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Abstract. Symmetric Searchable Encryption (SSE) schemes enable cli-
ents to securely outsource their data while maintaining the ability to
perform keywords search over it. The security of these schemes is based
on an explicit leakage profile. [16], has initiated the investigation into how
much information could be deduced in practice from this leakage. In this
paper, after recalling the leakage hierarchy introduced in 2015 by Cash
et al. and the passive attacks of [16] on SSE schemes. We demonstrate
the effectiveness of these attacks on a wider set of real-world datasets
than previously shown. On the other hand, we show that the attacks
are inefficient against some types of datasets. Finally, we used what we
learned from the unsuccessful datasets to give insight into future coun-
termeasures.

Keywords: symmetric searchable encryption, leakage, passive attacks

1 Introduction

The importance of digital data in everyday life is no longer in doubt. Their han-
dling must be done with care leading to create and manage backups. To have
access to those backups from anywhere and from different devices, outsourcing
this digital data to a cloud provider is an enticing solution. The character of
this data can be sensitive and/or confidential since some of this data are le-
gal documents, banking and medical, industrial patents or emails. However, we
host this digital data in all sorts of untrusted environments, potentially with
unknown server administrators, OS and hypervisors. The trivial solution for a
client is to use symmetric encryption. Indeed, since data is encrypted with a
secret key unknown by the cloud provider, data confidentiality is no longer a
problem. However, symmetric encryption prevents any server-side processing of
the client data as is the norm on plaintext data. In particular, the processing
of search queries by the server sent by the client is no longer possible. Indeed,
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if the client gives a keyword to the server, the latter cannot retrieves the doc-
uments containing that keyword since documents are encrypted. On the other
hand, fully homomorphic encryption [15] allows the server to execute directly
in the encrypted domain search operation needed to answer search queries. Un-
fortunately, such an approach would solve our problem only from a theoretical
point of view because making a fully homomorphic encryption scheme work in
practice remains an open question (as noted e.g., in [15]). Symmetric Searchable
Encryption (SSE) schemes introduced by Song et al. in [26] aim at retaining this
search capability on encrypted data. SSE scheme is a protocol executed between
a client and a server. We consider a client owning a sensitive/confidential set
of plaintext documents stored in a DataBase denoted DB. We assume that this
client has limited computational power and storage capacity. On other hand, we
consider a server having a large storage space and high processing power. This
server is honest-but-curious [17], i.e., it is not trusted by the client except for
executing correctly the search protocol. First, an SSE scheme creates, from DB,
metadata that is protected in an Encrypted DataBase (EDB). Then the client
outsources EDB on the server along with the encryptions of the documents. Af-
ter that, the client can send a search token generated from a keyword and her
symmetric secret key. With this search token, the server can find the encrypted
documents matching the query with the help of EDB. Finally, the correspond-
ing encrypted documents are sent back to the client for decryption. The basic
functionality of an SSE scheme is to retrieve the encrypted documents matching
one single keyword query. However, there exist SSE schemes allowing the client
to add new encrypted documents to the encrypted database while retaining the
search capability; these schemes are called dynamic SSE [10, 21]. Others SSE
schemes focus on expanding the expressiveness of the search queries such as
Boolean [11] and sub-string search queries [14].

By its nature, a SSE scheme reveals to an observer the search pattern, in-
dicating which other queries were also for the considered keyword and repre-
senting the fact that SSE scheme sends the same search token when a search is
repeated. It also reveals the access pattern, showing the identifiers of documents
concerned by the search token. This kind of information leaked by a given SSE
scheme to the server is formalized by a leakage function [12, 21]. The security of
a SSE scheme is based on this function proving that the scheme does not leak
more information than described in the leakage function. However, this leaked
information can be used by an honest-but-curious server executing dutifully the
scheme to to deduce information on the stored documents. For instance, some
inference attacks [20, 9, 25] use these search and access patterns to reconstruct
DB. In this paper, we show that it is possible to reconstruct DB without using
the search and access pattern leading to passive attacks. We focus on the infor-
mation revealed by the encrypted database EDB regardless exchanges between
the client and the server. We argue that this model is realistic since it allows
for the server itself (or any entity having access to the encrypted database, as
the server administrator or the OS) to be malicious by manipulating the leaked
information. Based on deployed SSE schemes, Cash et al. [9] define four leakage
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profiles L4, L3, L2 and L1 depending on leaked information by the schemes. The
L4 profile represents SSE schemes that are the most leaky while the L1 profile
represents the least leaky schemes. Commercially available SSE solutions such
as CipherCloud4 and Skyhigh Networks5 are L4 schemes, while Bitglass6 (resp.
ShadowCrypt7) is a L3 scheme (resp. L2 scheme). On the contrary, most SSE
schemes proposed in academic research have L1 profile. The advantage of the
L4-, L3- and L2-SSE schemes is that they can be set up as a proxy or as exten-
sions in client-side. Indeed, no modification on server-side is necessary. Although
these solutions are tempting, it is important to study the practical impacts of
these information leaks on the document knowledge of the server. In this paper,
we study the impact of a passive attacker (as the server storing EDB).

Our contributions. We design passive attacks against SSE schemes of L4, L3
and L2 leakage profiles in order to reconstruct as much as possible the database
DB. Our attacks do not rely on observing search queries, neither on the ac-
cess pattern. We assume that the server, storing the encrypted documents and
the encrypted database EDB, only knows a small sample of plaintexts. Using
this known sample and the leaked information by the scheme on the encrypted
database EDB, we start by finding the identifiers in the encrypted database
associated to the plain documents of the sample. This first step leads to corre-
spondences between plain documents and their representation in the encrypted
database. Then, the adversary considers each correspondence and tries to deduce
values of plain keywords in the encrypted database. Since L4-, L3- and L2-SSE
schemes replace each plain keywords by the same value, these keywords-values
associations are used to recover other documents that are not in the sample
known by the adversary. Our attack on L4 schemes uses repetitions and order of
keywords in each document, our attack on L3 schemes uses order of shared key-
words between documents while our attack on L2 schemes uses only information
on shared keywords between documents. We demonstrate that the efficiency and
practicality of our three passive attacks depend on the nature of the data set. In
fact, when we consider data sets such as mailing-list, emails, or books, we show
that an adversary knowing only 1% of plain documents is able to reconstruct
between 65 % and 90% of the protected data at 80%. On the contrary, when we
consider data sets constitued of server logs or of movies descriptions, our attacks
are practically inefficient. In fact, if the adversary knows only 1% of plain docu-
ments, she is able to reconstruct at most less than 5% of the protected data at
80% for SSE schemes of L4 and L3 leakage profile, while she is not able to do
any associations when we consider SSE scheme of L2 leakage profile.

Related Work. Considering an active adversary that is able to add chosen doc-
uments in the database of the client, Cash et al. [9] present a partial document

4 https://ciphercloud.com/technologies/encryption/
5 https://skyhighnetworks.com/product/salesforce-security/
6 https://bitglass.com/salesforce-security
7 https://shadowcrypt-release.weebly.com/
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recovery attack on L3- and L2-SSE schemes using frequency distribution of key-
words hashes. Moreover, Zhang et al. [28] consider an adversary that has the
extra ability to issue selected queries and mount a query recovery attack that
works on any dynamic SSE scheme. These active attacks are very efficient. They
reveal associations between keywords and search tokens with only few injected
files. Contrary to these attacks, we consider only a passive adversary who is not
able to plant document in the database or to issue particular queries.

An other family of attacks, based on the search pattern and the access pat-
tern have been also proposed and are called inference attacks. The first one is the
IKK Attack and has been proposed by Islam et al. [20]. The goal of their attack
is to associate search tokens sent by the client to actual keywords. In order to do
that, they exploit the data access pattern revealed by client queries and assume
that the adversary has access to a co-occurrence matrix. Each element of the
co-occurrence matrix corresponds to the probability that two keywords appear
in a randomly chosen document. However, Cash et al. [9] stress that this ma-
trix needs to be so precise for the attack to succeed. This precision legitimates
the assumption that the adversary has access to the number of documents in
which every keyword appears. With this strong extra knowledge, authors mount
a more effective attack named the Count Attack [9]. These two attacks target
SSE schemes of L1 leakage profile. However, the strength of their assumptions
questions their practicality. On the contrary, our attacks do not rely on observing
client queries but only assume that the adversary knows the encrypted database,
which totally natural when we consider the server as the adversary. In a different
way, Abdelraheem et al. [4] proposed an inference attack when a client protect
a relational database with a SSE scheme. Exploiting the structural properties
of relational databases, the authors show that record-injection attacks mounted
on relational databases have worse consequences than their file-injection coun-
terparts on unstructured databases as data sets that we consider.

Cash et al. [9] also proposed a passive attack concerning L3-SSE schemes
to partially recover documents when the adversary knows plaintext-ciphertext
pairs. Unlike them, our attacks suppose that we do not have any plaintext-
ciphertext pairs initially. An other inference attack proposed by Pouliot and
Wright in [25] and called Shadow Nemesis Attack uses a training data set in or-
der to build a co-occurrence matrix as in [9]. This co-occurrence matrix is then
reduced to the problem of matching search tokens to keywords to the combina-
torial optimization problem of weighted graph matching. The Shadow Nemesis
Attack can be performed on L2-SSE schemes as our attacks. While our attacks
use a sample of plain documents of the original database DB, their attack can
use a training data set instead of a partial knowledge of the original data set in
addition of the encrypted database.

Wang et al. [27] also present inference attacks on searchable encryption. As
we do, they consider passive attacks where an adversary knows a subset of doc-
uments. Authors propose an other leakage model where the one-to-one mapping
between keywords and tokens change to a one-to-many mapping (as used in
Mimesis aegis [22]), increasing the difficulty of statistical analysis. They algo-
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rithms and attacks follow the same idea as our paper [16] then without any
surprise they results are similar to our results. Moreover they claim that our
attacks cannot be applied to index-based SSE schemes, which is not true at all.

Our article is an extended version of [16]. The main difference is that we
selected nine different datasets samples and evaluate the impact of our attacks
showing that the efficiency of our passive attacks depends on the nature of the
data sets. Indeed, we show that our attacks are very efficient against database
containing books, emails or mailing-list. On the contrary, data sets such as server
logs or movies descriptions are resistant to such passive attacks. Moreover, we
give statistic measures the different data sets, including the number of documents
sharing the same length in L4 point of view, the number of documents sharing
the same length in the L3 point of view, and the occurrence of each keywords
for each data set. We experiment our attacks on these samples as detailed in
Section 5, and we also add results of our attacks for three datasets in full among
the selected samples, namely Commons, Hadoop, and Lucene.

Outline. We start by providing background on SSE schemes and their security
recalling notations in Section 2. Then we recall in Section 3 the leakage hier-
archy of SSE schemes presented in [9]. We describe our new passive attacks in
Section 4 and we demonstrate their effectiveness in Section 5 before to conclude
in Section 6.

2 Symmetric Searchable Encryption

The notations and definitions provided in this section are shorter version of the
ones presented in [16]. They have been included here to ease the reader under-
standing of SSE schemes but the reader is refered to [16] for a more complete
presentation.

2.1 Notations

Sequences, lists and sets. We define a sequence of elements as an ordered set
where repetitions are allowed. A list is therefore an ordered set where all elements
are distinct, i.e., there is no repetition. Finally, a set is defined as an unordered
bunch of distinct elements. We denote sequences by parenthesis (. . . ), lists by
square brackets [. . . ] and sets by braces {. . . }. Let E be a set (resp. list or
sequence), then we denote the number of elements in E by #E.

Documents and keywords. Let DB = {d1, . . . , dn} be a set of n documents.
We recall that DB is called the data set. Each document of DB is composed
of keyword belonging to a dictionary W = {w1, . . . , wm} made of m keywords.
Moreover, each document di ∈ DB is a sequence of length `i, in other terms
di = (wi1 , . . . , wi`i ) ∈W`i . We denote by Wi the set of distinct keywords of the

document di, i.e., Wi =
{

[di]
}

.
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When the same objects are considered on server-side, we describe them by
introducing the star superscript. Hence, we denote the set of search tokens asso-
ciated to the keywords of W by W∗ = {w∗1 , . . . , w∗m}. In the same way, we denote
the set of ciphertexts of DB by DB∗ = {d∗1, . . . , d∗n} where d∗i is the encryption
of di. Finally, we denote the set of tokens associated to d∗i by W∗i . Since the as-
sociation between between di and d∗i is not known by the server a priori, we use
an identifier, denoted idi, to uniquely represent d∗i . Moreover, a datastructure
EDB is also provided. It contains protected metadata that allows the server to
answer search queries sent by the client.

Considering a keyword w, we denote by DB(w) the list of all the indices i
such that di ∈ DB contains the keyword w. We denote by N , the number of
pairs (d,w) where d ∈ DB and w ∈ d, i.e. N = #

{
(d,w) | d ∈ DB, w ∈ d

}
.

We remark that N corresponds to a lower bound on the size of EDB. Indeed,
N can always be computed by the server from EDB. Server-side, the list of the
identifiers of all the documents d∗i ∈ DB∗ associated to the search token w∗ is
denoted EDB(w∗). We stress that this information is not accessible directly from
w∗ and DB∗, we need the extra protected metadata structure EDB.

2.2 SSE Schemes

The basic definition of a symmetric encryption scheme is given with an algorithm
for setup and another for search.

First, the client generates two datastructures denoted DB∗ and EDB. As de-
fined above, DB∗ is composed of ciphertexts of DB, and EDB contains protected
metadata associated to DB. Then the client outsources these two datastructures
to the server. Assuming the client wants to search for a specific keyword w, she
computes with the help of her secret key the search token w∗ associated to w,
and sends it to the server. When the server receives the search token w∗ from the
client, the server uses EDB to return the identifiers of all encrypted documents
matching the client’s search. From this list of identifiers, the client retrieves the
associated ciphertexts and decrypt them in order to obtain the plaintext docu-
ments. We stress that the server should not be able to learn anything about the
client’s query or the returned documents during the process. For further details,
see Definition 1.

Definition 1 (Static SSE scheme [12]). Given a symmetric encryption scheme
(E·(·),D·(·)) we define a static SSE scheme of security parameter λ as a quartet
of polynomial-time algorithms Π = (Gen,Setup,SearchClient,SearchServer) by:

(K, k)← Gen(1λ) is a probabilistic key generation algorithm that is run by the
client. It takes as input a security parameter λ, and outputs two symmetric
secret keys K and k which are both kept securely by the client.

(EDB,DB∗)← Setup(K, k,DB, E·(·)) is an algorithm that is run by the client to
set the scheme up. It takes as input secret keys K and k, the database DB
and the algorithm E·(·), and outputs both the protected metadata EDB and
the encrypted documents DB∗ = (Ek(d1), . . . , Ek(dn)).
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w∗ ← SearchClient(K,w) is a deterministic algorithm that is run by the client to
send a query to the server. It takes as input the secret key K and a keyword
queried w ∈ W, and outputs the search token w∗ ∈ W∗ associated with w.
Finally w∗ is sent to the server.

EDB(w∗)← SearchServer(EDB, w∗) is a deterministic algorithm that is run by
the server to answer a client-query. It takes as input the protected metadata
EDB and the client-generated search token w∗ and outputs EDB(w∗): the
identifiers of the encrypted documents containing keyword w. This list is
sent back to the client.

2.3 Security of SSE Schemes

The notion of a leakage function of a SSE scheme has been introduced by Curt-
mola et al. [12]. The leakage function, denoted L, of a SSE scheme is the set of
information revealed by the SSE scheme to the server. It formalizes the informa-
tion leaked to the server by both the encrypted database EDB and by the client
queries.

An SSE scheme is said to be L-secure if no information other than what is
described by the leakage function is leaked by the SSE scheme to the server.
More precisely, the L-security of a SSE scheme proves that any polynomial-
time adversary making a sequence of queries, constitued of keywords of W, can
successfully tell with only negligible probability whether the protocol is honestly
executed or simulated from the leakage function L.

Although the leakage function described a bound of leaked information by
the SSE scheme on the stored documents, it does not tell us what this leakage
implies in practice on the knowledge of the protected data. The objective of
[16] was to present algorithms that gave more insight into the practical impact
of such leakage for the different leakage profiles presented above. In this work
we focus on the difference of effectiveness of those algorithms when faced with
different document sets and investigate the reasons for those differences.

3 A Leakage Hierarchy

Similarly as in Section 2, this section is a shorter version of the content presented
in [16]. It has been included here for the article to be self-contained but the reader
is referred to [16] for a more complete presentation.

L4 Leakage Profile. Without taking in consideration the meaning of words, a
document is described by the number of its words, their order and their oc-
currence. Moreover, a document can be described by words shared with other
documents. L4-SSE schemes reveal this information, so nothing is lost about the
plaintext non-semantic structure. So, a SSE scheme of leakage function L is of
class L4 if and only if:

L(EDB) =
{

(w∗i1 , . . . , w
∗
i`i

)
}
16i6n

.
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L3 Leakage Profile. For keyword search purposes, it is not necessary to know
the occurrence count of each keyword. L3-SSE schemes of leakage function L do
not reveal this, i.e.:

L(EDB) =
{

L3EDB(idi)
}
16i6n

,

where L3EDB(idi) =
[
(w∗i1 , . . . , w

∗
i`i

)
]
.

L2 Leakage Profile. L2-SSE schemes only reveal the set of tokens of a document.
The server can however still determine which documents contain a given token.
A SSE scheme of leakage function L is of class L2 if and only if:

L(EDB) =
{
W ∗i
}
16i6n

.

L1 Leakage Profile. With no initial search, L1-SSE schemes leak the least possible
amount of information, i.e. the number N of document/keyword pairs of the
dataset:

L(EDB) = {N}.

4 Partial Plaintext Recovery Attacks

The attacks presented in [16] are briefly recalled here. As previously pointed
out, a more complete presentation can be found in [16]. We start by recalling
the intuition behind the attacks as well some facts regarding their applicability.

These are passive attacks which aim at recovering plaintext information from
the sole knowledge of EDB. The only assumption made here is that we know a
small sample S chosen randomly among the set of plaintext documents.

The attacks proceed in two steps. In the first step, each plaintext of S is
associated to its protected information in EDB. This step is performed using
statistical properties that can be computed independently from the plaintexts
themselves or from the associated leakage given in EDB. The efficiency of the
attack heavily depends on the statistic capacity to give unique results over the
dataset. In the second step, the keywords of the plaintexts are paired with their
tokens. The matching keywords and tokens obtained can be spread back into EDB
thus recovering content of the encrypted documents. [16] presented very positive
results and the application of these same attacks to different datasets allows to
gain more insights into their computational complexity as well as intuition for
potential countermeasures. Those results are presented in Section 5.

4.1 Mask Attack on L4-SSE Schemes

We introduce the mask of a document di (resp. idi), denoted by mask(di) (resp.
mask(idi)), as the sequence where all keywords (resp. tokens) are replaced by
their position of first appearance.

The idea of the attack is intuitive: for each plaintext d ∈ S, the mask of d is
computed; this mask is then compared with all masks of corresponding length
computed from EDB. The attack is summarized in Algorithm 1.
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Algorithm 1: Mask Attack.

Input: EDB,S ⊆ DB
Output: Set of tokens W∗rec ⊆W∗ associated to their keyword in W

foreach d ∈ S do
Ad =

{
i | `i = #d and mask(idi) = mask(d)

}
;

end
return W∗rec =

{
W∗i | #Adi = 1

}

4.2 Co-Mask Attack on L3-SSE Schemes

Here, we introduce the co-resulting mask of a pair (d1, d2) of documents, denoted
by comask(d1, d2). Intuitively, it can be viewed as the mask of positions of shared
keywords in the other document. More formally, if Pos(w, d) is the position of
keyword w in document [d], we define:

comask(d1, d2) =
((

Pos(d1[i], d2)
)
1≤i≤#W1

,
(
Pos(d2[i], d1)

)
1≤i≤#W2

)
.

The co-resulting mask can also be computed directly from every pair of en-
crypted identifiers so by abuse of notation we denote it denoted by comask(id1, id2).

In practice, instead of randomly searching for matching pairs we iteratively
construct a set At containing all t-tuples of identifiers such that the co-resulting
masks of all pairs in the t-uple match the co-resulting masks of the corresponding
pairs in (d1, . . . , dt) ⊆ S. More formally:

At =
{(

idi1 , . . . , idit
)
| ∀s, u ≤ t, comask(idis , idiu) = comask(ds, du)

}
.

The Co-Mask attack is summarized in Algorithm 2.

4.3 PowerSet Attack on L2-SSE Schemes

The loss of keyword-order information under L2 leakage presents us with two new
challenges: first, the co-resulting mask cannot be computed and second, even if a
document is correctly associated to its identifier, finding the correct association
between each keyword and its token is still to be done. The PowerSet Attack
addresses both issues.

Associating Documents and Identifiers. We introduce the power set of
order h of a list of t documents, denoted by PowerSetth

(
d1, . . . , dt

)
, and defined

as the sequence of the
(
t
h

)
cardinals of all possible intersections of h elements of

the t-uple.
More formally:

PowerSetth
(
d1, . . . , dt

)
=

(
#

⋂
1≤j≤h

dij

)
1≤i1<···<ih≤t

.
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Algorithm 2: Co-Mask Attack.

Input: EDB, S =
(
d1, . . . , d#S

)
⊆ DB

Output: Set of tokens W∗rec ⊆W∗ associated to their keyword in W

/* Consider the first pair of documents */

A2 =

{(
idi1 , idi2

)
| #idi1 = #[d1], #idi2 = #[d2]

and comask(idi1 , idi2) = comask(d1, d2)

}
;

/* Construct At from At−1 using dt */

for t = 3 to #S do
At = At−1 ×

{
id | #id = #[dt]

}
;

/* At will be reduced by considering all new pairs (dj , dt) */

foreach j < t do

Cj,t =

{(
idij , idit

)
| idij ∈ At[j], idt ∈ At[t]

and comask(idij , idit) = comask(dj , dt)

}
;

At =
{
a ∈ At |

(
a[j], a[t]

)
∈ Cj,t

}
; /* Keep consistent t-tuples */

if #At = 1 then break;

end

end
return W∗rec =

{
W∗t | #A#S [t] = 1

}

The superscript will be omitted when it is clear from the context and since
this sequence can also be computed directly from the list of encrypted identifiers
so by abuse of notation we denote it denoted by PowerSeth

(
id1, . . . , idt

)
.

We again iteratively construct a set At containing all t-tuples of identifiers
such that all power sets of order less than t correspond to the power sets of the
corresponding documents in (d1, . . . , dt) ∈ S. When t reaches #S, all informa-
tion on S has been processed and singleton components of A#S give a correct
association.

Let A
(h)
t be the set of compatible t-tuples with all power sets of order up to

h:

A
(h)
t =

{(
idi1 , . . . , idit

)
| ∀s ≤ h,

PowerSets(d1, . . . , dt)

= PowerSets(idi1 , . . . , idit)

}
.

The algorithm then computes the following decreasing sequence, using the

procedure Reduce given in Algorithm 3 to go from A
(h)
t to A

(h+1)
t :

At−1 ×
{

id | #id = #{dt}
}

= A
(1)
t ⊇ A

(2)
t ⊇ A

(3)
t ⊇ · · · ⊇ A

(t)
t = At .

Algorithm 4 summarizes the first phase of the PowerSet Attack.

Associating Keywords and Tokens. As token order is not preserved under
L2 leakage, finding the correct keyword-token associations remains non-trivial.
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Algorithm 3: Reduce procedure: computing A
(h+1)
t from A

(h)
t .

Input: St =
(
d1, . . . , dt

)
, h-order candidates A

(h)
t

Output: Set of (h + 1)-order candidates A
(h+1)
t

Bt = A
(h)
t ;

/* Consider each subset of (h + 1) elements containing dt */

foreach 1 ≤ j1 < · · · < jh < t do

Cj,t =

{(
(idij ), idit

)
| idt ∈ Bt[t], (idij ) ∈ Bt[j],

and #
(
idit ∩ (idij )

)
= #

(
dt ∩ (dj)

)};

Bt =
{
b ∈ Bt |

(
(b[j]), b[t]

)
∈ Cj,t

}
; /* Keep consistent t-tuples */

if #Bt = 1 then break;

end

return A
(h+1)
t = Bt

Algorithm 4: PowerSet Attack: documents-identifiers association.

Input: EDB, S =
(
d1, . . . , d#S) ⊆ DB

Output: Set of documents S0 ⊆ S associated to their identifiers in EDB

/* Consider the first pair of documents */

A2 =

{(
idi1 , idi2

)
| #idi1 = #{d1}, #idi2 = #{d2}

and PowerSet2(idi1 , idi2) = PowerSet2(d1, d2)

}
;

/* Construct At from At−1 using dt */

for t = 3 to #S do

A
(1)
t = At−1 ×

{
id | #id = #{dt}

}
;

/* Consider intersections of increasing order h to reduce At */

for h = 2 to t do

A
(h)
t = Reduce

(
A

(h−1)
t

)
;

if #A
(h)
t = 1 then set At = A

(h)
t and break;

end

end
return S0 =

{
dt | #A#S [t] = 1

}

To solve this problem, we construct the inverted index of S0, denoted by
inv(S0), which associates the keywords w ∈ S0 and to the identifiers of the doc-
uments containing w. This inverted index is then ordered by decreasing number
of identifiers to form the ordered inverted index inv≥(S0).

The keyword/token association process is given in Algorithm 5.

5 Experimental Results

Before to present the experimental results, we describe the datasets on which we
ran the attacks of [16] reintroduced in Section 4.
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Algorithm 5: PowerSet Attack: keywords-tokens association.

Input: EDB, set S0 ⊆ S of documents associated to their identifiers
Output: Set of tokens W∗rec ⊆W∗ associated to their keyword in W

W∗ign ← ∅ ; /* Contains associated and indistinguishable tokens */

Compute inv≥(S0);
foreach w ∈ inv≥(S0) taken in decreasing order do

Aw =
(⋂{

W∗i | idi ∈ inv≥(S0)[w]
}) ∖

W∗ign;

W∗ign = W∗ign ∪Aw; /* Associated (#Aw = 1) or indistinguishable */

end
return W∗rec =

{
Aw | #Aw = 1

}

5.1 Real-World Datasets

The attacks presented in Section 4 were ran on different real-world datasets to
evaluate their practical efficiency. We choose 9 datasets and for each dataset,
we select a random sample of 2,000 documents where we apply our attacks.
We summarized the different samples in Figure 1. We recall that #DB is the
number of documents in the dataset, #W is the number of distinct keywords in
the dataset, and N denotes the number of pairs (d,w) where d ∈ DB and w ∈ d.

Dataset Content #DB #W N

Gutenberg books 2,000 527,999 8,153,007
Commons mailing list 2,000 40,924 264,554
Hadoop mailing list 2,000 46,097 343,428
Lucene mailing list 2,000 38,619 269,718
Subversion mailing list 1,909 35,190 319,845
Enron emails 2,000 25,998 184,202
Wikipedia articles 2,000 60,379 335,620
IMDb movie database 2,000 5,671 20,457
Nasa server logs 2,000 2,280 17,971

Fig. 1. Details on selected samples of the datasets.

The first dataset sample is the Project Gutenberg dataset [18] containing full
texts of public domain books. The next four datasets samples are mailing lists
from the Apache foundation, namely Apache Commons [5], Apache Hadoop [6],
Apache Lucene [7], and Apache Subversion [8]. The following dataset sample is
the email dataset from the Enron corporation, available online [13]. Then, the
Wikipedia dataset sample is formed of articles coming from the online encyclo-
pedia Wikipedia8. The following dataset is IMDb [19], it is composed of movies
descriptions as an alphanumeric unique identifier of the title, the type/format
of the title (e.g. movie, short, video, etc.), the more popular title, the original

8 https://en.wikipedia.org/
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title, the release and the end years, the primary runtime of the title, and the
genre. The final dataset is Nasa consisting of server logs of http requests to the
Nasa Kennedy Space Center web server in Florida [23]. They are composed of
hostname, timestamp, request, HTTP reply code, and the number of bytes in
the reply.

One email, one book, one message, one article, one movie description, or
one log server is considered as one document. For each document, stopwords
have been removed and keywords processed using the standard Porter stemming
algorithm [24].

Those datasets were chosen for their variety as they are a representative
sample of datasets that one might want to protect with SSE schemes. As we will
see in the following the efficiency of the attacks varies wildly with the type of
dataset considered.

5.2 Foreseeing the Cost of the Attacks

In [16] the computational cost of the attacks sketched by making some assump-
tions on the statistical properties of the considered dataset. Further experiments
have shown that those assumptions, while holding true for the datasets consid-
ered in [16], could also be far from the empirical truth when looking at other
types of datasets. Therefore, we take a different approach as the one chosen
in [16]: instead of deriving formulas for the computational complexity of an at-
tack based on assumptions about the dataset, we measure parameters of the
dataset and derive from that the approximate difficulty of running the attack on
this particular dataset. We believe that this approach is more useful to evaluate
the practical security of a given SSE scheme as this can only be evaluated once
faced with a dataset. The other advantage of this approach is that it provides
insight towards possible counter-measures against the attacks presented above.

The governing parameter for the cost of the mask attack is the number of
candidate masks that need to be computed for each plaintext document. This
is exactly the number of encrypted documents having the same length as the
target plaintext. Therefore, figure 2 shows the number of documents having
the same length in the view of the L4 leakage profile for our 9 datasets, i.e.,
we take in account the repetition of keywords in the documents. The y-axis
of figure 2 represents the number of documents sharing a given length. From
the figure we can predict that the mask attack will be extremely efficient on
the dataset Gutenberg for which there is at most 3 encrypted candidate for each
target plaintext. At the other end of the spectrum, all the documents of the Nasa
dataset have length 10. This effectively means that each target plaintext requires
to compute the mask of all encrypted documents. This property makes the attack
extremely slow and effectively impractical. These results follow the intuition that
a dataset of documents of arbitrary length will be far easier to attack that a
dataset made of very formatted documents. This intuition is further confirmed
by the results of the other 7 datasets: the non-formatted datasets Commons,
Hadoop, Lucene, Subversion, Enron, and Wikipedia force the computation of
less than 35 masks per target while IMDb forces, in most cases, the computation
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of several hundreds masks. We remark that these datasets have very different
original size which confirms that the complexity of the attack is only marginally
linked to the total size of the dataset.
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Fig. 2. Number of documents depending on the length with the L4 view.

Since the governing parameter for the cost of the CoMask attack is also the
number of candidate of equal length, we perform a very similar analysis but
this time considering the length in view of the L3 leakage profile, i.e., we count
the number of different keywords in each document. Since the length under this
leakage profile is necessarily smaller than the length in the view of the L4 leakage
profile we expect to see similar results with more ”collisions” of length. This is
indeed what we observe in figure 3. Both extremes stay the same: there is at
most 4 candidates for each target plaintext on the Gutenberg dataset and again
almost all documents of the Nasa dataset have the same length. In between,
Commons, Hadoop, Lucene, Subversion, Enron, and Wikipedia have at most 40
candidate per target while IMDb boasts again several hundreds candidates. We
note here that while in the case of the mask attack the cost grows linearly with
the number same-length candidates, the cost of the CoMask attack grows like
its square (since we compute a pair of matching co-resulting mask). This gives
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the intuition that the attacks could be made much slower by simply padding all
the encrypted documents.
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Fig. 3. Number of documents depending on the length with the L3 view.

Finally, we measure the occurrence of all keywords present in the sample,
i.e., the number of documents containing the considered keyword, starting from
the less frequent and ending with the most frequent. Results are presented in
Figure 4 and help to predict the efficiency of the PowerSet attack. In fact, the
PowerSet attack is based on the number of keywords shared between documents.
Hence, if a dataset has a lot of keywords shared between its documents, then the
probability to distinguish documents on their shared documents is higher. We
can predict that the PowerSet attack will more efficient on Gutenberg, Commons,
Hadoop, Lucene, Subversion, Enron, Wikipedia datasets, than on IMDb and Nasa
datasets.

5.3 Efficiency Measures

We ran our attacks for different sizes of S using steps of 1% until 10% then steps
of 10% from 10% to 100%. Here 1% is 1% of the pairs (d,w) of the dataset; this
allows us to perform a fairer comparison between datasets than the usual per-
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Fig. 4. Occurrence of keywords, from less frequent to more frequent.

document measure, as knowing a long document do not have the same impact
as knowing a short one.

The measured success rate is the ratio of keywords-tokens associations over
the set of keywords of S. Then, these correspondences are spread back into
EDB in order to evaluate their impact on other documents of the dataset. In
particular, we measured the rate of documents of the dataset whose keywords
are recovered at 80%, 90% and 100%.

5.4 Experimental Results on Datasets Samples

We expose here the results of our attacks on the chosen datasets. All attacks are
performed on an Intel® Xeon® using 64 Gb RAM with Redis9, an in-memory
data structure store.

Experimental Results of the Mask Attack. Results for the Mask attack
are presented in Figure 5. We notice that we have three categories of results.

The first category is when the mask attack can associate with a high ratio
keywords and tokens. As shown in Figure 7, this is the case for Gutenberg,

9 https://redis.io/
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Commons, Hadoop, Lucene, Subversion, Enron, Wikipedia datasets. In fact, for
each percentage of knowledge, the adversary can associate with a ratio equals to
1, keywords that it knows to their corresponding tokens. Hence, we can observe
that the Mask attack is ravaging for mailing list, emails, articles, and books
datasets.

Second, very few associations between keywords and tokens can be done. As
exposed in Figure 5, the Mask attack result on dataset IMDb is in this category.
As we can see in Figure 2, a lot of documents have the same length. This is
due to the structure of the dataset. In fact, movies descriptions are very similar
since each keyword has a specific set of possible values. However, the number
of keywords composing the title of the movie can be discriminant that is why
we can associate some documents with the Mask attack. However, the adversary
can at most associate 10% of the keywords that it knows to their corresponding
tokens.

Finally, no association between keywords and tokens can be performed what-
ever the part of knowledge over the dataset. As we can see in Figure 5, results
of the Mask attack on the Nasa dataset is in this category. Each server log is
composed of the same number of keywords, hence mask of server logs cannot
be distinguishable by the length (Figure 2). Moreover, each keyword in a server
log has a specific role, for instance: client IP address, request date/time, page
requested, HTTP code, bytes served, then the probability to have repetitions in
the masks (for example, hostname equals to the timestamp or to the number of
bytes served) is very low. Hence, masks of server logs are always the same, i.e.,
(1, . . . , `) where ` is the fixed number of keywords in server logs. This is why our
mask attack is inefficient against server logs dataset, i.e., the adversary can not
associate keywords that it knows to their corresponding tokens.

Experimental Results of the CoMask Attack. Results for the CoMask
attack are presented in Figure 6. We notice that we have two categories of
results.

The first category is where the ratio of association between keywords and to-
kens is high for each percentage of known dataset. As shown in Figure 6, datasets
Gutenberg, Commons, Hadoop, Lucene, Subversion, Enron and Wikipedia are in
this category since the adversary can associate almost 100% of the keywords in
the known dataset to their corresponding tokens. Their common particularity is
that they have a lot of frequent keywords (Figure 4). In fact, the CoMask attack
uses the shared keywords between documents to distinguish computed comask.
Hence, we argue that datasets having a such distribution of frequent keywords
are less resistant against the CoMask attack since the documents pairs can be
more distinguishable.

The second category concerns Nasa and IMDb datasets. As we can see in
Figure 6, the ratio of keyword-token associations is very low (3% for the Nasa
dataset, and 10% for the IMDb dataset). With Figure 4, we see that these two
datasets have very few frequent keywords. Hence, computed comask from the
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Fig. 5. Efficiency of our Mask attack depending on the knowledge rate of the server.

percentage of known dataset do not discriminate. We assume that a dataset
having very few shared frequent keywords is resistant to the CoMask attack.

Experimental Results of the PowerSet Attack. Results for the PowerSet
attack are presented in Figure 7. We notice that we have four categories of
results.

First, the ratio of association between keywords and tokens is always high
whatever the part of knowledge of the dataset. It is the case for the PowerSet
attack applied to the Gutenberg dataset as shown in Figure 7 where an adver-
sary can always associate keywords to their corresponding tokens whatever the
percentage of known dataset. As shown in Figure 4, the occurrence of frequent
keywords is much bigger in the Gutenberg dataset, i.e., a lot of documents in
the dataset share different keywords. In the context of the PowerSet attack, this
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Fig. 6. Efficiency of our CoMask attack depending on the knowledge rate of the server.

fact helps to match known documents to their representation in the encrypted
documents, and to recover keywords.

The second category of results is illustrated in Figure 7 by Commons, Hadoop,
Lucene, and Subversion datasets. In this case, the association between keywords
and tokens depending of the part of knowledge of the dataset is relatively of
a constant order. As shown in Figure 4, the most frequent keywords of these
four datasets are present in a quarter of the documents while the most frequent
keywords are present up to five times per document. We assume that a dataset
with a such distribution for keywords occurrences is sensible to the PowerSet
attack.

Third, the association between keywords and tokens is progressive depending
the part of knowledge of the dataset. We see in Figure 7 that results of the
PowerSet attack on Enron and Wikipedia datasets are in this category. The
similarity between these two datasets lies in the distribution of the mots frequent
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keywords. As we can see in Figure 4, frequent keywords are present in a quarter
of documents while the most frequent keyword is in all the documents or twice.
Due to the nature of the PowerSet attack, we assume that a dataset where most
frequent keywords have a such distribution is sensible to the PowerSet attack
since the knowledge of keyword-token association is proportional to the part of
knowledge of the dataset.

Finally, no association between keywords and tokens can be performed, and
this whatever the part of knowledge over the dataset. As we can see in Figure 7,
results of the PowerSet attack on Nasa and IMDb datasets are of this type since
an adversary can not associate keywords to their corresponding tokens. These
two datasets have a small keywords space: 2,280 for Nasa dataset and 5,671 for
IMDb dataset. Moreover, we see in Figure 4 that keywords occurrences in these
datasets are more homogeneous than in the other datasets. Since, the PowerSet
attack deals with the number of shared keywords between documents, we deduce
empirically that a dataset with a small keywords space and with a homogeneous
distribution of keywords occurrences is resistant against the PowerSet attack.

Remark. As noted in [9], this reconstruction allows to reveal sensitive infor-
mation even if the order of keywords is not preserved. Human inspection of the
output of our attacks gives a clear idea of the sense of each document.

5.5 Scaling up: Experimental Results on Full Datasets

In order to get a more complete picture of the practicality of the attacks, we
present in this section results of the Mask, CoMask, and PowerSet attacks on
three full datasets: Commons, Lucene, and Hadoop. The results of the attack
themselves are very close to the ones presented in the previous section: the de-
tails on these datasets are given in Fig. 8. The benefit of running the attacks
on the full datasets was the impact of low probability events (only observable
on large documents sets) on the running time of the attacks. In particular two
phenomenon slowed down the attacks majorly and had to be dealt with in a
specific way. The first of these phenomenons was the presence of duplicates in
the original datasets. If not handled specifically, duplicates documents actually
prevent ”early-abort” in both the CoMask and the Powerset attacks. Unfortu-
nately at high orders (several hundreds of documents) one cannot afford to not
quickly eliminate candidates. This has the practical consequence that duplicates
need to be removed before the elimination procedure which incurs a cost that
grows like the square of the number of same-length candidate. The second phe-
nomenon is similar but worse in its consequences. There are documents that
are indistinguishable in the sense that they are almost identical but their differ-
ence appear in the same documents. Actually, the case most often encountered
is documents that are equal up to 2 words (one in each document) but that
those 2 words do not appear anywhere else in the dataset. That means that the
two documents are not equal (and therefore would not be filtered out by the
procedure outline above) but they are effectively equivalent through the leakage
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Fig. 7. Efficiency of our PowerSet attack depending on the knowledge rate of the
server.

profile. Dealing with those documents during the attacks incurs a very high cost
even in comparison to the task of eliminating duplicates.

Dataset Content #DB #W N

Commons mailing list 28,997 230,893 3,910,562
Lucene mailing list 58,884 394,481 7,952,794
Hadoop mailing list 21,312 206,315 3,655,222

Fig. 8. Details on selected full datasets.

Results of the Mask attack are presented in Fig. 9, results of the CoMask
attack in Fig. 10, and results of the PowerSet attack are exposed in Fig. 11.
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Fig. 9. Efficiency of our Mask attack depending on the knowledge rate of the server.
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Fig. 10. Efficiency of our CoMask attack depending on the knowledge rate of the
server.

5.6 Further Protecting Your Datasets

The previous sections have given some intuition as to what would constitute
the most promising avenue for efficient countermeasures against leakage-abuse
attacks. We leave as future work the analysis of the cost/benefit ratio of those
countermeasures but any practical use of SSE scheme should consider imple-
menting the following counter-measures.

Length padding. The owner of the dataset should make sure that all of the
documents in the datasets have a least t−1 other documents of the same length
with t being large enough that t2 calculations of co-resulting masks (respectively,
powersets of order 2) is considered prohibitive.
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Fig. 11. Efficiency of our PowerSet attack depending on the knowledge rate of the
server.

Ghost twin insertion. The owner of the dataset should insert “ghost twin docu-
ments” in the dataset. The “ghost twin” of a document d is a document d′ that
is indistinguishable from d through L2 leakage profile. The easiest method for
creating ghost twins is to start from the inverted index with a keyword w that
only appears in one document d. The ghost twin of d is the document d where
all the occurrences of w have been replaced by w̃ and where w̃ does not appear
anywhere else in the dataset.

6 Conclusion

SSE schemes are known to be insecure considering an adversary who is able to
perform file-injections. In fact, Zhang et al. [28] shown that only few injected
files can reveal to an adversary associations between keywords and search tokens.
Moreover, SSE schemes are also vulnerable to passive observations of search
tokens since they reveal the underlying searched keyword when the data set is
completely known as shown in [9, 20, 25].

In this paper, we focus on the impact of passive attacks on SSE schemes
of profiles L4, L3 and L2, i.e., families of SSE schemes that are currently used
as commercially solutions [2, 1, 3]. We consider an adversary who has access to
the encrypted database (stored by the server) and knows a sample of plaintexts
having generated this encrypted database. As we shown first in [16], our attacks
are devastating on most real-world datasets that we used,namely mailing-list,
emails, and books datasets. Indeed, regardless of the leakage profile and know-
ing a mere 1% of the original documents in data set, we are able to recover 80%
of the content of 90% of the documents. However, the efficiency of our attacks
depends on the nature of the considered data set. In fact, as we shown in this
paper, an adversary performing our attacks on encrypted databases generated
from datasets composed of very formatted data like server logs or of movies de-



24 Anzala-Yamajako et al.

scriptions extracts not much information on original documents. In the best case,
she can recover 80% of the content of only 5% of the documents. In fact, such
documents are very structured and contain very few shared words, preventing
the retrieval of information to associate keywords and tokens, thus avoiding the
retrieval of the content of the documents. Finally we gave insight into interesting
techniques for further protecting encrypted databases based on the knowledge
acquired during our experiments

To conclude, the results in this paper does cast doubt on the legitimacy of
SSE schemes and help us to better understand the practical security of SSE
schemes. Relying on the experimental results of our attacks on the server logs
and movies descriptions data sets, it will be interesting to further investigate the
cost/benefit ratio of countermeasures to these attacks.
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