atoms as 4-dimensional label y, the success of which can be easily validated.

Setup. The encoder has two graph convolutional layers (32 and 64 channels) with identity
connection, batchnorm, and ReLU; followed by the graph-level output formulation in
Equation 7 in [13] with auxiliary networks being a single fully connected layer (FCL)
with 128 output channels; finalized by a FCL outputting (µ, σ). The decoder has 3 FCLs
(128, 256, and 512 channels) with batchnorm and ReLU; followed by parallel triplet of
FCLs to output graph tensors. We set c = 40, λA = λF = λE = 1, batch size 32, 75
MPM iterations and train for 25 epochs with Adam with learning rate 1e-3 and β1=0.5.

Embedding Visualization. To visually judge the quality and smoothness of the learned
embedding z of our model, we may traverse it in two ways: along a slice and along a
line. For the former, we randomly choose two c-dimensional orthonormal vectors and
sample z in regular grid pattern over the induced 2D plane. Figure 2 shows a varied
and fairly smooth mix of molecules (for unconditional model with c = 40 and within 5
units from the origin). For the latter, we randomly choose two molecules G(1), G(2) of
the same label from test set and interpolate between their embeddings µ(G(1)), µ(G(2)).
This also evaluates the encoder, and therefore benefits from low reconstruction error.
In Figure 3 we can find both meaningful (1st, 2nd and 4th row) and less meaningful
transitions, though many samples on the lines do not form chemically valid compounds.

Decoder Quality Metrics. The quality of a conditional decoder can be evaluated by
the validity and variety of generated graphs. For a given label y(l), we draw ns = 104

samples z(l,s) ∼ p(z) and compute the discrete point estimate of their decodings
Ĝ(l,s) = argmax pθ(G|z(l,s),y(l)).

Let V (l) be the list of chemically valid molecules from Ĝ(l,s) and C(l) be the
list of chemically valid molecules with atom histograms equal to y(l). We are inter-
ested in ratios Valid(l) = |V (l)|/ns and Accurate(l) = |C(l)|/ns. Furthermore, let
Unique(l) = |set(C(l))|/|C(l)| be the fraction of unique correct graphs and Novel(l) =
1 − |set(C(l)) ∩ QM9|/|set(C(l))| the fraction of novel out-of-dataset graphs; we de-
fine Unique(l) = 0 and Novel(l) = 0 if |C(l)| = 0. Finally, the introduced metrics
are aggregated by frequencies of labels in QM9, e.g. Valid =

∑
lValid

(l)freq(y(l)).
Unconditional decoders are evaluated by assuming there is just a single label, therefore
Valid = Accurate.

In Table 1, we can see that on average 50% of generated molecules are chemically
valid and, in the case of conditional models, about 40% have the correct label which the
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Fig. 2: Decodings over a random plane in
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decoder was conditioned on. Larger embedding sizes c are less regularized, demonstrated
by a higher number of Unique samples and by lower accuracy of the conditional model,
as the decoder is forced less to rely on actual labels. The ratio of Valid samples shows
less clear behavior, likely because the discrete performance is not directly optimized for.
For all models, it is remarkable that about 60% of generated molecules are out of the
dataset, i.e. the network has never seen them during training.

Looking at the baselines, CVAE can output only very few valid samples as expected,
while GVAE generates the highest number of valid samples (60%) but of very low
variance (less than 10%). Additionally, we investigate the importance of graph matching
by using identity assignment X instead and thus learning to reproduce particular node
permutations in the training set, which correspond to the canonical ordering of SMILES
strings from RDKit. This ablated model (denoted as NoGM in Table 1) produces many
valid samples of lower variety and, surprisingly, outperforms GVAE in this regard. In
comparison, our model can achieve good performance in both metrics at the same time.

Likelihood. Besides the application-specific metric introduced above, we also report
evidence lower bound (ELBO) commonly used in VAE literature, which corresponds
to −L(φ, θ;G) in our notation. In Table 1, we state mean bounds over test set, using
a single z sample per graph. We observe both reconstruction loss and KL-divergence
decrease due to larger c providing more freedom. However, there seems to be no strong
correlation between ELBO and Valid, which makes model selection somewhat difficult.

4.3 ZINC Dataset

ZINC dataset [6] contains about 250k drug-like organic molecules of up to 38 heavy
atoms with 9 distinct atomic numbers and 4 bond types, we set k = 38, de = 4 and
dn = 9 and use the same split strategy as with QM9. We investigate the degree of
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Table 1: Performance on conditional and unconditional QM9 models evaluated by mean
test-time reconstruction log-likelihood (log pθ(G|z)), mean test-time evidence lower
bound (ELBO), and decoding quality metrics (Section 4.2). Baselines CVAE [5] and
GVAE [11] are listed only for the embedding size with the highest Valid.

log pθ(G|z) ELBO Valid Accurate Unique Novel
C

on
d.

Ours c = 20 -0.578 -0.722 0.565 0.467 0.314 0.598
Ours c = 40 -0.504 -0.617 0.511 0.416 0.484 0.635
Ours c = 60 -0.492 -0.585 0.520 0.406 0.583 0.613
Ours c = 80 -0.475 -0.557 0.458 0.353 0.666 0.661

U
nc

on
di

tio
na

l

Ours c = 20 -0.660 -0.916 0.485 0.485 0.457 0.575
Ours c = 40 -0.537 -0.744 0.542 0.542 0.618 0.617
Ours c = 60 -0.486 -0.656 0.517 0.517 0.695 0.570
Ours c = 80 -0.482 -0.628 0.557 0.557 0.760 0.616

NoGM c = 80 -2.388 -2.553 0.810 0.810 0.241 0.610
CVAE c = 60 – – 0.103 0.103 0.675 0.900
GVAE c = 20 – – 0.602 0.602 0.093 0.809

scalability of an unconditional generative model. The setup is equivalent as for QM9 but
with a wider encoder (64, 128, 256 channels).

Our best model with c = 40 has archived Valid = 0.135, which is clearly worse
than for QM9. For comparison, CVAE failed to generated any valid sample, while
GVAE achieved Valid = 0.357 (models provided by [11], c = 56). We attribute
such a low performance to a generally much higher chance of producing a chemically-
relevant inconsistency (number of possible edges growing quadratically). To confirm
the relationship between performance and graph size k, we kept only graphs not larger
than k = 20 nodes, corresponding to 21% of ZINC, and obtained Valid = 0.341 (and
Valid = 0.185 for k = 30 nodes, 92% of ZINC).

5 Conclusion

In this work we addressed the problem of generating graphs from a continuous em-
bedding in the context of variational autoencoders. We evaluated our method on two
molecular datasets of different maximum graph size. While we achieved to learn embed-
ding of reasonable quality on small molecules, our decoder had a hard time capturing
complex chemical interactions for larger molecules. Nevertheless, we believe our method
is an important initial step towards more powerful decoders and will spark interest in the
community.
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