Tonametl Sanchez 
email: tonametl.sanchezramirez@inria.fr
  
Denis Efimov 
email: denis.efimov@inria.fr
  
Andrey Polyakov 
email: andrey.polyakov@inria.fr
  
Jaime A Moreno 
email: jmorenop@ii.unam.mx
  
Homogeneous discrete-time approximation

Keywords: Nonlinear systems, discrete-time systems, homogeneous systems

In this paper we study some stability properties of discrete-time systems whose transition map can be approximated by a discrete-time homogeneous transition map. This allows us to identify qualitative stability properties of discrete-time systems by only knowing the discrete-time homogeneity degree of its approximation. We show how these results can be applied to the stability analysis of discrete-time systems obtained by means of the explicit and implicit Euler discretization methods.

INTRODUCTION

A standard technique to simplify the analysis of a nonlinear system is to analyse its local linear approximation. Nevertheless, in many cases, the linear approximation results trivial, singular or unsuitable for analysis or control design [START_REF] Kawski | Stability and nilpotent approximations[END_REF].

The concept of weighted homogeneity has allowed the establishment of a wider set of approximating systems: the class of homogeneous systems. Such systems exhibit several interesting features that facilitate the processes of analysis and control design, e.g. scalability of trajectories, finite-time or fixed-time convergence rates, intrinsic robustness to exogenous perturbations and delays [START_REF] Zubov | Methods of A. M. Lyapunov and their applications[END_REF][START_REF] Hahn | Stability of Motion[END_REF][START_REF] Hermes | Nilpotent Approximations of Control Systems and Distributions[END_REF][START_REF] Kawski | Stability and nilpotent approximations[END_REF][START_REF] Hermes | Differential Equations, Stability and Control[END_REF][START_REF] Rosier | Inverse of Lyapunov's second theorem for measurable functions[END_REF][START_REF] Kawski | Geometric Homogeneity and Stabilization[END_REF][START_REF] Sepulchre | Homogeneous Lyapunov functions and necessary conditions for stabilization[END_REF][START_REF] Grüne | Homogeneous State Feedback Stabilization of Homogenous Systems[END_REF][START_REF] Nakamura | Smooth Lyapunov functions for Homogeneous Differential Inclusions[END_REF][START_REF] Orlov | Finite Time Stability and Robust Control Synthesis of Uncertain Switched Systems[END_REF][START_REF] Bhat | Geometric homogeneity with applications to finite-time stability[END_REF][START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF][START_REF] Andrieu | Homogeneous Approximation, Recursive Observer Design, and Output Feedback[END_REF][START_REF] Nakamura | Homogeneous Stabilization for Input Affine Homogeneous Systems[END_REF][START_REF] Bernuau | Verification of ISS, iISS and IOSS properties applying weighted homogeneity[END_REF]Sanchez and Moreno, 2017).

For the case of discrete-time systems, the standard definition of weighted homogeneity does not provide, in general, the benefits obtained in the continuous-time case, see e.g. [START_REF] Hammouri | Global stabilization of discrete-time homogeneous systems[END_REF][START_REF] Tuna | Discrete-time homogeneous Lyapunov functions for homogeneous difference inclusions[END_REF]Sanchez et al., 2017). For this reason, the concept of D r -homogeneity was introduced in (Sanchez et al., 2017) expressly for discrete-time systems. One of the main properties of D r -homogeneous systems is the simplicity to conclude qualitative stability features directly from the homogeneity degree of the system.

In this paper we define the D r -homogeneous approximation of a discrete-time system. We investigate the condi-tions that allow us to decide the stability properties of a discrete-time system by means of its D r -homogeneous approximation. We also show how the results can be applied to perform stability analysis of the discrete-time systems obtained by means of the implicit and explicit Euler discretization of continuous-time systems.

Paper organization: In Section 2 the definition and the main properties of D r -homogeneity are recalled. Section 3 contains the results about D r -homogeneous approximation. The application of the results to discretizations of continuous-time systems is given in Section 4. Some useful properties of homogeneous functions are stated in Appendix A. The proofs of the main results are collected in appendices B-D. Several examples about the stability analysis for the discretization of continuous-time systems are provided in Section 5. Some final remarks are stated in Section 6.

Notation:

The real and integer numbers are denoted as R and Z, respectively. R >0 denotes the set {x ∈ R : x > 0}, analogously for the set Z and the sign ≥. For x ∈ R n , |x| denotes the Euclidean norm and x r an r-homogeneous norm (see Definition 1). The composition of two functions f and g (with adequate domains and codomains) is denoted as f

•g, i.e. (f •g)(x) = f (g(x)
). For a continuous positive definite function V : R n → R and some α ∈ R >0 we denote

I(V, α) := {x ∈ R n : V (x) ≤ α} , E(V, α) := {x ∈ R n : V (x) ≥ α} . For x ∈ R and q ∈ R >0 , x q = sign(x)|x| q .

D r -HOMOGENEITY

In this section we recall the concepts of r-homogeneity, D r -homogeneity, and some properties of D r -homogeneous systems. Consider the discrete-time system

x(k + 1) = f (x(k)) , (1) 
where the state x(k) ∈ R n for any k ∈ Z ≥0 . We assume that the transition map f : R n → R n is continuous for all x ∈ R n . Such an assumption guarantees existence and uniqueness of solutions, see e.g. (Agarwal, 2000, p. 5). The solution of (1) with initial condition x 0 = x(0) is denoted as

F (k; x 0 ) , ∀ k ∈ Z ≥0 .
First, we recall the definition of r-homogeneity. Definition 1. [START_REF] Kawski | Stability and nilpotent approximations[END_REF]). Let Λ r denote the family of dilations given by the square diagonal matrix Λ r = diag( r1 , . . . , rn ), where r = [r 1 , . . . , r n ] , r i ∈ R >0 , and ∈ R >0 . The components of r are called the weights of the coordinates. Thus:

a) a function V : R n → R is r-homogeneous of degree m ∈ R if V (Λ r x) = m V (x), ∀x ∈ R n , ∀ ∈ R >0 ; b) a vector field f : R n → R n , f = [f 1 , . . . , f n ] , is r- homogeneous of degree κ ∈ R if for each i = 1, . . . , n, f i (Λ r x) = κ+ri f i (x), ∀x ∈ R n , ∀ ∈ R >0 ; c)
given a vector of weights r, a r-homogeneous norm is defined as a function from R n to R ≥0 , and given by x r,p = n i=1 |x i | p/ri 1/p , ∀x ∈ R n , for any p ≥ 1. The set S r := {x ∈ R n : x r,p = 1} is the corresponding r-homogeneous unit sphere.

Note that any r-homogeneous norm is an r-homogeneous function of degree m = 1. Since, for a given r, the r-homogeneous norms are equivalent [START_REF] Kawski | Stability and nilpotent approximations[END_REF], they are usually denoted as • r , with no specification of p.

The definition of r-homogeneity has been particularly useful for analysis and design of continuous-time systems [START_REF] Bacciotti | Liapunov Functions and Stability in Control Theory[END_REF]. However, for discrete-time systems, only the case of κ = 0 provides clear useful properties [START_REF] Hammouri | Global stabilization of discrete-time homogeneous systems[END_REF][START_REF] Tuna | Discrete-time homogeneous Lyapunov functions for homogeneous difference inclusions[END_REF]Sanchez et al., 2017). This situation motivated the introduction of the concept of D r -homogeneity for discrete-time systems. Definition 2. (Sanchez et al. (2017)). Let Λ r , r, and be as in Definition 1. A map f :

R n → R n , f = [f 1 , . . . , f n ] , is D r -homogeneous of degree ν if for each i = 1, . . . , n, f i (Λ r x) = riν f i (x), ∀x ∈ R n , ∀ ∈ R >0 , and some ν ∈ R >0 , or equivalently, f (Λ r x) = (Λ r ) ν f (x) = Λ νr f (x) = Λ r ν f (x).
The system (1) is said to be D r -homogeneous of degree ν if its transition map f is D r -homogeneous of degree ν. The solutions of D r -homogeneous discrete-time systems are interrelated as the solutions of r-homogeneous continuous-time systems (Sanchez et al., 2017).

In order to state the main stability properties of D r -homogeneous systems, let us recall that x ∈ R n is said to be an equilibrium point of (1) if it is a solution of the equation f (x) -x = 0. Theorem 3. (Sanchez et al. (2017)). Suppose that (1) is D r -homogeneous of degree ν > 1. Let V : R n → R ≥0 be a continuous positive definite r-homogeneous function of degree m ∈ R >0 .

a) If x = 0 is an isolated equilibrium point of (1), then it is locally asymptotically stable, and there exists α ∈ R >0 such that V is a Lyapunov function for (1) on I(V, α). b) Suppose that there exists β ∈ R >0 such that f (x) = 0 and there is no equilibrium of (1) for all x ∈ E(V, β).

Then there exists β ∈ R ≥β such that, for all x 0 ∈ E(V, β), the solution F of (1) satisfies

|F (k; x 0 )| → ∞ as k → ∞.
For the next result we recall the definition of ultimate boundedness. Definition 4. The solutions of (1) are ultimately bounded with ultimate bound (Sanchez et al. (2017)). Suppose that ( 1) is D r -homogeneous of degree ν ∈ (0, 1). Let V : R n → R be a continuous positive definite r-homogeneous function of degree m ∈ R >0 . a) Suppose that there exists α ∈ R >0 such that there is no equilibrium of (1) for all x ∈ E(V, α). Then the solutions of ( 1) are globally ultimately bounded, and there exists ᾱ ∈ R ≥α such that ∆V (x

β ∈ R >0 , if for every α ∈ R >0 , there is T = T (α, β) ∈ Z ≥0 , such that |x(0)| ≤ α ⇒ |x(k)| ≤ β, ∀k ≥ T . Theorem 5.
) := V (f (x)) - V (x) < 0 for all x ∈ E(V, ᾱ). b) If x = 0 is an isolated equilibrium point of (1), then
it is locally unstable. Remark 6. For Theorem 5 point b), the additional condition f (x) = 0 ⇔ x = 0 is asked in (Sanchez et al., 2017). Such a condition is not necessary to prove instability of the origin, however it guarantees that no solution converges to the origin. The proof with the weaker conditions in Theorem 5 is a particular case of the proof of Theorem 10.

In the case ν = 0, D r -homogeneous systems are exponentially converging or diverging, however it depends on the properties of the map f (Sanchez et al., 2017).

APPROXIMATION

In this section we consider (1) without assuming that its transition map f is D r -homogeneous. The idea is to verify whether f can be approximated by a D r -homogeneous map h, and whether some stability properties of f can be decided through the properties of h.

First, we give the following definition, which is the discretetime counterpart of the local (or limit) homogeneity in continuous-time systems.

Definition 7. For a constant 0 ∈ R ≥0 ∪ {+∞}, the tran- sition map f : R n → R n is said to be D r -homogeneous of degree ν ∈ R >0 in the ( 0 , h)-limit, where h : R n → R n is some D r -homogeneous map of degree ν, if lim → 0 Λ -νr f (Λ r x) -h(x) = 0 ,
with the limit computed uniformly for all x ∈ S r for 0 ∈ R ≥0 ∪ {+∞}.

Before stating the main results of this paper, let us recall that for α ∈ R >0 , α ∈ (0, 1], a function V : R n → R is said to be α-Hölder continuous in the set [START_REF] Fiorenza | Hölder and locally Hölder Continuous Functions, and Open Sets of Class C k , C k,λ[END_REF]. Theorem 8. Suppose that the transition map f of ( 1) is D r -homogeneous in the ( 0 , h)-limit for some 0 ∈ {0, +∞} with some degree ν ∈ R >0 . Consider a function V : R n → R being α-Hölder continuous in each compact subset of R n , positive definite, and r-homogeneous of degree m ∈ R >0 .

I ⊂ R n , if there exists L I ∈ R >0 such that |V (x) -V (y)| ≤ L I |x -y| α for all x, y ∈ I, see e.g.
a) If 0 = 0, ν > 1, and x = 0 is an isolated equilibrium point of h and f , then the origin of ( 1) is locally asymptotically stable. Moreover, there exists γ ∈ R >0 such that V is a Lyapunov function for (1) on I(V, γ). b) If 0 = +∞, ν ∈ (0, 1), and there exists γ 0 ∈ R >0 such that f (x) = x and h(x) = x for all x ∈ E(V, γ 0 ), then the solutions of (1) are globally ultimately bounded and there exists γ ≥ γ 0 such that ∆V (x) < 0 for all x ∈ E(V, γ).

Proof. See Appendix B. Remark 9. A function V with the properties required in Theorem 8 does exist for any vector of weights r, for example V (x) = x m r . This is due to any r-homogeneous norm is α-Hölder continuous for any α ∈ (0, ρ) where ρ -1 = max i∈{1,...,n} (r i ) [START_REF] Bhat | Geometric homogeneity with applications to finite-time stability[END_REF], Theorem 4.1). Theorem 10. Suppose that f and V are as in Theorem 8. a) If 0 = +∞, ν > 1, and there exists

γ 0 ∈ R >0 such that f (x) = 0, f (x) = x, h(x) = 0 and h(x) = x for all x ∈ E(V, γ 0 ), then there exists γ 1 ≥ γ 0 such that |F (k; x 0 )| → ∞ as k → ∞ for all x 0 ∈ E(V, γ 1 ). b) If 0 = 0, ν ∈ (0, 1), f (0) = 0, h(0) = 0, and there exists γ 0 ∈ R >0 such that f (x) = 0, f (x) = x, h(x) = x for all x ∈ I(V, γ 0 ) \ {0}
, then the origin of ( 1) is locally unstable.

Proof. See Appendix C.

APPLICATION TO THE ANALYSIS OF DISCRETIZED CONTINUOUS-TIME SYSTEMS

In this section we consider the following continuous-time system ẋ(t) = g(x(t)) , x(t) ∈ R n , (2) where g : R n → R n is a continuous vector field. If (2) is wanted to be numerically solved, then a discretization method is required. Two of the simplest ones are the Euler methods: the explicit (or forward) and the implicit (or backward), see e.g. (Hairer et al., 1993, Section II.7). Below we recall such methods, and study some stability properties of the discrete-time system obtained by their application to (2).

Explicit Euler method

The explicit Euler discretization (EED) of (2), with a step τ ∈ R >0 , is given by (see e.g. [START_REF] Hairer | Solving Ordinary Differential Equations I[END_REF] x((k + 1)τ ) -x(kτ ) = τ g(x(kτ )). Thus, the EED of (2) is given by the discrete-time system

x((k + 1)τ ) = G(x(kτ )) ,

(3) where the map G : R n → R n is given by G(y) = y + τ g(y).

From Theorem 10 we can immediately deduce the following properties of (3). Corollary 11. Consider (2) and its EED (3). Suppose that g is D r -homogeneous in the ( 0 , H)-limit for some 0 ∈ {0, +∞} with some degree ν ∈ R >0 . Let V be as in Theorem 8. a) If 0 = +∞, ν > 1, and there exists γ 0 ∈ R >0 such that τ g(x) = -x, g(x) = 0, H(x) = 0 and τ H(x) = x for all x ∈ E(V, γ 0 ), then there exists γ 1 ≥ γ 0 such that the solution F of (3) satisfies |F (k; x 0 )| → ∞ as k → ∞ for all x 0 ∈ E(V, γ 1 ). b) If 0 = 0, ν ∈ (0, 1), g(0) = 0, H(0) = 0, and there exists γ 0 ∈ R >0 such that τ g(x) = -x, g(x) = 0 and τ H(x) = x for all x ∈ I(V, γ 0 ) \ {0}, then the origin of ( 3) is locally unstable.

Observe that the conditions in Corollary 11 do not consider the map G, but only the vector field g. This is clear by noting that for the identity map I(x) = x, we have that Λ -νr I(Λ r x) = Λ

(1-ν)r x thus:

• for ν ∈ (0, 1), Λ

(1-ν)r x → 0 as → 0, and;

• for ν > 1, Λ

(1-ν)r x → 0 as → +∞.

Remark 12. Observe that the instability features of a EED concluded in Corollary 11 only depend on the homogeneity degree of the vector field g and not on the stability properties of g. Thus, Corollary 11 is useful to detect inconsistencies in the EED of a continuous-time system whose vector field has a D r -homogeneous approximation. This fact is clarified in Section 5.1 where the origin of a continuous-time system is asymptotically stable but the origin of its EED is unstable. Hence, it is clear the need for discretization schemes that guarantee the preservation of the stability features of the continuous-time systems they are discretizing. Now, although less possible due to the linear term in G, the following result can be stated from Theorem 8. Corollary 13. Consider (2) and its EED (3). Let V be as in Theorem 8.

a) If for some τ = τ * ∈ R >0 , G is D r -homogeneous of degree ν ∈ (0, 1) in the (+∞, H)-limit, and there exists γ 0 ∈ R >0 such that G(x) = x and H(x) = x for all x ∈ E(V, γ 0 ), then for τ = τ * the solutions of (3) are globally ultimately bounded and there exists γ ≥ γ 0 such that ∆V < 0 for all x ∈ E(V, γ). b) If for some τ = τ * ∈ R >0 , G is D r -homogeneous of degree ν > 1 in the (0, H)-limit, and x = 0 is an isolated equilibrium point of G and H, then for τ = τ * the origin of ( 3) is locally asymptotically stable. Moreover, there exists γ ∈ R >0 such that V is a Lyapunov function for (3) on I(V, γ).

Implicit Euler method

The implicit Euler discretization (IED) of (2), with a step τ ∈ R >0 , is given by x((k +1)τ )-x(kτ ) = τ g(x((k +1)τ )), or equivalently

x(kτ ) = x((k + 1)τ ) -τ g(x((k + 1)τ )) .

Let us define the map G : R n → R n given by G(y) = yτ g(y) and assume that G is invertible with inverse G -1 . Thus, the IED of ( 2) is given by the discrete-time system

x((k + 1)τ ) = G -1 (x(kτ )) . (4) 
As it was done for the explicit Euler discretization, we can use D r -homogeneous approximations to analyse (4). But let us first state the following auxiliary lemma. Lemma 14. Consider an invertible map g : R n → R n , and an invertible D r -homogeneous map h : R n → R n of some degree ν ∈ R >0 .

(1) The map h -1 is D r -homogeneous of degree ν -1 .

(2) If g is D r -homogeneous in the (+∞, h)-limit (in the (0, h)-limit, respectively), then the map g -1 : R n → R n is D r -homogeneous in the (+∞, h -1 )-limit (in the (0, h -1 )-limit, respectively).

Proof. See Appendix D.

Corollary 15. Consider (2) and its IED (4). Suppose that g is D r -homogeneous in the ( 0 , H)-limit for some 0 ∈ {0, +∞} with some degree ν ∈ R >0 . Suppose that G and H are invertible and let V be as in Theorem 8.

a) If 0 = 0, ν ∈ (0, 1), g(0) = 0, H(0) = 0, and there exists γ 0 ∈ R >0 such that τ H(x) = x, g(x) = 0, for all x ∈ I(V, γ 0 ) \ 0, then the origin of ( 4) is locally asymptotically stable. Moreover, there exists γ ≤ γ 0 such that V is a Lyapunov function for (4) in I(V, γ). b) If 0 = +∞, ν > 1, and there exists γ 0 ∈ R >0 such that g(x) = 0 and τ H(x) = x for all x ∈ E(V, γ 0 ), then the solutions of ( 4) are globally ultimately bounded, and there exists γ ≥ γ 0 such that ∆V (x) < 0 for all x ∈ E(V, γ). Remark 16. Note that (as it was explained in Remark 12), Corollary 15 is useful to detect inconsistencies in the IED of a continuous-time system whose vector field has a D r -homogeneous approximation. In Section 5.2 it is shown a continuous-time system whose origin is globally unstable, however, the origin of its IED is locally asymptotically stable. Corollary 17. Consider (2) and its IED (4). Suppose that G is D r -homogeneous in the ( 0 , H)-limit for some 0 ∈ {0, +∞} with some degree ν ∈ R >0 , for some τ = τ * ∈ R >0 . Suppose that G and H are invertible and let V be as in Theorem 8. a) If 0 = +∞, ν ∈ (0, 1), and there exists γ 0 ∈ R >0 such that G(x) = 0, H(x) = 0, G(x) = x and H(x) = x for all x ∈ E(V, γ 0 ), then for τ = τ * there exists γ ≥ γ 0 such that the solution F of (4) satisfies

|F (k; x 0 )| → ∞ as k → ∞ for all x 0 ∈ E(V, γ). b) If 0 = 0, ν > 1,
and there exists γ 0 ∈ R >0 such that x = 0 is a unique equilibrium point of G and H in I(V, γ 0 ), then for τ = τ * ∈ R >0 , the origin of ( 4) is locally unstable.

The results of this section are in accordance to [START_REF] Efimov | Realization and Discretization of Asymptotically Stable Homogeneous Systems[END_REF], where a thorough stability analysis of IED and EED for continuous-time r-homogeneous systems is presented (this fact is illustrated in Section 5.4). Nonetheless, the advantage of D r -homogeneous approximation lies in the facility to verify stability properties by considering only the homogeneity degree and not needing information about the Lyapunov function of the continuous-time system.

EXAMPLES

In this section we exemplify the results obtained in the previous sections. Nonetheless, in sections 5.1 and 5.2 we provide some simple examples that can be solved analytically to verify the results obtained in Section 4.

5.1 Two scalar systems I a) Consider the following continuous-time scalar system ẋ(t) = -x(t) 1/2 , x(t) ∈ R .

(5) Let us stress that, the origin of ( 5) is asymptotically stable. The EED of ( 5) is given by

x((k + 1)τ ) = x(kτ ) -τ x(kτ ) 1/2 .
(6) Note that the transition map of ( 6) is D r -homogeneous of degree ν = 1/2 in the (0, h)-limit with h

(x) = -τ x 1/2 . Now, if x(kτ ) ∈ (0, τ 2 /4), then x((k + 1)τ ) < 0. Moreover, -x((k + 1)τ ) -x(kτ ) = -2x(kτ ) + τ x(kτ ) > 0.
Analogously, for x(kτ ) ∈ (-τ 2 /4, 0), we have that x((k + 1)τ ) > 0, and x((k + 1)τ ) + x(kτ ) > 0. Hence, the origin of ( 6) is unstable and the instability domain is the interval (-τ 2 /4, τ 2 /4). b) On the other hand, the origin of the continuous-time system

ẋ(t) = -x(t) 2 , x(t) ∈ R , (7) 
is globally asymptotically stable. Its EED is given by x

((k + 1)τ ) = x(kτ ) -τ x(kτ ) 2 .
(8) Note that the transition map of ( 8) is D r -homogeneous of degree ν = 2 in the (+∞, h)-limit with h(x) = -τ x 2 . It is easy to verify analytically that, for any initial condition x(0) / ∈ [-2/τ, 2/τ ] the solutions of (8) diverge.

Two scalar systems II

a) Consider the following continuous-time scalar system

ẋ(t) = x(t) 1/2 , x(t) ∈ R . (9) 
The origin of this system is globally unstable. The IED of (9) is given by

x(kτ ) = x((k + 1)τ ) -τ x((k + 1)τ ) 1/2 .
(10) Note that the right hand side of ( 10) is D r -homogeneous of degree ν = 1/2 in the (0, h)-limit with h(x) = -τ x 1/2 . The map f (y) = y -τ y 1/2 is invertible in the neighbourhood of the origin given by (-τ 2 /4, τ 2 /4). Thus, for such a neighbourhood the explicit representation associated to (10) is given by

x((k + 1)τ ) = s 1 (x(kτ )), x(kτ ) ∈ (-τ 2 /4, 0) , s 2 (x(kτ )), x(kτ ) ∈ [0, τ 2 /4) , (11) 
where

s 1 (x(kτ )) = x(kτ ) + τ 2 /2 -τ x(kτ ) + τ 2 /4 , s 2 (x(kτ )) = x(kτ ) -τ 2 /2 + τ -x(kτ ) + τ 2 /4 .
To verify the asymptotic stability of the origin of (11) consider x(kτ ) = τ 2 /4 -with ∈ (0, τ 2 /4). Thus, by substituting in (11), we obtain x((k + 1)τ ) = -τ 2 /4 -+ τ √ .

(12) Note that x((k + 1)τ ) < 0, thus, we have to verify that -x((k + 1)τ ) < x(kτ ). This is true if and only if Fig. 1. State of the implicit Euler discretization of (9).

x(t)

t = kt 0 1 2 3 4 5 6 7 8 -0.2 0 0.2 2 < τ √
, and this is the case for any ∈ (0, τ 2 /4). An analogous computation holds for x(kτ ) = -τ 2 /4 + . This proves that the norm of the solution of ( 11) is a strictly decreasing function of k for any initial condition x(0) ∈ (-τ 2 /4, τ 2 /4) \ {0}.

In Fig. 1 we can see the simulation of ( 11) with τ = 1 and initial condition x(0) = 0.24. b) Now consider the continuous-time system ẋ(t) = x(t) 2 , x(t) ∈ R , (13) whose origin is globally unstable. Its IED is given by x(kτ ) = x((k + 1)τ ) -τ x((k + 1)τ ) 2 . (14) Note that the right hand side of ( 14) is D r -homogeneous of degree ν = 2 in the (+∞, h)-limit with h(x) = -τ x 2 , and it is invertible outside the interval [-2/τ, 2/τ ]. Thus, the explicit representation of ( 14) is given by

x((k + 1)τ ) = s 1 (x(kτ )), x(kτ ) < -2/τ , s 2 (x(kτ )), x(kτ ) > 2/τ , (15) 
where s 1 (x(kτ )) = 1/(2τ ) + -x(kτ )/τ + 1/(4τ 2 ) , s 2 (x(kτ )) = 1/(2τ ) -x(kτ )/τ + 1/(4τ 2 ) . By an analogous analysis as in a), it can be verify that, for any initial condition x(0) / ∈ [-2/τ, 2/τ ] the solutions of (15) are ultimately bounded with final bound 2/τ .

Duffing's equation

In this example we consider the Duffing's equation given by (see e.g. [START_REF] Strogatz | Nonlinear Dynamics and Chaos[END_REF]) z + z + dz 3 = 0, d ∈ R >0 , whose state space representation with x 1 = z and x 2 = ẋ is given by ẋ1 = x 2 , ẋ2 = -x 1 -dx 3 1 .

(16) It is important to mention that ( 16) is an oscillator, thus its solutions are bounded for any initial condition.

Note that the map g given by g

(x) = [x 2 , -x 1 -dx 3 1 ] is D r -homogeneous in the (0, H)-limit with ν = √ 3, r = [1, √ 3]
, and H given by H(x) = [x 2 , -dx 3 1 ] . According to Corollary 11 point a), for any τ ∈ R >0 there is a neighbourhood of the origin such that the solutions of the EED of ( 16) are unbounded for initial conditions outside of such a neighbourhood. For the simulations, we set the parameter d = 1/2 and the integration step τ = 0.1. Fig. 5 shows a simulation of the EED of (16) with initial conditions x 1 (0) = 0.1, x 2 (0) = 0. Now, Corollary 15 point b) guarantees that the solutions of the IED of ( 16) are globally ultimately bounded for any τ ∈ R >0 . Fig 3 shows a simulation of the IED of ( 16) for the initial conditions x 1 (0) = 10, x 2 (0) = 0. x 1 (t) x 2 (t) t = kt

Homogeneous control of the double integrator

In this section we consider the following controlled system ẋ1 = x 2 , ẋ2 = u(x) . i , i ∈ {1, 2, 3} , (17) We analyse two different cases for the feedback controller u(x), namely u ∈ {u 1 , u 2 } where u

1 (x) := -a 1 x 1 1/3 -a 2 x 2 1/2 , u 2 (x) := -b 1 x 1 3 -b 2 x 2 3/2 .
Case: u 1 . Observe that the closed-loop of ( 17) with u 1 is r-homogeneous of degree κ = -1 with r = [3, 2] . Moreover, its origin is globally finite-time stable [START_REF] Bhat | Finite-time stability of homogeneous systems[END_REF][START_REF] Orlov | Finite time stabilization of a perturbed double integrator-Part I: Continuous Sliding Mode-based output feedback synthesis[END_REF], for all a 1 , a 2 ∈ R >0 [START_REF] Bernuau | Robust finite-time output feedback stabilisation of the double integrator[END_REF].

Note that the map g given by g

(x) = [x 2 , u 1 (x)] is D r -homogeneous in the (0, H)-limit with ν = 1/2, r = [2, 1] ,
and the map H is given by H

(x) = [x 2 , -a 2 x 2 1/2
] . Thus, according to Corollary 11 point b), the origin of the EED of ( 17) with u 1 is unstable for any τ ∈ R >0 . For the simulation we use the parameters: a 1 = 10, a 2 = 5, and τ = 0.2. Fig. 4 shows the instability of the origin of the EED of (17) with u 1 and the initial conditions x 1 (0) = 0.01, x 2 (0) = 0.01. Observe that in this case H is not invertible, then we cannot use Corollary 15 to study the IED of (17) in closed-loop with u 1 .

Case: u 2 . Now, (17) in closed-loop with u 2 is r-homogeneous of degree κ = 1 with r = [1, 2] .

Note that the map g given by g x 1 (t) x 2 (t) x 1 (0)=1. 5x 1 (0)=1.67 t = kt example, we consider the parameters b 1 = 10 and b 2 = 5. For such a case, the origin of (17) in closed-loop with u 2 is globally asymptotically stable [START_REF] Efimov | Realization and Discretization of Asymptotically Stable Homogeneous Systems[END_REF].

(x) = [x 2 , u 2 (x)] is D r -homogeneous in the (0, H)-limit with ν = √ 3, r = [1, √ 3 
According to Corollary 11 point a), for any τ ∈ R >0 there is a neighbourhood of the origin such that the solutions of the EED of (17) with u 2 are unbounded for initial conditions outside such a neighbourhood. This situation is shown in Fig. 5, where the integration step is τ = 0.2. For the initial conditions x 1 (0) = 1.5, x 2 (0) = 1.5, the states converge to the origin, but by increasing the initial condition for x 1 to x 1 (0) = 1.67 the system's states become unbounded.

On the other hand, Corollary 15 point b) guarantees that the solutions of the IED of ( 17) with u 2 are globally ultimately bounded for any τ ∈ R >0 . Fig. 6 shows the states of the IED of ( 17) with u 2 and the initial conditions x 1 (0) = 1 × 10 5 , x 2 (0) = 1 × 10 5 .

CONCLUSION

In this paper we have provided a methodology to study some stability properties of discrete-time systems by means of D r -homogeneous approximations.

The qualitative stability features of a system can be decided in a simple way. However, to obtain quantitative estimates (e.g. size of attraction domains) a more detailed analysis is required. Nevertheless, D r -homogeneity guarantees the existence of Lyapunov functions that can be used for such a purpose. We have also shown that the presented methodology can be used to provide criteria to choose suitable discretization techniques for continuous-time systems.

Fig. 2 .Fig. 3 .

 23 Fig. 2. States of the explicit Euler discretization of (16).

  Fig. 4. States of the explicit Euler discretization of (17) with u 1 .

Fig. 6 .

 6 Fig. 6. States of the implicit Euler discretization of (17) with u 2 .
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Appendix A. HOMOGENEOUS FUNCTIONS

We state some useful properties of r-homogeneous functions. Lemma 18. [START_REF] Bhat | Geometric homogeneity with applications to finite-time stability[END_REF]). Suppose that the functions V 1 , V 2 : R n → R are continuous, r-homogeneous of degrees m 1 , m 2 ∈ R >0 , respectively, and V 1 is positive definite. Then,

for every x ∈ R n , where γ = min x∈E V 2 (x), and γ = max x∈E V 2 (x), with E = {x ∈ R 3 : V 1 (x) = 1}. Lemma 19. (Sanchez et al. (2017)). Let V : R n → R be a continuous r-homogeneous function of degree m. Let f : R n → R n be a D r -homogeneous map of degree ν.

Appendix B. PROOF OF THEOREM 8

The idea of the proof is the following: since V is useful to verify the stability properties of the transition map h, we will use V to verify the same stability properties of f . Along (1), ∆V (x) = V (f (x)) -V (x) can be rewritten as ∆V

Now, let us analyse the terms V (h(x)) and V d (x) to subsequently find an upper bound for ∆V . According to lemmas 18 and 19 given in Appendix A, there exists

. Hence, it is easy to see that for ν > 1 (respectively, for ν ∈ (0, 1)) there exist (Sanchez et al., 2017).

For the analysis of V d (x), define x = Λ r x -1 r x for all x ∈ I(V, γ 0 ), x = 0 (respectively, for all x ∈ E(V, γ 0 )). Observe that x r = 1. Denote y

) . Since y x r and h are continuous maps, there exists a compact set C ⊂ R n such that y x r (x), h(x) ∈ C for all x ∈ S r . Hence, by α-Hölder continuity of V , there exists

for all x ∈ I(V, γ 0 ), (respectively, for all x ∈ E(V, γ 0 )). Note that, for some γ 2 ∈ R >0 , we have that

Since f is D r -homogeneous of degree ν > 1 in the (0, h)-limit (respectively, of degree ν ∈ (0, 1) in the (+∞, h)-limit), y x r (x) -h(x) → 0 as x r → 0 (respectively, as x r → +∞), see Definition 7. Hence, there exists γ ∈ R >0 such that γ ≤ γ 0 (respectively, γ ≥ γ 0 ), and

Therefore, if ν > 1, then V is a Lyapunov function for (1), which proves local asymptotic stability. For the case ν ∈ (0, 1), Corollary 5.14.3 in [START_REF] Agarwal | Difference Equations and Inequalities: Theory, Methods, and Applications[END_REF] guarantees the existence of T required in Definition 4.

Appendix C. PROOF OF THEOREM 10 a) To prove this point, we will show the existence of γ 1 such that, along (1), ∆V (x) is positive for all x ∈ E(V, γ 1 ).

Firstly, note that lemmas 18 and 19 given in Appendix A ensure the existence of

Since f is D r -homogeneous of degree ν > 1 in the (+∞, h)-limit, y x r (x) -h(x) → 0 as x r → +∞. Therefore, there exist

Now, we want to verify that the trajectories with initial conditions in E(V, γ 1 ) diverge. For all x ∈ E(V, γ 1 ), we have obtained the inequality ∆V (x

b) The proof of this point follows the same ideas of the Chetaev's instability theorem for continuous-time systems, see also (Agarwal, 2000, Theorem 5.10.4).

First, we construct a nonempty open set whose boundary contains the origin. Since x = 0 is an isolated equilibrium point of h, there exists γ 0 ∈ R >0 such that x = 0 is the unique equilibrium point for all x ∈ I(V, γ 0 ). Now, since h is a nontrivial map, there exists y ∈ I(V, γ 0 ) such that h(y) = 0. Thus, by D r -homogeneity of h we have that h(Λ r y) = 0 for all ∈ R >0 . Consider the sets S γ1 = {x ∈ R n : V (x) = γ 1 } for any γ 1 ∈ (0, γ 0 ). Since any S γ1 is compact and h is a continuous map, there exist , ¯ ∈ R >0 such that Λ r y ∈ S γ1 , and h(x) = 0 for all x ∈ C γ1 , where

Hence, for each γ 2 ∈ (0, γ 0 ), there exist γ2 ∈ R >0 and an open set E γ2 such that E γ2 ⊂ γ1∈(0,γ2) C γ1 , x = 0 is in the boundary ∂E γ2 of E γ2 , ∂E γ2 ∩ S γ0 is nonempty and Λ r y ∈ E γ2 for all ∈ (0, γ2 ). Thus, h(x) = 0 for all

, where V d is as defined in Appendix B and

But, since E γ2 ∪ ∂E γ2 is compact and the maps f and h are continuous, α-Hölder continuity of V ensures the existence of

geneous of degree ν ∈ (0, 1) in the (0, h)-limit, then Λ -νr f (Λ r y) -h(y) → 0 as → 0. Hence, there exist * , γ * ( * ) ∈ R >0 such that for any γ ∈ (0, γ * ) there is a point x ∈ I(V, γ) \ {0} such that ∆V (x) > 0. Thus, from (Agarwal, 2000, Theorem 5.9.3) we conclude that x = 0 is an unstable equilibrium point of (1). Appendix D. PROOF OF LEMMA 14

(1) The proof consists in verifying that Λ

Hence, by defining y = h(x), we have that Λ r δ x = h -1 (Λ νr δ y) and Λ r δ x = Λ r δ h -1 (y). Thus, by defining = δ ν , we obtain Λ

(2) First, we consider the case of g being D r -homogeneous in the (+∞, h)-limit. We have to prove that lim →+∞ Λ -νr g -1 (Λ r x) -h -1 (x) = 0 .

(D.1)

Define the functions g n : R n → R n given by g n (x) = Λ -νr n g(Λ r n x). Since g is invertible and the diagonal matrix Λ r n is invertible for any n ∈ Z >0 , the functions g n are also invertible. Indeed, by denoting z = g n (x), we can see from the definition of g n that x = Λ -r n g -1 (Λ νr n z), therefore, g -1 n (z) = Λ -r n g -1 (Λ νr n z). Thus, by denoting = n ν we have that g -1 n (z) = Λ -r/ν g -1 (Λ r z). Hence, it is clear that to verify (D.1) it is sufficient to prove that g -1 n → h -1 uniformly as n → ∞.

By hypothesis we know that g n → h uniformly as n → ∞. Now, under composition with a uniformly continuous function, a convergent sequence preserves the uniform convergence. Note that since h is a continuous map, h is uniformly continuous in any compact set. Thus, instead of proving that g -1 n → h -1 we will prove that h

Note that |h(g -1 n (x)) -h(h -1 (x))| = |h(g -1 n (x)) -x| = |h(g -1 n (x)) -g n (g -1 n (x))|. Since g n → h, we have that lim n→∞ |h(g -1 n (x)) -g n (g -1 n (x))| = 0. Hence, g -1 n → h -1 as n → ∞.

For the case of the (0, h)-limit, the proof is analogous but by defining the functions g n : R n → R n given by g n (x) = Λ -νr 1/n g(Λ r 1/n x).