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Abstract

The modeling of humanoid robots with many degrees-of-freedom (DoF) can be

done via the complete dynamic model. However, the complexity of the model

can hide the essential factor of the walking, i.e. the equilibrium of the robot.

One alternative is to simplify the model by neglecting some dynamical effects like

in the 3D Linear Inverted Pendulum (LIP) model. Nonetheless, the assumption

that the ZMP will be at the base of the pendulum is not ensured and the

resulting walking gaits can make the Zero Moment Point (ZMP) evolves outside

of the convex hull of support when they are replicated by the complete model

of any humanoid robot. The objective of this paper is to propose a new model

for walking that has the same dimensions as the 3D LIP model but considers

the complete dynamics of the humanoid. The proposed model is called essential

model and it can be written based on the internal states of the robot and/or

external information, thereby generating models for different purposes. The

main advantage of the essential model is that it allows to generate walking gaits

that ensure that the Zero Moment Point (ZMP) is kept in a desired position or
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it follows a desired path while the gait is performed. Furthermore, impacts of

the swing foot with the ground can be considered to compute periodic walking

gaits. In order to show the advantages of the proposed model, numerical studies

are performed to design periodic walking gaits for the humanoid robot ROMEO.

Keywords: Modelling, Biped walking, Periodic motions, Humanoid robots

1. Introduction

In the design of walking gaits for humanoid robots a simple model is often

desired. However, the simpler the model, the more inaccurate the solution

that describes the behavior of the physical system. In spite of this weakness,

the 3D Linear inverted pendulum (LIP) model is still the most used model5

to develop 3D walking gaits due to its simplicity and the fact that decoupled

analytical expressions can be found. For instance, in [1] and [2] a decomposition

of the 3D LIP model is carried out to introduce a concept called Capture point

which is useful for starting and stopping phases and also for designing periodic

walking gaits. Recently in [3] the 3D LIP model was used to design a biped10

walking pattern based on a new way of discretization named spatially quantized

dynamics (SQD). In [4] the 3D LIP model is studied along with their energy-

optimal gait planning based on geodesics in order to control the walking gait.

As shown, the 3D LIP model is still largely used in the literature, however,

as it is an approximate model, the resulting walking gaits does not have the15

same performance when they are realized by the complete model, therefore,

complementary control techniques or adjustments must be taken into account.

One of the main difficulties of walking studies is the equilibrium of the robot,

i.e. to satisfy the contact hypothesis and in particular to avoid the rotation of

the stance foot. Thus, the constraint on the Zero Moment Point (ZMP) is crucial20

(see [5]). One way to ensure this constraint is satisfied is by using high-level

control to impose a desired evolution for the ZMP [6].

On the other hand, a walking gait can be an “automatic” task if the floor

is flat and empty, or a task precisely defined by the environment. In the first
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case, the assumption that the motion of the robot depends only on its internal25

states is made [7, 8, 9, 10, 11]. In the second case, the modeling must be based

on a reference linked to the environment to impose a precise pose of the landing

foot even in presence of perturbations. In this case, a temporal evolution of the

swing foot is often prescribed [6, 12, 13, 14].

The objective of this paper is to propose a new model of the same dimension30

that the 3D LIP model that considers the whole dynamics of the humanoid

robot, in order to develop walking gaits that deals with the issues described

above, i.e. fulfilling the equilibrium condition by ensuring the stance foot is in

contact with the ground, and defining the body motion as a function of internal

and external variables. We have called this model: essential model. This model35

has been developed by taking into account the notion of zero dynamics, which

is a very useful tool to analyze the internal dynamics of a system [15]. Among

many applications, this tool has also been used to develop walking motions of

underactuated systems such as in [16], [9], [11], [17], among others. However,

unlike previous works, the original idea in this paper is to define a 3D dynamic40

relation between the two internal states (usually the horizontal position of the

CoM) and the ZMP without the assumptions of the well-known LIP model.

Therefore, the main contribution of this work is the development of a new

model for humanoid robots that can be used instead of the 3D LIP with several

advantages with respect to it, as the following:45

1. Unlike the 3D LIP model, the essential model is not based on a mechanical

approximation (concentrated mass) of the robot but here the motion and

dynamics of all the robot’s body are taken into account.

2. It is possible to impose that the ZMP is in a desired location during the

whole step (as shown in Cases I and II in Section 6) but also make the50

ZMP follows a desired path while the robot performs its motion (as shown

in Case III in Section 6).

3. Impacts of the swing foot with the ground can be considered to compute

periodic walking gaits (as shown in Cases II and III in Section 6).
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4. By using internal and/or external information, the desired motion of the55

robot can be defined. Thereby, different essential models can be devel-

oped for different purposes. For instance, the motion of the robot can

be defined as a function of the position of the center of mass (CoM) in

horizontal plane, thus obtaining an essential model that can be used to

develop autonomous walking gaits (as shown in Case II in Section 6). On60

the other part, by including the time as external variable to define the es-

sential model behavior, a precise pose of the landing foot can be imposed

(as shown in Cases I and III in Section 6).

5. The proposed model can conceivably be used to develop motions in double

support phases, However, in this paper, only a continuous single support65

(SS) phase and an instantaneous double support (DS) phase are taken

into account.

On the other hand, unlike the 3D LIP model, the essential model is nonlin-

ear, coupled and has a non-closed form formula. Despite this, many numerical

studies can be conducted with this model, including gaits for climbing stairs,70

walking gaits on uneven ground, walking gaits that minimize energy consump-

tion, starting or stopping steps, reaction to disturbances by means of an exten-

sion of the capture point method, among others. However, since the aim of the

paper is to introduce the essential model in a more general way, these tasks are

not analyzed in here and they be realized in the future.75

The paper is structured as follows. In order to put this proposal in context,

three dynamic models used in the literature are presented in Section 2. The new

model is introduced in Section 3. Then, the connection between the essential

model and the complete model in order to deduce the desired joint motions and

the corresponding torques is detailed in Section 4. A brief discussion on gen-80

eration of periodic walking patterns is presented in Section 5. The application

of this model to the humanoid robot ROMEO as a case of study is presented

in Section 6, where three cases are studied in order to show the effectiveness of

the essential model. In there, a comparison with the 3D LIP model, and differ-
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ent walking gaits where impacts are considered and the ZMP follows a desired85

trajectory are found. Finally, the paper ends with several concluding remarks

and perspectives in Section 7.

2. The dynamic model

The considered models of walking locomotion are inherently hybrids. They

are composed of continuous differential equations which describe the motion of90

the robot during SS and DS phases, and discrete components where the leg

transfer takes place [18]. In this paper, it is assumed an instantaneous DS

phase, where the change of support takes place. This assumption leads to a

discontinuity in the velocities if the velocity of the swing foot is not zero at the

transition.95

The continuous phase

The motion of the humanoid robot during the SS phase is governed by nonlin-

ear differential equations. In general, by considering the generalized coordinates

q ∈ Rn which describe the biped’s configuration of dimension n, and the vector

of velocities q̇ ∈ Rn, the dynamic model can be written as

ζ̇ = fζ(ζ) + gζ(ζ)u (1)

where ζ = [q>, q̇>]>, is the state vector, fζ : R2n → R2n, gζ(ζ) : R2n →

R2n×r are non linear functions and u ∈ Rr is the vector of r control inputs.

Further details of equation (1) in the compact form obtained by the Newton-100

Euler algorithm are shown in Section 2.1.

Transition between support

In walking, the transition between SS phases occurs after an intermediate

DS phase, which is defined when both feet are in contact with the ground. An105

impact of the swing foot with the ground is typically produced at the end of
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the SS phase. However in experimental tests, the impact is sometimes evaded,

i.e. the swing foot touches the ground with zero velocity, in order to avoid high

internal forces in the structure of the robot (such as in [14]). In any case, when

an instantaneous DS is considered, the change of support must be realized when110

the swing foot touches the ground, namely, when the switching manifold

Sq = {q ∈ Rn|zf (q) = 0} (2)

is reached, where zf (q) is the height of the swing foot w.r.t. the ground.

Symmetry on right and left legs is considered in this paper. Therefore, when

the swing foot touches the ground a relabeling of the joint variables is performed,

i.e.115

q+ = Eq− (3)

where superscripts + and − mean the instants just after and just before the

impact respectively, and matrix E defines the interchange of joint positions.

If an impact with the ground is considered, a change on the joint velocities

occurs. Therefore, the velocities after impact can be expressed in a compact

way as

q̇+ = ∆(q)q̇− (4)

where ∆(q) ∈ Rn×n is a matrix that relates the joint velocities after and before

the impact. Notice that if there is no impact at transition ∆(q) = E.

The hybrid model120

Therefore, by taking into account the continuous phase described by (1) and

the transition equations in position (3) and velocity (4), the hybrid model of

the robot can be written as ζ̇ = fζ(ζ) + gζ(ζ)u ζ /∈ Sq
ζ+ = ∆ζ(ζ

−) ζ ∈ Sq
(5)

where ∆ζ(ζ) = [(Eq−)
>
,
(
∆(q)q̇−

)>
]>.
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Figure 1: a) Centroidal model. b) Inverted Pendulum model c) Linear Inverted Pendulum

model. The gravity force F g acts on the CoM as an external force. The inertial force and

inertial moment are denoted as mcc̈ and L̇ respectively. The ground reaction wrench F 0 and

M0 are expressed in a reference frame Σ0. This frame can be placed anywhere. However, if

the reaction wrench is expressed on the CoP (point p) it can be formed instead by the reduced

vector F and M .

In the remaining of this section a brief explanation of the three dynamic

models most used in literature to model the continuous phase in SS phase of

humanoid robots is carried out in order to set the stages for our proposal: The125

essential model.

2.1. Case 1: The complete dynamic model

The dynamic model which describes the motion of a humanoid robot in the

SS phase can be written as

A(q)q̈ + d(q, q̇) = Bτ , (6)

where q, q̇, q̈ ∈ Rn are the position, velocities, and accelerations of the joints,

respectively, A ∈ Rn×n is the inertia matrix, d ∈ Rn is the vector of centrifugal,

Coriolis and gravitational forces, B ∈ Rn×r is the input matrix1 (a study of130

1If n > r an underactuated robot is considered. This condition is common when a pointed-

feet robot is studied or during the phase where the robot is supported on its foot tip. If n = r

a complete actuated robot is considered, namely a robot with feet and flat foot contact.
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matrix B for the planar case is found in [19]) and τ ∈ Rr is the vector of

applied torques by actuators at joints.

The dynamic model (6) considers the inertial frame Σ0 linked to the stance

foot (see Fig1(a)). Therefore, since parametrization with implicit contact is used

the ground reaction force does not appear. Moreover, by considering B = I for135

the particular choice of actuated coordinates when r = n, the dynamic equation

(6) and the ground reaction wrench [F>0 , M
>
0 ]> at the inertial frame Σ0 can

be computed with the Newton-Euler algorithm, namely
F 0

M0

τ

 = NE(q, q̇, q̈), (7)

where F 0 = [Fx, Fy, Fz]
> and M0 = [Mx, My, Mz]

>. Furthermore, this

equation is linear in the acceleration q̈, i.e.140 
F 0

M0

τ

=


AF (q)

AM (q)

A(q)

 q̈ +


dF (q, q̇)

dM (q, q̇)

d(q, q̇)

 (8)

where AF ∈ R3×n, AM ∈ R3×n, dF ∈ R3 and dM ∈ R3 are matrices and vectors

used to compute the reaction wrench. Thus, equation (8) can be arranged as
F 0

M0

τ

 = Ae(q)q̈ + de(q, q̇), (9)

where Ae = [A>F , A
>
M , A

>]> ∈ Rn+6×n and de = [d>F , d
>
M , d

>]> ∈ Rn+6.

2.2. Case 2: The Centroidal model

The dynamic model that highlights the difficulty of walking is the equilibrium145

of the complete robot, also called the Centroidal model [20] (see Fig. 1(a)). In

here, the position of the CoM w.r.t. the frame Σ0 is denoted by c = [x, y, z]>,

and the mass of the robot is denoted by mc. The linear acceleration of the CoM
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is c̈ and its angular momentum around its CoM is denoted as L2. In this model,

the external forces that act on the robot are emphasized, which are: the gravity150

force denoted as F g = [0, 0,−mcg]> where g is the gravitational acceleration;

and the forces applied by the ground spread over the sole of the support foot.

All the contact forces with the support foot can be regrouped on one unique

wrench. This wrench can be written at the center of pressure (CoP) point, as

F = F 0 and M = [0, 0, M∗z ]> as shown in Fig. 1(a). Thus, by considering155

the wrench at the CoP and by computing the equilibrium around the CoM, the

dynamic equation w.r.t. Σ0 can be written as

mcc̈ = F g + F (10)

L̇ = (p− c)× F +M , (11)

where p = [px, py, pz]
> denotes the CoP point w.r.t. the frame Σ0. The con-

straint of the contact wrench to avoid takeoff, sliding and rotation of the support

foot can be expressed based on equations (10) and (11) for any humanoid robot.160

• The constraint of no takeoff implies that Fz > 0, i.e. from the third row

of (10), z̈ > −g.

• The constraint of no slipping implies that Ftan =
√
F 2
x + F 2

y < µFz =

Ffric, where µ is the friction coefficient between the sole of the support

foot and the ground. This constraint can be also written in terms of the165

acceleration of the CoM, i.e. ẍ2 + ÿ2 < µ2(z̈ + g)2.

• The constraint of no tipping of the foot implies that the ZMP is always

kept inside the convex hull of the support area, i.e. CoP = ZMP. Note

that, the dimension of the support area changes when multi-contacts are

considered. This constraint can not be easily transformed in terms of c̈.170

2For a multi-body system, the angular momentum around its CoM is given by L =∑N
i=1 [Iiωi + mi(c− ci)× vi], where N is the number of bodies of the robot, Ii is the in-

ertia tensor at the CoMi, ωi is the angular velocity and ci and vi are the position and

velocity of the CoMi
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The last condition is the more constraining, therefore it is important to know

the position of the CoP during all the walking gait. This position can be easily

obtained from equations (10) and (11) as

px = x− zẍ

z̈ + g
− L̇y
mcz̈ +mcg

(12)

py = y − zÿ

z̈ + g
+

L̇x
mcz̈ +mcg

. (13)

On the other hand, the position of the ZMP can be computed based on the

ground reaction wrench at frame Σ0, namely175

M0 − p× F 0 = M . (14)

By considering the inertial frame Σ0 on a flat ground, pz = 0. Then, the

horizontal position of CoP is obtained from the two first rows of equation (14),

i.e.

px =
−My

Fz
(15)

py =
Mx

Fz
. (16)

The position (px, py) must be always inside the convex hull of support for all

time in order to equations (12) and (13) be valid.180

2.3. Case 3: 3D LIP model

The equations (12) and (13) can be used to build a model that contains

the main properties of walking. By making the assumptions that the vertical

acceleration of the CoM and the derivative w.r.t. time of the angular momentum

are zero, the 3D LIP model arises, as shown in Fig. 1(c) (notice that the motion185

is restricted to a plane not necessary horizontal [21]). The last assumption

implies two possibilities: 1) the total mass of the robot is constrained in one

point; 2) the total angular momentum around the CoM is constant (this choice

could restrict the motion of the CoM, that is why it is not often used). Thus,
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by using these assumptions in equations (12) and (13) we have190

px = x− zẍ

g
, (17)

py = y − zÿ

g
. (18)

From these equations, the well-known 3D LIP model proposed by Kajita [21] is

obtained, which is given by

ẍ =
g

z
(x− px), (19)

ÿ =
g

z
(y − py). (20)

The 3D LIP model is often used to study walking gaits due to the fact it captures

some essential properties of walking, such as the limit of the ZMP and the effect

of gravity. This model is composed of two linear differential equations of second195

order that allow to define the evolution of the CoM when the position of the

CoP is known. Moreover, its dynamics in the sagittal plane (defined by the axis

of walking direction X) is decoupled from those in the frontal plane (defined

along Y axis).

In practice, after the calculation of the evolution of the CoM by using the200

3D LIP model, a desired motion of a massless swing leg and upper body are

often added in order to define joint motions. However, since the evolution of

the ZMP is affected by the joint motions in the complete model, the motions

of the real swing leg and upper body need to be considered from the beginning

of walking gait developments. In the next section, a reduced model that takes205

into account the motions of the real leg and upper body from the beginning is

developed.

3. The proposed essential model

A new model for generation of walking gaits for humanoid robots called

essential model is proposed. A fully actuated n-DOF robot is considered. Notice210

that in SS phase, due to the limitations of the unilateral force in the stance

foot, a very restricted control of the CoM can be achieved due to the limited
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ankle torque and the fact that the ZMP must be inside of the support polygon.

Therefore, in order to produce a model which is close to the 3D LIP model, the

development of the essential model considers to control the position of the ZMP215

but not the position of the CoM along the axis x and y and their time derivatives.

Therefore, the proposed model will be composed of two nonlinear differential

equations of second order. This model is not based on approximation, but on

the hypothesis that the joints are coordinated based on some internal and/or

external information. A particular case is when the motion of the robot is220

expressed as a function of the position of the CoM, while another is when it is

expressed as a function of time. By considering the last case, in this paper the

essential model is compared with the 3D LIP model with better performance.

Furthermore, this essential model can be used to generate walking gaits that

consider impacts with the ground and still keep the ZMP in a desired location225

as will be shown in further sections.

3.1. Development of the Essential Model

The aim of the essential model is to describe the evolution of the non-

controlled (or free) internal state qf ∈ R2 as a function of the desired position

of the ZMP, similar to the 3D LIP model where the dynamics of the CoM is230

obtained as a function of the CoP, as shown in Fig. 1(c) and equations (19) and

(20). For the development of this proposal a fully actuated robot is considered.

However, a pointed-feet contact model can be also considered since the position

of the ZMP can be imposed.

In order to develop this model, a general biped robot as the one shown in

Fig. 1(a) is considered. Thus, the equilibrium equations (15) and (16) given by

the Centroidal model, must be satisfied for the desired ZMP positions px,d and

py,d i.e.

px,dFz +My = 0 (21)

py,dFz −Mx = 0. (22)
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Subsequently, it is desired that the robot’s joints perform a particular evo-235

lution such that equations (21) and (22) be fulfilled for all the time. In order to

achieve that, it is proposed (by assuming perfect tracking of the reference tra-

jectories) that the evolution of the joint vector q performs a non-trivial desired

trajectory qd based on internal and possible external states, i.e.

q = qd(ϑ) (23)

where q ∈ Rn is the joint vector, qd ∈ Rn is the desired joint vector obtained240

from inverse kinematics (see Section 4), ϑ = [q>f ,φ>]> ∈ Rm+2, qf ∈ R2 is

the not-controlled internal variable vector and φ ∈ Rm is a possible external

variable vector with m ≥ 0. In this paper, the horizontal position x and y of

the CoM are chosen as internal variables, i.e. qf = [x, y]>3. Therefore, in here,

it is desired to obtain the dynamics of the CoM by imposing the ZMP location.245

Let us remark that if the external variable vector φ is used for modifying the

evolution of the joints, the derivatives w.r.t. time, i.e. φ̇ and φ̈ must be known.

By assuming equation (23) is fulfilled for all time, i.e. by neglecting tracking

error in the control, its first and second derivative w.r.t. time are also fulfilled,

i.e.250

q̇ = Jϑ(ϑ)ϑ̇ (24)

and

q̈ = Jϑ(ϑ)ϑ̈+ J̇ϑ(ϑ, ϑ̇)ϑ̇ (25)

where Jϑ(ϑ) = ∂qd(ϑ)
∂ϑ ∈ Rn×m+2.

Now, in order to compute the ground reaction force and moment due to

the proposed joint trajectories, the Newton-Euler algorithm is used. Thus, by

3However, it is conceivable that other coordinates that describe the evolution of the robot

in the frontal and sagittal planes can be used as internal variables, such as the horizontal

evolution of the hip or the joint evolution of the support ankle (i.e. q1 and q2 in Figure 4),

etc.
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substituting (25) into (9) we have255

NE = Ae[Jϑϑ̈+ J̇ϑϑ̇] + de(ϑ, ϑ̇) (26)

where NE = [F 0, M0, τ ]>, and then

NE = Aϑϑ̈+ dϑ (27)

where Aϑ(ϑ) ∈ Rn+6×m+2 and dϑ(ϑ, ϑ̇) ∈ Rn+6 are given by

Aϑ = AeJϑ

dϑ = AeJ̇ϑϑ̇+ de.

A numerical procedure for computing matrix Aϑ and vector dϑ is shown in

Appendix.

Equation (27) represents the reduced system as a function of ϑ by assuming260

the reference trajectories (23) are fulfilled. This equation can be split into

NE = Aϑ(:, 1)ẍ+Aϑ(:, 2)ÿ +Aϑ(:, 3)φ̈1 + . . .+Aϑ(:,m)φ̈m + dϑ. (28)

By taking into account rows 3 to 5 of equation (28) we have that

Fz = Aϑ(3, 1)ẍ+Aϑ(3, 2)ÿ +Aϑ(3, 3)φ̈1 + . . .+Aϑ(3,m)φ̈m + dϑ(3)

Mx = Aϑ(4, 1)ẍ+Aϑ(4, 2)ÿ +Aϑ(4, 3)φ̈1 + . . .+Aϑ(4,m)φ̈m + dϑ(4) (29)

My = Aϑ(5, 1)ẍ+Aϑ(5, 2)ÿ +Aϑ(5, 3)φ̈1 + . . .+Aϑ(5,m)φ̈m + dϑ(5)

In order to obtain the desired position of the ZMP, equations (21) and (22)

must be satisfied. Then, by using (29) into (21) and (22) we get

px,d

[
Aϑ(3, 1)ẍ+Aϑ(3, 2)ÿ +Aϑ(3, 3)φ̈1 + · · ·+Aϑ(3,m)φ̈m + dϑ(3)

]
+[

Aϑ(5, 1)ẍ+Aϑ(5, 2)ÿ +Aϑ(5, 3)φ̈1 + · · ·+Aϑ(5,m)φ̈m + dϑ(5)
]

= 0 (30)

py,d

[
Aϑ(3, 1)ẍ+Aϑ(3, 2)ÿ +Aϑ(3, 3)φ̈1 + · · ·+Aϑ(3,m)φ̈m + dϑ(3)

]
−[

Aϑ(4, 1)ẍ+Aϑ(4, 2)ÿ +Aϑ(4, 3)φ̈1 + · · ·+Aϑ(4,m)φ̈m + dϑ(4)
]

= 0. (31)

Equations (30) and (31) can be arranged by splitting the internal states and

external variables, such as

Af (ϑ,p)q̈f +Aφ(ϑ,p)φ̈+ dR(ϑ, ϑ̇) = 0, (32)
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Desired joint motions
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information

Eqs. (47), (48) and (49)

Figure 2: A summary of the development of the essential model.

where Af (ϑ,p) ∈ R2×2, Aφ(ϑ,p) ∈ R2×m and dR(ϑ, ϑ̇) ∈ R2 are given by

Af =

 px,dAϑ(3, 1) +Aϑ(5, 1) px,dAϑ(3, 2) +Aϑ(5, 2)

py,dAϑ(3, 1) +Aϑ(4, 1) py,dAϑ(3, 2) +Aϑ(4, 2)


Aφ =

 px,dAϑ(3, 3) +Aϑ(5, 3) · · · px,dAϑ(3,m) +Aϑ(5,m)

py,dAϑ(3, 3) +Aϑ(4, 3) · · · py,dAϑ(3,m) +Aϑ(4,m)


dR =

 px,ddϑ(3) + dϑ(5)

py,ddϑ(3) + dϑ(4)

 .
Finally, due to the good choice of qf , matrix Af is invertible. Therefore,

from equation (32) the essential model is computed as265

q̈f = −A−1f
(
Aφφ̈+ dR

)
(33)

or well  ẍ

ÿ

 = fϑ(ϑ, ϑ̇, φ̈, px,d, py,d). (34)

In this way, the dynamic behavior of the humanoid robot that keeps the

ZMP in a desired position (px,d, py,d) during all the gait is described by the

essential model (34). A summary of this procedure is shown in Fig. 2. Note

that in the essential model, the simplification of the model is not based on270

any approximation of the dynamics, but on the assumption that the control

is such that the reference trajectories of the joints are perfectly tracked. This

model can be designed as a function of internal states and possible external
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variables. One simple case of the essential model is by developing it only as a

function of the horizontal position of the CoM as internal states. Nevertheless,275

if a desired behaviour is imposed by external information, the motion of the

joint can be expressed as a function of other variables and the dimension of

the system will be the same. In the following, the most obvious cases of the

application of this essential model will be shown. Namely, the cases when there

are no external information, i.e. without considering φ, and when the time is280

included as external information, i.e. φ = t . Let us remark that not only time

but other kind of external variables can be used as external information, such

as the CoM of another biped robot, the CoM of a human, etc. However, this

study is out of the scope of this paper but it is expected to be performed in the

future.285

3.2. Essential model based only on its CoM

The hypothesis for the development of this model is the assumption that the

motion of the joints are defined as a function of the internal information qf , i.e

ϑ = qf . Thus, since φ is not considered the term Aφφ̈ on the essential model

(33) vanishes and the model is reduced to290  ẍ

ÿ

 = −A−1f dR = fx,y(x, y, ẋ, ẏ, px,d, py,d) (35)

This particular model can be used to perform walking gaits by making the

robot walks only by considering its state. This description of the gait is based

on virtual constraints and it has been efficiently used in numerous studies such

as [7, 8, 9, 10, 11], among others. Notice that, trajectories based on the internal

states of the robot are more natural since the robot will not try to catch a time295

varying function after some perturbation. Nevertheless, the desired step time

lapse is not ensured.

3.3. Essential model based on its CoM and time

By including the time as external state, the motion of the robot during a

step time T at each step is controlled. The hypothesis for the development300
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of this model is the assumption that the motion of the joints are defined as a

function of the internal states qf and φ = t as external state. Notice that by

only including the time, φ̇ = 1 and φ̈ = 0. Thus as the previous case, term Aφφ̈

on the essential model (33) vanishes and the model is reduced to ẍ

ÿ

 = −A−1f dR = fx,y,t(t, x, y, ẋ, ẏ, px,d, py,d) (36)

This particular model can be used to develop walking gaits that ensure that each305

step is performed at the desired step time lapse, as it is done in many works

such as in [6, 12, 13, 14]. In the following sections this model will be compared

with the 3D LIP model to highlight its performance and effectiveness.

4. From the essential model to joint motion

As known, it is difficult to propose some desired trajectories for the joints310

that produce a desired evolution of the ZMP, i.e. fulfil the conditions (21) and

(22). Therefore, points of interest of the robot can be chosen as controlled

variables in order to define the desired trajectories for them. These points of

interest can be the robot’s extremities such as the hands or the swing foot, or

directly the joints.315

Let us define the vector of generalized variables ξ ∈ Rn of the same dimension

as q, containing all the coordinates of the chosen points of interest, such as the

position and orientation of the swing foot, the orientation of the torso, the

joints of the arms, etc. Let notice that, since it is crucial to know the values of

the internal states qf to develop the essential model, they must be included as320

points of interest. Therefore, only n−2 controlled outputs qc(q) can be chosen.

Thus, vector ξ will be composed of the controlled variables qc(q) and the two

internal non-controlled variables qf , i.e.

ξ = f(q) =

 qc(q)

qf (q)

 =


qc(q)

x(q)

y(q)

 . (37)
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On the other hand, a desired trajectory for the n − 2 controlled variables

is defined as a function of the generalized vector ϑ = [x, y, φ1, . . . , φm]>, i.e.325

qdc(ϑ). When trajectories qdc(ϑ) are defined, the output vector is created

y = qc(q)− qdc(ϑ). (38)

The choice of the desired trajectories qdc(ϑ) may be not obvious. However, in

here, the assumption of well-defined trajectories is made. Let us call ξd the

vector of desired generalized variables defined by

ξd = fd(ϑ) =

 qdc(ϑ)

qf

 =


qdc(ϑ)

x

y

 . (39)

When the system achieves the desired trajectory qdc(ϑ), i.e. y ≡ 0 the330

internal dynamics due to the non-controlled variables is the only dynamics that

remains and it is said the system evolves in the zero dynamics [15]. Therefore,

recalling that the simplification of the essential model is based on the assumption

of a perfect tracking, equation (37) could be replaced by (39). Then, since

ξ ≡ ξd, the position of the controlled variables qc(q) can be deduced by just335

knowing the states ϑ. Furthermore, joint positions, velocities and accelerations

(i.e. q, q̇ and q̈) that allow to follow the desired trajectory qdc(ϑ) can be also

deduced as shown below.

4.1. The joint motion

In order to compute the joint motions, the first and second derivative w.r.t.340

time of equation (37) is needed, i.e

ξ̇ = Jξ(q)q̇ (40)

and

ξ̈ = Jξ(q)q̈ + J̇ξ(q)q̇ (41)

where Jξ(q) = ∂f(q)
∂q ∈ Rn×n.
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On the other hand, from the first and second derivative w.r.t. time of equa-

tion (39) we have345

ξ̇d =
∂fd(ϑ)

∂ϑ
ϑ̇ = Jd(ϑ)ϑ̇ (42)

and

ξ̈d = Jd(ϑ)ϑ̈+ J̇d(ϑ)ϑ̇ (43)

where Jd(ϑ) ∈ Rn×m+2 is defined as

Jd(ϑ) =


∂qd

c (ϑ)
∂x

∂qd
c (ϑ)
∂y

∂qd
c (ϑ)
∂φ1

· · · ∂qd
c (ϑ)
∂φm

1 0 0 · · · 0

0 1 0 · · · 0

 .
It is assumed that y ≡ 0, ẏ ≡ 0 and ÿ ≡ 0. So, by relating equations (37)

and (39), (40) and (42), and (41) and (43) we have

f(q) = fd(ϑ) (44)

Jξ(qd(ϑ))q̇ = Jd(ϑ)ϑ̇ (45)

Jξ(qd(ϑ))q̈ + J̇ξ(qd(ϑ))q̇ = Jd(ϑ)ϑ̈+ J̇d(ϑ)ϑ̇ (46)

Thus, joint variables q, q̇ and q̈ can be deduced from the state ϑ and its deriva-

tives w.r.t. time ϑ̇ and ϑ̈, as

q=f−1 (fd(ϑ)) (47)

q̇= J−1ξ (ϑ)Jd(ϑ)ϑ̇ (48)

q̈= J−1ξ (ϑ)
[
Jd(ϑ)ϑ̈+ J̇d(ϑ, ϑ̇)ϑ̇− J̇ξ(ϑ, ϑ̇)J−1ξ (ϑ)Jd(ϑ)ϑ̇

]
(49)

where Jξ is invertible by assuming a good choice of qdc , and (49) comes from

solving q̈ in (46) and using (48). Finally, by defining

Jϑ(ϑ) = J−1ξ (ϑ)Jd(ϑ) (50)

equations (24) and (25) are recovered and the essential model can be computed.

The term J̇ϑϑ̇ in (25) is directly obtained from the last two terms of equation

(49), i.e.

J̇ϑϑ̇ = J−1ξ J̇dϑ̇− J−1ξ J̇ξJ
−1
ξ Jdϑ̇. (51)
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Notice that −J−1ξ J̇ξJ
−1
ξ = d

dt

(
J−1ξ

)
4.350

Let us remark that joint positions are not directly obtained from equation

(47), but they are computed by finding the numerical solution of ξd − ξ by

means of the Newton-Raphson method.

4.2. The joint torques

Once the joint positions, velocities and accelerations are computed the joint355

torques in SS phase can be obtained by using the NE algorithm (7). In DS

phase, the distribution of forces between the feet must be taken into account.

However this analysis is not carried out in here.

5. Generation of periodic walking patterns

In this section, the generation of periodic walking patterns are studied. The360

studied gaits are composed of a SS phase and an instantaneous DS phase. The

starting and ending phases can also be studied but they are out of the scope of

this paper.

5.1. The evolution of the CoM

Due to the mass distribution, and to the eventual loss of angular momentum365

at impact, a periodic motion of the CoM by considering the complete model is

not necessarily a symmetric motion along the sagittal and frontal planes [8], as

in the case of the 3D LIP model. Therefore, the periodic motion characterised

by the state of the CoM at the end of a step is defined as

x−∗ = [x−∗, y−∗, ẋ−∗, ẏ−∗]> (52)

with

x−∗ =
S

2
+Dx,

y−∗ =
D

2
+Dy,

4From the fact that d
dt

(
JξJ
−1
ξ

)
= 0n×n, it can be expanded it as J̇ξJ

−1
ξ +Jξ

d
dt

(
J−1
ξ

)
= 0

and the equivalence is obtained.
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where S is the step length, D the step width, and Dx and Dy are small dis-370

placements of the CoM in X and Y directions.

By using the transition model (3) and (4) the initial states of the CoM at the

beginning of a periodic step x+∗(q+, q̇+) = [x+∗, y+∗, ẋ+∗, ẏ+∗]> are deduced.

During the transition, the configuration of the robot is constant but the stance

leg changes, therefore the initial position of the CoM w.r.t the new stance leg is

given by

x+∗ = −S
2

+Dx,

y+∗ =
D

2
−Dy.

Notice that, without impact, the velocities of the CoM before and after the

transition are the same (by taking into account the change of the frame in Y

direction), i.e. ẋ+∗ = ẋ−∗ ẏ+∗ = −ẏ−∗. In the simulations the periodic state is

obtained numerically such that after one cycle (i.e. an instantaneous DS phase375

plus a SS phase) the same state is obtained.

5.1.1. Considering impact

By knowing the states of the CoM before impact x−∗, the joint velocities

q̇−∗ are computed by means of (48), with ϑ−∗ = [x−∗, y−∗, φ−>∗]> and380

ϑ̇
−∗

= [ẋ−∗, ẏ−∗, φ̇
−>∗

]> where φ−>∗ and φ̇
−>∗

are the external information

at the end of the step. For instance for the case that φ = t, φ−>∗ = T and

φ̇
−>∗

= 1. Later, by using the transition model (4) the joint velocities after

impact q̇+ are obtained. Then, the initial velocity of the generalized variables

after the transition ξ̇(q+, q̇+) are deduced by means of (40), namely, the initial385

velocity of the controlled variables and the CoM are obtained, i.e. q̇c(q
+, q̇+)

and (ẋ+∗, ẏ+∗). A diagram that explains the procedure for obtaining periodic

walking gaits is shown in Fig. 3.
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Figure 3: Periodic motion by using the essential model

5.2. The desired motion of the swing foot and upper body

The motion of the swing foot and upper body is defined by the desired

controlled coordinates qdc(ϑ). Since the essential model is developed under the

assumption that the reference trajectories (38) are fulfilled for all the time, i.e.

y ≡ 0, ẏ ≡ 0, ÿ ≡ 0, (53)

achievable desired trajectories for qdc(ϑ) must be generated in order that any390

well-suited control law can accomplish (53). Therefore, the change of velocity

of the controlled variables after impact ḣ(q+, q̇+) (see Section 5.1.1) must be

taken into account to compute the desired trajectories qdc(ϑ).

The motion of the swing foot can be split in two: the vertical motion and

the horizontal motion. The design of the vertical trajectory is based on the goal395

of producing or not an impact of the landing foot with the ground. For the

horizontal motion, the landing place to step the foot is an important issue on

which the performance of the walking gait will largely depend (see [11]).

On the other hand, several research works, as in [22, 23], have proven that

the motions of the trunk and arms help to improve the walking in the sense of400

walking efficiency and stability. Furthermore, some tasks that allow the robot

to interact with the environment can be performed by the arms while the robot

walks. Therefore, depending on the complexity of the task the desired upper-

body motion trajectories can be defined by simple polynomials or more complex
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Figure 4: The humanoid robot ROMEO

functions.405

6. Case study: The humanoid robot ROMEO

In this section, the essential model is exploited by taking into account the

characteristics on the humanoid robot ROMEO. This robot has a weight of 40.8

kg, a height of 1.46 m and it has 31 DoF (6 DoF for each leg, 1 DOF for the

torso, 7 DOF for each arm and 4 DOF for the neck and head) as shown in Fig.410

4. It has been developed by Softbank robotics [24].

In this paper, as explained in Section 4 the swing foot, the torso and the

upper-body joints are chosen as points of interest. Thus, the configuration

vector ξ ∈ R31 is defined as in equation (37) where qc(q) is chosen as qc(q) =

[qc,1(q), qc,2(q), · · · , qc,29(q)]> = [z(q), xf (q), yf (q), zf (q), ψf (q), θf (q)415

ϕf (q), ψt(q), θt(q), ϕt(q), q13, . . . , q31]>, where z is the height of the CoM

of the robot, xf , yf , zf , ψf , θf , ϕf are the position and orientation of the swing
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foot (roll, pitch and yaw)5, ψt, θt, ϕt are the orientation of the lower torso (the

orientation of the hip, i.e. frame Σ7). The upper-body joints q13 to q31 are the

rest of controlled variables.420

The desired trajectories for the 29 controlled variables as a function of vector

ϑ are defined as qdc(ϑ) = [z(ϑ), xf,d(ϑ), yf,d(ϑ), zf,d(ϑ), ψf,d(ϑ), θf,d(ϑ),

ϕf,d(ϑ), ψt,d(ϑ), θt,d(ϑ), ϕt,d(ϑ), qd,13(ϑ), . . . , qd,31(ϑ)]>.

Three different cases have been proposed to design the essential model in

order to show its effectiveness.425

1. Time trajectories are proposed to define the desired motion of the con-

trolled variables qdc . No impact is considered and a fixed upper-body pose

and fixed location of the ZMP is desired for all the step. i.e. (px,d, py,d) =

(0, 0) w.r.t. Σ0. Note that in here the inertial frame Σ0 is attached to the

ground under the support ankle (see Fig. 4). By considering a constant430

CoM vertical position, a comparison with the 3D LIP model is carried

out.

2. Virtual constraints define the trajectories of the controlled variables qdc

and an impact of the swing foot with the ground is considered to build

an essential model where the upper-body and ZMP are kept in a fixed435

desired position as in the previous case.

3. A curve periodic motion is performed by specifying two different step

parameters. Time trajectories are proposed to define the desired motion

of the controlled variables qdc . An impact of the swing foot with the

ground is considered. Furthermore, an upper body motion and a desired440

trajectory for the ZMP is specified to be achieved during the step.

6.1. Case I. The essential model closest to the 3D LIP model

In order to show the efficiency of the essential model with respect to the 3D

LIP model to generate walking gaits, in this section two walking gaits obtained

by using these two models are compared. Since the 3D LIP model is a simplified445

5Roll: turn around x-axis. Pitch: turn around y-axis. Yaw: turn around z-axis.
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model of a general humanoid robot, it only considers the global CoM position

of the robot, not its dynamics nor its parameters. On the other hand, the

essential model takes into account the dynamical characteristics of the robot.

Consequently, in order to compare the 3D LIP model and the essential model

under the same conditions, it has been chosen:450

• To consider a constant height of the CoM. Therefore, the gait parameters

chosen for both models are shown in Table 1.

• To consider a fixed step length, fixed step width and fixed step time to

perform the gait.

• The evolution of the swing foot as functions of time in order to ensure the455

step is performed at a fixed step time.

• To define the trajectories of the swing foot by cycloidal motions in order

to avoid impacts since the 3D LIP model does not consider them.

• To test the obtained periodic motions of both models in the complete

model of ROMEO by considering the same swing foot motion and fixed460

upper body.

6.1.1. The desired motion of the swing foot and upper body

The evolution of the swing foot is given by

xf,d(t) = xf0 + 2S

[
t

T
− 1

2π
sin

(
2πt

T

)]
yf,d(t) = yf0

zf,d(t) =


hz
[
2t
T −

1
2π sin

(
4πt
T

)]
if t ≤ T

2

hz − hz
[
2t−T
T − 1

2π sin
(
4πt
T

)]
if t > T

2

where hz [m] is the maximum desired height of the swing foot. As can be

seen, the initial and final value for zf,d is zero. The initial values of xf0 and yf0465

are always measured with respect to the support foot, i.e. [xf0, yf0] = [−S, D].
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Figure 5: Sequence of steps performed by the robot ROMEO for the first case

Regarding the swing foot orientation and the upper body motion, it was

decided to keep constant values. Therefore, the upper body is kept straight and

the swing foot parallel to the ground during all the step.

6.1.2. The essential model for ROMEO case 1470

In this case only time is used to define the desired trajectories for the con-

trolled variables i.e. qdc(t) = [z0, xf,d(t), yf0, zf,d(t), k
>]>, where the elements

of k ∈ R25 are zero except for the ones in Table 2. Therefore, ϑ = [x, y, t]>

since qf is always needed to define the joint motions. The desired position of475

the ZMP is (px,d, py,d) = (0, 0) w.r.t. Σ0. Then, by following the procedure in

Section 4.1 the evolution of the joints can be found as a function of x, y and t.

Later, by using the procedure in Section 3.3 the essential model is computed.

6.1.3. Numerical comparison

480

By using the gait parameters described previously, the periodic motion for
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Figure 6: Comparison of the evolution of the CoM for the gaits obtained with the 3D LIP

model and the essential model respectively.
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Figure 7: Comparison of the velocity of the CoM w.r.t. time for the gaits obtained with the

3D LIP model and the essential model respectively.

the 3D LIP model is defined by

x−∗ = [
S

2
,
D

2
, ẋ−∗, ẏ−∗]> = [0.15, 0.075, 0.777764, 0.218303]>,

meanwhile, the periodic motion for the essential model is defined by

x−∗ = [
S

2
+Dx,

D

2
+Dy, ẋ

−∗, ẏ−∗]> = [0.147532, 0.075440, 0.663698, 0.189616]>.

For this particular case, there is about 15% of difference between the veloci-

ties of each model in X and Y directions. The periodic motion for the essential

model depends on the motion of the swing foot and upper body. However, the

periodic motion of the 3D LIP model is a good initial guest to find periodic

motions with the essential model.485

For this case, the motion performed by the robot ROMEO for both models
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Figure 8: Comparison of the evolution of the ZMP for the gaits obtained with the 3D LIP

model and the essential model respectively. It is shown how the gait obtained with the

essential model makes the ZMP be kept in the desired location during all the walking gait.

The circles and crosses denote the initial and final points of the ZMP respectively.

is very similar and it is illustrated in Fig. 5 where a simulation of three steps

is shown. A video of the walking gait performed by ROMEO in simulation

for Case I is attached to the paper. In order to see the difference between the

two produced gaits Figs. 6 and 7 are plotted. Figure 6 shows that the spatial490

evolutions of the CoM of both models are close. In there, vertical dashed lines

are used to indicate that a new step is performed (black for the 3D LIP model

and blue for the essential model), and although they are very close, a small

displacement Dx is between them. On the other hand, the velocity of the CoM

is plotted in Fig. 7. In here it can be noticed that the velocity of the CoM495

in X direction must follow a complex function in order to fulfill the objective

of keeping the ZMP in a desired location while the robot walks. Finally, Fig.

8 shows a comparison of the evolution of the ZMP by using the walking gaits

obtained by each model. This plot clearly shows the advantage of the essential

model. Most of the times, the 3D LIP model produces walking gaits where the500

ZMP evolves outside of the convex hull of support when they are replicated by

the complete model of any humanoid robot. Therefore, some complementary

techniques must be taken into account to adjust the evolution of the joints of

the robot, in order to at least keep the ZMP into a place inside the convex
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Table 1: Gait parameters for the 3D LIP and Essential models

Parameter Cases Description

[unit] I II III(S1) III(S2)

S [m] 0.3 0.3 0.3 0.2653 Step length

D [m] 0.15 0.15 0.15 0.2436 Step width

T [s] 0.5 0.5 0.5 0.5 Step time

z0 [m] 0.65 0.65 0.65 0.65 Height of the CoM

hz [m] 0.05 0.05 0.05 0.05 Max. swing foot amplitude

ϕf,0 [deg] 0 0 10 -10 Free foot initial rotation

ϕf,f [deg] 0 0 -10 10 Free foot final rotation

g [ms2 ] 9.81 9.81 9.81 9.81 Gravity acceleration

αz [m] - 0.05 0.05 0.05 Max. CoM amplitude

vz
m
s ] - -0.2 -0.2 -0.2 Desired landing velocity

hull of support. By using the essential model, since the dynamics of the robot is505

taken into account the produced walking gaits will be always not only inside the

support area, but in the desired location. These results suggest that by using a

feedback control to track qdc the experimental tests can have good performance

if the dynamic model of the robot describes accurately the real prototype.

6.2. Case II. The essential model with impact510

In this case, the performance of an essential model that depends only on the

internal states of the robot is analyzed. As the motion of the robot is constrained

as a function of some internal states, the term virtual constraints is often used.

Several researchers have used this method to produce sophisticated evolutions

of the controlled coordinates qdc based on the horizontal position of the CoM x515

and y in order to achieve self-stable or self-synchronized walking gaits [8], [11].

However, in here, a simple evolution of the controlled variables is defined, i.e.

only as a function of the position of the CoM in X direction. In here, a step

with similar characteristics to the previous case is desired. However, a different
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Table 2: Upper-body parameters for ROMEO

i Case I Case II Case III Description

ki ki k0,i kf,i [rad]

7 0 0 -0.25 0.25 qdc,11 Torso yaw

8 0 0 0.25 -0.25 qdc,12 Neck yaw

12 1.7 0.41 1.8 1.6 qdc,16 R. shoulder pitch

13 0.2 0.19 0.2 0.2 qdc,17 R. shoulder yaw

14 0 0.194 1.9 1.9 qdc,18 R. elbow roll

15 0.05 1.523 0.3 0.3 qdc,19 R. elbow Yaw

18 0 -0.415 0 0 qdc,22 R. wrist pitch

19 1.7 0.41 1.6 1.8 qdc,23 L. shoulder pitch

20 -0.2 -0.085 -0.2 -0.2 qdc,24 L. shoulder yaw

21 0 -0.565 -1.9 -1.9 qdc,25 L. elbow roll

22 -0.05 -1.5 -0.3 -0.3 qdc,26 L. elbow yaw

24 0 -0.165 0 0 qdc,27 L. wrist roll

25 0 0.32 0 0 qdc,29 L. wrist pitch

fixed posture for the upper body was chosen. The gait parameters for this case520

are shown in Tables 1 and 2. Moreover, an impact of the swing foot with the

ground at transition is taken into account.

As explained in section 5.1.1, by knowing the states of the CoM before impact

x−∗ the states after impact x+∗ can be deduced. Then, by taking into account

the initial and final sagittal position of the CoM in the periodic motion, i.e. x+∗525

and x−∗, the trajectories of the controlled variables are computed.

6.2.1. The evolution of the CoM

In this case, a vertical displacement of the CoM is considered. This desired

vertical motion of the CoM is defined by using a 5th order polynomial function
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with the following boundary conditions6

zd(x
+∗) = z0, zd(xm) = z0 + αz, zd(x

−∗) = z0 (54)

z′d(x
+∗) =

q̇c,1
ẋ+∗

z′d(xm) = 0 z′d(x
−∗) = 0

where q̇c,1(q+, q̇+) is the vertical velocity of the CoM after impact7, and x+∗ <

xm < x−∗ is an intermediate desired point which in this case it is chosen exactly530

at the middle i.e. xm = Dx.

6.2.2. The desired motion of the swing foot and upper body

It is desired that the swing foot land on the ground with a negative velocity.

By doing this, the contact with the ground is ensured when the swing foot

touches it. Therefore, as in the case of the vertical displacement of the CoM,

a 5th order polynomial function is used to define the vertical evolution of the

swing foot, by accomplishing the following boundary conditions

zf,d(x
+∗) = 0 zf,d(xm) = hz zf,d(x

−∗) = 0 (55)

z′f,d(x
+∗) =

q̇c,4
ẋ+∗

z′f,d(xm) = 0 z′f,d(x
−∗) =

vz
ẋ−∗

where q̇c,4(q+, q̇+) is the vertical velocity of the swing foot after impact8.

For the horizontal motion of the swing foot, 3rd order polynomials are used,

6In here z′(x(t)) = ∂
∂x

z(x(t)), the same notation is used in the rest of the paper for the

other variables.
7q̇c,i is the i-element of the derivative w.r.t. time of qc which is defined at the beginning

of Section 6.
8Since there is a change of support, this velocity corresponds to the foot that was used as

support in the previous step
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such as the following boundary conditions are fulfilled

xf,d(x
+∗) = −S xf,d(x

−∗) = S

x′f,d(x
+∗) =

q̇c,2
ẋ+∗

x′f,d(x
−∗) = 0 (56)

yf,d(x
+∗) = D yf,d(x

−∗) = D

y′f,d(x
+∗) =

q̇c,3
ẋ+∗

y′f,d(x
−∗) = 0

where q̇c,2(q+, q̇+) and q̇c,3(q+, q̇+) are the horizontal velocities in X and Y535

direction of the swing foot respectively.

For the desired trajectories of the rest of the controlled variables qdc,i with

i = 5, . . . , 29, i.e the orientation of the swing foot and the upper body motion,

also 3rd order polynomials are used, such as the following boundary conditions

are fulfilled

qdc,i(x
+∗) = ki qdc,i(x

−∗) = ki (57)

qdc,i
′
(x+∗) =

q̇c,i
ẋ+∗

qdc,i
′
(x−∗) = 0

where q̇c,i(q
+, q̇+) is the velocity of the controlled variable i after impact, and

ki is the i-element of k whose elements are zero except for the ones defined in

Table 2.

6.2.3. The essential model for ROMEO case 2540

In this case the trajectories for the controlled variables are defined as a func-

tion of x, i.e. qdc(x) = [z(x), xf,d(x), yf,d(x), zf,d(x), qc,5(x), · · · , qc,29(x)]>,

and ϑ = qf = [x, y]>. The desired position of the ZMP is (px,d, py,d) = (0, 0)

w.r.t. Σ0 as in the previous case. Then, by following the procedure in Section545

4.1 the evolution of the joints can be found as a function of x and y. Later, by

using the procedure in Section 3.2 the essential model is computed.

6.2.4. Numerical results
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By using the gait parameters shown in Table 1 and the upper-body config-

uration for ROMEO shown in Table 2 the periodic motion is defined by

x−∗ = [
S

2
+Dx,

D

2
+Dy, ẋ

−∗, ẏ−∗]> = [0.153143, 0.075467, 0.67968, 0.191304]>.
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Figure 9: Simulation performed by the robot ROMEO for the second case
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Figure 10: Essential model and footprints for the steps performed by the robot ROMEO for

the second case

This walking gait holds the restriction of contact and no sliding, i.e. Fz > 0550
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and Ftan < Ffric by considering a friction coefficient µ = 0.7. A simulation

of three steps performed by the robot ROMEO is shown in Fig. 9a. In there,

the trajectory of the CoM is highlighted, where its oscillatory vertical motion

is noted. By using a 3D model of the robot, the posture of the upper body

is shown in Figure 9b. A video of the walking gait performed by ROMEO in555

simulation for this case is attached to the paper. Figure 10a shows the three

steps performed by using the essential model, where the relation between the

CoM and the ZMP is highlighted. Since a fixed ZMP position was imposed, the

resulting simulation with the essential model looks very similar to an inverted

pendulum model. However, as shown in Fig. 12b, by generating the CoM560

trajectory with the essential model the ZMP is kept in a desired position at

each step when the complete model is used (Fig. 9).

6.3. Case III. The essential model with impact, varying ZMP and upper body

motion

In this last case, one of the main benefits of this model is exploited. We are565

referring to the development of a walking gait that tracks exactly a user-defined

trajectory of the ZMP. Furthermore, by defining two different steps it is possible

to achieve a periodic walking gait in a 3D space. In this example, a periodic

walking gait while the robot turns is shown. The evolution of the controlled

variables are also defined as a function of time, i.e. qdc(t), from t = 0 to t = T .570

Nevertheless, unlike the first case of study, the impact of the swing foot with

the ground is taken into account and a simple upper body motion is introduced.

The gait parameters for the first and second steps (S1 and S2 respectively)

are shown in Table 1. And as mentioned earlier, in order to achieve a perfect

tracking of the reference trajectories for all the time, feasible desired trajectories575

of the controlled coordinates must be designed. Therefore, as in the case two,

the initial velocity after impact of the controlled variables, i.e. ḣ(q+, q̇+), is

again considered into the calculations of the desired trajectories qdc(t).
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6.3.1. The desired evolution of the controlled variables

580

The desired trajectories for the vertical motion of the CoM, the swing foot

and the upper body are designed with polynomials as in the second case. There-

fore, similar boundary conditions as (54), (55), (56), and (57) must be fulfilled.

However, constant values ki for the desired initial and final positions of the

upper body in equation (57) are replaced by k0,i and kf,i whose are defined585

in Table 2. Therefore, a simple motion of the upper body is performed, in

particular a yaw-motion of the torso, a yaw-motion of the neck and a pitch-

motion of both shoulders. Moreover, since in this case the trajectories are as

functions of time, the polynomials are builded from 0 to T , instead of from

x+∗ to x−∗ and the intermediate value has been chosen as T/2 instead of xm.590

Furthermore, the desired velocities q̇dc,i are computed directly instead of partial

derivative qdc,i
′
. Thereby, the boundary conditions (54), (55), (56), and (57)

are used with desired initial velocities q̇dc,i(0) = q̇c,i(q
+, q̇+) for i = 1, . . . , 29

and desired final velocities zero except for the one of the swing foot, which is

q̇dc,4(T ) = żf,d(T ) = vz.595

6.3.2. The desired motion of the ZMP

Unlike the two previous cases where a desired fix position of the ZMP was

chosen, in here it is proposed to define a trajectory for the ZMP while the robot

perform a step. Several studies about the evolution of ZMP on a human walking600

gait, such as [25, 26, 27] can be used with the essential model in order to develop

human-like walking gaits.

In this case, 3rd and 4th order polynomials functions are used in order to

build a soft desired trajectory of the ZMP in X and Y direction respectively,

such as the following boundary conditions are fulfilled

px,d(0) = px0 px,d(T ) = pxf

ṗx,d(0) = 0 ṗx,d(T ) = 0,
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and

py,d(0) = py0 py,d(T/2) = pym py,d(T ) = pyf

ṗy,d(0) = 0 ṗy,d(T ) = 0

where px0 = −0.02 [m], pxf = −0.10 [m], are the initial and final desired

positions of the ZMP in X direction w.r.t. the support frame Σ0, and py0 =

pyf = 0.01 [m], pym = 0 [m], are the initial, final and intermediate positions of605

the ZMP in Y direction w.r.t. the frame Σ0.

6.3.3. The essential model for ROMEO case 3

In this case the trajectories for the controlled variables are defined as a func-

tion of time, i.e. qdc(t) = [z(t), xf,d(t), yf,d(t), zf,d(t), qc,5(t), · · · , qc,29(t)]>,610

and ϑ = qf = [x, y, t]>. The polynomials px,d(t) and py,d(t) define the desired

trajectory of the ZMP in X and Y direction w.r.t. Σ0. Then, by following the

procedure in Section 4.1 the evolution of the joints can be found as a function

of x, y and t. Later, by using the procedure in Section 3.3 the essential model

is computed.615

6.3.4. Numerical results

By using the gait parameters shown in Table 1 and the upper-body config-

uration for ROMEO shown in Table 2 the periodic motion is defined by

x−∗ = [
S

2
+Dx,

D

2
+Dy, ẋ

−∗, ẏ−∗]> = [0.1936, 0.074921, 0.583253, 0.174165]>

As in the second case, the restriction of contact and no sliding is ensured,

i.e. Fz > 0 and Ftan < Ffric by considering a friction coefficient µ = 0.7.

A simulation of twelve steps performed by the robot ROMEO is shown in Fig.620

11a. In that figure, the trajectory of the CoM is highlighted, where its oscillatory

vertical motion is noted. A sequence of a 3D model of the robot performing the

periodic gait while turning is shown in Figure 11b. A video of the walking
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(a) Sequence of twelve steps (b) 3D Model

Figure 11: Simulation performed by the robot ROMEO for the third case
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Figure 12: Essential model and footprints for the steps performed by the robot ROMEO for

the third case

gait performed by ROMEO in simulation for Case III is attached to the paper.

Figure 12a shows the first eight steps using the essential model. In there, the625

relation between the CoM and the ZMP is highlighted. Notice that, since the

variable ZMP trajectory can be imposed, this relation could be seen as an

inverted pendulum with a mobil base. In the Fig. 12b it is shown the footprints

of the support foot for the twelve steps. In each footprint, it can be noted that

the evolution of the ZMP follows the desired trajectory.630
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7. Conclusion

The use of simple models, as the 3D LIP model, for building walking tra-

jectories are useful. However, the vertical motion of the CoM is constrained

and the ZMP is not keep to its desired location when the complete dynamics

of the robot is considered. Therefore, further techniques for keeping the ZMP635

inside the convex hull of support are usually carried out. In this paper, a new

model of the same dimension as the 3D LIP model, called essential model, has

been proposed in order to deal with these difficulties. This model is developed

by taking into account the whole dynamics of the robot and its simplification

is based on the assumption of a perfect tracking of the reference motion. As640

a consequence, the resulting walking gaits always keep the ZMP in the desired

path. Furthermore, impacts of the swing foot with the ground can also be

considered in the development of walking gaits. The dynamics of the essential

model depends always on the internal states of the robot but can also depends

on external information (such as time). Moreover, this model can conceivably645

be used to develop motions in double support phases, however in this paper,

only a continuous single support and an instantaneous double support phases

are taken into account. By using the robot ROMEO as a case of study, three

essential models where designed in order to show the efficiency of this proposal.

This work, only sets the basis for further research in order to achieve walking650

gaits with better performance. Some future works on this issue are:

• Using the essential model to propose starting and stopping phases.

• Exploiting this model for the motion of the robot during double support

or multi-contact phases.

• Introducing optimization to the upper body motion in order to reduce the655

joint torques.

• Proposing human-like trajectories for the ZMP in order to develop more

efficient walking gaits.
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• Introducing different external information to define the desired trajectories

of the controlled variables, not just the time. This external information660

could be the CoM of other robots in order to achieve walking synchro-

nization among robots, or joysticks to handle the motion of the robot as

a function of them, etc.
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Appendix. Numerical computing of Aϑ and dϑ.

According with equation (7) or (9) by using q, q̇ and q̈ as inputs of the

Newton-Euler algorithm, the reaction force, reaction moment and joint torques670

can be computed. This method can be also utilized to compute q̈f . In order

to achieve this, let us take advantage of the linearity in the acceleration in (9)

and give as input of the NE algorithm the acceleration q̈ “by parts”. With this

proposal, the NE algorithm will be performed m+ 3 times as shown below.

Notice that equation (25) could be written as675

q̈ = Jϑ(:,1)ẍ+ Jϑ(:,2)ÿ + Jϑ(:,3)φ̈1 + · · ·+ Jϑ(:,m+2)φ̈m + J̇ϑϑ̇ (A.1)

where Jϑ(:,i) means the i-th column of matrix Jϑ.

Thus, considering q̈ from equation (A.1) and by giving ∆i = Jϑ(:,i) + J̇ϑϑ̇

into equation (9) instead of q̈ we will get

NEi = Ae(ϑ)
[
Jϑ(:,i) + J̇ϑϑ̇

]
+ de(ϑ, ϑ̇). (A.2)

for i = 1, 2, . . . ,m + 2. Then, by giving ∆m+3 = J̇ϑϑ̇ instead q̈ into equation

(9) we get680

NEm+3 = AeJ̇ϑϑ̇+ de (A.3)
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Then, by using equations (A.2) and (A.3) we can recover (26) and finally (27)

as follows

NE = [NE1 −NEm+3] ẍ+ [NE2 −NEm+3] ÿ+

[NE3 −NEm+3] φ̈1 + . . .+ [NEm+2 −NEm+3] φ̈m +NEm+3

=
[
Ae

[
Jϑ(:,1) + J̇ϑϑ̇

]
+ de −AeJ̇ϑϑ̇− de

]
ẍ+[

Ae

[
Jϑ(:,2) + J̇ϑϑ̇

]
+ de −AeJ̇ϑϑ̇− de

]
ÿ+[

Ae

[
Jϑ(:,3) + J̇ϑϑ̇

]
+ de −AeJ̇ϑϑ̇− de

]
φ̈1 + . . .

+
[
Ae

[
Jϑ(:,m+2) + J̇ϑϑ̇

]
+ de −AeJ̇ϑϑ̇− de

]
φ̈m +AeJ̇ϑϑ̇+ de

=AeJϑ(:,1)ẍ+AeJϑ(:,2)ÿ +AeJϑ(:,3)φ̈1 + . . .+AeJϑ(:,m+2)φ̈m +AeJ̇ϑϑ̇+ de

=Ae
[
Jϑ(:,1), Jϑ(:,2), Jϑ(:,3), · · · , Jϑ(:,m+2)

]


ẍ

ÿ

φ̈1
...

φ̈m


+AeJ̇ϑϑ̇+ de

=AeJϑϑ̈+AeJ̇ϑϑ̇+ de

=Aϑϑ̈+ dϑ

where it is shown that

Aϑ = [NE1 −NEm+3, NE2 −NEm+3,

NE3 −NEm+3, · · · , NEm+2 −NEm+3]

dϑ =NEm+3

Notice that the construction of matrix Aϑ is not required, but the product

[NEj+2 −NEm+3] φ̈j , with j = 1, . . . ,m. Thus, if the element φ̈j of φ̈ is zero,

[NEj+2 −NEm+3] φ̈j = 0 , thus, the use of the NE algorithm can be avoided

for that particular iteration saving time of computation.
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