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Abstract: Cloud storage provides an attractive solution for many organizations and
enterprises due to its features such as scalability, availability and reduced costs. However,
storing data in the cloud is challenging if we want to ensure data security and user privacy.
To address these security issues cryptographic protocols are usually used. Such protocols
rely on cryptographic primitives which have to guarantee some security properties such
that data and user privacy or authentication. Attribute-Based Signature (ABS) and
Attribute-Based Encryption (ABE) are very adapted for storing data on an untrusted
remote entity. In this work, we enhance the security of cloud storage systems through a
formal analysis of a cloud storage protocol based on ABS and ABE schemes. We clarify
several ambiguities in the design of this protocol and model the protocol and its security
properties with ProVerif an automatic tool for the verification of cryptographic protocols.
We discover an unknown attack against user privacy in the Ruj et al. protocol. We propose
a correction, and automatically prove the security of the corrected protocol with ProVerif.
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1 Introduction

Cloud storage refers to data storage services hosted over
Internet. The cloud users store data online, so other
authorized users can access them from any location via
the Internet. Due to the features of cloud storage such
as large storage capacity, high availability, scalability
and reduced costs, many applications manipulating
sensitive data are using a cloud storage. However,
sharing sensitive data on a third party through a public
network brings some security challenges. In particular,
there are concerned with the privacy of users and data.
Protecting privacy in clouds is more difficult than in
traditional environments, because sensitive data may be
disseminated and stored over many external locations
managed by external service providers (Wang et al.,
2010), and both cloud and their user can be malicious
(Mulazzani et al., 2011; Zhang et al., 2012). User privacy
is required in many applications where users have a right
of privacy when storing their sensitive information like
financial or health data (Tang et al., 2012). There are
two important privacy requirements when a user stores
data on the cloud: anonymity and unlinkability. The
ISO/IEC standard (governmental organisations, 2009)
define anonymity as the property ensuring that a user
may use a service or a resource without disclosing his
(or her) identity. However, preserving the anonymity
property may still release information about a user
by allowing an adversary to track several uses of a
resource by the same user. Such information might
allow an adversary to deduce or at least restrict the
possible identities of a user. Therefore, the unlinkability
property is required, ensuring that the different uses
of a service or a resource for the same user should
not be linked by an adversary. On the other hand, the
Cloud Service Provider (CSP) must authenticate the
user to be sure that he has the right to store data on
the cloud, moreover this authentication must be done
without reveal any information about his identity. As a
concrete example, consider an employer in an institution
learning about a corruption while going through some
records. He decides to send the records in question to
the authority for combating corruption using a cloud
storage service while retaining her anonymity, but with
a proof that she indeed has access to these records. The
challenge of privacy-preserving authentication of users
is one of the main concern in cloud security. There are
few cryptographic schemes which can be used in these
situations like anonymous authentication (Cramer et al.,
1994), group signatures (Chaum and Van Heyst, 1991),
ring signatures (Rivest et al., 2001), mesh signatures
(Boyen, 2007) and Attribute-Based Signature (ABS)
(Maji et al., 2008). In a cloud environment, group
signature can not be used because it assumes the
preexistence of a group which is difficult in the cloud.
Ring signature is not feasible not only because of a
large number of users, but also the signer cannot know
who these people are. Also the mesh signature can not
be used since does not provide a way to convince that

a message was endorsed by a single user, and so, can
be endorsed by many users colluding together. ABS is
the most convenient cryptographic scheme for privacy-
preserving authentication in the cloud. In ABS, a signer
possessing a set of attributes can sign a message with a
claim predicate that is satisfied by his attributes. The
verifier can only check if the message is signed by an
authorized user without knowing any information about
its identity.

Data Privacy has been also gained research interest
because only authorized users have access to sensitive
data on the cloud. Data must be protected when
transmitted to CSP and during the storage. The
protection is against the unauthorized users as well
as the CSP since the cloud is often assumed to be
honest and curious, which means that the cloud can
be interested by the user’s information, but can not
modify it (Li et al., 2010; Yu et al., 2010). To ensure
data privacy, several works propose the storage of data
in encrypted form. Thus, if the storage is compromised,
then the leaked information should be protected or
at least limited. Identity-based cryptography is not
feasible in this situation because the inability of users
to share their encrypted data at a fine-grained level.
Attribute-Based Encryption (ABE) (Sahai and Waters,
2005) solves the problem of fine-grained access control.
There are two complimentary forms of ABE defined
by (Goyal et al., 2006): Ciphertext-Policy Attribute-
Based Encryption (CP-ABE) and Key-Policy Attribute-
Based Encryption (KP-ABE). In a CP-ABE system, the
users have given a set of attributes and the data are
encrypted under an access policy described as a Boolean
formula. Only users having the attributes satisfying the
access policy can decrypt the ciphertext. In a KP-ABE
system, the situation is reversed: users are associated
with access policies and ciphertexts are encrypted with
sets of attributes.

Many approaches and techniques have been proposed
to deal with security and privacy in cloud storage (Huang
et al., 2017; Hosseinzadeh et al., 2017; Grover and
Kaur, 2016; Giraud et al., 2017). In addition, some
works have been interested in security for mobile cloud
computing and Internet of Things (IoT), e.g (Stergiou
et al., 2016; Memos et al., 2017; Zkik et al., 2017;
Ibtihal et al., 2017). Taking advantages of ABS and
ABE has emerged as a widely accepted approach by
the cloud security community (Dahshan and Elkassass,
2014; Wang et al., 2014; Belguith et al., 2016; Alsmirat
et al., 2017; Shakunthala et al., 2017). The ABS is used
to ensure the authentication while hiding anonymity,
and the ABE allows a fine-grained access control to
data. The cloud storage protocol proposed by Ruj et
al. (Ruj et al., 2012) is among the pioneering works to
use ABS and ABE. The protocol uses the SSH protocol
to secure all the communication between the users and
the cloud, and it supports reading and writing data
stored in the cloud. However, the security protocols are
error-prone and difficult to be evaluated using simulation
techniques or conventional test. This has encouraged
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the researchers to formally analyze security protocols
(Kremer and Ryan, 2005; Cremers et al., 2009; Delaune
et al., 2010; Chen et al., 2013; Bansal et al., 2013; Puys
et al., 2016). To the best of our knowledge, there is
no formal modeling yet of ABE or ABS schemes using
symbolic formalism as applied π-calculus.

Contributions: In this work we enhance the security
of cloud storage services based on the attribute-based
cryptography, through a formal analysis of Ruj et
al. (Ruj et al., 2012) protocol. We consider this protocol,
which we call RSN’12 protocol, because it uses both
decentralized ABS and ABE schemes, which are more
suitable for a large-scale environment, and it is widely
accepted by the cloud security community.

• We model it in the applied π-calculus (Abadi and
Fournet, 2001), which allows us to model various
cryptographic primitives with some equational
theories. We use ProVerif tool (Blanchet et al.,
2001) which is one of the most used and efficient
tools to analyze cryptographic protocols (Puys
and Lafourcade, 2015; Cremers et al., 2009). For
sake of simplicity, we consider one attribute in
our symbolic modeling of the ABE and ABS
schemes, which can support more than one policy
for signature and encryption.

• We formalize and verify the fundamental security
properties of the protocol. In writing mode, we
verify the writer authentication and writer privacy
which is expressed by the anonymity of writer’s
identity and unlinkability, that is a user who stores
data on the cloud. While in reading mode, we check
the required property that is data privacy. We show
that the unlinkability of a writer is not satisfied
against an attack in which the adversary delays the
messages of some writers. Then, we propose a fix,
which prevents this attack.

• We also discuss some ambiguous aspects of RSN’12
protocol concerning the use of SSH protocol to
secure connections, and the use of timestamps to
prevent replay attacks.

A preliminary version of this paper appeared in (Berrima
et al., 2017).

Outline: In Section 2, we give a description of SSH
protocol, ABS and ABE schemes and RSN’12 protocol.
In Section 3, we briefly introduce applied π-calculus and
ProVerif tool. We model RSN’12 protocol in Section 4
and analyze the security properties in Section 5. Finally,
we conclude in Section 6.

2 RSN’12 Protocol Description

Ruj et al. (Ruj et al., 2012) propose a protocol for
reading and writing data stored in the cloud. The
protocol is based on the decentralized approach of CP-
ABE (Lewko and Waters, 2011) and ABS (Maji et al.,

2008), where many authorities distribute secret keys
associated to attribute. Using ABS the cloud verifies
the authenticity of a user without knowing his identity
before storing data. Using ABE only valid users are
able to decrypt the stored data. The protocol makes the
following assumptions:

• The CSP is honest-but-curious, i.e. the CSP is
interested to view the user’s information. So it tries
to derive some information from the messages he
learned during the execution of the protocol, but
cannot modify the user’s content.

• Users can have either read or write or both access
to a file stored in the CSP.

• All the communication between participants are
secured by SSH (Secure Shell) protocol.

Before presenting the protocol, we give some
cryptographic background.

2.1 Cryptographic Background

The security of Ruj et al. protocol is based on the
SSH protocol and two cryptographic schemes which are:
Attribute-Based Encryption (ABE) and Attribute-Based
Signature (ABS).

SSH protocol:. SSH (Secure Shell) is a widely deployed
secure network protocol. Currently, SSH Version 2 is the
recent specification for SSH. It is composed of three sub-
protocols:

• Transport Protocol : It establishes session
keys and ensures authentication of the
server, confidentiality, and integrity of the
communication. It prevents also replay attack
using monotonically increasing sequence numbers.

• Authentication Protocol : It authenticates the user
who is about to log in to the server.

• Connection protocol : It establishes different
communication channels within an SSH session.

In SSH authentication sub-protocol there are three
methods to authenticate the client (Ylonen and Lonvick,
2006). We consider ”public key” method in which a user
sends a signature created with his private key. The server
must check that the key is a valid authenticator for the
user and that the signature is valid.

Multi-authority ABS system:. ABS is a cryptographic
scheme that allows a party, who possesses a set of
attributes from an authority, to sign a message with
a predicate, called claim policy, that is satisfied by
his attributes. The signature reveals no more than the
fact that a single user, whose his attributes satisfy
the predicate, has signed the message. Moreover,
the signature hides the attributes used to satisfy



4 author

the predicate. Then, ABS is used in applications
requiring anonymous authentication. In a decentralized
environment, there are multiple authorities for
distributing attributes to users. These attribute
authorities may not trust each other, nor even be aware
of each other. However, a separate trusty authority is
required to coordinate attribute authorities and set up
the various public parameters of the ABS. The security
properties of an ABS scheme are:

• Perfect privacy : The signature does not leak which
attributes were used to generate it, nor any other
user’s identifying information.

• Collusion-resistance: Different parties cannot pool
together their attributes to sign a message with a
claim predicate which none of them satisfy alone.

• Unforgeability : Ensures that a signature was
endorsed by one party who satisfies the condition
described in the claim predicate, i.e. a party that
does not possess the expected attributes, cannot
generate a valid signature.

We give the formal definition of ABS. Let A be the
universe of possible attributes. A claim predicate over A
is a monotone Boolean function, whose input attributes
are associated with attributes of A.

Multi-Authority ABS (Maji et al., 2008): A
multi-authority ABS scheme consists of the following
algorithms:

• TSetup: Runs by the signature authority to
produce a trusty public key TPK and trusty
secret key TSK. The authority publishes TPK
and stores TSK.

• TRegister: When a user with identity uid registers
with the signature authority, the authority runs
TRegister(TSK, uid) which outputs a public user-
token τ . The authority gives τ to the user.

• ASetup: An attribute authority who wishes to
issue attributes runs ASetup(TPK) which outputs
an attribute-authority public key APK and an
attribute-authority secret key ASK. The attribute
authority publishes APK and stores ASK.

• AttrGen: When an attribute authority needs
to issue an attribute u ∈ A to a user uid,
first it obtains (from the user) her user-token
τ , and runs the token verification algorithm
TokenV erify(TPK, uid, τ). If the token is
verified, then it runs AttrGen(ASK, τ, u) which
outputs an attribute key Ku. The attribute
authority gives Ku to the user.

• Sign: A user signs a message m with a claim-
predicate Υ, only if there is a set of attributes A
such that Υ(A) = 1, the user has obtained a set of

keys {Ku | u ∈ A} from the attribute authorities.
Then the signature σ can be generated using

Sign(TPK, {APKauth(u) | u ∈ AΥ}, τ,
{Ku | u ∈ A},m,Υ).

Here auth(u) stands for the authority who owns
the attribute u, and AΥ is the set of attributes
appearing in Υ. (m,Υ, σ) can be given out for
verification.

• Verify: To verify a signature σ on a message m with
a claim-predicate Υ, a user runs

V erify(TPK, {APKauth(u) | u ∈ AΥ},m,Υ, σ)

which outputs a Boolean value, accept or reject.

Multi-authority ABE system:. CP-ABE encryption
allows encrypting data under an access policy expressed
as a Boolean formula over a set of attributes, so that
the decryption succeeds only for the users possessing the
attributes which satisfy the access policy. Decryption
is performed by using secret attribute keys, associated
with the attributes of the user, and issued by an
attribute authority. In the Multi-Authority CP-ABE
system (Lewko and Waters, 2011), any party can act as
an authority by creating a public key and issuing private
keys to different users that reflect their attributes. There
is no requirement for any global coordination or central
authority other than the creation of an initial set of
common public parameters. To ensure the property of
collusion resistance, the authors use the concept of global
identifiers to ”link” secret attribute keys together that
were issued to the same user by different authorities.

Multi-Authority CP-ABE (Lewko and Waters, 2011):
A multi-authority Ciphertext-Policy Attribute-Based
Encryption system is formed of the following five
algorithms:

• GlobalSetup(λ) → GP: It takes in the security
parameter λ and outputs global parameters GP .

• AuthoritySetup(GP) → (SK,PK): Each authority
runs the authority setup algorithm with GP as
input to produce its own secret key and public key
pair, (SK,PK).

• Encrypt(M, (A, ρ), GP, {PK})→ CT : It takes in
a message M , an access matrix (A, ρ), the set of
public keys for relevant authorities, and the global
parameters. It outputs a ciphertext CT .

• KeyGen(GID,GP, i, SK)→ Ki,GID: It takes in
identity GID, the global parameters, an attribute
i belonging to some authority, and the secret key
SK for this authority. It produces a key Ki,GID

for this attribute, identity pair.
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• Decrypt(CT,GP, {Ki,GID})→M : It takes in
the global parameters, the ciphertext, and a
collection of keys corresponding to attribute,
identity pairs all with the same fixed identity
GID. It outputs either the message M when
the collection of attributes i satisfies the access
matrix corresponding to the ciphertext. Otherwise,
decryption fails.

2.2 RSN’12 Protocol

The protocol involves a user who may be a writer or
a reader or both, a trusty authority (TA) registering
users, one or more Key Distribution Center (KDC)
issuing the secrets keys associated with users’ attributes,
and the CSP. TA and KDCs are trusted entities, CSP
is a semi-trusted entity. However, some users may be
malicious and thus are considered as untrusted entities.
The protocol is composed of three sub-protocols.

CSP User

TAKDC

12
3

4

write

read

Figure 1: RSN’12 protocol.

Registering and getting attribute secret keys:. In a first
phase, a user gets attribute secret keys from the KDCs
by presenting his token obtained from the TA:

• The user presents his identity to the TA, for
instance a federal government ( 1© in Figure 1).

• The TA registers the user if he is eligible and gives
him a token as described in ABS scheme ( 2© in
Figure 1). The TA embeds a random value in the
token. This random value will be incorporated in
the attribute secret keys for signing to prevent
collusion of the users.

• If a user presents the token to one or more KDCs
then she receives secret attribute keys for signing
and decryption ( 3© in Figure 1). The KDC checks
the validity of the token using the TA’s public key,
and sends the corresponding keys for signing and
decryption ( 4© in Figure 1).

Writing on the cloud:. To store a message MSG on the
cloud, the user proceeds as follows:

• The user creates an access policy X containing
all required fields, and encrypts the message
MSG under X as C = Encrypt(MSG,X ) ( 1© in
Figure 2).

• Then he calculates the message C1 = H(C)‖τ
where H is a hash function, τ is a timestamp and ‖
is the concatenation operation. The timestamp is
used to prevent the user to use stale message back
with a valid signature when his attributes have
been revoked. Next, he generates the signature σ
of C1 with a claim policy Y ( 2© in Figure 2).

• Finally, the user sends c = (C, τ, σ,Y) to the CSP
( 3© in Figure 2). Then CSP verifies, using V erify
algorithm, if the message H(C)‖τ was signed by a
user satisfying the claim policy Y.

Reading from the cloud:. A user can access at any time
to the data and requests a ciphertext, then the CSP
sends the requested ciphertext using SSH.

Note that, the authors do not propose any revocation
model, but it is still possible to incorporate a revocation
model. The protocol specification is clear but contains
some ambiguities. Next, we discuss these minor problems
and explain how to fix them.
Timestamps: They are used to prevent the writing
when the attributes and keys of a writer have been
revoked, since a timestamp informs of the time when
the message was created. However a writer signs its
message along with a timestamp generated by himself.
Then a verifier cannot really be sure, since the signer
may include an arbitrary timestamp. Then in order to
address this problem, we recommend the use of a trusted
timestamping described in RFC 3161 (Adams et al.,
2001), where the writer sends the hash of its message ( 1©
in Figure 3) to a trusted third party called TSA-Time-
Stamping Authority ( 2© in Figure 3). Then, the TSA
concatenates a timestamp τ to the hash and calculates
the hash of this concatenation. This hash is then digitally
signed with the private key of TSA to give the signature
σ ( 3© in Figure 3). Then, the writers sends to the CSP,
the message, the timestamp and the signature ( 4© in
Figure 3). This role of TSA can be ensured by the trusted
entity TA in the RSN’12 protocol.
Writer and SSH connection to the CSP: In writing
access, the protocol uses SSH connection between users
and the CSP which is assumed to be semi-trusted.
However, when establishing SSH connection the CSP
knows the user’s identity following the execution of
SSH authentication sub-protocol (Ylonen and Lonvick,
2006), which compromises the user privacy against
the CSP. This ambiguity can be easily addressed by
configuring the SSH server of the CSP to allow a user
to login without any user authentication.

Reader and SSH connection to the CSP: In
reading access the SSH connection is useless because the
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1 C = Encrypt(MSG,X )

2 C1 = H(C)‖τ , σ, Y
CSP User

3 (C, τ, σ,Y)

Figure 2: Writing on the cloud.

1 C = Encrypt(MSG,X )

2 C1 = H(C)3C2 = H′(C1‖τ), σ

CSP User

TSA

4 (C,C2, σ)

Figure 3: Writing on the cloud with a TSA.

messages are encrypted using ABE and only authorized
users can decrypt them. Hence, we can drop the SSH
connection between a reader and the CSP, thus helping
to reduce the performance overhead due to a large
number of SSH connections.

2.3 Computational complexity

The computational complexity of the protocol relies
on the practical instantiations used for ABS and ABE
schemes. The instantiation of ABS scheme in (Maji et al.,
2008) requires cyclic groups of prime order equipped
with bilinear pairing. Signing a message needs 2w +
l(1 + 2t) + 3 exponentiation, where l and t are the
dimensions of the monotone span program representing
the claim policy and w is the minimum number of
attributes to satisfy the claim policy. Checking a
signature requires (l + 2t) pairing operation. Note that
there is a probabilistic verification requiring only l + 4
pairings, at the cost of additional exponentiations and a
very small probability of false positive (Maji et al., 2008).
The probabilistic verification is more efficiency because
pairing operation is most expensive operation.

The instantiation of ABE scheme in (Lewko and
Waters, 2011) works in composite bilinear groups. The
encryption takes 5m exponentiations and 1 pairing
operation, with m is the number of attributes. The
decryption takes 2m+ 1 pairing operation.

3 Applied π-calculus

We give a brief overview of the applied π-calculus,
a language for describing concurrent processes

and their interactions and handling cryptographic
primitives (Abadi and Fournet, 2001).

3.1 Syntax and Semantics

Given a signature Σ, an infinite set of names, and an
infinite set of variables, the set of terms are defined by

L,M,N, T, U, V ::= terms
k, . . . , n, . . . , s names
x, y, z variables
f(M1, . . . ,Mk) function application

An equational theory over a signature usually consists of
a set of equations asserting the equality of cryptographic
primitives. We usually use E to denote an equational
theory. The notation M =E N means that the equation
M = N holds in the theory E. A protocol is modeled as
a set of processes defined by the grammar described in
Figure 4.

P,Q,R ::= extended processes
0 null process
P | Q parallel composition
!P replication
new n; P name restriction
if M =E then P else Q conditional
in(c,x);P message input
out(c,M);P message output
{M/x} active substitution

Figure 4: Grammar of extended processes.



short title 7

The null process cannot perform any actions. A
parallel composition P |Q represents the combined
behavior of P and Q executing in parallel. The
replication !P behaves as an infinite number of copies of
P running in parallel. The process new n; P generates a
new name n then behaves as P. The name n is bound,
i.e. it is not accessible to the environment. The process
if M =E N then P else Q behaves as P if M =E N ,
otherwise it behaves as Q. The input process in(c, x);P
is ready to input a message on the channel c, then to run
P{M/x}, i.e. to run P with the message M replaced by
the formal parameter x. The output process out(c,M);P
is ready to output a message M on channel c, then
to run P . The active substitution {M/x} replaces the
variable x with the term M . The active substitution
{M/x} typically appears when the term M has been sent
to the environment. A process is closed if all variables are
bound either by an input or by an active substitution.
We use C[ ] to denote a context (a process with a whole)
and C[P ] is a process obtained by filling the whole with
process P . An evaluation context is a context whose hole
is not under a replication, a conditional, an input, or an
output.

The operational semantics of the applied π-calculus
contains structural equivalence, internal reduction
(denoted as →) and labelled reduction (denoted as
α−→). The structural equivalence defines the equivalence

relations between two processes which differ only in
structure. Internal reduction means that a process
can execute an action without interaction with the
environment, while labelled reduction means that a
process interacts with the environment. TransitionA

α−→
B indicates that A executes α and then continues as B.

Many properties of security protocols are formalized
in terms of observational equivalence between processes.
To define it, we use A ↓ c to denote that process A can
send a message on c.

Observational equivalence (≈): As defined
in (Abadi and Fournet, 2001), observational equivalence
is the largest symmetric relation R between closed
extended processes with the same domain such that
ARB implies:

1. if A ↓ a then B ↓ a,

2. if A→∗ A′ then B →∗ B′ and ARB′ for some B′,

3. if C[A]RC[B] for closing evaluation context C.

Moreover, we consider an active adversary who is able
to access to any message sent on public channel, and also
to insert, delay and remove messages. In the applied π-
calculus the sender’s identity of a message is unknown,
unless the identity is specified explicitly in the conveyed
message.

3.2 ProVerif

ProVerif (Blanchet et al., 2001) is a tool for
automatically proving cryptographic protocols. The

input of the ProVerif is a protocol modeled in the applied
π-calculus. It outputs whether this protocol satisfies or
not a security property which is described as a query.
ProVerif is sound but not complete, if ProVerif says that
a property is satisfied, then the model really guarantees
that property. However, if ProVerif detects a flaw, it
might be a false attack due to the nonce approximation
done in ProVerif.

ProVerif can analyze three types of security
properties. The first one is the reachability. It allows
evaluating the availability of a given term to an attacker.
It is usually used to model the secrecy of a message.
The second one is the correspondence assertion which
is used to capture a relation between events. Formally,
a correspondence property is an expression of the
form ev(M1, . . . ,Mn)⇒ ev′(N1, . . . , Nk), where Mi, Nj
are terms with variables. The property holds if on
every execution trace, each occurrence of ev(M1 . . . ,Mn)
is preceded by an occurrence of ev′(M1, . . . ,Mn). To
reason with correspondence the grammar of extended
process of Figure 4 are enriched by events of the form
event e(M1, . . . ,Mn);P . These events mark important
stages reached by the protocol but do not otherwise
affect the behavior of the protocol. The third one is
so-called diff-equivalence, which allows us to reason
about complex properties that cannot be expressed as
reachability or correspondence assertions. It is defined
between two processes having the same structure but
differs only in the choice of terms. Given two processes
P and Q, diff-equivalence is written by the notion of
biprocess that encodes both P and Q. Such a biprocess
uses the construct choice[M,M ′] to represent the terms
that differ between P and Q. Thus, P uses the first
component of the choice, M , while Q uses the second
one, M ′. Note that diff-equivalence is stronger than the
observational equivalence defined in applied π-calculus
(Definition 3.1). This means that in some cases ProVerif
fails to prove diff-equivalence between two processes
which are observationally equivalent in the sense of
Definition 3.1.

4 Modeling in Applied π-calculus

We define a specific equational theory with abstraction
for SSH protocol, ABS and ABE schemes. Then we
model the protocol in the applied π-calculus from the
viewpoint of four types of principals. In our abstraction
of ABS and ABE schemes, for sake of simplicity, we
consider one attribute and consequently, the protocol
involves one KDC. However, our modeling of the claim
and access policies can be extended to consider more
than one attribute, one access policy, and one claim
policy.

4.1 Equational Theory

We describe the equations modeling the cryptographic
primitives used within RSN’12 protocol.
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Standard cryptographic primitives:. SSH protocol
includes standard primitives such as symmetric
and asymmetric encryption, digital signature and
concatenation of messages.
Symmetric encryption: A symmetric encryption scheme
allows the sender to encrypt his message using a shared
secret key k, whereas a symmetric decryption algorithm
allows the receiver to decrypt the ciphertext using k. The
functions senc and sdec model, respectively, encryption
and decryption. The decryption of an encrypted message
senc(k,msg) is modeled by the following equation:

sdec(k,senc(k,msg)) = msg

Asymmetric encryption: In such encryption scheme, each
participant of a protocol possesses a pair of keys, one
private only known by the owner and used to decrypt
ciphertexts, and the other one public used to encrypt
messages. To model this scheme, we consider a constant
sk (function of arity 0) representing a private key and
a function pk for generating public key corresponding
to sk. The function adec models the decryption of
an encrypted message msg represented by the term
aenc(sk,msg) as described by the following equation:

adec(sk,aenc(pk(sk),msg))

Digital signature: It is used in the authentication of
message and thus the authenticity of participants. Non-
message revealing digital signature is a digital signature
which does not allow getting the message from the
signature. In a similar way to asymmetric encryption,
digital signatures rely on a private and public keys.
The private key serves for computing signatures and
the public key for verifying those signatures. In order
to model a non-message revealing digital signatures
and their verifiable, in addition to the function pk

from asymmetric encryption, we use function sign for
constructing signatures and the function checksign to
check the signature, and returning true only when the
signature is correct.

checksign(pk(sk),sign(sk,msg),msg) = true

Concatenation: Algebraic data structures such as tuples
of messages appear in many protocols and are supported
by ProVerif. A tuple of length n > 1 is defined as
(M1, . . . ,Mn) where M1, . . . ,Mn are terms. Given a
tuple, it is possible to recover the i-th element.

ABS equational theory:. ABS scheme uses separate
keys, constructed from the public parameters which are
set up by TA. The equational theory modeling ABS
scheme consists of five equations given in Figure 5.

The function absPK is used for deriving the public
key of the TA from its private key. The term
absToken(TSK,base,uid) denotes the token delivered
by a TA with secret key TSK, to a user with identity
uid. Any entity can check the validity of the token
using absTokenCheck algorithm, and the public key
absPk(TSK) as described by Equation (ABS-1). The

(ABS-1)absTokenCheck(absPk(TSK),uid,

absToken(TSK,base,uid)) = true.

(ABS-2)absGetBase(absToken(TSK,base,uid))=base.

(ABS-3)absKeyCheck(absPk(TSK),absPkA(absPk(TSK),

ASK),absSka(ASK,base,att),base,att)=true.

(ABS-4)absEval(ClaimP,x)=x.

(ABS-5)absSignCheck(absPk(TSK),APK,msg,ClaimP,
absSign(absPk(TSK),APK,absToken(TSK,base,

uid),skA,msg,CaimP))
= absEval(ClaimP,absKeyCheck(absPk(TSK),

APK,skA,base,att)).

Figure 5: ABS equational theory.

algorithm extraction of the random value base from a
token is modeled by Equation (ABS-2). A KDC extracts
base value to embedded it in the attribute secret keys
of the users. This allows us to link the attribute secret
keys to one user and consequently, to avoid the collusion
of the users. An attribute secret key corresponding
to attribute att is denoted by absSka(ASK,base,att)

with ASK is the private key of the issuing KDC.
It can be checked for correctness using absKeyCheck

algorithm as described in the equation (ABS-3). Since
it is possible to have many TA, and a KDC would
issue attribute keys to a user for all the TA he wishes
to work with, the public key of a KDC, denoted by
absPkA(absPk(TSK),ASK), is associated with its secret
key ASK and the public absPk(ASK) of the TA with
which the user works. The evaluation of the claim policy,
which expressed by a Boolean function, is modeled by
Equation (ABS-4). Given a Boolean function F , the term
absEval(F, x1 . . . , xn) is equivalent to F (x1, . . . , xn).
Hence, when considering more than one attribute,
absEval will be used to represent the truth table
of the Boolean function. The functions absSign and
absSignCheck are employed to represent respectively
the signature and verification procedures. As described
in Equation (ABS-5), absSignCheck returns the truth
value of claim policy evaluation, which is true only if the
message was signed using a valid attribute secret key.

ABE equational theory:. As ABS scheme, ABE scheme
uses separate keys, but does not require a central
authority. The equational theory of ABE scheme is given
in Figure 6.

(ABE-1)abeKeyCheck(abePk(ASK),

abeSka(ASK,uid,att),uid,att)=true.

(ABE-2)abeEval(AccessP,msg,true)=msg.

(ABE-3)abeDec(abeEnc(abePk(ASK),AccessP,

msg),abeSka(ASK,uid,att))

= abeEval(AccessP,msg,

abeCheckKey(abePk(ASK),abeSka(ASK,uid,

att),uid,att)).

Figure 6: ABE equational theory.
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In ABE scheme each KDC has a private key and
a public key derived from its secret one using the
function abePk. The evaluation of access policy and the
verification of attribute secret key using respectively
abeEval and abeKeyCheck are similar to ABS scheme
as is shown by the equations (ABE-1) and (ABE-
2). An attribute secret key associated to an attribute
att, and delivered by a KDC with private key ASK

to a user of identity uid, is denoted by the term
abeSka(ASK,uid,att). Here the uid of the user appears
in the attribute keys because the technique preventing
the collusion of users embeds the user’s identifier uid into
the attribute keys. The encryption algorithm, denoted
by the function abeEnc, takes as input a plaintext,
the access policy and the public key of the relevant
authority, thus an encrypted message is denoted by
a term like abeEnc(abePk(ASK),AccessP,msg). The
equation (ABE-3) describes the decryption algorithm
abeDec. It outputs the message msg only when the
attribute secret key corresponds to the attribute att.

We now model the role of participants in the protocol
and their interactions. We start by modeling the role
of SSH client and SSH server, then we describe the
processes of RSN’12 protocol and its participants.

4.2 Modeling SSH Protocol

To model the transport sub-protocol, only the symmetric
encryption is considered, i.e. we ignore the MAC and
compression algorithms. Therefore, our abstraction of
transport sub-protocol must establish a session key
and ensures authentication of the server. A possible
abstraction is based on an asymmetric encryption
scheme in order to establish a fresh session key for
a symmetric encryption scheme and authentication of
the server. First, the client creates a session key, which
is the symmetric session key. Then, the session key is
encrypted with the server’s public key and transmitted
to the server. To decrypt, the server uses its private key
to obtain the session key. Since in applied π-calculus it is
difficult to model the sequential numbers, we use random
nonce to prevent replay attacks in SSH connections as
follows: For each message sent after SSH transport sub-
protocol, the sender concatenates its message with a
nonce previously received from the receiver. Then, the
receiver can check if the message is fresh or not. For sake
of clarity, we do not include this use of random value in
the below process.

The processes of SSH client and SSH server are
given in Figure 7 and 8 respectively. The process of
SSH client (resp. SSH server) is split into two sub-
process, Clt-SSH-tran (resp. Ser-SSH-tran) modeling
transport sub-protocol and Clt-SSH-Auth (resp. Ser-
SSH-Auth) modeling SSH authentication sub-protocol.
This separation provides some modularity because the
communication between a writer and the CSP involves
only SSH transport sub-protocol. In the following
processes, we use some classical syntactic sugar of
ProVerif syntax for readability. The processes P and Q

that appear in Figure 8 represent the rest of the server
process.

Clt-SSH-Trans(pkS) ,
new SK;
out(c,aenc(pkS,SK));
Clt-SSH-Auth(skClt) ,
out(c,senc(SK,(sign(skClt,SK),pk(skClt)))).

Figure 7: SSH client.

Ser-SHH-Trans(skS) ,
in(c,encSK);
let SK = adec(skS,encSK) in P.
Ser-SHH-Auth(pkClt) ,
in(c,msg)
let (sig,pkC)= sdec(SK,msg) in
if checksign(pkClt,sig,SK)= true then Q.

Figure 8: SSH server.

Note that, in our modeling the legitimate users
are identified by their public keys sent as a
parameter of the Proverif processes. For instance, in
Ser-SSH-Auth(pkClt) sub-protocol in Figure 8, the
signature sig is checked with the key pkClt representing
a valid authenticator for a legitimate user.

4.3 Modeling RSN’12 Protocol

We describe the main process modeling the RSN’12
protocol. It is specified as the parallel composition of
the processes modeling the roles of writers, readers, TA,
KDC and CSP.
The main process. It is specified in Figure 9. First,
the fresh secret keys skTA, skKDC and skCSP, used
respectively by the TA, the KDC, and the CSP for
asymmetric encryption and signature are generated.
Their corresponding public keys are then sent on public
channels, i.e. they are made available to the adversary.
Moreover, the fresh secret keys TSK, absASK and abeASK

used in ABS and ABE schemes, are also generated
and their corresponding public keys are published.
The secret keys of writer skW and reader skR are
made under replication to model an infinite number of
writers and readers. The processes writer and reader
are under replication, because one user may establish
many sessions with the CSP. Since TA and KDC
processes have the public key of the user as a parameter,
they are instanced twice to interact with readers and
writers. Moreover, in our modeling, the public keys
of asymmetric encryption are used as identities of
participants.
The writer process. The writer process given in
Figure 10 models the role of a writer. The secret
keys KWTA, KWKDC and KWCL are the secret shared keys
established by SSH transport protocol respectively with
the TA, the KDC and the CSP. After the receipt of a
token form the TA, the writer sends a request to the
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MainProcess ,
new skTA;new skKDC;new skCSP;
let pkTA=pk(skTA) in
let pkKDC=pk(skKDC) in
let pkCSP=pk(skCSP) in
out(ch,pkTA); out(ch,pkKDC); out(ch,pkCSP);
new TSK; new absASK;
let TPK=absPk(TSK) in
let absAPK=absPkA(TPK,absASK) in
out(ch,TPK); out(ch,absAPK)
new abeASK;
let abeAPK=abePk(abeASK) in
out(ch,abeAPK);
!(new skW;let pkW=pk(skW) in out(ch,pkW);
!Writer(skW,TPK,absAPK,abeAPK,pkTA,pkKDC,pkCSP))|
!(new skR;let pkR=pk(skR) in out(ch,pkR);
!Reader(skR,pkTA,pkKDC)) |
!TA(skTA,TSK,pkW) |
!KDC(skKDC,TPK,absASK,abeASK,pkW) |
!TA(skTA,TSK,pkR) |
!KDC(skKDC,TPK,absASK,abeASK,pkR) |
!CSP(skCSP,TPK,absAPK)

Figure 9: Main process.

KDC to get attribute secret key for signing, this request
is encoded by the pair (token,write). Afterwards, the
writer encrypts his message msg and signs it using the
attribute secret key absSkA. Finally, it sends the signed
message sigMsg to the CSP.

Writer(skW,TPK,absAPK,abeAPK,pkTA,pkKDC,pkCSP),
Clt-SSH-Trans(pkTA); (*SSH connection to TA*)
Clt-SSH-Auth(skW);
in(ch,encToken);
let token = sdec(KWTA,encToken) in
Clt-SSH-Trans(pkKDC);(*SSH connection to KDC*)
Clt-SSH-Auth(skW);
out(ch,senc(KWKDC,(token,write)))
in(ch,encAbsSkA);
let absSkA = sdec(KWKDC,encAbsSkA) in
let abeEncMsg = abeEnc(abeAPK,AccessP,msg) in
Clt-SSH-Trans(pkCSP); (*SSH connection to CSP*)
let sigMsg=absSign(TPK,absAPK,token,absSkA,

abeEncMsg,ClaimP) in
out(ch,senc(KWCSP,(abeEncMsg,sigMsg))).

Figure 10: Writer process.

The reader process. The role of a reader is modeled
by reader process given in Figure 11. At first, a reader
behaves as a writer by requesting a token from the
TA and an attribute secret key for decryption from the
KDC. Next, it has access to the CSP, without secure
communication SSH, to read a message stored on the
cloud. Finally, he decrypts the message read from the
CSP using his attribute secret key abeSkA, and behaves
as RestOfReader with the received message.
The TA process. The trusted authority process is
given in Figure 12. After the establishment of the
shared key for symmetric encryption KWTA by SSH
transport protocol, and the authentication of the user
by SSH authentication protocol which uses the process’s
parameter pkClt as authenticator, the TA generates a
token and sends it to the user encrypted with KWTA.

Reader(skR,pkTA,pkKDC) ,
Clt-SSH-Trans(pkTA); (*SSH connection to TA*)
Clt-SSH-Auth(skR);
in(ch,encToken);
let token = sdec(KWTA,encToken) in
Clt-SSH-Trans(pkKDC); (*SSH connection to KDC*)
Clt-SSH-Auth(skR);
out(ch,senc(KWKDC,(token,read)));
in(ch,encAbeSkA);
let abeSkA = sdec(KWKDC,encAbsSkA) in
in( c,encMsg); (*Reception of data from the CSP*)
let msg = abeDec(encMsg,abeSkA) in
RestOfReader.

Figure 11: Reader process.

TA(skTA,TSK,pkClt) ,
Ser-SSH-Trans(skTA); (*SSH connection to a user*)
Ser-SSH-Auth(pkClt);
new base;
event DelivToken(pkClt);
out(ch,senc(KWTA,absToken(TSK,base,pkClt))).

Figure 12: Trusted Authority process.

The KDC process. The KDC process is given in
Figure 13. When receiving a request from a user, the
KDC checks the correctness of the token using the
public key pkClt of the user, which was authenticated
during SSH authentication protocol. If the token is
valid, it issues an attribute secret key for encryption or
signing following the value of AccessMode, which has two
possible values: ”write” or ”read”.

KDC(skKDC,TPK,absASK,abeASK,pkClt) ,
Ser-SSH-Trans(skKDC);(*SSH connection to a user*)
Ser-SSH-Auth(pkClt);
in(ch,encToken);
let (token,AccessMode)=sdec(KWKDC,encToken) in
if absTokenCheck(TPK,pkClt,token)= true then
if AccessMode = write then
event DelivKeySign(pkClt);
out(ch,senc(KWKDC,absSka(absASK,

absGetBase(token),att)));
else if AccessMode = read then
out(ch,senc(KWKDC,abeSka(abeASK,pkClt,att)))
else 0.

Figure 13: Key Distribution Center process.

The CSP process. The CSP which is responsible for
the storage of user data is modeled by the process in
Figure 14. SSH connection without user authentication is
established between writers. If the signature is valid with
respect to the claim policy, the CSP stores the message
that becomes immediately accessible by the readers.
Since in reading mode, there is no secure communication
between the reader and the CSP, in our modeling the
CSP outputs the incoming messages from the writers on
a public channel.
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CSP(skCSP,TPK,absAPK) ,
Ser-SSH-Trans(skCSP); (*SSH with a writer*)
in(ch,encMsg);
let (msg,sigMsg) = sdec(KWCSP,encMsg) in
if absSignCheck(TPK,absAPK,msg,ClaimP,sigMsg)=
true then
event AcceptSign;
out(ch,msg).

Figure 14: Cloud Server Porvider process.

5 Security Analysis

We analyze the security properties of the protocol,
namely the authentication and privacy of a writer,
and the confidentiality of the data. All proofs of our
propositions are not presented because they are directly
implied by our ProVerif codes.

5.1 Confidentiality

It means that a user without valid access policy cannot
decrypt the data stored on the cloud. In applied π-
calculus this property can be expressed as a secrecy
property: it should be impossible for an adversary,
interacting with the protocol and without valid attribute
secret key, to learn a message which is encrypted and
stored on the cloud.

Definition 5.1: Given an access policy AP , a cloud
storage protocol ensures confidentiality if a secret
message stored on the cloud by an honest writer is not
deducible by an attacker without attribute secret key
satisfying AP .

Proving secrecy property is expressed by the
reachability notion. We request ProVerif to check that a
private message, encrypted using a public access policy
AP , cannot be deduced by the attacker. The valid
attribute secret key of AP abeSka(ASK,uid,att), which
has been generated by the KDC, is not sent on a public
channel to be not available to the adversary. ProVerif
proves this property in less one minute.

Proposition 1: RSN’12 protocol ensures the
confidentiality property.

This result confirms the fact that SSH communication
between the CSP and a reader is useless for
confidentiality, since our modeling does not use it and
ProVerif is able to prove the secrecy of the message.

5.2 Writer Authentication

A user can only write in the cloud if he has the attribute
validating the claim policy. Moreover, an invalid user
cannot receive attribute from a KDC, if does not have
the token from the TA. Authentication property can be
captured as a correspondence assertion. To define the

authentication of a writer, we annotate the protocol by
the following events:

• AcceptSign: This event is placed inside the CSP’s
process and emitted if the signature is valid, i.e.
absCheckSign returns true.

• DelivKeySign(pkClt): This event is placed inside
the KDC’s process and emitted when the KDC
issues an attribute secret key for signing to a user
with identity pkClt.

• DelivToken(pkClt): This event is placed inside
the TA’s process and emitted when the TA delivers
a token to a user with identity pkClt.

Definition 5.2: A cloud storage protocol ensures the
authentication of a writer with identity Id if for every
execution trace of the protocol each occurrence of
the event AcceptSign is preceded by an occurrence of
DelivKeySign(Id) which is preceded by an occurrence
of DelivToken(Id).

This property can be expressed in ProVerif
in terms of nested correspondence (Blanchet,
2009) which allows us to order events. ProVerif
can automatically prove the corresponding nested
correspondence in less one second: event(acceptSign)⇒
(event(DelivKeySign(pkwriter))⇒
event(DelivToken(pkwriter)))

Proposition 2: RSN’12 protocol satisfies the
authentication of a writer.

5.3 Writer Privacy

In the context of cloud storage, writer privacy
is expressed by two properties; anonymity and
unlinkability. The anonymity of a writer’s identity is
ensured if it is not possible for anyone, even the CSP,
to learn the writer’s identity of a stored message.
Unlinkability means that no one can link the messages
stored on the cloud, more precisely no one is able to
decide if two messages were stored by the same writer,
or not.

Anonymity:. A cloud storage system ensures anonymity
if it keeps the writer’s identity secret from everyone.
Hence, anonymity can be formalized as a secrecy
property: no one can deduce the identity of a writer who
stores a message on the cloud. Since the identities of
the writers are known values, anonymity is captured by
the concept of strong secrecy. Strong secrecy means that
the adversary cannot distinguish two instances of the
same protocol with two different values of the secret. For
the precise definition, we refer the reader to (Blanchet,
2004). In ProVerif, strong secrecy is expressed by diff-
equivalence defined between processes that share the
same structure and differ only in the choice of terms
representing the secret values (Blanchet et al., 2008).
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Definition 5.3: A cloud storage protocol ensures
anonymity of a writer’s identity if for any two writers
with identities IdW1, IdW2 and for any message msg, an
adversary cannot distinguish whether msg comes from
IdW1 or IdW2.

We request to ProVerif to check if

C[Writer(IdW1,msg)] ≈ C[Writer(IdW2,msg)].

with C[ ] is an evaluation context modeling the whole
cloud storage protocol as described in main process
with a hole for a writer process, and the process
Writer(IdW,msg) models a writer with identity IdW
storing a message msg on the cloud. ProVerif succeeds
to prove this request in 3 seconds.

Proposition 3: RSN’12 protocol preserves the
anonymity of writer’s identity.

Unlinkability:. Informally, in cloud storage context,
unlinkability holds when the different stored messages of
the same writer cannot be linked by an attacker even
a dishonest user (writer or reader). Thus, unlinkability
can be viewed as the secrecy of link between writer
and its messages stored on the cloud. The definition of
unlinkability is similar to the definition of voter privacy
in e-voting protocol (Kremer and Ryan, 2005) in the
sense that we must consider at least two honest writers.
To understand this assumption, consider the case where
all the writers are dishonest except one, as the stored
messages on the cloud are published by the CSP, the
dishonest writers can collude and determine the message
of the honest writer.

Definition 5.4: A cloud storage protocol ensures
unlinkability if for any two writers with identities IdW1,
IdW2 and for any two messages msg1 and msg2, an
adversary cannot distinguish the situation in which
IdW1 stores msg1 and IdW2 stores msg2 from the
situation in which IdW1 stores msg2 and IdW2 stores
msg1.

In applied π-calculus this definition can be formalized
as the following equivalence:

C[Writer(IdW1,msg1)|Writer(IdW2,msg2)]
≈

C[Writer(IdW1,msg2)|Writer(IdW2,msg1)] ,

where C[ ] is an evaluation context modeling the whole
protocol with a hole for two writers. In ProVerif, the
above pair of processes can be expressed as single
biprocess as follows:

C[Writer(IdW1, choice[msg1,msg2])] |
C[Writer(IdW2, choice[msg2,msg1])] .

ProVerif finds an attack, in which a man-in-
the-middle attacker selectively delays or delete some
messages sent to the CSP by one writer until he can link
a message to somebody.

Proposition 4: RSN’12 protocol does not ensure
unlinkability property.

For this attack, we consider an attacker that is a semi-
honest reader with valid attribute secret keys, who wants
link the messages to a writer. In a real cloud storage
environment, to achieve the attack, an attacker performs
the following steps:

• Access to the CSP and memorize all the files stored
in the cloud.

• Listen to the network and wait for a message sent
to the CSP.

• When a new message MSG is sent, he identifies
its sender IdW and blocks all the messages sent to
CSP after the message MSG. He now has just to
wait until MSG becomes available on the CSP, i.e.
the CSP appends MSG to the previous files.

• Then, he can access the files and then learn MSG
by comparing the current contents of files with the
previous contents. Thus, he concludes that MSG
was sent by a writer with identity IdW and can
link a file to somebody.

We illustrate this attack in Figure 15.

Fixed protocol:. The previously discovered attack
against unlinkability is based on the fact that an attacker
can instantaneously access to the CSP to learn a message
just after it was sent by a writer. To fix this problem,
a solution is that the CSP simultaneously publishes
at least two incoming messages from different persons.
However, the messages are accessible from a file, so if
the messages are written on the file in a deterministic
order, for instance following the arriving time of the
messages, the adversary can link a message with its
writer by inspecting the order of the sent messages to
the CSP on the network. Therefore, the CSP must write
the incoming messages on the files in a non-deterministic
way. The new role of the CSP is given in the Figure 16
and illustrated in Figure 17.

The synchronization command sync 1 in the last
line of the above process is introduced to synchronize
CSP process. This means that the CSP process waits
until the two sync 1 are reached before publishing the
received messages. Therefore, the outputs out(ch,msg1)
and out(ch,msg2) of the two received messages are
executed in parallel. This parallel execution captures
the non-deterministic behavior of the writing of
the messages on the file, because the semantic of
a parallel composition P | Q allows simultaneously
and independently execution of P and Q. Moreover,
in this case synchronization helps to automatically
prove diff-equivalence by ProVerif, and hence the
observational equivalence of applied π-calculus, because
it allows swapping data between processes at the
synchronization points. In fact, the diff-equivalence is
stronger than observational equivalence. In particular,
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Step 1

CSP

Attacker reads and
memorizes all stored files.

Step 2

CSP

Alice writes a new file.

Attacker listens the network
and waits for a message sent to
CSP.

Step 3

Attacker compares the
current files with the
previous files.

Previous CSP Current CSP

Then, the attacker deduces which file was sent by Alice.

Figure 15: Attack on the unlinkability.

FixedCSP(skCSP,TPK,absAPK) ,
Ser-SSH-Trans(skCSP);
in(ch,encMsg1);
let (msg1,sigMsg1) = sdec(KWCSP,encMsg1) in
if absSignCheck(TPK,APK,msg1,ClaimP,sigMsg1)=true
then in(ch,encMsg2);
let (msg2,sigMsg2) = sdec(KWCSP,encMsg2) in
if absSignCheck(TPK,APK,msg2,ClaimP,sigMsg2)=
true then
(sync 1; out(ch,msg1) | sync 1; out(ch,msg2))

Figure 16: Fixed Cloud Server Porvider process.

when proving equivalence between processes that contain
several parallel components, e.g., P | Q and P ′ | Q′,
diff-equivalence requires that P is equivalent to P ′

and Q is equivalent to Q′. This constraint can be
relaxed by swapping data between parallel processes
at synchronization points. For more details, we refer
the reader to (Blanchet and Smyth, 2016). Fortunately,
ProVerif succeeds to prove observational equivalence
with the new role of the CSP in 28 seconds, and therefore
we can conclude the security of the fixed protocol.

Proposition 5: The revisited RSN’12 protocol ensures
unlinkability property.

6 Conclusion

In this paper, we revisit the security of the protocol of
Ruj et al. (Ruj et al., 2012). We propose a model for ABE
and ABS in the well know applied π-calculus framework.
We use ProVerif to prove automatically claimed security
properties by the authors in the original paper. ProVerif
helps us to discover a flaw in this protocol for the
unlinkability property. We then give a correction and
prove the security of the modified version with ProVerif.

The next step is to formalize and verify other
properties such as accountability. A system is
accountable when it is able to detect a malicious action
and generates an undeniable evidence to identify the
originator. It could be possible to extend RSN’12
protocol by a revocation technique and then analyze
the resistance against the replay attacks. Moreover,
we will use our framework to model and analyze more
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Step 1

CSP

Alice sends
a first
message.

Attacker knows that Alice sends a message.
The CSP waits for an other writer sends a
message before store any Alice’s message.

Step 2

CSP

Bob sends
an other
message.

Attacker knows that Bob sends a message.

Step 3

The CSP writes the incoming
messages on the files in non-
deterministic way.

Previous CSP Current CSP

Then, the attacker cannot link messages and writers.

Figure 17: Fixed Cloud Server Provider process.

protocols using ABE and ABS (Yang and Jia, 2012,
2014; Dahshan and Elkassass, 2014; Belguith et al.,
2016), in order to discover flaws or formally prove the
security of these protocols.
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