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Abstract
This work proposes a full algorithm to compute Nonlinear Normal Modes (NNMs) using a Proper Gener-
alized Decomposition (PGD) approach combined to a continuation method. Because periodic solutions are
sought, a harmonic balance method (HBM) is implemented to process the time-dependent functions. The
interest of this study is first to couple this approach to a continuation method with a progressive enrichment
of the PGD modes family and second to improve some of the PGD steps to get a robust algorithm. In partic-
ular, the initializations of solvers are chosen consistently with the available physical data through the use of
LNMs shapes. The reduced basis is kept as small as possible since it is computed with on the fly enrichment,
possibly from a unique mode. No particular assumptions on the non linearity have been made and hence
a wide class of mechanical problems can be processed. The resulting method is applied on several beam
models with localized nonlinearities which allows for an accurate analysis of its performance.

1 Introduction

The computing power currently achieved allows to take into account nonlinear effects in physical models
and allows to deal with systems with a very large number of degrees of freedom. As systems became more
and more realistic and sophisticated, model reduction techniques had to be developed in order to save digital
resources while obtaining a physically satisfactory result.

Nonlinear Normal Modes (NMMs) are objects that can be exploited as part of modal reduction methods,
similar as with Linear Normal Modes (LNMs). Their properties are studied to estimate and interpret more
precisely the dynamics of mechanical systems [1, 2]. In this paper, only the Rosenberg’s definition of NNMs
[3] will be considered, i.e. a family of periodic solutions of the underlying free and conservative mechanical
system. The reader can refer to the work of Shaw and Pierre [4, 5] or Kerschen and Renson [6, 7, 8] for more
information about NNMs.

From a numerical point of view, the algorithms used to compute the NNMs of high-dimensional structures
do not have yet reached maturity [9, 8] and the nonlinear effects causes convergence issues. NNMs require
large sets of variables to be properly described which make them hard to compute in short times and hard
to reuse even if some work still take advantage of their computations [10]. This remark serves as a starting
point for the work presented in this article.

The reducted model developed in this paper falls within the framework of Proper Generalized Decomposition
(PGD) methods. This class of reduction techniques is based on the separation of the unknowns and a fixed
point algorithm which allows to deal with smaller systems in order to reduce the computation times. PGD
was already used by Grolet and Thouverez [11] to compute free and forced responses of nonlinear systems.
The reader can refers to Chinesta and Nouy [12, 13, 14, 15] to learn more about the possibilities offered by
this approach.



In this work, a full algorithm is proposed in order to compute NNMs using a combination of a PGD approach
and classical continuation schemes. A quick reminder of the NNM framework investigated here is given in
Sec. 2. Then the PGD method is detailed in Sec. 3, including the use of a harmonic balance method (HBM) to
deal with temporal aspects of the problem. The contributions of this work are highlighted in this section: first
the PGD approach is coupled with a continuation method and a progressive enrichment of the PGD modes
family is made and second some of the PGD steps are improved to get a robust algorithm. The PGD/HBM-
based continuation scheme is described in Sec. 4. The last section, Sec. 5, is dedicated to illustrative cases to
show some possibilities introduced by this algorithm.

2 Mechanical framework and Nonlinear Normal Modes (NNMs)

The equations of dynamics describing the behavior of a set of general coordinates can be obtained after a
spatial discretization process using for example the Finite Elements method. It usually takes the following
form:

Mü+Cu̇+Ku+ fnl(u, u̇) = f(t) (1)

Eq. (1) is a set of N second order nonlinear differential equations, the vector of the unknowns u – or vector
of the degrees of freedom (dof) – is a vector of RN . M ,C andK are respectively the linear mass, damping
and stiffness matrices, with {M ,C,K} ∈ MN (R)3. f(t) is the vector of excitation forces and lies in RN

too. Finally fnl(u, u̇) is the vector of non linear forces and belongs to RN . The general system described
by Eq. (1) represents a very wide class of mechanical problems. Indeed, the fnl term can be any nonlinear
expression (e.g. cosine function, polynomial terms like uiu3

j , non smooth function, etc.).

This paper focuses on the particular study of NNMs, which will be considered as the periodic solutions
of Eq. (1) in the particular case when no forcing neither damping is considered, or as an extension of the
definition of LNMs which takes into account the nonlinear vector fnl. In this framework, introduced by
Rosenberg, a NNM is a set of limit cycles – or periodic solutions – of the following system:

R(u(t)) = Mü+Ku+ fnl(u, u̇) = 0 (2)

Unlike LNMs, NNMs do not decouple the equations, and there exists a frequency-amplitude dependency.
However, they take into account non linear effects and can be useful to investigate modal interaction between
widely spaced modes or modal bifurcations [7, 8]. Numerically, building a NNM branch requires a large
number of descriptors and consequent computation times [8]. This observation motivates the developments
described in this work.

3 PGD and HBM combination to describe periodic solutions

3.1 Harmonic Balance Method

As NNMs are periodic solutions, a HBM framework is used. It does not require a time integration scheme as
in shooting methods [16, 9]. Detailed explanations about this method and its advantages are given in works
[17, 18, 19, 20]. Dealing with algebraic equations in the frequency domain has the disadvantages first to
introduce a truncation order dependence and second to become costly as the number of dof increases and
more harmonics are involved in the underlying physics of the system. A combination with a PGD reduction
technique will permit to compute smaller systems without losing HBM advantages.

Some notations used later are here introduced. We are looking for a T -periodic signal u(t), with T = 2π/ω:

u(t) =
a0√

2
+

H∑
k=1

(ak cos(kωt) + bk sin(kωt)) (3)



where ak and bk are respectively the cosine and sine coefficients of the Fourier series. A compact way to
write u(t) is then:

u(t) = UHhH(t, ω), where
{
UH = [a0,a1, b1, . . . ]

hH = [1/
√

2, cos(ωt), sin(ωt), . . . ]T
(4)

This formalism first shows computing u(t) is equivalent to compute both UH and ω, second allows to link
the Fourier coefficient of u(t) to those of its temporal derivative u̇(t) via a matrixD:

D = diag
(

0,

[
0 1
−1 0

]
, . . . ,H

[
0 1
−1 0

])
(5)

As HBM is a Galerkine method, this decomposition is injected in Eq. (2) and the equations are projected on
each element of the Fourier basis hH using the inner product:

< f, g >T=
2

T

∫ T

0
f(t)g(t)dt (6)

This leads to a set of N(2H + 1) equations with N(2H + 1) + 1 unknowns, where N is the number of dofs.
As there is no external forcing in Eq. (2), ω is also an unknown, and the final problem can be written:

H(a0,a1, b1, . . . , ω) = 0 (7)

Whether a HBM is applied on the forced equation Eq. (1), ω is taken equal to the forcing frequency, and
the system described by Eq. (7) is square. In the case of NNMs computation, an extra equation usually
called phase condition [21] is needed. Indeed, no “initial time” exists for a given periodic solution u(t) so
the phase condition allows to define the Fourier coefficients uniquely. Here are given some possibilities of
equations: to lock the amplitude or the velocity of a given dof at t = 0 in Eq. (3) [21], or to nullify one of the
Fourier coefficient components [22]. Considering a conservative system, please note that nullifying one sine
coefficient implies that all sine coefficients are null, hence only (H+1) ak coefficients must be computed.

Considering Eq. (7) again, it is possible to analytically establish the expression of the projection of the linear
part H l(ω)uH of Eq. (2), where uH = {aT

0 , . . . ,a
T
k , b

T
k , . . . }T. Hence, Eq. (7) is rewritten H l(ω)uH +

Hnl(uH , ω) = 0, with: {
H l(ω) = diag(Λ0,Λ1, . . . ,ΛH)
Λ0 = K, Λk = diag(K − (kω)2M ,K − (kω)2M)

(8)

The term Hnl(uH , ω) corresponds to the projections of nonlinear forces fnl(u, u̇) onto the Fourier ba-
sis. Evaluating this nonlinear contribution is time consuming as analytical expressions can scarcely be de-
rived. The most commun approach to deal with this term is to use the Alternating Frequency/Time (AFT)
method introduced by Cameron and Griffin [23]. Basically, u(tk) and u̇(tk) are evaluated for specific tk
values in [0, T ] using an Inverse Fast Fourier Transform (IFFT) based on ak and bk coefficients. Then,
fnl(u(tk), u̇(tk)) is computed for each time tk; finally, a Fast Fourier Transform (FFT) is used to evaluate
the projections, that is the coefficients of the Fourier series of fnl(u, u̇).

3.2 PGD combined to HBM

For the purpose of this work, the PGD process is divided in three main steps, which are separating variables
(space and time here), obtaining as many subproblems as there are variables (time and space problems here),
and run an alternated directions fixed point loop which solves each subproblem with the other variables fixed,
for a given loop iteration. Here both subproblems are coupled with HBM features introduced in Sec. 3.1 to



produce a global PGD/HBM algorithm. Many variants of the PGD method exist and we chose to describe
the one usually called optimized PGD (oPGD) [11, 15] in the following theoretical developments. A lighter
adaptation of the oPGD from a computational point of view and called progressive PGD (pPGD) is detailed
in Sec. 4.1.3.

Given a positive integer m << N , we look for a space-time separated solution u(t) of Eq. (2) such as:

u(t) ≈
m∑
j=1

pjqj(t)⇔ u(t) ≈ Pq(t) with P = [p1, . . . ,pm] ∈MN,m (9)

Assuming this notation, the m PGD modes are defined by their PGD mode shapes pj and their time de-
pendences qj(t), assembled in a vector q(t) ∈ Rm. In this two-term product, the amplitude information is
chosen to be given by qj(t) only so the pj PGD mode shapes are normalized to 1.

This decomposition will to split the problem into two smaller problems (cf. Sec. 3.2.1 and Sec. 3.2.2) whose
sizes depend on m. As NNMs are periodic solutions of Eq. (2), the temporal part q(t) will be decomposed
using HBM:

q(t) = QHhH(t, ω), where
{
QH = [a0,a1, b1, . . . ]

hH = [1/
√

2, cos(ωt), sin(ωt), . . . ]T
(10)

Computing a NNM point by a combined PGD/HBM approach is then equivalent to compute a {P ,QH , ω}
set.

3.2.1 Temporal problem Tm

The objective of this section is to compute the temporal part – i.e QH and ω – knowing the PGD mode
shapes – i.e. the matrix P . A weak formulation is written on an oscillation period IT = [0, 2π/ω], with the
test function u?(t) = P q?(t):

∀t ∈ IT ∀q?(t)
∫
IT

q?T (t)P TR(Pq(t))dt = 0 (11)

The final temporal problem is established from the weak formulation Eq. (11):

∀t ∈ IT Mrq̈(t) + Krq(t) + fnlr(Pq(t),P q̇(t)) = 0 (12)

where {Mr = P TMP ,Kr = P TKP } ∈ Mm(R)2 and fnlr = P Tfnl ∈ Rm. This system of m second
order nonlinear ODEs is solved by HBM. Using the same notations as in Sec. 3.1, the temporal problem Tm
is defined as a square algebraic system with m(2H + 1) + 1 unknowns in the following manner:

Tm(QH , ω|P ) = 0⇔
{
H l(ω)qH +Hnl(qH , ω) = 0
c(qH , ω) = 0

(13)

where qH = {aT
0 , . . . ,a

T
k , b

T
k , . . . }T are the Fourier coefficients put into a vectorial form, H l is the lin-

ear contribution, Hnl is the vector of Fourier coefficients of the nonlinear contribution of Eq. (12), and
c(qH , ω) ∈ R is an arbitrary constraint equation which allows to get a square system. c(qH , ω) will be
specified in Sec. 4.1 as a continuation criterion.



3.2.2 Spatial problem Sm

The objective of this section is to compute the spatial part – i.e the matrix P – knowing the temporal part –

i.e. QH and ω. This time, a weak formulation is obtained with the test function u? =
m∑
k=1

p?
kqk, leading to a

set of m systems with N equations:

∀k ∈ [[1;m]],

m∑
j=1

(∫
IT

qkq̈j dtM +

∫
IT

qkqj dtK

)
pj +

∫
IT

qkfnl(Pq(t)) dt = 0 (14)

Finally, these equations can be condensed in a N ×m algebraic system denoted Sm:

Sm(P |QH , ω) = 0⇔ Sl p̃ + Snl(p̃) = 0 (15)

where p̃ = {pT
1 , . . . ,p

T
m}T ∈ RN×m contains the columns of P , Sl is the linear contribution with respect to

p̃, and Snl(p̃) = [
∫
IT
qkfnl(Pq(t)) dt]1≤k≤m the nonlinear one. Snl is computed using the AFT approach,

and Sl can be established analitically:

Sl = I2 ⊗M + I0 ⊗K , with Ik = πωk−1QHD
kT
QT

H (16)

The spatial subproblem Sm is more expensive to solve than Tm as its size depends on N >> m.

3.2.3 PGD/HBM fixed point algorithm

The last step of the PGD process consists in integrating both temporal and spatial subproblems into a fixed
point algorithm. The full fixed point loop is detailed in Algorithm 1. The subproblems resolution lies at
lines 6 and 7. Two main issues have to be adressed: the choice of an error measure ε and the way in which
potential additional PGD modes are initialized.

The error measure ε, defined at lines 1 and 11, compares the norm of the residue vector R(u(t)) – where
u(t) = PQHhH(t, ω) – to ||Ku(t)|| over a period IT . Unlike in Grolet and Thouverez work [11] in which
k < kmax = 3 was the only stopping criterion of the loop, here the convergence is checked by the use of
this physical criterion, introduced at line 4. Moreover the fixed point loop is broken when k > kmax or if
the current iteration does not reduce ε enough, that is, when ε is greater than rfpεprev where rfp < 1 and εprev
denotes the error measured at the end of the previous iteration.

If the convergence criterion ε ≤ εmax is not fulfilled at the end of the fixed point loop, the choice is made to
add a new PGD mode (from line 13): a new column pj is added to P and the associated row is added to the
QH matrix. In previous works [11], random values were used to fill these new vectors, and the order in which
subproblems are dealt with in the algorithm did not seem to be important. Here, the initial observation is that
it is difficult to initializeQH with new temporal information. Hence, the temporal problem is computed first
into the fixed point loop, with a new row filled with zeros. The new column pj is initialized with the shape of
the (n0 +m)-th LNM, with n0 being the index of the n0-th NNM being computed. Indeed, this spatial data
is easily computable and it seems relevant to add new shapes from the LNMs as they form a basis. Moreover,
avoiding random initializations makes the algorithm more robust and results reproducible.

4 NNM continuation using PGD/HBM modes enrichment

In this section, a full NNM computation algorithm combining PGD/HBM and continuation schemes is de-
tailed. Near the n0-th LNM, first NNM points are searched using a single PGD mode (m = 1) which initially
has the shape of the n0-th LNM. When the mechanical energy is growing, new PGD modes are included to



Algorithm 1: PGD/HBM global algorithm
Parameters: Values for mmax, kmax, εmax and rfp;

Definition of c(qH , ω) used in Tm;
LNMs: Φ = [φn0

, . . . ,φn].
Data: Initial values for m, P ,QH and ω.

1 ε← maxt∈IT (||R(u(t))||/||Ku(t)||);
2 while m ≤ mmax and ε > εmax do
3 k ← 0, εprev ← 2 ε;
4 while k ≤ kmax and ε ≥ εmax and ε ≤ rfpεprev do /* FP loop */
5 k ← k + 1, εprev ← ε;
6 QH , ω← solutions of Tm(QH , ω|P ) = 0;
7 P ← solution of Sm(P |QH , ω) = 0;
8 for j ← 1 to m do /* Mode normalization */
9 pj ← pj/||pj ||;

10 end
11 ε← maxt∈IT (||R(u(t))||/||Ku(t)||);
12 end
13 if ε ≥ εmax then /* Next mode initialization */

14 P ← [P ,φn0+m],QH ←
[
QH

01,2H+1

]
;

15 m← m+ 1;
16 end
17 end
18 Return m, P ,QH , ω and ε;

the decomposition only when it is necessary along the path. The hightlights of the method are a dimension
varying continuation scheme which keeps the number of NNM descriptors as small as possible and with an
on the fly enrichment of the PGD modes set as the system behavior becomes more complex.

Before giving some details about the continuation scheme, we will define yn as the the n-th point on the
current path. As explained in Sec. 3.2, a point of the NNM is fully determined by its {P ,QH , ω} set. Hence
we will note:

yn ≡ {P n,QHn, ωn} (size: N m+ (2H + 1)m+ 1) (17)

A distance d between two consecutive points yn−1 and yn is also defined. It is weighted by a set of positive
constants {αP , αQ, αω} which are arbitrary continuation control parameters, such as:

d(yn−1,yn) =
√
α2
P ||P n − P n−1||2 + α2

Q||QHn −QHn−1||2 + α2
ω|ωn − ωn−1|2 (18)

The prediction and correction equations used in Sec. 4.1 both rely on this choice of distance.

4.1 Prediction/Correction continuation process

Although more complex continuation procedures exist [24], the algorithm presented in this work can be
used with a choice of simple predictor and correctors. The next point sought, denoted y?, is computed
from a predicted point ypred? obtained with a secant method whose the arclength is set by ∆s. This pre-
dictor is chosen because of its simplicity. The correction step relies on the PGD/HBM solver described
previously in Sec. 3.2 with a specific choice of constraint equation c(qH , ω) = 0, linked to a classical cor-
rection method (e.g. arclength, pseudo-arclength, etc.). The global algorithm is depicted in Algorithm 2.



Algorithm 2: Continuation with on the fly PGD enrichment algorithm

Parameters: Values for ∆m, mmax tot, rε, rmult
s , rdivs and ∆s;

Values for Algorithm 1:
- kmax, εmax and rfp;
- LNMs: Φ = [φn0

, . . . ,φn];
- Constraint equations: c2(qH , ω) and cp(qH , ω).

Data: Circular frequency of n0-th mode ωn0 .
1 y1 ← {φn0

,01,2H+1, ωn0}; // First point
2 c(qH , ω)← c2(qH , ω), mmax ← mmax tot; // Second point
3 Compute y2 using Algorithm 1 with y1 as initial value;
4 c(qH , ω)← cp(qH , ω); // Continuation loop
5 p← 2;
6 while m ≤ mmax tot do
7 mmax ← m+ ∆m;
8 Compute y? using secant method with yp, yp−1 and ∆s; // Prediction

9 Compute y? using Algorithm 1 with y? as initial value; // Correction
10 if ε < εmax then
11 yp+1 ← y?;
12 p← p+ 1;
13 if ε < rεεmax then
14 ∆s← rmult

s ∆s;
15 end
16 else
17 ∆s← rdivs ∆s;
18 end
19 end

4.1.1 Prediction step features

The prediction arclength ∆s is managed in a classical way, as follows: if the error ε measured after a
correction step is too large (see Algorithm 1 in Sec. 3.2.3), ∆s is decreased by multiplying it by rdivs < 1
(see line 17) leading to a closer prediction point ypred? . On the contrary, if ε < rεεmax with rε < 1, ∆s is
multiplied by rmult

s > 1 (see lines 13 and 14). Else ∆s is kept constant for the next prediction step.

A secant prediction needs two solution points computed beforehand. The first point of the n0-th NNM is
already known: y1 ≡ {φn0

,01,2H+1, ωn0}. An amplitude condition imposed on the j-th dof at t = 0 is
chosen to compute y2: uj(t = 0) = uj0 with uj0 6= 0. This particular constraint, denoted c2(qH , ω) in
Algorithm 2, is injected into Algorithm 1 to find y2 starting from y1.

The reader could remark that during the prediction step, yn can have a greater size than yn−1 because of
the possibility to get different problem dimensions m along the path. The distance given by Eq. (18) need
summations of matrices that do not have the same sizes, and the choice of padding yn−1 missing components
with zeros instead of truncating yn is made. Hence, all computed data are taken into account to reach a better
prediction.

4.1.2 Correction step features

The startpoint of the correction step is ypred? . It is injected in the PGD/HBM solver described in Algorithm 1,
in which the constraint equation involved in the temporal problem Tm is set to cp(qH , ω), as denoted in Algo-
rithm 2. cp(qH , ω) defines the correction method and can be freely chosen among the classical possibilities



[19]. Here an arclength correction is used: cp(qH?, ω?) = d(yn,y?)
2 − ∆s2. This condition involves P ?

which is the last value of the spatial modes returned after the spatial problem Sm when processing the current
temporal problem Tm.

A remarkable point of this continuation scheme is the ability to increase the size of the problem when a new
point yn+1 is computed from yn. At line 7 in Algorithm 2, the highest difference of size between yn and
yn+1 is defined as ∆m. Consequently, two consecutive points can have different sizes, which has to be taken
into account when cp(qH , ω) is evaluated. Indeed, an arclength condition requires d(yn,y?). This time, a
truncation is applied for the current point y? so the arclength condition is evaluated in a space which has the
size of yn. Thus, no geometrical condition is imposed on the new component introduced in y?.

4.1.3 Progressive PGD – a lighter variant

As said in Sec. 3.2.2, considering the oPGD method, Sm is more expensive to solve than Tm as its size is
N ×m. This observation motivates the use of a variant of the oPGD approach developed before, in which
Sm is solved as few times as possible, and in which only a few number of Sm equations is solved. In order
to reach these goals, severals choices are made:

• During the correction step, the spatial problem is only solved when a new PGD mode is added, i.e.
when the condition at line 13 in Algorithm 1 is fulfilled. Hence, most of the fixed point loops only
solve the temporal problem. The matrix P ? is put as the initialization of Tm. This is consistent with
the fact that in practice, the nature of many points close together in the NNM branch is not sufficiently
different to require the introduction of a new PGD mode shape.

• In addition to that, in order to deal with the case when Sm has to be solved, a new lighter spatial
problem is defined. The PGD mode shapes contained in P are definitively locked once computed, and
only the new pj added at line 13 in Algorithm 1 is updated by the spatial solver. This constitutes a gain
in algorithmic complexity since the new size of the spatial problem is only N . The procedure leading
to the analytical expression of the spatial problem is analogous to the Galerkine process described in
Sec. 3.2.2, except that this time the projection is only made on the new PGD mode shape pj . The
expression of this N -sized system can be found in [11].

This variant is usually called progressive PGD (pPGD). It allows to improve the numerical performance
of the algorithm described before. However, its main disavantage is the lack of flexibility of the PGD
mode shapes, which can finally generate NNM branches of higher dimension mmax because more spatial
information is needed when the system behavior becomes more complex.

5 Numerical application on two beam models

The main branch of the first NNM of a beam model with a cubic nonlinearity described in Sec. 5.1 is built
using the full PGD/HBM continuation algorithm. The main results proper to the presented approach are
given in Sec. 5.2. This numerical study has been performed for the presented oPGD/HBM method and its
pPGD/HBM variant, but for the sake of clarity only the pPGD results are presented on the figures of this
section. Finally in Sec. 5.3 some numerical considerations are made for the presented example and another
similar beam model with a localized contact. Hence, two different classes of conservative nonlinearities are
adressed in this paper.

5.1 Description of the beam models

The considered system is an Euler-Bernouilli bending beam with one end clamped and a spring at its free
end; it is spatially discretized by FEM, as illustrated in Fig. 1. The beam properties are: Young modulus



E = 210 GPa, density ρ = 7800 kg.m−3, area of the square section S = 9 10−4 m2, second area moment
I = 6.71 10−8 m4 for an in-plane bending and length L = 1 m. The linear stiffness of the spring is
k = 4 104 N.m−1. The first eigenvalues of the underlying linear system consisting of the beam plus the
linear spring are {ω1, ω2, ω3, ω4, ω5} = {217, 999, 2769, 5420, 8960} rad.s−1. There are Ne = 20 elements
with two dof per node: a transverse displacement u and a rotation θ, so there are N = 40 dof.

Figure 1: Euler-Bernouilli cantilever beam (a) with a transverse cubic spring at dof 1 (b) with a transverse
gap between dof 1 and the linear spring.

• On the left in Fig. 1, a polynomial non linearity is chosen by introducing a cubic stiffness knl to
the spring. The nonlinear contribution is fnl(t) = [knlu

3
1(t) 0N−1]T with knl = 9.2 105 N.m−3.

Otherwise, we consider an underlying linear system made of the mass and stiffness matrices of the
beam plus the linear stiffness of the spring – i.e. K11 = K11beam + k. H = 50 harmonics are
considered on an exploratory basis, in particular because the algorithmic complexity stays reasonable.
Indeed, about twenty harmonics would be enough to deal with the involved physics.

• On the right in Fig. 1, a one-sided contact problem is also described: a gap g = 2 cm is introduced
between the free end of the beam and the linear spring. The underlying linear system is the Euler-
Bernouilli cantilever beam. The unilateral contact is modelled as follows:

fnl(t) =

{
[k(u1(t)− g) 0N−1]T , if u1(t) > g
0N , otherwise

(19)

This unsmoothed contact is quite hard as k/
3EI

L3
= 94.56% with

3EI

L3
the equivalent stiffness of the

cantilever beam taken alone. A contact problem between two identical beams would be similar from
the stiffness point of view. Consistently with this class of problem, the arbitrary value H = 70 is
chosen.

The results obtained for this second model will not be detailed in this paper. However, some numerical
values will be given in Sec. 5.3 to extend some conclusions to this class of nonlinearities.

Parameters required by Algorithm 2 are given in Table 1. As both problems are conservative, a cosine basis
is sufficient to describe the harmonic behavior of the system, so only (H + 1) Fourier coefficients have to be
computed instead of (2H + 1).

5.2 Bending beam with a cubic spring at its free end

A convenient way to present the NNM branches is a Frequency-Energy plot (FEP) [1, 8], E being the
mechanical energy of the NNM. The cubic spring case NNM1 (tangent to φ1 at almost null amplitudes) is



∆m mmax tot rε rmult
s rdivs ∆s kmax εmax rfp y2 : u1(t = 0) {αP , αq, αω}

1 10 0.1 1 0.5 1.5 10 10−3 0.8 10−3 m {10−6, 10−1, 10−4}
(5) (0.5) (1.2) (1) (5 10−4 m) ({0, 10−6, 1})

Table 1: Algorithm 2 required parameters for the cubic spring case. The contact case parameters are given
in parentheses on the second line, only when they differ from the previous ones.

displayed in a FEP given in Fig. 2. Npt is the index of converged solution points through the 131 points
computed during this pPGD/HBM continuation. Only 7 PGD modes are required by the pPGD algorithm
(cf. Fig. 3) to build this branch which reaches about Emax = 2.25 105 J. The same branch can be computed
with only 6 PGD modes using oPGD. Indeed the shapes of the PGD modes are always the same through a
pPGD/HBM continuation process because the method involves blocking the shapes once they are integrated
into the P matrix. This lack of flexibility can lead to the introduction of more PGD modes than with oPGD.
Both variants obviously give identical FEP.

The interpretation of the modal interactions drawn in Fig. 2 (interaction tongue and final internal resonance)
are deliberately limited in order to focus on the aspects specific to the numerical method developed.
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Figure 2: (a) Main branch of NNM1 in a FEP and (b) its mode shape at null velocity points for four contin-
uation points. Squares: solution points where a PGD mode is added.

It is recalled that the NNM framework used in this paper is the Rosenberg’s one [3]. In particular, all
dofs reach their maximum at the same time, hence the NNM shapes at null velocity plotted in Fig. 2 gives
interesting physical data. The more energy grows the more the nonlinear spring takes importance against
the bending inertia of the beam, generating localized curvature inversions near the free end. Qualitatively
similar results are obtained by Kerschen for another cantilever beam with cubic spring in [25].

On Fig. 3, the error measure ε along the path is depicted along with the number of PGD modes. The
process for adding PGD modes is clearly identified: ε reaches the limit value εmax then a new PGD mode
is embedded in the calculations leading to a decrease of the error. Fig. 2 shows that the PGD modes are
gradually added along the branch as expected with a smooth cubic nonlinearity. Please note that the error



for the first point Npt = 1 is not displayed as it is null and cannot appear in a logarithmic scale. All these
interpretations are retrieved in oPGD results.
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Figure 3: (a) Number of PGD modes m and (b) error measure ε against point index Npt. Squares: solution
points where a PGD mode is added.

An analysis of the seven PGD mode shapes pj is provided on Fig. 4. An interesting feature proper to
both pPGD and oPGD approaches is the presence of PGD modes which involve the participation of several
LNMs. For instance such “combined mode” is here the PGD mode 3, which gathers contributions of the
first 6 LNMs. With such an approach, high order LNMs can be taken into account in a reduced range of
PGD mode shapes: here 5 PGD modes are sufficient to describe the system behavior until the interaction
tongue and they involve the contributions of at least the first ten LNMs. Analoguously only 4 PGD modes
are required to build the same area using oPGD, with the contributions of the first 6 LNMs.
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Figure 4: Analysis of PGD spatial modes. (a) PGD mode shapes. Normalization is made at the maximum
deflection point. (b) Participation factors of LNMs in each PGD mode. In each bar group, LNMs participa-
tions are numbered in ascending order until the tenth linear mode. p1 is not displayed as it is LNM1 shape.



The temporal information associated with each PGD mode shape is plotted on Fig. 5. The significant vari-
ations of the temporal part through the NNM branch are expected as the previously described spatial part
does not change through the pPGD/HBM continuation and the temporal part contains all the amplitude in-
formation. Only odd harmonics are plotted as all the even ones are null because of the cubic nature of the
nonlinearity. As a global trend high order harmonics have less influence: at the higest energy point, all the
amplitudes |ak| are sub-millimetric from k = 23, for all the PGD modes.

The PGD mode 1 has the simplest behavior as it stays mainly led by the fundamental cosine |a1| all along
the continuation. Other PGD modes have a richer harmonic behavior with shared influences of the cosine
coefficients. For example at the end of the branch, the fifteen first odd harmonics are predominant in PGD
modes 2–4 and the highest harmonics are more represented by PGD modes 5–7. PGD mode shapes are com-
bination of LNMs, as shown on Fig. 4, and this partly explains why the harmonics spectrum is complex on
Fig. 5. All these qualitative interpretations also highlight the growing complexification of the beam behavior
and the growing influence of high harmonics as energy grows. Here also similar results and interpretations
about the temporal information are found with oPGD.
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Figure 5: Amplitudes of (cosine) Fourier coefficients of PGD modes. Crosses: coefficients when the PGD mode is
first introduced; Circles: coefficients at the end of the branch (Npt = 131).

Finally the main objectives of the method are met: a NNM branch is built with a few variables, the number
of PGD modes is kept as small as possible by incrementingm only when the convergence criterion ε ≤ εmax

is not fulfilled, and all physical data belonging to the case under study is retrieved. In the next section some
details about the algorithmic performance are detailed. The presented oPGD algorithm is compared with its
pPGD variant. Not only information about the the cubic spring case is given but also about the contact model
described in Sec. 5.1.

5.3 Numerical considerations

Few descriptors are stored to describe the NNM branch so the main objective of reduced model approaches
is reached. Table 2 shows this improvement for both PGD/HBM algorithms.

Please note that the first NNM of the contact problem has been obtained with the parameters given in Table 1
until a mechanical energy E ≈ 6.3 104 J. Succintly, 8 PGD modes and 115 points were required to compute



the whole branch and setting ∆m = 5 allowed to directly add 3 PGD modes in a single solution point (that
is when the beam first hits the spring). This shows that describing sharp or gradual changes of the system
behavior by the PGD/HBM continuation scheme with on the fly enrichment is feasible.

pPGD/HBM oPGD/HBM HBM
Σm{Nm

pt × (m(H + 1) + 1) +N∆m} Nptm(N +H + 1) Npt (N(H + 1) + 1)

Cubic Spring case 33266 58695 267371

Contact case 39161 60606 326715

Table 2: Comparison between the number of descriptors needed by pPGD/HBM, oPGD/HBM and classical HBM for
both examples. The reference for the Nm

pt values are the ones provided by pPGD/HBM computation.

Only m× (N +H + 1) descriptors by solution point are required by the oPGD/HBM continuation whereas
a classical HBM continuation needs N(H + 1) + 1 ones. In the case of the pPGD implementation, a single
spatial problem of size N ×∆m is solved for a whole NNM segment with m PGD modes: the total number
of required descriptors is further reduced to reach Σm{Nm

pt × (m(H + 1) + 1) +N∆m}, where Nm
pt is the

number of solution points in the NNM segment with m PGD modes.

Obviously calculating a solution point via PGD/HBM is relevant if and only if m × (N + H + 1) <
N × (H + 1). An easy proof gives the necessary condition for the PGD/HBM method to be more interesting
than a classical HBM approach: m < H + 1. In other words, the PGD/HBM method is useful for problems
which require a large number of harmonics.

In both examples the saving of variables with respect to a classical HBM can be assessed with the following
ratios: 1− m×(N+H+1)

N×(H+1) for oPGD, and 1− m×(H+1)
N×(H+1) or 1− m×(H+1)+N∆m

N×(H+1) for a pPGD solution point. The
oPGD reduction is very efficient, with 78% and 81% less variables than HBM for the cubic spring and the
contact cases respectively. The pPGD reduction goes further with about 88% less variables than HBM for
both examples.

We focus now on the underlying trust-region solver and its iteration data used to solve the subproblems.
This algorithm requires function and abscissa tolerances – set on 10−12 here – and allows to set a maximum
number of iterations Nite max. The values Nite max = 100 and Nite max = 25 are set respectively for the cubic
spring and the contact cases but this limit is reached for only very few points (maxima reached when a PGD
mode is about to be added or at the first turning point of the interaction tongue). In Table. 3 are given mean
and maximum numbers of solver iterations for temporal and spatial problems through the continuation,
for both examples and both PGD approaches. The oPGD iteration data is obtained with the same values
than with pPGD (cf. Table 1) except the following ones to improve the continuation: αP = 10−6 and
y2 : u1(t = 0) = 10−3 m for the cubic spring case, and rmult

s = 1.2 for the contact case.

Mean Standard Maximum
iteration number deviation iteration number

Cubic spring case
oPGD

Tm 6.23 4.89 22
Sm 16 10.92 54

pPGD
Tm 6.56 17.96 206
Sm 1.29 6.23 46

Contact case
oPGD

Tm 2.18 1.53 16
Sm 9.77 8.68 49

pPGD
Tm 3.56 5.52 42
Sm 0.35 1.92 14

Table 3: Mean, standard deviation and maximum of iteration numbers for Tm and Sm problems, through the continu-
ation.

In a oPGD framework the spatial problem is heavier as expected. The pPGD allows to compute less spatial
subproblems so many solution points include a zero iteration number for the spatial problem in the mean and



standard deviation calculation. The cost of the space problem is thus well bypassed by this variant. Otherwise
Nite max could be an interesting control parameter for bigger problems as one can keep it very small and save
computation time by “converting” convergence issues into new PGD modes or a reduced arclength ∆s.

6 Conclusion

A full PGD/HBM-based continuation technique with on the fly enrichment is presented in this paper. It
is applied to two examples of beam models representing different classes of nonlinearies. These examples
show that a highly reduced description of the NNMs branches can numerically be obtained. It is to be noted
that spatial initializations rely on the LNMs of the system, which gives to the PGD mode shapes a physical
meaning that a classical PGD approach provide a priori. As many parameters are let free (cf. Table 1), this
algorithm has a certain flexibility.

The presented approach can be used to compute bigger structures with different kinds of nonlinearities. In
order to exploit the physical potential of NNMs, future prospects could include the computation of damped
NNMs or forced responses of a structure.
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