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Abstract 13 

To be fully operational for facilitating decisions made at any spatial level, models and 14 

indicators of soil ecosystem functions require the use of precise spatially referenced soil 15 

information as inputs. This study aimed at exploring the capacity for SENTINEL-2A (S2A) 16 

multispectral satellite images to predict several topsoil properties in two contrasted 17 

pedoclimatic environments: a temperate region marked by intensive annual crop cultivation 18 

patterns and soils derived from loess or colluvium and/or marine limestone or chalk 19 

(Versailles Plain, 221 km2); and a Mediterranean region marked by vineyard cultivation and 20 

soils derived from lacustrine limestone, calcareous sandstones, colluvium, or alluvial deposits 21 

(Peyne catchment, 48 km2). Prediction models of soil properties based on partial least squares 22 

regressions (PLSR) were built from S2A spectra of 72 and 143 sampling locations across the 23 

Versailles Plain and Peyne catchment, respectively. Eight soil surface properties were 24 

investigated in both regions: pH, cation exchange capacity (CEC), texture fractions (Clay, 25 
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Silt, Sand), Iron, Calcium Carbonate (CaCO3) and Soil Organic Carbon (SOC) content. 26 

Predictive abilities were studied according to the root mean square error of cross-validation 27 

(RMSECV) tests, cross-validated coefficient of determination (R²cv) and ratio of performance 28 

to deviation (RPD). Intermediate prediction performance outcomes (R²cv and RPD greater 29 

than or equal to 0.5 and 1.4, respectively) were obtained for 4 topsoil properties found across 30 

the Versailles Plain (SOC, pH, CaCO3 and CEC), and near-intermediate performance 31 

outcomes (0.5 > R²cv > 0.39, 1.4 > RPD > 1.3) were yielded for 3 topsoil properties (Clay, 32 

Iron, and CEC) found across the Peyne catchment and for 1 property (Clay) found across the 33 

Versailles Plain. The study results show what can be expected from SENTINEL2 images in 34 

terms of predictive capacities at the regional scale. The spatial structure of the estimated soil 35 

properties for bare soils pixels is highlighted, promising further improvements made to spatial 36 

prediction models for these properties based on the use of Digital Soil Mapping (DSM) 37 

techniques. 38 

 39 

Key words: soil properties, SENTINEL-2A, partial least squares regression, temperate soils, 40 

Mediterranean soils, agroecosystems. 41 

 42 

1. Introduction 43 

Soils carry out a number of key environmental functions that are essential for human 44 

subsistence (e.g., food, fiber and timber production, water storage and redistribution, pollutant 45 

filtering and carbon storage). The understanding and modeling of physical, chemical and 46 

biological processes underlying these different functions have been the subject of many 47 

scientific works now that a number of models or indicators that represent these functions are 48 

available (Sanchez et al., 2009; Adhikari and Hartemink, 2016; Baveye et al. 2016). To be 49 

fully operational in facilitating decisions made at local, national and global levels, these 50 
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models and indicators require the use of precise spatially referenced soil information as 51 

inputs.  52 

Given the lack of precision and extension of existing soil databases, Digital Soil 53 

Mapping (Mc Bratney et al., 2003) methods have been recognized as the most adequate and 54 

operational response to these requirements (Arrouays et al., 2014, Minasny & McBratney, 55 

2016). However, even though digital soil maps of soil properties are now being produced 56 

across the globe (Arrouays et al., 2017) and for large areas—regions, countries and even 57 

continents—at high resolutions (100 m), they still provide very uncertain estimations of soil 58 

properties due to the limited availability of sites offering soil property measurements used for 59 

calibrating DSM models (Vaysse et al., 2015). 60 

Visible, Near-infrared and Short-wave Infrared (VNIR/SWIR) hyperspectral remote 61 

sensing methods have been demonstrated to serve as promising means to significantly 62 

increase the number of sites offering quantitative estimations of topsoil properties (e.g., Soil 63 

Organic Carbon (SOC), pH, Cation Exchange Capacity (CEC), texture fractions (clay, silt, 64 

sand), Iron and Calcium Carbonate (CaCO3)) (e.g., Selige et al., 2008; Stevens et al., 2010; 65 

Gomez et al., 2012; Vaudour et al., 2016). For bare soil surfaces, accurate local estimates 66 

(R²cv > 0.7) have been obtained for soil properties i) related to a chemical species that impacts 67 

soil surface reflectance values through absorption bands (e.g., OH- ion for clay) (Ben-Dor et 68 

al., 2002) or ii) highly correlated with the latter (e.g., CEC with clay content) (Ben-Dor et al., 69 

2002), iii) showing a sufficient level of variability across study regions (Gomez et al., 2012a 70 

& b). For instance, Selige et al. (2006) mapped SOC content, a soil property having specific 71 

spectral behaviour and high spatial variability over their study area. In addition, they also 72 

mapped Total Nitrogen, a soil property deprived of specific spectral features but, due to an 73 

associated chemical or physical structure, correlated to a soil property having such features 74 

(being SOC). DSM approaches are designed to employ this new source of soil data to allow 75 
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for the exhaustive mapping of surface (Walker et al., 2017) and subsurface (Lagacherie et al., 76 

2013) properties.  77 

Although hyperspectral VNIR/SWIR imagery has been proven to serve as a valuable 78 

tool for mapping key soil surface properties, it cannot be applied for large surface mapping or 79 

for temporal monitoring because it is expensive to apply and because hyperspectral 80 

VNIR/SWIR imaging data are not widely available. Indeed, only one hyperspectral 81 

VNIR/SWIR satellite sensor is currently operational. The HYPERION sensor offers a spatial 82 

resolution of 30 m, a spectral resolution of 10 nm and a swath of 7.5 km (Folkman et al., 83 

2001). Other hyperspectral VNIR/SWIR imaging sensors are airborne sensors (e.g., the 84 

Hymap, AISA-DUAL and HySpex sensors) with spectral resolutions of 5 to 10 nm, spatial 85 

resolutions of approximately 4-5 m (depending to the flight altitude) and flight prints of 86 

generally less than 400 km² (depending to the studied case). Furthermore, few studies have 87 

obtained successful results in terms of mapping soil properties from VNIR-SWIR 88 

multispectral satellite imagery that allow one to capture a larger area from a single nearly 89 

instantaneous glance (e.g., Vaudour et al., 2013; Shabou et al., 2015). This can be attributed 90 

to i) the low revisit frequency of sensors, which compromises the acquisition of images under 91 

clear conditions, while time ranges of bare soil availability, and particularly for annual crop 92 

systems, are short and ii) the coarse spectral and spatial resolutions of most historical 93 

multispectral sensors, which limit prediction performance outcomes (Gomez et al, 2015; 94 

Adeline et al., 2017). 95 

The recent release of multispectral satellite SENTINEL-2A data by the European 96 

Space Agency last November 2015 is revolutionary in developing images of large areas with 97 

a 290 km-swath width at high revisit frequencies (planned to be near-daily when the full 98 

satellite constellation is in orbit). The multispectral SENTINEL-2A satellite provides 13 99 
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spectral bands at spectral resolutions of between 20 and 180 nm and at spatial resolutions of 100 

10 to 60 m (§2.3). 101 

The objective of this study is to assess the potential for SENTINEL-2A data to 102 

produce estimations of topsoil properties for large sets of sites. The study focuses on two 103 

French regions—the Versailles Plain and the Peyne Valley—that represent very different 104 

agroecosystems and that have both been previously used as test areas for topsoil mapping 105 

from VNIR/SWIR hyperspectral data (Vaudour et al, 2016 and Gomez et al, 2012, 106 

respectively).  107 

 108 

 109 

2. Materials  110 

2.1 Study areas  111 

2.1.1 Versailles Plain 112 

The Versailles Plain is an agricultural peri-urban region of 221 km² located west of Paris 113 

(North of France) that is characterized by intensive annual crop cultivation across an area of 114 

~99 km² (Fig. 1, left). The main crop rotations in the area involve winter wheat, winter 115 

rapeseed, winter and spring barley and maize on occasion (Vaudour et al., 2015). Cultivation 116 

practices are mainly conventional, with early winter plowing applied at least 1 year out of 117 

every 3. The Versailles Plain is composed of two plateaus levels: one at a 120-m elevation in 118 

the center (lower limestone plateau) and another at a 170 m-elevation along the northern and 119 

southern edges of the area (upper millstone clay plateau). Both are oriented in the NW-SE 120 

direction toward the Palace of Versailles. Quaternary loessic deposits and loessic colluvium 121 

leave a mark on all landforms in the area and particularly on local plateaus, which have 122 

evolved into haplic or glossic luvisols according to the FAO classification (World Reference 123 

Base (WRB) (Crahet, 1992; Vaudour et al., 2013, 2014). The largely forested upper plateau 124 
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flanks are characterized by Fontainebleau acid sands that give rise to arenic cambisols, while 125 

the lower plateau flanks, which are largely cultivated, are composed of calcaric cambisols 126 

derived from limestone, colluvial materials and, along the lower slopes, chalk. Throughout the 127 

lower slopes and valleys, stagnic colluvic cambisols are derived from marls or alluvio-128 

colluvial materials. 129 

 130 

 131 

Figure 1. Locations of soil samples from the Versailles Plain (left, infrared colored S2A 132 

image from 12 March 2016) and the lower Peyne Valley (right, infrared colored S2A image 133 

from 19 March 2016), ©ESA 2016 134 

 135 

2.1.2 La Peyne Valley 136 

The lower valley of the Peyne River is a viticultural region of 48 km² located west of 137 

Montpellier (South of France) (Fig. 1, right) and characterized by Plio-Quaternary alluvial 138 

terraces and fan terraces, the deposits of which have undergone fersiallitization and which 139 
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have evolved into red Mediterranean soils or chromic luvisols (Coulouma, 2008). The valley 140 

base has been composed of marine Miocene sediments (marl, sandy loam, and calcareous 141 

sandstone) and marine Pliocene marl refillings since the Messinian salinity crisis. Gently 142 

undulating forms of hills and colluvial fans characterize landscape units in the area and give 143 

rise to several types of soils rich in calcium carbonate with a loamy sand texture and 144 

increasing clay levels toward the bases of the hillslopes: calcaric leptosols, calcaric regosols, 145 

and calcisols. A cuesta that characterizes the landscape unit has formed on lacustrine 146 

limestone of the Upper Miocene, where calcisols and calcaric regosols have developed with 147 

irregular bedrock depths creating variations in stoniness and calcium carbonate content levels. 148 

Alluvial terraces and alluvio-colluvial fans originating from Plio-Quaternary clays and 149 

alluvial deposits correspond to deep stony decarbonated chromic and/or colluvial luvisols, 150 

fluvisols, and some endogleyic calcisols. While early Quaternary terraces of the Peyne River 151 

have produced stony and clayey chromic luvisols, newer terraces have balanced textured 152 

fluvisols with carbonate content. 153 

 154 

2.2 Soil samples and ground observations 155 

2.2.1 Soil sampling  156 

This study gathered two soil data sets that were collected for the purpose of earlier studies (for 157 

Versailles, Vaudour et al. 2013, 2014a, 2016; for La Peyne, Gomez et al, 2012). Despite some 158 

differences in chemical analysis, it was found useful to gather them in view of enlarging the 159 

range of the tested pedological situations. A total of 72 and 143 topsoil samples were 160 

collected from the Versailles Plain and Peyne Valley, respectively (Fig. 1). For the Versailles 161 

Plain, 69 topsoil samples were collected from 2010 to 2013, and 13 topsoil samples were 162 

collected in 2016. All of the samples were composed of roughly 10 sub-samples collected to a 163 

depth of 8 cm from random locations within a 2.7 × 2.7 m square area centered at the 164 
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sampling plot as recorded at its center using a Trimble Pathfinder®Power DGPS of 50 cm 165 

precision (Vaudour et al., 2014). From the Peyne Valley, 39 topsoil samples were collected in 166 

2005, and 104 topsoil samples were collected in 2009. All of the samples were composed of 167 

five sub-samples collected to a depth of 5 cm from random locations within a 10 × 10 m 168 

square centered on the geographical position of the sampling plot as recorded by a Garmin 169 

GPS instrument.  170 

 171 

 172 

2.2.2 Physico-chemical analysis 173 

Topsoil samples collected from both study areas were air-dried and then crushed and sieved to 174 

2 mm. Soil property determinations were performed through a classical physico-chemical 175 

analysis (Baize and Jabiol, 1995). In total, 8 common soil properties were considered for 176 

spectral modeling (Table 1): content of 3 particle sizes or granulometric fractions of 2 mm-177 

sieved fine earth (total silt, 2 - 50 μm; total sand, 50 μm - 2 mm and clay, < 2 µm); calcium 178 

carbonate (CaCO3) content; free iron content (Mehra-Jackson); soil organic carbon (SOC) 179 

content; pH; and cation exchange capacity (CEC).  180 

Granulometric fractions (clay, silt, and sand) and CaCO3 content levels were measured 181 

from 143 soils samples collected from the Peyne Valley (Table 1). The three other soil 182 

properties (iron, CEC and pH) were measured from 104 soil samples collected from the Peyne 183 

Valley. For the Versailles Plain, all soil properties except for CEC (39 samples) were 184 

measured (Table 1).  185 

 186 

Table 1. Soil datasets used for models and statistics on soil properties 187 

Soil 
property 

Description Unit   Versailles Plain   Peyne Valley 

   Sample 
size 

Min Q1 Median Q3 Max Sample 
size 

Min Q1 Median Q3 Max 

SOC  soil organic C g.kg-1 72 7.0 12.5 15.9 20.1 31.9 104 4.0 7.0 8.9 11.4 21.8 
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content 

CaCO3  total CaCO3 
content 

g.kg-1 72 0 0 27.1 67.2 530 143 0 22.2 136.0 251.0 473 

Clay  granulometric 
fraction <2 
μm 

g.kg-1 72 132 192.5 249.5 281.0 391 143 67 185.0 231.0 290.5 452 

Silt  granulometric 
fraction 2-50 
μm 

g.kg-1 72 228 474.8 542.0 603.0 774 143 141 252.0 322.0 384.5 655 

Sand  granulometric 
fraction 50 
μm – 2 mm  

g.kg-1 72 17 87.8 157.5 209.0 512 143 106 364.5 433.0 516.0 737 

Iron  « free iron » 
content 

g/100 g 72 0.51 0.75 0.87 0.97 1.29 104 0.03 0.75 1.07 1.58 2.92 

pH water-pH - 72 5.61 6.91 7.99 8.18 8.34 104 5.37 8.3 8.46 8.54 8.70 

CEC cation 
exchange 
capacity 

cmol.kg-1 39 6.1 11.0 17.1 22.1 28.3 104 6.1 8.3 10.7 12.9 19.1 

 188 

 189 

2.2.3 Ground observations  190 

For the Versailles Plain, soil surface conditions were observed on 15 and 17 March 2016 191 

across 6 agricultural fields and for other fields planned for spectral measurements. For the 192 

Peyne Valley, vineyard soil surface conditions were observed on 24 March 2016 across the 193 

0.9 km² sub-catchment of Roujan, which includes 75 viticultural fields. These observations 194 

enabled us to define the threshold of the vegetation index for retrieving bare soil pixels from 195 

S2A images. At the time that the images were acquired, the budburst stage had just begun for 196 

vines in the Peyne Valley, and hence vine vegetation had not yet developed. For the 197 

Versailles Plain, spring barley sowing had just started and maize and pea sowing had not 198 

started, hence allowing for the observation of bare soils used for spring crops. For both study 199 

areas, winter crops and grasslands were photosynthetically active and covering, and thus 200 

easily identifiable and removable by means of NDVI. 201 

 202 

2.3 Remotely sensed images and geographic data 203 

Two SENTINEL-2A (S2A) images were acquired under nearly clear conditions on 12 and 19 204 

March 2016 from the Versailles Plain and Peyne Valley, respectively (Table 2). The 205 
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multispectral instrument aboard the S2A satellite has 13 spectral bands, including 4 bands of a 206 

10 m resolution and 6 bands of a 20 m resolution (Table 3) retained for spectral modeling. 207 

Both images were atmospherically corrected using the ATCOR2/3 radiative transfer model 208 

(Richter and Schläpfer, 2016). 209 

Both study sites are characterized by urban activity and by the presence of bare soil, 210 

water and vegetation. To mask no-soil pixels from the S2 data, the following approach was 211 

applied. First, urban and water areas were masked using Land Parcel Registry maps. In turn, 212 

only cropland and vineyards were maintained across the study areas. Second, pixels with 213 

normalized difference vegetation index (NDVI) values exceeding an expert-calibrated 214 

threshold were masked. A value of 0.35 was determined for both sites after considering field 215 

observations (section 2.2.3). The NDVI was retrieved using bands of 842 nm and 665 nm. 216 

Finally, bare soils of the Versailles Plain represent 8.05% of our study area and 44,979 S2A 217 

pixels, while bare soils of the Peyne catchment represent 38.6% of our study area and 46,971 218 

S2A pixels. 219 

 220 

Table 2. Main characteristics of the studied scenes 221 

Imaging date Sensor 
Output 

resolution (m) 

Time of 
acquisition 
(U.T GMT) 

Viewing 
incidence 
angle (°) 

Sun azimuth 
(°) 

Sun elevation 
(°) 

12 March 2016 S2A 20 10:50:37 <5.1 160.5 36.1 

19 March 2016 S2A 20 10:40:32 <3.3 157.6 43.7 

 222 

Table 3. Characteristics of the Multi-Spectral Instrument aboard the SENTINEL2 satellite. 223 

Spectral S2A bands used are shown in bold. 224 

Spectral band Spatial resolution (m) Central wavelength (nm) Band width (nm) 
b1 60  443 20 
b2 10  490 65 

b3 10  560 35 

b4 10  665 30 

b5 20  705 15 

b6 20  740 15 

b7 20  783 20 

b8 10 842 115 

b8A 20  865 20 
b9 60  945 20 
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b10 60  1380 30 
b11 20  1610 90 

b12 20  2190 180 

 225 
A selection of various reflectance spectra comprising the darkest and the brightest soils is 226 

shown in Fig. 2. The brightest soils comprise: (i) calcic or calcaric sandy soils originating 227 

from calcareous sandstone (La Peyne); (ii) silt-loam luvisols (Versailles) or eluviated 228 

horizons of the chromic luvisols (La Peyne), developing a slaking crust ; (iii) rendzic or 229 

calcaric cambisols with very high topsoil calcium carbonate content or outcropping 230 

underlying chalk (Versailles). The darkest soils are clayey and alluvial and, for Versailles, can 231 

have high organic carbon content (>20 g kg−1) and/or high roughness dating from late winter 232 

ploughing. Intermediate soil spectra comprise soils with either moderate rock fragment 233 

content (10–25%), or varied textures and intermediate to low roughness (both regions), and 234 

also red Mediterranean soils (La Peyne).  235 

 236 

Figure 2. Selection of reflectance image spectra covering the whole dataset reflectance range 237 

and the main soil types  238 

 239 

3. Methods 240 
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3.1 Models for soil property prediction 241 

The partial least squares regression (PLSR) method was used to construct prediction models 242 

based on bare soil samples drawn from each study region. The PLSR method relates two data 243 

matrices, the matrix of explanatory variables X (here the soil spectra) and the matrix of 244 

dependent variables Y (here the soil properties), through a linear multivariate model, but it 245 

extends beyond traditional regression methods in that it also models the structures of X and Y 246 

(Geladi and Kowalski, 1986; Wold et al., 2001). For Y in particular, PLSR extracts 247 

orthogonal or latent predictor variables accounting for variation in the dependent variable. 248 

The PLSR approach enables one to analyze data based on several noisy collinear features 249 

(Wold et al., 2001), and it has been used widely for hyperspectral remote sensing (e.g., Selige 250 

et al., 2008; Stevens et al., 2010; Gomez et al., 2012; Vaudour et al., 2016). 251 

Prior to PLSR modeling, in order to maximize the fitting of target values against spectra, a 252 

series of transforms were tested for either spectra or target values. Reflectance values of the 253 

whole spectra were centered. For the Versailles Plain, Clay, SOC and CaCO3 content levels 254 

and CEC were log-transformed, while for both areas, the square root of iron content was used. 255 

For La Peyne, log-transform of target values was not retained, as it did not bring any 256 

improvement of the fitting. Outliers were detected for sets of image spectra or for sets of 257 

measured soil properties. This was based on the 5% threshold of the standardized 258 

Mahalanobis distance (Mark and Tunnel, 1985) and on the multivariate outlier detection 259 

approach elaborated by Filzmoser et al. (2005). Outliers selected through both approaches 260 

were retained as outliers. 261 

For each target soil property Y, a PLSR model was constructed from preprocessed image 262 

spectra with 10 selected spectral bands (Table 3). The optimal number of latent variables was 263 

determined from the prediction residual error sum of squares (PRESS). Due to the limited 264 

number of bare soil samples available, and because this study was more focused on 265 
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comparing performance levels between regions than on carrying out external validation 266 

assessments, a leave-one-out cross-validation procedure was applied (Wold, 1978; Gomez et 267 

al., 2012). The quality of model fit was evaluated from the root mean squared error of cross-268 

validation (RMSECV), from the coefficient of determination of cross-validation (Rcv²) and 269 

from the residual prediction deviation (RPD), i.e., the ratio between the standard deviation of 270 

the calibration dataset to the RMSECV. According to Chang et al. (2001) and Viscarra-Rossel 271 

et al. (2006), values of 1.4 to 1.8 denote models exhibiting moderate levels of predictive 272 

capacity; values of between 1 and 1.4 denote models exhibiting poor levels of predictive 273 

capacity, and values of <1 denote very poor models that should not be used. 274 

PLSR models were used through R version 3.2.1 (R Development Core Team, 2015) 275 

employing the “pls” package (Mevik and Wehrens, 2007). 276 

 277 

3.2 Variograms of predicted soil properties 278 

For the best predicted soil properties, PLSR models were applied to pixels of bare agricultural 279 

soil. The spatial structure of the predicted pixels was examined and compared with that of 280 

measured properties for the same locations. Spatial structures can be described from a 281 

variogram that relates the spatial dependence or semi-variance between points at a distance of 282 

h, i.e., the average variance between any pair of sampling points (Goovaerts, 1997): 283 

��ℎ� =
�

��
∑ 
���
� − ���
 + ℎ��²
�

��    (1) 284 

where γ(h) is the average semi-variance of the soil property, n is the number of pairs of 285 

sampling points, p is the value of the property P, x is the coordinate of the point, and h is the 286 

distance between pairs or the lag value. 287 

For each best predicted soil property, two empirical variograms were built from 288 

equation (1): the first was built from 143 or 104 values of the soil samples measured by 289 

physico-chemical analysis; the second was built from predicted values for the same locations. 290 
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Simple omnidirectional variograms were calculated, and following Gomez et al. (2012), the 291 

spherical or exponential model used was fitted through a weighted least squares procedure 292 

(Pebesma, 2004) using the R statistical software program and the Gstats package. The 293 

universality condition (no drift) was assumed.  294 

For the Versailles Plain, it was not possible to obtain experimental variograms suitable 295 

for fitting a model due to the limited number of sites involved and the clustered sampling 296 

scheme employed. Variograms were therefore only examined for the Peyne Valley. To 297 

examine the robustness of spatial structures at the scale of the entire study region, variograms 298 

were calculated from all bare soil pixels.  299 

 300 

4. Results 301 

4.1 Description of soils samples  302 

Basic statistics on all of the soil properties measured are shown in Table 2. For the Peyne 303 

Valley, the range of clay contents present is higher than that of the Versailles Plain, with the 304 

highest value recorded as 452 g.kg-1, though the 1st quartile and median values (185.0 and 305 

231.0 g.kg-1) are slightly lower than those for the Versailles Plain (192.5 and 249.5 g.kg-1), 306 

while the 3rd quartile is slightly higher (290.5 g.kg-1) than that for the Versailles Plain (281 307 

g.kg-1). SOC, silt and CEC levels are measured within a narrower and lower range for the 308 

Peyne Valley and with a much lower median (SOC, 8.92 g.kg-1; silt content, 322 g.kg-1; CEC, 309 

10.65 cmol+.kg-1) than that for the Versailles Plain (SOC, 15.9 g.kg-1; silt content, 542 g.kg-1; 310 

CEC, 17.10 cmol+.kg-1). Conversely, sand and calcium carbonate content levels are higher in 311 

the Peyne Valley, with a higher median (sand content, 433 g.kg-1; calcium carbonate content, 312 

136 g.kg-1) than that for the Versailles Plain (sand content, 157.5 g.kg1; calcium carbonate 313 

content, 27 g.kg-1). Consequently, pH values are higher and less variable for the Peyne 314 

Valley, while soils of the Versailles Plain vary more in terms of pH levels. Red Mediterranean 315 
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soils resulting from geochemical weathering contain more free iron, and hence their presence 316 

has induced a higher range of Fe content levels, with the 3rd quartile reaching a value of 1.58 317 

g/100 g compared to a value of 0.97 g/100 g found for the Versailles Plain. 318 

Moreover, coarse fragment content levels in topsoil can reach percentages of as high 319 

as 20% and 30% for the 3rd quartile of the Versailles and Peyne sets, respectively. 320 

 321 

 322 

 323 

 324 

Table 4. Pearson correlation table of common soil properties for the Versailles Plain 325 

Variables Clay Silt Sand CaCO3 SOC Fe pH CEC 

Clay 1.00        

Silt -0.24 1.00       

Sand -0.34 -0.27 1.00      

CaCO3 -0.02 -0.70 -0.33 1.00     

SOC 0.53 -0.38 -0.44 0.46 1.00    

Fe 0.48 0.24 0.03 -0.52 0.00 1.00   

pH 0.46 -0.43 -0.50 0.60 0.66 -0.25 1.00  

CEC 0.77 -0.32 -0.52 0.33 0.82 0.12 0.77 1.00 

Values in bold are different from 0 at a significance level of alpha=0.05   326 

 327 

Table 5. Pearson correlation table of common soil properties of the Peyne Valley 328 

Variables Clay Silt Sand CaCO3 SOC Fe pH CEC 

Clay 1.00        

Silt -0.14 1.00       

Sand -0.54 -0.76 1.00      

CaCO3 -0.08 0.53 -0.40 1.00     

SOC -0.19 0.08 0.06 0.11 1.00    

Fe 0.42 -0.26 -0.06 -0.50 -0.11 1.00   

pH 0.02 0.42 -0.37 0.52 0.03 -0.42 1.00 

CEC 0.89 -0.16 -0.45 0.00 -0.02 0.16 0.14 1.00 

Values in bold are different from 0 at a significance level of alpha=0.05   329 

 330 
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For the Versailles Plain, the highest correlations (|R| > 0.7) were observed between CEC and 331 

SOC content levels, between CEC and clay levels, between CEC and pH levels and between 332 

CaCO3 and silt levels (Table 4). Modest correlations (0.7 > |R| > 0.5) were observed between 333 

pH and SOC levels, between pH and CaCO3 levels, between pH and sand levels, between Iron 334 

and CaCO3 levels and between SOC and clay levels (Table 4). For the Peyne catchment, the 335 

highest correlations (|R| > 0.7) were observed between CEC and clay levels and between sand 336 

and silt levels (Table 5). Modest correlations (0.7 > |R| > 0.5) were observed between pH and 337 

CaCO3 levels, between iron and CaCO3 levels, between sand and clay levels and between silt 338 

and CaCO3 levels (Table 5).  339 

 340 

4.2 Performance of the prediction models  341 

A PLSR model was built from S2A spectra and from each observed soil property associated 342 

with the available soil samples. No spectral outliers were removed from the calibration 343 

database, regardless of the study area concerned, and the number of latent variables was 344 

determined following the rule of the first local minimum of the RMSECV, which varied 345 

between 2 and 9 (Table 6). The predictive capacities of the PLSR models ranged from low to 346 

medium to high, with RPD values of between 1.0 and 2.0 and with R²cv of between 0.02 and 347 

0.75 (Table 6). Three groups of variables can be identified from the cross-validation 348 

performance of the PLSR models (Table 6, Fig. 3): i) soil property models yielding R²cv ≥ 0.5 349 

and RPD ≥1.4 (rounded values) or models with intermediate to high levels of predictability; 350 

ii) soil property models with R²cv and RPD values of 0.4 and 1.3, respectively (rounded 351 

values) or models with poor predictive capacities just below thresholds commonly accepted in 352 

the literature or ‘near intermediate’ models; and iii) soil property models with R²cv < 0.4 and 353 

RPD values of roughly 1 or models exhibiting poor or very poor levels of predictive capacity. 354 
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In overall, the Versailles Plain includes all 4 properties of group i (SOC, pH, CEC and 355 

CaCO3) and one property of group ii (Clay), whereas the Peyne region includes 3 properties 356 

of group ii (Clay, Iron and CEC), with the remaining properties (silt and sand content for both 357 

regions and SOC, pH, and CaCO3 content for the Peyne site) are categorized as group iii.  358 

 359 

 360 

 361 

 362 

 363 

 364 

Table 6. Cross-validation performance statistics derived from the PLSR algorithm for soil 365 

property prediction (NLv, number of latent variables; RMSEcv expressed in original units). 366 

R²cv and RPD rounded values of greater than or equal to 0.5 and 1.4, respectively, are shown 367 

in bold (group i). RPD rounded values of greater than or equal to 1.3 are shown in italics 368 

(group ii). 369 

Soil property Versailles Plain Peyne Valley 

 R²cv RMSEcv RPD NLV R²cv RMSEcv RPD NLV 

SOC  0.56 1.23 1.51 4 0.02 3.71 1.00 4 

CaCO3  0.48 20.3 1.39 4 0.15 122.2 1.08 8 

Clay 0.39 1.23 1.30 6 0.42 56.4 1.31 5 

Silt 0.14 103.0 1.09 3 0.11 91.9 1.06 9 

Sand 0.22 81.7 1.14 4 0.03 113.0 1.02 7 

Iron content 0.05 0.09 1.02 2 0.45 0.04 1.34 6 

pH 0.51 0.51 1.43 4 0.08 0.64 1.03 4 

CEC 0.75 1.23 2.00 6 0.41 2.41 1.31 6 
 370 
 371 
 372 
 373 
 374 
 375 
 376 
 377 
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 378 

Figure 3. Predicted vs. observed soil properties for the Versailles Plain (left) and Peyne 379 

Valley (right) for 6 soil properties best predicted for at least one region  380 

 381 

A model property that exhibits intermediate or near intermediate predictive capacity for one 382 

region can exhibit poor capacities for another. This is the case for pH, SOC, iron and CaCO3 383 

content levels. A model property that exhibits high predictive capacity for one region can 384 

exhibit near intermediate capacities for another: this is the case for CEC levels. 385 

 386 

4.3 Soil property mapping from SENTINEL2 data 387 

While retaining PLSR models for groups i and ii, equations were applied to bare cropland and 388 

vineyard pixels (Fig. 4). 389 
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To relate the output maps to soil data and available soil maps and to facilitate the 390 

visual analysis of results for the other maps, and particularly for the Versailles Plain, for 391 

which the percentage of mapped pixels is very low, values were simplified to decile classes of 392 

predicted bare soil pixels for each study zone (Fig. 4).  393 

The spatial patterns of clay correspond with known soil patterns for both regions. In 394 

the Peyne Valley, spatial patterns clearly show chromic luvisols developed along Plio-395 

Quaternary alluvial terraces and characterized by high clay, iron and CEC levels. This result 396 

contrasts well with areas with Miocene marine deposits of calcisols and calcaric leptosols 397 

with less clay, iron and CEC. However, very high clay and iron content levels predicted for 398 

the minor riverbed of the Peyne River (the violet band in the clay map shown in Fig. 4) are 399 

not in accordance with our soil knowledge, likely revealing a perturbation related to soil 400 

moisture levels.  401 

In the Versailles Plain, the highest predicted clay content levels match our 402 

observations of stagnic colluvic cambisols in lower slopes and valleys, whereas the lowest 403 

predicted clay content levels as expected were found along the plateaus with luvisols of loess 404 

origin. The highest SOC content levels were predicted both for stagnic colluvic cambisols in 405 

the valleys and for calcaric cambisols across the slopes, while low SOC content levels were 406 

predicted for luvisols originating from loess sources, in accordance with previous studies of 407 

the same region (Vaudour et al., 2013, 2016; Zaouche et al, 2017). 408 



 20 

 409 

Figure 4. Maps of soil properties of the Versailles Plain (left) and Peyne Valley (right) 410 

 411 

 412 
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4.4 S2A capacities to retrieve spatial structures 413 

4.4.1 Comparisons between empirical variograms derived from measured and predicted 414 

values 415 

Following from the map examinations, comparisons drawn between variograms of predicted 416 

values of the three best predicted soil properties for the Peyne Valley (clay, Fe, and CEC 417 

content, Fig. 5, black curves) and those of measured values for the same locations (Fig. 5 red 418 

curves) confirm that the soil patterns are captured by the predictions fairly well. Variograms 419 

for clay and CEC are very similar in shape and only show a decrease in the ‘nugget’ value (at 420 

the origin) of the predicted variogram. These differences in variograms have been observed 421 

through tests of soil predictions from hyperspectral data (Gomez et al, 2012). The predicted 422 

iron variogram has the same nugget and range as the measured one, with only a difference in 423 

‘sill’ values (the slope of the variogram). No clear explanation can be given for this difference 424 

in behavior. 425 
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  426 

Figure 5. Empirical variograms calculated for clay, iron and CEC for the Peyne Valley from 427 

physico-chemical values of the collected soil samples (red points) and from predicted values 428 

based on S2A spectra (black points) and fitted theoretical variograms (lines). Lag = 200 m. 429 

Distance max: 2000 m. 430 

 431 

4.4.2 Spatial structures retrieved from the set of predicted pixels  432 

Empirical variograms were computed from the 46,971 pixels of bare soil in the Peyne 433 

catchment (Fig. 6). They exhibit different spatial structures from those revealed by 434 

variograms built from the measured sites only (Fig. 5). From an increase in the number of 435 

sites tested, short-scale variations are found across the clay and iron variograms as a result of 436 

a first slope break at 250 m that is not shown in the previous variograms (Fig. 6). Another 437 
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slope break at approximately 1,000 m in the variograms shown in Fig. 6 is still visible but is 438 

less pronounced. This more complex spatial structure reveals a combination of soil variations 439 

acting at different scales in accordance with our understanding. The broad-scale variability 440 

found could be related to the spatial distribution of parent materials of soils with dissimilar 441 

clay and iron content levels. Short-range variations may result from erosion-redeposition 442 

processes occurring along slopes that involve neighboring parent materials with dissimilar 443 

iron and clay content levels. 444 

 445 

 446 

Figure 6. Empirical variograms computed for clay, iron and CEC from predicted soil 447 

properties of bare soils of the Peyne. Lag = 100 m. Distance max: 2,000 m. 448 
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 449 

5. Discussion 450 

5.1 Performance of the S2A-derived PLSR models  451 

Comparisons of the performance of the S2A-derived models for two contrasting 452 

agroecosystems suggest that the predictability of a given property does not solely rely on the 453 

property itself or particularly on its spectral behavior as a “chromophore” according to Ben 454 

Dor et al. (2009). Rather, if such conditions could explain predictive capacities, both iron and 455 

SOC content levels would be predicted for any study area, as iron oxides and organic matter 456 

are spectrally influent due to their chemical compositions and arrangements, while their 457 

specific influent absorption bands are covered by MSI bands. In particular, SOC is known to 458 

be spectrally sensitive across the entire VNIR-SWIR spectral range (Ben Dor et al., 2009; 459 

Demattê et al., 2015), while the specific absorption wavelengths of iron oxides (550 nm and 460 

roughly 860-900 nm) are overlain by green band b3 and near-infrared band b8A. As was 461 

expected for SOC, loading values for SOC prediction models were found to be higher overall 462 

for the visible b4, b5, near infrared b8A and two SWIR bands (b11, b12) for the Versailles 463 

Plain than for the Peyne valley. For iron, loading values were found to be marked for the b3 464 

and b8A bands for the Peyne Valley while they were weakly expressed for the Versailles 465 

Plain (Fig. 7). This does not apply for both areas, suggesting that more conditions must be 466 

applied to confer predictive capacity. Moreover, clay predictions may be linked to the 467 

physical structure of soils in conjunction with a chromophore of approximately 2,200 nm that 468 

is fully covered by the b12 band (Table 1): this was revealed by higher loading values (Fig. 7) 469 

. However, performance of clay predictionwas only found to be near-intermediate (0.5 > R²cv 470 

> 0.4) for both study areas, suggesting that other conditions may hamper predictive capacity 471 

levels. 472 
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 473 

Figure 7. Loading plots for SOC, Fe and Clay of both study areas 474 

 475 

First, as previously found by Gomez et al. (2012) for the Peyne Valley, intra-regional 476 

variances between the considered properties are large unless considered variables (even when 477 

spectrally sensitive) are not predictable. This is the case for both SOC and iron content levels, 478 

which are neither abundant nor variable across the Peyne Valley and Versailles Plain, 479 

respectively. 480 

Second, if the property considered is correlated with another well-predicted property, 481 

this might improve its predictive ability. Performance levels obtained for pH (Versailles 482 

Plain) and CEC (Versailles Plain, Peyne Valley) are based on levels of variability across the 483 

study regions and correlations to either SOC and/or clay. As a matter of fact, pH and CEC are 484 

not spectrally sensitive. Moreover, while CaCO3 has a specific absorption band (2,330 nm), 485 

its wavelength is not covered by any MSI band; its predictive ability might therefore be 486 

attributed to its correlation to pH (0.6) for the Versailles Plain and other disturbing factors 487 

might play a role for the Peyne Valley. Although the prediction model for CaCO3 yielded 488 
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intermediate performance figures-of-merit (when rounded) for the Versailles Plain, a careful 489 

examination of the PLSR residues suggests that only soils with no or very low CaCO3 content 490 

levels present low predictions errors (< 35 g.kg-1), and they represent 56% of the dataset, 491 

resulting in apparently average intermediate performance (Table 6). Specifically, calcareous 492 

soils of the Versailles Plain are as poorly predicted as those of the Peyne Valley. In addition, 493 

CaCO3 degrades model accuracy levels for SOC content, as the lab uncertainty of SOC 494 

measurements increases with CaCO3 content levels (Vaudour et al., 2016). 495 

Third, the number and composition of sample sets is likely to influence prediction 496 

performance. For the Versailles Plain, strong performance recorded for CEC must be 497 

considered with caution, as it is based on a small sample size (39 samples) and the model may 498 

be overfit.  499 

Fourth, soil surface conditions can be disturbed by soil roughness, soil moisture, 500 

emerging and non-covering vegetation, dry vegetation, vine stock and coarse fragment areal 501 

coverage. In addition to commonly known difficulties associated with PLSR models in terms 502 

of predicting high soil property values (e.g., for SOC (Stevens et al., 2012)), which are 503 

inherent to linear models, some additional disturbances can arise from these specific soil 504 

surface conditions. As a matter of fact, in the Peyne Valley, higher iron content levels are 505 

found among very stony soils with coarse fragment content levels of greater than 40%: the 506 

higher the coarse fragment content level, the more significant iron content prediction errors 507 

become (Fig. 8). In the Versailles Plain, because calcareous soils are stony and as their rock 508 

fragments are made of limestone, such relationships merge with those of calcium carbonate 509 

content: the higher the coarse fragment content level, the higher the CaCO3 content level and 510 

the higher the SOC content level. The highest levels of CaCO3 content (> 136 g. kg-1) show 511 

the highest levels of SOC residue prediction (Fig. 9). 512 
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 513 

Figure 8. Relationships between quartiles of coarse fragment content and Fe content (left) and 514 

Fe content prediction errors (right) for the Peyne Valley. Quartile thresholds of coarse 515 

fragment content: 1, < 7.5%; 2, 7.5-18%; 3, 18-40%; 4, > 40%. 516 

 517 

Figure 9. Relationships between quartiles of coarse fragment content and SOC content (left) 518 

and effects of coarse fragment content on SOC content prediction errors (right) for the 519 

Versailles Plain. Classes of coarse fragment content: 1, < 7.5%; 2, 7.5-18%; 3, 18-40%; 4, > 520 

40%. 521 



 28 

 522 

Of course, it cannot be inferred from Figs. 8 and 9 that coarse fragment content alone causes 523 

prediction errors, but presumably it contributes to such errors. 524 

In terms of vegetation features, the composition and adequacy of the dataset is conditioned by 525 

the NDVI threshold. Regarding dry vegetation, while the b12 band covers the 2,100 nm 526 

specific absorption wavelength for cellulose (Daughtry 2001), the MSI bands do not enable 527 

one to derive an index of dry vegetation such as the Cellulose Absorption Index (CAI = 0.5 528 

(R2000 nm+R2200 nm)-R2100 nm) elaborated by Nagler et al. (2000). The CAI relies on two 529 

wavelengths covered by the b12 band (2,100 and 2,200 nm), but it requires the use of the 530 

2,000 nm wavelength not covered by any MSI band. However, other indexes, such as the 531 

Normalized Difference Tillage Index defined for Landsat Thematic Mapper (TM) bands 532 

(NDTI= (TM5-TM7)/(TM5+TM7)) (Van Deventer et al., 1997), could be adapted and tested 533 

for discriminating crop residue cover. The S2A data thus show limits in accounting for crop 534 

residue cover and vine wood vegetation more than the MSI spatial resolution does not enable 535 

one to discriminate between vine rows and vine interrows to remove the spectral influence of 536 

vine woods. 537 

 538 

In conclusion, our use of two contrasting agroecosystems datasets denotes what is achievable 539 

from S2A data in terms of predictive capacities for a single considered date. The soils 540 

considered in this study are located in French regions but widely develop abroad, across the 541 

temperate and Mediterranean areas. Assessment of Sentinel-2 performance is developing for 542 

other French regions with other soil types and further for tropical soils.   543 

 544 

 545 

 546 
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 547 

5.2 Comparisons with other sensors 548 

Our model performs in a similar manner as those employed in other studies. It 549 

performs better than SPOT multispectral satellite images in measuring SOC, and it performs 550 

similarly or less optimally than hyperspectral airborne images in measuring all properties. 551 

For the Versailles Plain in particular, previous models of SOC content were derived 552 

from multispectral or hyperspectral fields or from image spectra. In terms of RMSECV and 553 

RPD values in particular, the regional PLSR model obtained SOC content levels from S2A 554 

spectra (1.23 g.kg-1 and 1.51, respectively) more accurately than real SPOT or simulated 555 

SPOT spectra (Vaudour et al., 2013: error range 4.5-6.0 g.kg-1, RPD 0.9-1.3) for the same 556 

region. This is presumably attributable to the beneficial role of its SWIR bands and to 557 

differences in soil surface conditions, which are similar to those obtained from a VNIR 558 

hyperspectral AISA airborne image (no SWIR) for the same region (Vaudour et al., 2016: 559 

error range 2.82-3.79 g.kg-1, RPD 1.3-1.6).  560 

For the Peyne Valley, performance outcomes obtained from Sentinel-2 are lower 561 

than those obtained from a VNIR-SWIR Hymap airborne image (Gomez et al., 2012), 562 

regardless of soil properties involved with dramatic changes in performance found for CaCO3 563 

content effectively predicted from the hyperspectral spectra but not predicted from S2A 564 

spectra (see §5.1). However, due to intra-regional variances (SOC) and an absence of 565 

correlations with more effectively predicted properties (silt), neither SOC nor silt content 566 

levels were predicted from hyperspectral and S2A images. Performance degradation from 567 

airborne to spaceborne models has also been found by Steinberg et al. (2016) for SOC, clay 568 

and iron content levels, though these authors used simulated EnMAP satellite spectra.  569 

It must be noted that our models were constructed from actual spaceborne images that 570 

account for the effects of atmospheric, signal/noise ratio, and soil surface conditions and 571 
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notably coarse fragment content and vegetation. This distinguishes our models from those 572 

constructed from simulated MSI spectra derived from lab spectral libraries, as anticipated by 573 

Castaldi et al. (2016) for a number of forthcoming or newly launched satellites, including 574 

Sentinel-2. However, with the addition of noise and atmospheric effects and from the use of 575 

untransformed lab reflectance spectra sampled from central and southern Italy, these authors 576 

obtained validation results similar to our performance results for clay (R² 0.36-0.42; RPD 577 

1.26-1.35) that are inferior to those found for the Versailles Plain in terms of SOC content 578 

levels (R² 0.36; RPD 1.26) in the best case or that are not as predictive as found for the Peyne 579 

(R² 0.13; RPD 1.09) in the worst case. Gomez et al. (2018) used VNIR/SWIR hyperspectral 580 

airborne data (initial spectral resolution of approximately 5 nm) to simulate, among others, 581 

Sentinel-2, Landsat 8 and Landsat 7 spectral resolution data. They showed that these 582 

multispectral sensors provide very modest performances of clay content estimations, as these 583 

spectral resolutions do not provide clay absorption feature useful in regression models. 584 

 585 

5.3 Maximizing the mapped area 586 

As the presence of vegetation severely hampers the prediction of soil properties from 587 

VNIR/SWIR remote sensing data, it is important to retrieve as many bare soil signals as 588 

possible. When only one image is considered, as was done in this study, this involves a 589 

careful selection of acquisition periods. Images of the Versailles Plain and Peyne Valley were 590 

acquired for the spring period to maximize the size of the area with bare soils. In temperate 591 

agroecosystems like that of the Versailles Plain, this corresponds to the sowing of spring 592 

cereals, with the winter period being less suitable due to impacts of the Nitrate Directive that 593 

requires intermediate crop cultivation (Vaudour et al., 2013). In a Mediterranean 594 

agroecosystem like that of the Peyne Valley, the spring period corresponds to maximum tilled 595 

vineyard coverage for removing weeds (Paré, 2007) while green vegetation is not yet present. 596 
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Despite this careful selection of periods, coverage levels found for bare soil areas remain 597 

modest, especially for the Versailles Plain (Fig. 4). 598 

Bare soil areas could be maximized (at least for temperate agroecosystems) by 599 

aggregating multiple acquisition dates. This would allow one to accumulate the spectra of soil 600 

areas that change every year and along the crop cycle. Sentinel-2 is particularly well suited to 601 

this task, as it provides an image every 5 days, thus increasing the likelihood of acquiring 602 

images under clear conditions and across the crop rotation cycle. 603 

Such an aggregation of images for maximizing bare soil areas was already attempted 604 

by Diek et al. (2016). These authors doubled the bare soil area by combining hyperspectral 605 

APEX acquisitions over 3 successive years and performed intercalibration from linear 606 

regressions of atmospherically corrected spectra for different years. This raises issues relating 607 

to accurate atmospheric corrections across dates and to the number and anteriority values of 608 

dates. This issue is being studied in reference to the Versailles Plain to consider the 609 

directional effects of soil roughness in line with tillage operations (Vaudour et al., 2014a). 610 

Indeed, soil roughness levels can be spatially and temporally retrieved from optical/radar 611 

pairs such as S2/S1 (Vaudour et al., 2014b), which could be accounted for during soil 612 

properties prediction. 613 

Bare soil coverage levels can also be increased by applying unmixing techniques that 614 

isolate bare soil signals from semi-vegetated pixels (Bartholomeus et al 2011, Ouerghemmi et 615 

al., 2016). For the Peyne Valley, such techniques are used to predict clay content levels from 616 

hyperspectral data for semi-vegetated areas (NDVI < 0.55), expanding the studied surface 617 

from 4% (bare soil) to 63% of the total area (Ouerghemmi et al., 2016). A similar approach 618 

could be applied for S2A soil predictions. 619 

 620 

 621 
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 622 

5.4. Incorporating S2A data into the framework of digital soil mapping 623 

The soil predictions obtained from S2A are neither precise nor extended enough to be 624 

exploited “as is” by end users. They must rather be considered as a new source of soil data 625 

that should be used for Digital Soil Mapping (Mc Bratney et al, 2003, Lagacherie et al, 2007), 626 

a larger methodological framework that can produce more exhaustive and precise soil maps.  627 

If we examine the soil property predictions obtained in this study with such a perspective in 628 

mind, S2A soil predictions obtained from this study could serve as valuable inputs for digital 629 

soil mapping for two reasons. 630 

First, S2A data offer insight on the spatial patterns of certain soil properties that could be 631 

quantified from variograms that closely resemble those obtained from real measurements. 632 

These variograms could be used to optimize further sampling efforts, as they allow one to 633 

compute error variances (kriging variance) for sampling schemes of different densities and 634 

spatial distributions and thus determine the sampling efforts required to meet target levels of 635 

precision in spatial predictions (McBratney et al., 1981).  636 

Second, S2A products could serve as surrogate data to improve the precision of Digital Soil 637 

Mapping models (Lagacherie & Gomez; 2013). For example, Walker et al. (2017) found the 638 

use of hyperspectral data as soft data for co-kriging or cogriging with external drift models to 639 

improve prediction performance. Although less pronounced, improvements were still 640 

observable when using hyperspectral-based estimations of moderate quality (R2 < 0.5) like 641 

many of those obtained in this study. It is therefore expected that some S2A soil outputs could 642 

make improvements while being more available than hyperspectral data. 643 

Finally, the potential of S2 data as a co-variable in DSM model could further be evaluated. 644 

While previous researches used MODIS or LANDSAT data in DSM models, either as 645 

spectral indexes, such as the NDVI (e.g., Mishra et al., 2010), or as spectral bands (e.g., Were 646 
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et al., 2015). Zaouche et al (2018) found improvement incorporating the green band of SPOT 647 

into a joint Bayesian model, and development of their approach is in progress for Sentinel2.  648 

 649 

6. Conclusion 650 

S2A image spectra acquired from two French study areas representative of temperate and 651 

Mediterranean agroecosystems—the Versailles Plain and the Peyne Valley—were tested as 652 

input data of a chemometric model (PLSR) to predict 8 topsoil properties of bare soil areas: 653 

8% and 39% of the Versailles Plain and the Peyne Valley, respectively. Six of these 8 soil 654 

properties (clay, SOC, iron, CaCO3, pH, and CEC levels) can be predicted with varying 655 

success depending on their intrinsic spectral properties, intra-regional variances, correlations 656 

and soil surface conditions. Some of the best predictions were also found to serve as good 657 

approximations of the spatial patterns of soil properties. 658 

Although a significant decline in the prediction performance of those obtained from 659 

hyperspectral data for the same study areas was observed, S2A soil predictions can serve as 660 

valuable inputs for Digital Soil Mapping. With the current absence of efficient hyperspectral 661 

satellites that can deliver hyperspectral data, it is advantageous to allow for the mosaicking of 662 

multidate acquisition and for the selection of the best acquisitions over a time series. We 663 

therefore recommend their use to improve the performance of Digital Soil mapping 664 

predictions. 665 

 666 
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