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To be fully operational for facilitating decisions made at any spatial level, models and indicators of soil ecosystem functions require the use of precise spatially referenced soil information as inputs. This study aimed at exploring the capacity for SENTINEL-2A (S2A) multispectral satellite images to predict several topsoil properties in two contrasted pedoclimatic environments: a temperate region marked by intensive annual crop cultivation patterns and soils derived from loess or colluvium and/or marine limestone or chalk (Versailles Plain, 221 km 2 ); and a Mediterranean region marked by vineyard cultivation and soils derived from lacustrine limestone, calcareous sandstones, colluvium, or alluvial deposits (Peyne catchment, 48 km 2 ). Prediction models of soil properties based on partial least squares regressions (PLSR) were built from S2A spectra of 72 and 143 sampling locations across the Versailles Plain and Peyne catchment, respectively. Eight soil surface properties were investigated in both regions: pH, cation exchange capacity (CEC), texture fractions (Clay,

Introduction

Soils carry out a number of key environmental functions that are essential for human subsistence (e.g., food, fiber and timber production, water storage and redistribution, pollutant filtering and carbon storage). The understanding and modeling of physical, chemical and biological processes underlying these different functions have been the subject of many scientific works now that a number of models or indicators that represent these functions are available [START_REF] Sanchez | Environmental science. Digital soil map of the world[END_REF][START_REF] Adhikari | Linking soils to ecosystem services -a global review[END_REF][START_REF] Baveye | Soil "ecosystem" services and natural capital: critical appraisal of research on uncertain ground[END_REF]. To be fully operational in facilitating decisions made at local, national and global levels, these models and indicators require the use of precise spatially referenced soil information as inputs.

Given the lack of precision and extension of existing soil databases, Digital Soil Mapping (Mc Bratney et al., 2003) methods have been recognized as the most adequate and operational response to these requirements [START_REF] Arrouays | GlobalSoilMap: toward a fine-resolution global grid of soil properties[END_REF][START_REF] Minasny | Digital soil mapping: A brief history and some lessons[END_REF]. However, even though digital soil maps of soil properties are now being produced across the globe [START_REF] Arrouays | Digital soil mapping across the globe[END_REF] and for large areas-regions, countries and even continents-at high resolutions (100 m), they still provide very uncertain estimations of soil properties due to the limited availability of sites offering soil property measurements used for calibrating DSM models (Vaysse et al., 2015).

Visible, Near-infrared and Short-wave Infrared (VNIR/SWIR) hyperspectral remote sensing methods have been demonstrated to serve as promising means to significantly increase the number of sites offering quantitative estimations of topsoil properties (e.g., Soil Organic Carbon (SOC), pH, Cation Exchange Capacity (CEC), texture fractions (clay, silt, sand), Iron and Calcium Carbonate (CaCO3)) (e.g., Selige et al., 2008;[START_REF] Stevens | Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy[END_REF]Gomez et al., 2012;[START_REF] Vaudour | Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra[END_REF]. For bare soil surfaces, accurate local estimates (R²cv > 0.7) have been obtained for soil properties i) related to a chemical species that impacts soil surface reflectance values through absorption bands (e.g., OH-ion for clay) (Ben-Dor et al., 2002) or ii) highly correlated with the latter (e.g., CEC with clay content) (Ben-Dor et al., 2002), iii) showing a sufficient level of variability across study regions (Gomez et al., 2012a & b). For instance, [START_REF] Selige | High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures[END_REF] mapped SOC content, a soil property having specific spectral behaviour and high spatial variability over their study area. In addition, they also mapped Total Nitrogen, a soil property deprived of specific spectral features but, due to an associated chemical or physical structure, correlated to a soil property having such features (being SOC). DSM approaches are designed to employ this new source of soil data to allow for the exhaustive mapping of surface (Walker et al., 2017) and subsurface [START_REF] Lagacherie | Combining Vis-NIR hyperspectral imagery and legacy measured soil profiles to map subsurface soil properties in a Mediterranean area (Cap-Bon, Tunisia)[END_REF] properties.

Although hyperspectral VNIR/SWIR imagery has been proven to serve as a valuable tool for mapping key soil surface properties, it cannot be applied for large surface mapping or for temporal monitoring because it is expensive to apply and because hyperspectral VNIR/SWIR imaging data are not widely available. Indeed, only one hyperspectral VNIR/SWIR satellite sensor is currently operational. The HYPERION sensor offers a spatial resolution of 30 m, a spectral resolution of 10 nm and a swath of 7.5 km [START_REF] Folkman | EO1/Hyperion hyperspectral imager design, development, characterization and prediction[END_REF]. Other hyperspectral VNIR/SWIR imaging sensors are airborne sensors (e.g., the Hymap, AISA-DUAL and HySpex sensors) with spectral resolutions of 5 to 10 nm, spatial resolutions of approximately 4-5 m (depending to the flight altitude) and flight prints of generally less than 400 km² (depending to the studied case). Furthermore, few studies have obtained successful results in terms of mapping soil properties from VNIR-SWIR multispectral satellite imagery that allow one to capture a larger area from a single nearly instantaneous glance (e.g., [START_REF] Vaudour | Potential of SPOT multispectral satellite images for mapping topsoil organic carbon content over peri-urban croplands[END_REF][START_REF] Shabou | Soil Clay Content Mapping Using a Time Series of Landsat TM Data in Semi-Arid Lands[END_REF]. This can be attributed to i) the low revisit frequency of sensors, which compromises the acquisition of images under clear conditions, while time ranges of bare soil availability, and particularly for annual crop systems, are short and ii) the coarse spectral and spatial resolutions of most historical multispectral sensors, which limit prediction performance outcomes [START_REF] Gomez | Evaluating the sensitivity of clay content prediction to atmospheric effects and degradation of image spatial resolution using hyperspectral VNIR/SWIR imagery[END_REF][START_REF] Gomez | Predictive ability of soil properties to spectral degradation from laboratory Vis-NIR spectroscopy data[END_REF].

The recent release of multispectral satellite SENTINEL-2A data by the European Space Agency last November 2015 is revolutionary in developing images of large areas with a 290 km-swath width at high revisit frequencies (planned to be near-daily when the full satellite constellation is in orbit). The multispectral SENTINEL-2A satellite provides 13 spectral bands at spectral resolutions of between 20 and 180 nm and at spatial resolutions of 10 to 60 m ( §2.3).

The objective of this study is to assess the potential for SENTINEL-2A data to produce estimations of topsoil properties for large sets of sites. The study focuses on two French regions-the Versailles Plain and the Peyne Valley-that represent very different agroecosystems and that have both been previously used as test areas for topsoil mapping from VNIR/SWIR hyperspectral data [START_REF] Vaudour | Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra[END_REF]Gomez et al, 2012, respectively).

Materials

Study areas

Versailles Plain

The Versailles Plain is an agricultural peri-urban region of 221 km² located west of Paris (North of France) that is characterized by intensive annual crop cultivation across an area of ~99 km² (Fig. 1, left). The main crop rotations in the area involve winter wheat, winter rapeseed, winter and spring barley and maize on occasion [START_REF] Vaudour | Early-season mapping of crops and cultural operations using very high spatial resolution Pléiades images[END_REF]. Cultivation practices are mainly conventional, with early winter plowing applied at least 1 year out of every 3. The Versailles Plain is composed of two plateaus levels: one at a 120-m elevation in the center (lower limestone plateau) and another at a 170 m-elevation along the northern and southern edges of the area (upper millstone clay plateau). Both are oriented in the NW-SE direction toward the Palace of Versailles. Quaternary loessic deposits and loessic colluvium leave a mark on all landforms in the area and particularly on local plateaus, which have evolved into haplic or glossic luvisols according to the FAO classification (World Reference Base (WRB) [START_REF] Crahet | Soil Map of the Versailles Plain[END_REF][START_REF] Vaudour | Potential of SPOT multispectral satellite images for mapping topsoil organic carbon content over peri-urban croplands[END_REF]Vaudour et al., , 2014)). The largely forested upper plateau flanks are characterized by Fontainebleau acid sands that give rise to arenic cambisols, while the lower plateau flanks, which are largely cultivated, are composed of calcaric cambisols derived from limestone, colluvial materials and, along the lower slopes, chalk. Throughout the lower slopes and valleys, stagnic colluvic cambisols are derived from marls or alluviocolluvial materials. 

Soil samples and ground observations

Soil sampling

This study gathered two soil data sets that were collected for the purpose of earlier studies (for Versailles, [START_REF] Vaudour | Potential of SPOT multispectral satellite images for mapping topsoil organic carbon content over peri-urban croplands[END_REF]Vaudour et al. , 2014a[START_REF] Vaudour | Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra[END_REF]for La Peyne, Gomez et al, 2012). Despite some differences in chemical analysis, it was found useful to gather them in view of enlarging the range of the tested pedological situations. A total of 72 and 143 topsoil samples were collected from the Versailles Plain and Peyne Valley, respectively (Fig. 1). For the Versailles Plain, 69 topsoil samples were collected from 2010 to 2013, and 13 topsoil samples were collected in 2016. All of the samples were composed of roughly 10 sub-samples collected to a depth of 8 cm from random locations within a 2.7 × 2.7 m square area centered at the sampling plot as recorded at its center using a Trimble Pathfinder®Power DGPS of 50 cm precision (Vaudour et al., 2014). From the Peyne Valley, 39 topsoil samples were collected in 2005, and 104 topsoil samples were collected in 2009. All of the samples were composed of five sub-samples collected to a depth of 5 cm from random locations within a 10 × 10 m square centered on the geographical position of the sampling plot as recorded by a Garmin GPS instrument.

Physico-chemical analysis

Topsoil samples collected from both study areas were air-dried and then crushed and sieved to 2 mm. Soil property determinations were performed through a classical physico-chemical analysis (Baize and Jabiol, 1995). In total, 8 common soil properties were considered for spectral modeling (Table 1): content of 3 particle sizes or granulometric fractions of 2 mmsieved fine earth (total silt, 2 -50 μm; total sand, 50 μm -2 mm and clay, < 2 µm); calcium carbonate (CaCO3) content; free iron content (Mehra-Jackson); soil organic carbon (SOC) content; pH; and cation exchange capacity (CEC).

Granulometric fractions (clay, silt, and sand) and CaCO3 content levels were measured from 143 soils samples collected from the Peyne Valley (Table 1). The three other soil properties (iron, CEC and pH) were measured from 104 soil samples collected from the Peyne Valley. For the Versailles Plain, all soil properties except for CEC (39 samples) were measured (Table 1). 

Ground observations

For the Versailles Plain, soil surface conditions were observed on 15 and 17 March 2016 across 6 agricultural fields and for other fields planned for spectral measurements. For the Peyne Valley, vineyard soil surface conditions were observed on 24 March 2016 across the 0.9 km² sub-catchment of Roujan, which includes 75 viticultural fields. These observations enabled us to define the threshold of the vegetation index for retrieving bare soil pixels from S2A images. At the time that the images were acquired, the budburst stage had just begun for vines in the Peyne Valley, and hence vine vegetation had not yet developed. For the Versailles Plain, spring barley sowing had just started and maize and pea sowing had not started, hence allowing for the observation of bare soils used for spring crops. For both study areas, winter crops and grasslands were photosynthetically active and covering, and thus easily identifiable and removable by means of NDVI.

Remotely sensed images and geographic data

Two SENTINEL-2A (S2A) images were acquired under nearly clear conditions on 12 and 19

March 2016 from the Versailles Plain and Peyne Valley, respectively (Table 2). The multispectral instrument aboard the S2A satellite has 13 spectral bands, including 4 bands of a 10 m resolution and 6 bands of a 20 m resolution (Table 3) retained for spectral modeling.

Both images were atmospherically corrected using the ATCOR2/3 radiative transfer model [START_REF] Richter | ATCOR2/3 User guide[END_REF].

Both study sites are characterized by urban activity and by the presence of bare soil, water and vegetation. To mask no-soil pixels from the S2 data, the following approach was applied. First, urban and water areas were masked using Land Parcel Registry maps. In turn, only cropland and vineyards were maintained across the study areas. Second, pixels with normalized difference vegetation index (NDVI) values exceeding an expert-calibrated threshold were masked. A value of 0.35 was determined for both sites after considering field observations (section 2.2.3). The NDVI was retrieved using bands of 842 nm and 665 nm.

Finally, bare soils of the Versailles Plain represent 8.05% of our study area and 44,979 S2A pixels, while bare soils of the Peyne catchment represent 38.6% of our study area and 46,971 S2A pixels. 

Models for soil property prediction

The partial least squares regression (PLSR) method was used to construct prediction models based on bare soil samples drawn from each study region. The PLSR method relates two data matrices, the matrix of explanatory variables X (here the soil spectra) and the matrix of dependent variables Y (here the soil properties), through a linear multivariate model, but it extends beyond traditional regression methods in that it also models the structures of X and Y [START_REF] Geladi | Partial least squares regression: a tutorial[END_REF][START_REF] Wold | PLS-regression: a basic tool of chemometrics[END_REF]. For Y in particular, PLSR extracts orthogonal or latent predictor variables accounting for variation in the dependent variable.

The PLSR approach enables one to analyze data based on several noisy collinear features [START_REF] Wold | PLS-regression: a basic tool of chemometrics[END_REF], and it has been used widely for hyperspectral remote sensing (e.g., Selige et al., 2008;[START_REF] Stevens | Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy[END_REF]Gomez et al., 2012;[START_REF] Vaudour | Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra[END_REF].

Prior to PLSR modeling, in order to maximize the fitting of target values against spectra, a series of transforms were tested for either spectra or target values. Reflectance values of the whole spectra were centered. For the Versailles Plain, Clay, SOC and CaCO3 content levels and CEC were log-transformed, while for both areas, the square root of iron content was used.

For La Peyne, log-transform of target values was not retained, as it did not bring any improvement of the fitting. Outliers were detected for sets of image spectra or for sets of measured soil properties. This was based on the 5% threshold of the standardized Mahalanobis distance (Mark and Tunnel, 1985) and on the multivariate outlier detection approach elaborated by [START_REF] Filzmoser | Multivariate outlier detection in exploration geochemistry[END_REF]. Outliers selected through both approaches were retained as outliers.

For each target soil property Y, a PLSR model was constructed from preprocessed image spectra with 10 selected spectral bands (Table 3). The optimal number of latent variables was determined from the prediction residual error sum of squares (PRESS). Due to the limited number of bare soil samples available, and because this study was more focused on comparing performance levels between regions than on carrying out external validation assessments, a leave-one-out cross-validation procedure was applied (Wold, 1978;Gomez et al., 2012). The quality of model fit was evaluated from the root mean squared error of crossvalidation (RMSECV), from the coefficient of determination of cross-validation (Rcv²) and from the residual prediction deviation (RPD), i.e., the ratio between the standard deviation of the calibration dataset to the RMSECV. According to [START_REF] Chang | Near infrared reflectance spectroscopy: principal components regression analysis of soil properties[END_REF] and Viscarra-Rossel et al. (2006), values of 1.4 to 1.8 denote models exhibiting moderate levels of predictive capacity; values of between 1 and 1.4 denote models exhibiting poor levels of predictive capacity, and values of <1 denote very poor models that should not be used.

PLSR models were used through R version 3.2.1 (R Development Core Team, 2015) employing the "pls" package [START_REF] Mevik | The pls package: principal component and partial least squares regression in R[END_REF].

Variograms of predicted soil properties

For the best predicted soil properties, PLSR models were applied to pixels of bare agricultural soil. The spatial structure of the predicted pixels was examined and compared with that of measured properties for the same locations. Spatial structures can be described from a variogram that relates the spatial dependence or semi-variance between points at a distance of h, i.e., the average variance between any pair of sampling points [START_REF] Goovaerts | Geostatistics for natural resources evaluation[END_REF]:

ℎ = ∑ - + ℎ ² (1)
where γ(h) is the average semi-variance of the soil property, n is the number of pairs of sampling points, p is the value of the property P, x is the coordinate of the point, and h is the distance between pairs or the lag value.

For each best predicted soil property, two empirical variograms were built from equation (1): the first was built from 143 or 104 values of the soil samples measured by physico-chemical analysis; the second was built from predicted values for the same locations.

Simple omnidirectional variograms were calculated, and following Gomez et al. (2012), the spherical or exponential model used was fitted through a weighted least squares procedure [START_REF] Pebesma | Multivariable geostatistics in S: the gstat package[END_REF] using the R statistical software program and the Gstats package. The universality condition (no drift) was assumed.

For the Versailles Plain, it was not possible to obtain experimental variograms suitable for fitting a model due to the limited number of sites involved and the clustered sampling scheme employed. Variograms were therefore only examined for the Peyne Valley. To examine the robustness of spatial structures at the scale of the entire study region, variograms

were calculated from all bare soil pixels.

Results

Description of soils samples

Basic statistics on all of the soil properties measured are shown in Table 2. For the Peyne Valley, the range of clay contents present is higher than that of the Versailles Plain, with the highest value recorded as 452 g.kg -1 , though the 1 st quartile and median values (185.0 and 231.0 g.kg -1 ) are slightly lower than those for the Versailles Plain (192.5 and 249.5 g.kg -1 ), while the 3 rd quartile is slightly higher (290.5 g.kg -1 ) than that for the Versailles Plain (281 g.kg -1 ). SOC, silt and CEC levels are measured within a narrower and lower range for the Peyne Valley and with a much lower median (SOC, 8.92 g.kg -1 ; silt content, 322 g.kg -1 ; CEC, 10.65 cmol+.kg -1 ) than that for the Versailles Plain (SOC, 15.9 g.kg -1 ; silt content, 542 g.kg -1 ; CEC, 17.10 cmol+.kg -1 ). Conversely, sand and calcium carbonate content levels are higher in the Peyne Valley, with a higher median (sand content, 433 g.kg -1 ; calcium carbonate content, 136 g.kg -1 ) than that for the Versailles Plain (sand content, 157.5 g.kg 1 ; calcium carbonate content, 27 g.kg -1 ). Consequently, pH values are higher and less variable for the Peyne Valley, while soils of the Versailles Plain vary more in terms of pH levels. Red Mediterranean soils resulting from geochemical weathering contain more free iron, and hence their presence has induced a higher range of Fe content levels, with the 3 rd quartile reaching a value of 1.58 g/100 g compared to a value of 0.97 g/100 g found for the Versailles Plain.

Moreover, coarse fragment content levels in topsoil can reach percentages of as high as 20% and 30% for the 3 rd quartile of the Versailles and Peyne sets, respectively. For the Versailles Plain, the highest correlations (|R| > 0.7) were observed between CEC and SOC content levels, between CEC and clay levels, between CEC and pH levels and between CaCO3 and silt levels (Table 4). Modest correlations (0.7 > |R| > 0.5) were observed between pH and SOC levels, between pH and CaCO3 levels, between pH and sand levels, between Iron and CaCO3 levels and between SOC and clay levels (Table 4). For the Peyne catchment, the highest correlations (|R| > 0.7) were observed between CEC and clay levels and between sand and silt levels (Table 5). Modest correlations (0.7 > |R| > 0.5) were observed between pH and CaCO3 levels, between iron and CaCO3 levels, between sand and clay levels and between silt and CaCO3 levels (Table 5).

Performance of the prediction models

A PLSR model was built from S2A spectra and from each observed soil property associated with the available soil samples. No spectral outliers were removed from the calibration database, regardless of the study area concerned, and the number of latent variables was determined following the rule of the first local minimum of the RMSECV, which varied between 2 and 9 (Table 6). The predictive capacities of the PLSR models ranged from low to medium to high, with RPD values of between 1.0 and 2.0 and with R²cv of between 0.02 and 0.75 (Table 6). Three groups of variables can be identified from the cross-validation performance of the PLSR models ( 

Soil property mapping from SENTINEL2 data

While retaining PLSR models for groups i and ii, equations were applied to bare cropland and vineyard pixels (Fig. 4).

To relate the output maps to soil data and available soil maps and to facilitate the visual analysis of results for the other maps, and particularly for the Versailles Plain, for which the percentage of mapped pixels is very low, values were simplified to decile classes of predicted bare soil pixels for each study zone (Fig. 4).

The spatial patterns of clay correspond with known soil patterns for both regions. In the Peyne Valley, spatial patterns clearly show chromic luvisols developed along Plio-Quaternary alluvial terraces and characterized by high clay, iron and CEC levels. This result contrasts well with areas with Miocene marine deposits of calcisols and calcaric leptosols with less clay, iron and CEC. However, very high clay and iron content levels predicted for the minor riverbed of the Peyne River (the violet band in the clay map shown in Fig. 4) are not in accordance with our soil knowledge, likely revealing a perturbation related to soil moisture levels.

In the Versailles Plain, the highest predicted clay content levels match our observations of stagnic colluvic cambisols in lower slopes and valleys, whereas the lowest predicted clay content levels as expected were found along the plateaus with luvisols of loess origin. The highest SOC content levels were predicted both for stagnic colluvic cambisols in the valleys and for calcaric cambisols across the slopes, while low SOC content levels were predicted for luvisols originating from loess sources, in accordance with previous studies of the same region [START_REF] Vaudour | Potential of SPOT multispectral satellite images for mapping topsoil organic carbon content over peri-urban croplands[END_REF][START_REF] Vaudour | Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra[END_REF]Zaouche et al, 2017). 

Spatial structures retrieved from the set of predicted pixels

Empirical variograms were computed from the 46,971 pixels of bare soil in the Peyne catchment (Fig. 6). They exhibit different spatial structures from those revealed by variograms built from the measured sites only (Fig. 5). From an increase in the number of sites tested, short-scale variations are found across the clay and iron variograms as a result of a first slope break at 250 m that is not shown in the previous variograms (Fig. 6). Another slope break at approximately 1,000 m in the variograms shown in Fig. 6 is still visible but is less pronounced. This more complex spatial structure reveals a combination of soil variations acting at different scales in accordance with our understanding. The broad-scale variability found could be related to the spatial distribution of parent materials of soils with dissimilar clay and iron content levels. Short-range variations may result from erosion-redeposition processes occurring along slopes that involve neighboring parent materials with dissimilar iron and clay content levels. 

Discussion

Performance of the S2A-derived PLSR models

Comparisons of the performance of the S2A-derived models for two contrasting agroecosystems suggest that the predictability of a given property does not solely rely on the property itself or particularly on its spectral behavior as a "chromophore" according to Ben [START_REF] Ben-Dor | Using imaging spectroscopy to study soil properties[END_REF]. Rather, if such conditions could explain predictive capacities, both iron and SOC content levels would be predicted for any study area, as iron oxides and organic matter are spectrally influent due to their chemical compositions and arrangements, while their specific influent absorption bands are covered by MSI bands. In particular, SOC is known to be spectrally sensitive across the entire VNIR-SWIR spectral range [START_REF] Ben-Dor | Using imaging spectroscopy to study soil properties[END_REF]Demattê et al., 2015), while the specific absorption wavelengths of iron oxides (550 nm and roughly 860-900 nm) are overlain by green band b3 and near-infrared band b8A. As was expected for SOC, loading values for SOC prediction models were found to be higher overall for the visible b4, b5, near infrared b8A and two SWIR bands (b11, b12) for the Versailles Plain than for the Peyne valley. For iron, loading values were found to be marked for the b3 and b8A bands for the Peyne Valley while they were weakly expressed for the Versailles Plain (Fig. 7). This does not apply for both areas, suggesting that more conditions must be applied to confer predictive capacity. Moreover, clay predictions may be linked to the physical structure of soils in conjunction with a chromophore of approximately 2,200 nm that is fully covered by the b12 band (Table 1): this was revealed by higher loading values (Fig. 7)

. However, performance of clay predictionwas only found to be near-intermediate (0.5 > R²cv > 0.4) for both study areas, suggesting that other conditions may hamper predictive capacity levels. 6). Specifically, calcareous soils of the Versailles Plain are as poorly predicted as those of the Peyne Valley. In addition, CaCO3 degrades model accuracy levels for SOC content, as the lab uncertainty of SOC measurements increases with CaCO3 content levels [START_REF] Vaudour | Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra[END_REF].

Third, the number and composition of sample sets is likely to influence prediction performance. For the Versailles Plain, strong performance recorded for CEC must be considered with caution, as it is based on a small sample size (39 samples) and the model may be overfit.

Fourth, soil surface conditions can be disturbed by soil roughness, soil moisture, emerging and non-covering vegetation, dry vegetation, vine stock and coarse fragment areal coverage. In addition to commonly known difficulties associated with PLSR models in terms of predicting high soil property values (e.g., for SOC [START_REF] Stevens | Soil organic carbon predictions by airborne imaging spectroscopy: comparing cross-validation and validation[END_REF]), which are inherent to linear models, some additional disturbances can arise from these specific soil surface conditions. As a matter of fact, in the Peyne Valley, higher iron content levels are found among very stony soils with coarse fragment content levels of greater than 40%: the higher the coarse fragment content level, the more significant iron content prediction errors become (Fig. 8). In the Versailles Plain, because calcareous soils are stony and as their rock fragments are made of limestone, such relationships merge with those of calcium carbonate content: the higher the coarse fragment content level, the higher the CaCO3 content level and the higher the SOC content level. The highest levels of CaCO3 content (> 136 g. kg -1 ) show the highest levels of SOC residue prediction (Fig. 9). Of course, it cannot be inferred from Figs. 8 and 9 that coarse fragment content alone causes prediction errors, but presumably it contributes to such errors.

In terms of vegetation features, the composition and adequacy of the dataset is conditioned by the NDVI threshold. Regarding dry vegetation, while the b12 band covers the 2,100 nm specific absorption wavelength for cellulose [START_REF] Daughtry | Discriminating crop residues from soil by shortwave infrared reflectance[END_REF], the MSI bands do not enable one to derive an index of dry vegetation such as the Cellulose Absorption Index (CAI = 0.5 (R2000 nm+R2200 nm)-R2100 nm) elaborated by [START_REF] Nagler | Plant litter and soil reflectance[END_REF]. The CAI relies on two wavelengths covered by the b12 band (2,100 and 2,200 nm), but it requires the use of the 2,000 nm wavelength not covered by any MSI band. However, other indexes, such as the Normalized Difference Tillage Index defined for Landsat Thematic Mapper (TM) bands (NDTI= (TM5-TM7)/(TM5+TM7)) [START_REF] Van Deventer | Using Thematic Mapper data to identify contrasting soil plains and tillage practices[END_REF], could be adapted and tested for discriminating crop residue cover. The S2A data thus show limits in accounting for crop residue cover and vine wood vegetation more than the MSI spatial resolution does not enable one to discriminate between vine rows and vine interrows to remove the spectral influence of vine woods.

In 

Maximizing the mapped area

As the presence of vegetation severely hampers the prediction of soil properties from VNIR/SWIR remote sensing data, it is important to retrieve as many bare soil signals as

possible. When only one image is considered, as was done in this study, this involves a careful selection of acquisition periods. Images of the Versailles Plain and Peyne Valley were acquired for the spring period to maximize the size of the area with bare soils. In temperate agroecosystems like that of the Versailles Plain, this corresponds to the sowing of spring cereals, with the winter period being less suitable due to impacts of the Nitrate Directive that requires intermediate crop cultivation [START_REF] Vaudour | Potential of SPOT multispectral satellite images for mapping topsoil organic carbon content over peri-urban croplands[END_REF]. In a Mediterranean agroecosystem like that of the Peyne Valley, the spring period corresponds to maximum tilled vineyard coverage for removing weeds [START_REF] Paré | Etude de la variabilité et de la dynamique des états de surface des sols viticoles méditerranéens[END_REF] et al., 2015). Zaouche et al (2018) found improvement incorporating the green band of SPOT into a joint Bayesian model, and development of their approach is in progress for Sentinel2.

Conclusion

S2A image spectra acquired from two French study areas representative of temperate and Mediterranean agroecosystems-the Versailles Plain and the Peyne Valley-were tested as input data of a chemometric model (PLSR) to predict 8 topsoil properties of bare soil areas:

8% and 39% of the Versailles Plain and the Peyne Valley, respectively. Six of these 8 soil properties (clay, SOC, iron, CaCO3, pH, and CEC levels) can be predicted with varying success depending on their intrinsic spectral properties, intra-regional variances, correlations and soil surface conditions. Some of the best predictions were also found to serve as good approximations of the spatial patterns of soil properties.

Although a significant decline in the prediction performance of those obtained from hyperspectral data for the same study areas was observed, S2A soil predictions can serve as valuable inputs for Digital Soil Mapping. With the current absence of efficient hyperspectral satellites that can deliver hyperspectral data, it is advantageous to allow for the mosaicking of multidate acquisition and for the selection of the best acquisitions over a time series. We therefore recommend their use to improve the performance of Digital Soil mapping predictions.
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 1 Figure 1. Locations of soil samples from the Versailles Plain (left, infrared colored S2A

  Fig. 2. The brightest soils comprise: (i) calcic or calcaric sandy soils originating from calcareous sandstone (La Peyne); (ii) silt-loam luvisols (Versailles) or eluviated horizons of the chromic luvisols (La Peyne), developing a slaking crust ; (iii) rendzic or calcaric cambisols with very high topsoil calcium carbonate content or outcropping underlying chalk (Versailles). The darkest soils are clayey and alluvial and, for Versailles, can have high organic carbon content (>20 g kg-1) and/or high roughness dating from late winter ploughing. Intermediate soil spectra comprise soils with either moderate rock fragment content (10-25%), or varied textures and intermediate to low roughness (both regions), and also red Mediterranean soils (La Peyne).
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 2 Figure 2. Selection of reflectance image spectra covering the whole dataset reflectance range
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 5 Figure 5. Empirical variograms calculated for clay, iron and CEC for the Peyne Valley from
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 6 Figure 6. Empirical variograms computed for clay, iron and CEC from predicted soil
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 9 Figure 9. Relationships between quartiles of coarse fragment content and SOC content (left)
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Table 1 .

 1 Soil datasets used for models and statistics on soil properties

	Soil	Description	Unit				Versailles Plain					Peyne Valley
	property												
				Sample	Min	Q1 Median	Q3	Max	Sample	Min	Q1	Median Q3	Max
				size						size			
	SOC	soil organic C g.kg -1	72	7.0	12.5	15.9	20.1 31.9	104	4.0	7.0	8.9	11.4	21.8

Table 2 .

 2 Main characteristics of the studied scenes

	Imaging date	Sensor	Output resolution (m)	Time of acquisition (U.T GMT)	Viewing incidence angle (°)	Sun azimuth (°)	Sun elevation (°)
	12 March 2016	S2A	20	10:50:37	<5.1	160.5	36.1
	19 March 2016	S2A	20	10:40:32	<3.3	157.6	43.7

Table 3 .

 3 Characteristics of the Multi-Spectral Instrument aboard the SENTINEL2 satellite.

	Spectral S2A bands used are shown in bold.	
	Spectral band	Spatial resolution (m)	Central wavelength (nm)	Band width (nm)
	b1	60	443	20
	b2	10	490	65
	b3	10	560	35
	b4	10	665	30
	b5	20	705	15
	b6	20	740	15
	b7	20	783	20
	b8	10	842	115
	b8A	20	865	20
	b9	60	945	20

Table 4 .

 4 Pearson correlation table of common soil properties for the Versailles Plain

	Variables	Clay	Silt	Sand	CaCO3	SOC	Fe	pH	CEC
	Clay	1.00							
	Silt	-0.24	1.00						
	Sand	-0.34	-0.27	1.00					
	CaCO3	-0.02	-0.70	-0.33	1.00				
	SOC	0.53	-0.38	-0.44	0.46	1.00			
	Fe	0.48	0.24	0.03	-0.52	0.00	1.00		
	pH	0.46	-0.43	-0.50	0.60	0.66	-0.25	1.00	
	CEC	0.77	-0.32	-0.52	0.33	0.82	0.12	0.77	1.00
	Values in bold are different from 0 at a significance level of alpha=0.05			

Table 5 .

 5 Pearson correlation table of common soil properties of the Peyne Valley

	Variables	Clay	Silt	Sand	CaCO3	SOC	Fe	pH	CEC
	Clay	1.00							
	Silt	-0.14	1.00						
	Sand	-0.54	-0.76	1.00					
	CaCO3	-0.08	0.53	-0.40	1.00				
	SOC	-0.19	0.08	0.06	0.11	1.00			
	Fe	0.42	-0.26	-0.06	-0.50	-0.11	1.00		
	pH	0.02	0.42	-0.37	0.52	0.03	-0.42	1.00	
	CEC	0.89	-0.16	-0.45	0.00	-0.02	0.16	0.14	1.00
	Values in bold are different from 0 at a significance level of alpha=0.05			

Table 6

 6 In overall, the Versailles Plain includes all 4 properties of group i (SOC, pH, CEC and CaCO3) and one property of group ii (Clay), whereas the Peyne region includes 3 properties of group ii (Clay, Iron and CEC), with the remaining properties (silt and sand content for both regions and SOC, pH, and CaCO3 content for the Peyne site) are categorized as group iii.

	, Fig. 3): i) soil property models yielding R²cv ≥ 0.5

RPD values of roughly 1 or models exhibiting poor or very poor levels of predictive capacity.

Table 6 .

 6 Cross-validation performance statistics derived from the PLSR algorithm for soil

	Soil property		Versailles Plain			Peyne Valley	
		R²cv	RMSEcv RPD	NLV	R²cv	RMSEcv RPD	NLV
	SOC	0.56	1.23	1.51	4	0.02	3.71	1.00	4
	CaCO3	0.48	20.3	1.39	4	0.15	122.2	1.08	8
	Clay	0.39	1.23	1.30	6	0.42	56.4	1.31	5
	Silt	0.14	103.0	1.09	3	0.11	91.9	1.06	9
	Sand	0.22	81.7	1.14	4	0.03	113.0	1.02	7
	Iron content	0.05	0.09	1.02	2	0.45	0.04	1.34	6
	pH	0.51	0.51	1.43	4	0.08	0.64	1.03	4
	CEC	0.75	1.23	2.00	6	0.41	2.41	1.31	6

property prediction (NLv, number of latent variables; RMSEcv expressed in original units).

R²cv and RPD rounded values of greater than or equal to 0.5 and 1.4, respectively, are shown in bold (group i). RPD rounded values of greater than or equal to 1.3 are shown in italics (group ii). 18 Figure 3. Predicted vs. observed soil properties for the Versailles Plain (left) and Peyne Valley (right) for 6 soil properties best predicted for at least one region A model property that exhibits intermediate or near intermediate predictive capacity for one region can exhibit poor capacities for another. This is the case for pH, SOC, iron and CaCO3 content levels. A model property that exhibits high predictive capacity for one region can exhibit near intermediate capacities for another: this is the case for CEC levels.

  conclusion, our use of two contrasting agroecosystems datasets denotes what is achievable from S2A data in terms of predictive capacities for a single considered date. The soils considered in this study are located in French regions but widely develop abroad, across the temperate and Mediterranean areas. Assessment of Sentinel-2 performance is developing for other French regions with other soil types and further for tropical soils.notably coarse fragment content and vegetation. This distinguishes our models from those constructed from simulated MSI spectra derived from lab spectral libraries, as anticipated by[START_REF] Castaldi | Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon[END_REF] for a number of forthcoming or newly launched satellites, including Sentinel-2. However, with the addition of noise and atmospheric effects and from the use of untransformed lab reflectance spectra sampled from central and southern Italy, these authors obtained validation results similar to our performance results for clay) that are inferior to those found for the Versailles Plain in terms of SOC content levels (R² 0.36; RPD 1.26) in the best case or that are not as predictive as found for the Peyne (R² 0.13; RPD 1.09) in the worst case.[START_REF] Gomez | Sensitivity of clay content prediction to spectral configuration of VNIR/SWIR imaging data, from multispectral to hyperspectral scenarios[END_REF] used VNIR/SWIR hyperspectral airborne data (initial spectral resolution of approximately 5 nm) to simulate, among others, Sentinel-2, Landsat 8 and Landsat 7 spectral resolution data. They showed that these multispectral sensors provide very modest performances of clay content estimations, as these spectral resolutions do not provide clay absorption feature useful in regression models.

  10, 126-137.Were, K.,Bui, D.T., Dick, Ø.B., Singh, B.R., 2015. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators 52, 394-403. https://doi.org/10.1016/j.ecolind.2014.12.028 Zaouche, M., Bel, L., Tressou, J.,Vaudour, E., 2018. Soil organic carbon modelling using

	jointly different	sources.	METMA2018,	Montpellier	(France),	poster.

http://metma2018.sfds.asso.fr/assets/Download/proceedingsMETMA9.pdf
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through tests of soil predictions from hyperspectral data (Gomez et al, 2012). The predicted iron variogram has the same nugget and range as the measured one, with only a difference in 'sill' values (the slope of the variogram). No clear explanation can be given for this difference in behavior.

Comparisons with other sensors

Our model performs in a similar manner as those employed in other studies. It performs better than SPOT multispectral satellite images in measuring SOC, and it performs similarly or less optimally than hyperspectral airborne images in measuring all properties.

For the Versailles Plain in particular, previous models of SOC content were derived from multispectral or hyperspectral fields or from image spectra. In terms of RMSECV and RPD values in particular, the regional PLSR model obtained SOC content levels from S2A spectra (1.23 g.kg -1 and 1.51, respectively) more accurately than real SPOT or simulated SPOT spectra [START_REF] Vaudour | Potential of SPOT multispectral satellite images for mapping topsoil organic carbon content over peri-urban croplands[END_REF] error range 4.5-6.0 g.kg -1 , RPD 0.9-1.3) for the same region. This is presumably attributable to the beneficial role of its SWIR bands and to differences in soil surface conditions, which are similar to those obtained from a VNIR hyperspectral AISA airborne image (no SWIR) for the same region [START_REF] Vaudour | Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra[END_REF] error range 2.82-3.79 g.kg -1 , RPD 1.3-1.6).

For the Peyne Valley, performance outcomes obtained from Sentinel-2 are lower than those obtained from a VNIR-SWIR Hymap airborne image (Gomez et al., 2012), regardless of soil properties involved with dramatic changes in performance found for CaCO3 content effectively predicted from the hyperspectral spectra but not predicted from S2A spectra (see §5.1). However, due to intra-regional variances (SOC) and an absence of correlations with more effectively predicted properties (silt), neither SOC nor silt content levels were predicted from hyperspectral and S2A images. Performance degradation from airborne to spaceborne models has also been found by [START_REF] Steinberg | Prediction of common surface soil properties based on Vis-NIR airborne and simulated EnMAP impaging spectroscopy data: prediction accuracy and influence of spatial resolution[END_REF] for SOC, clay and iron content levels, though these authors used simulated EnMAP satellite spectra.

It must be noted that our models were constructed from actual spaceborne images that account for the effects of atmospheric, signal/noise ratio, and soil surface conditions and Despite this careful selection of periods, coverage levels found for bare soil areas remain modest, especially for the Versailles Plain (Fig. 4).

Bare soil areas could be maximized (at least for temperate agroecosystems) by aggregating multiple acquisition dates. This would allow one to accumulate the spectra of soil areas that change every year and along the crop cycle. Sentinel-2 is particularly well suited to this task, as it provides an image every 5 days, thus increasing the likelihood of acquiring images under clear conditions and across the crop rotation cycle.

Such an aggregation of images for maximizing bare soil areas was already attempted by [START_REF] Diek | Creating Multi-Temporal Composites of Airborne Imaging Spectroscopy Data in Support of Digital Soil Mapping[END_REF]. These authors doubled the bare soil area by combining hyperspectral APEX acquisitions over 3 successive years and performed intercalibration from linear regressions of atmospherically corrected spectra for different years. This raises issues relating to accurate atmospheric corrections across dates and to the number and anteriority values of dates. This issue is being studied in reference to the Versailles Plain to consider the directional effects of soil roughness in line with tillage operations (Vaudour et al., 2014a).

Indeed, soil roughness levels can be spatially and temporally retrieved from optical/radar pairs such as S2/S1 (Vaudour et al., 2014b), which could be accounted for during soil properties prediction.

Bare soil coverage levels can also be increased by applying unmixing techniques that isolate bare soil signals from semi-vegetated pixels [START_REF] Bartholomeus | Soil organic carbon mapping of partially vegetated agricultural fields with imaging spectroscopy[END_REF][START_REF] Ouerghemmi | Semi-blind source separation for the estimation of the clay content over semi-vegetated areas using VNIR/SWIR hyperspectral airborne data[END_REF]. For the Peyne Valley, such techniques are used to predict clay content levels from hyperspectral data for semi-vegetated areas (NDVI < 0.55), expanding the studied surface from 4% (bare soil) to 63% of the total area [START_REF] Ouerghemmi | Semi-blind source separation for the estimation of the clay content over semi-vegetated areas using VNIR/SWIR hyperspectral airborne data[END_REF]. A similar approach could be applied for S2A soil predictions.

Incorporating S2A data into the framework of digital soil mapping

The soil predictions obtained from S2A are neither precise nor extended enough to be exploited "as is" by end users. They must rather be considered as a new source of soil data that should be used for Digital Soil Mapping (Mc Bratney et al, 2003, Lagacherie et al, 2007), a larger methodological framework that can produce more exhaustive and precise soil maps.

If we examine the soil property predictions obtained in this study with such a perspective in mind, S2A soil predictions obtained from this study could serve as valuable inputs for digital soil mapping for two reasons.

First, S2A data offer insight on the spatial patterns of certain soil properties that could be quantified from variograms that closely resemble those obtained from real measurements.

These variograms could be used to optimize further sampling efforts, as they allow one to compute error variances (kriging variance) for sampling schemes of different densities and spatial distributions and thus determine the sampling efforts required to meet target levels of precision in spatial predictions [START_REF] Mcbratney | The design of optimal sampling schemes for local estimation and mapping of regionalized variables[END_REF].

Second, S2A products could serve as surrogate data to improve the precision of Digital Soil Mapping models (Lagacherie & Gomez;[START_REF] Hagolle | Séries temporelles, SPOT4 Take Five blog[END_REF]. For example, Walker et al. (2017) found the use of hyperspectral data as soft data for co-kriging or cogriging with external drift models to improve prediction performance. Although less pronounced, improvements were still observable when using hyperspectral-based estimations of moderate quality (R 2 < 0.5) like many of those obtained in this study. It is therefore expected that some S2A soil outputs could make improvements while being more available than hyperspectral data.

Finally, the potential of S2 data as a co-variable in DSM model could further be evaluated.

While previous researches used MODIS or LANDSAT data in DSM models, either as spectral indexes, such as the NDVI (e.g., [START_REF] Mishra | Predicting the Spatial Variation of the Soil Organic Carbon Pool at a Regional Scale[END_REF], or as spectral bands (e.g., Were