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Abstract

Nonlinear normal modes (NNMs) of a mechanical structure provide a mean

to understand nonlinear vibrational phenomena measured experimentally. As

they are an interesting extension of the linear normal modes (LNMs), numerical

methods are needed to estimate these oscillatory motions, generally including

continuation aspects with respect to the circular frequency. In this paper, a con-

tinuation method combined to a model reduction based on Proper Generalized

Decomposition (PGD) technique is described. This formulation mixes PGD,

harmonic balance method (HBM) and basic continuation techniques in order

to reach a highly reduced description of the NNMs. This PGD/HBM-based

continuation algorithm includes a modal enrichment as the NNM energy grows.

The method is applied to two conservative problems including a cubic spring

and a unilateral contact.
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1. Introduction

In the frame of nonlinear dynamics, the Nonlinear Normal Modes (NNMs)

have been developed for several decades, in the aim to use them as their well-

known linear counterparts (LNMs for Linear Normal Modes). Their properties

are investigated in order to enable faster computations using modal reduction5

and to ease the forced dynamics prediction and interpretation [1, 2]. Basi-

cally, NNMs are the sets of periodic solutions of an unforced and – generally

– undamped mechanical system [3, 4, 5]. The last decade witnessed the devel-

opment of numerical methods dedicated to NNMs but this research area has

not yet reached maturity [6, 5]. Although algorithms can now be effectively10

applied to real engineering structures, the discrete systems to solve are often

high-dimensional problems and their nonlinear contribution causes convergence

issues: NNMs require large sets of variables to be properly described which make

them hard to compute in short times and hard to reuse even if some works still

take advantage of their computation [7].15

Model reduction techniques have taken an important place in the solving

process of mechanical systems, as their numerical complexity is increasing and

the models are becoming more and more detailed and realistic. The continuation

of NNMs using reduced-order models has already been addressed, for instance in

[8, 9]. Both these works use a shooting method combined to a pseudo-arclength20

continuation. Model reduction comes from the space where the q0 point from

which time integration starts is looked for. Kuether and Allen [8] build this

reduced space by using either a set of LNMs directly or the static displacement

resulting from a force based on a set of LNMs while Sombroek et al. [9] use

some LNMs and their modal derivatives.25

This paper proposes to compute NNMs using a Proper Generalized De-

composition (PGD) approach combined to a continuation method. The PGD

methods are a class of reduction techniques based on the separation of the un-

knowns which allows dealing with smaller systems to reduce the algorithmic

complexity and the computation times. A review of the PGD framework has30
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been detailed by Chinesta in [10] and the literature shows that a wide range of

problems can be managed with this approach [11, 12, 13]. PGD was already

used by Grolet and Thouverez [14] to compute free and forced response of non-

linear systems. The interest of the paper is first to couple this approach to a

continuation method with a progressive enrichment of the PGD modes family35

and second to improve some of the PGD steps to get a robust algorithm. Con-

trarily to methods proposed in [8, 9], the reduced space is not built using a

priori quantities but on the fly. The resulting method is applied to two simple

systems which allows for an accurate analysis of its performance. The detailed

study of the physical meaning of NNMs and their internal resonances or their40

use for the computation of forced responses is beyond the scope of this article.

The reader is referred to [15, 16, 7] for detailed works on theses aspects.

The paper is organized as follows: the mechanical framework is described in

Sec. 2, including a short review of the NNM definition. In Sec. 3 the PGD and

the Harmonic Balance Method (HBM) frameworks are exposed. The differences45

with Grolet and Thouverez [14] work are highlighted. Then the PGD/HBM-

based continuation is described in Sec. 4. This part is a proposition of a full

algorithm to compute NNMs with on the fly enrichment of the reduced basis in

conjunction with continuation techniques. The last section, Sec. 5 is dedicated

to two illustrative cases.50

2. Mechanical framework

This section first describes the general equations of a nonlinear dynamical

problem and then defines the associated NNMs.

2.1. Nonlinear dynamical system

After a spatial discretisation, using for example the Finite Elements method,55

the differential equations governing the motion of a nonlinear dynamical sys-

tem can usually take the following form [17, 7], where the nonlinear efforts are

3



separated from the linear ones:

Mü + Cu̇ + Ku + fnl(u, u̇) = f(t) (1)

Eq. (1) is a set of N second order nonlinear differential equations, the vector

of the unknowns u – or vector of the degrees of freedom (dof) – is a vector60

of RN . M, C and K are respectively the linear mass, damping and stiffness

matrices, with {M,C,K} ∈ MN (R)3. f(t) is the vector of excitation forces and

lies in RN too. Finally fnl(u, u̇) is the vector of nonlinear forces and belongs to

RN .

The general system described by Eq. (1) represents a very wide class of65

mechanical problems. Indeed, the fnl term can be any nonlinear expression (e.g.

cosine function, polynomial terms like uiu
3
j , non smooth function, etc.).

2.2. Short review of nonlinear normal modes

This paper focuses on the computation of nonlinear normal modes. NNMs

can be defined as the periodic solutions of Eq. (1) in the particular case when70

no forcing neither damping is considered or as an extension of the definition of

linear normal modes which takes into account the nonlinear vector fnl. Multiple

definitions of NNMs can be found in the literature: NNMs were introduced by

Rosenberg in the 1960’s [3] for conservative systems as a periodic vibration in

which all the degrees of freedom are synchronous (same origin, same extrema,75

same period) and can be expressed from only one of them. Shaw and Pierre

[18, 4] extended this definition in the 1990’s to all the autonomous systems,

including the dissipative ones. A NNM is then defined as a two-dimensional

invariant manifold in phase space. The reader can find more information about

NNMs definitions in the works of Kerschen and Renson [19, 17, 5] for instance.80

More recently, Haller and Ponsioen [20] introduced a new definition for NNMs

and the notion of spectral submanifolds.

Assuming the Rosenberg framework – that is undamped modes – a NNM is

a set of limit cycles – or periodic solutions – of the following system:

Mü + Ku + fnl(u) = 0 (2)
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To shorten further expressions, a signal u(t) satisfying Eq. (2) will be equiva-

lently denoted:

R(u(t)) = 0 (3)

Although they do not have orthogonality properties like LNMs and do not

decouple the equations, NNMs can be useful to investigate the modal interaction

between widely spaced modes or modal bifurcations [17, 5]. One of the major85

features of NNMs is that frequencies depends on the response amplitude on the

contrary to LNMs.

According to the size and the complexity of the dynamical system studied,

computing branches of NNMs can be expensive in terms of data storage and

computation times [5]. This observation motivates the developments described90

in the rest of the paper.

3. PGD and HBM combination to describe periodic solutions

A HBM framework is interesting as NNMs are periodic solutions. Despite a

truncation order dependence, it allows dealing with algebraic equations in the

frequency domain instead of (nonlinear) ordinary differential equations in the95

time domain. However a simple HBM becomes costly as the number of dof

increases and more harmonics are needed to accurately describe the behaviour

of a system. A combination with a PGD reduction technique allows to compute

smaller systems without losing HBM advantages.

In this section the HBM framework used to compute periodic solutions is first100

given. Then PGD principles are introduced: PGD temporal and spatial sub-

problems are defined in combination with the HBM. Finally the full PGD/HBM

algorithm is described.

3.1. Harmonic Balance Method

Unlike shooting methods [21, 6], the HBM provides a mean to compute105

limit cycles without the need of a time integration scheme. Only main steps

are briefly described here, introducing some notations which are later used. The
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reader is referred to the numerous works on this subject for detailed explanations

[22, 23, 24, 25].

3.1.1. Basic principle110

HBM is based on a Galerkin method: looking for a periodic signal u(t) with

period T = 2π/ω, a truncated Fourier series is used as a parametrization:

u(t) =
a0√

2
+

H∑
k=1

(ak cos(kωt) + bk sin(kωt)) (4)

where ak and bk are respectively the cosine and sine coefficients of the Fourier

series. This decomposition also provides expressions for any u derivative with

respect to time. Injecting this decomposition in the equations governing u and115

its derivatives (i.e. Eq. (1) or Eq. (2)) and following the Galerkin procedure, the

equations are projected onto each element of the Fourier basis [1/
√

2, cos(ωt),

sin(ωt), . . . , cos(Hωt), sin(Hωt)] using the inner product:

< f, g >T =
2

T

∫ T

0

f(t)g(t)dt (5)

This leads to an algebraic set of N(2H + 1) equations where N is the size of

the time problem; the unknowns are ak and bk vectors and sometimes ω when

there is no external forcing (e.g. Eq. (2)). These equations are denoted:

H(a0,a1,b1, . . . , ω) = 0 (6)

When the system has an external periodic forcing, that is when it is non au-

tonomous, ω in the Fourier series is taken equal to the forcing circular frequency120

ω∗; the resulting system, with ω = ω∗, is then square and has, locally, one so-

lution only. In the case of NNMs computation, the system is autonomous and

for a given ω = ω∗ value, although the system is still square, there is, locally,

not only one solution but a family of solutions. An additional equation usually

called phase condition [26] is then used to choose one solution among this fam-125

ily. Possible phase conditions and their consequences on the problem size are

mentioned later in Sec. 3.1.3.

6



3.1.2. AFT method to get nonlinear forces Fourier decomposition

The expression of the projection of the linear part of Eq. (1) or (2) can be

established analytically [25]. When considering Eq. (2), it is Hl(ω) uH , where:
Hl(ω) = diag(Λ0,Λ1, . . . ,ΛH)

Λ0 = K, Λk = diag(K− (kω)2M,K− (kω)2M)

uH = {aT
0 , . . . ,a

T
k ,b

T
k , . . . }T

(7)

The difficult and time consuming step when solving this system is the eval-

uation of the projections of nonlinear forces fnl(u, u̇) onto the Fourier basis,130

denoted Hnl(uH , ω). Unless an analytical expression can be derived, the most

common approach is the Alternating Frequency/Time (AFT) method intro-

duced by Cameron and Griffin [27]. u(tk) and u̇(tk) are evaluated for specific

tk values in [0, T ] using an Inverse Fast Fourier Transform (IFFT) based on ak

and bk coefficients. Then, fnl(u(tk), u̇(tk)) is computed for each time tk; finally,135

a Fast Fourier Transform (FFT) is used to evaluate the projections, that is the

coefficients of the Fourier series of fnl(u, u̇).

The algebraic nonlinear system to solve writes:

Hl(ω) uH + Hnl(uH , ω) = 0 (8)

3.1.3. Phase condition when circular frequency is unknown

When considering an autonomous system such as Eq. (2), no “initial time”

exists and using u(t), t ∈ [0, T ] or u(t′ + t), t′ ∈ R to describe the limit cycle140

are equivalent. Hence, the Fourier coefficients are not uniquely defined and

it is preferable to add an equation, frequently called phase condition so as to

define a unique solution line of Eq. (8). Different equations can be added: the

amplitude or velocity of a given dof can be imposed when t = 0 in Eq. (4)

[26]. This effectively adds an equation linking Fourier coefficients of this dof145

together. This may imply that solutions violating this condition will not be

found. Another solution is to nullify one of the Fourier coefficients components;

this is a priori of a lower cost as it removes one unknown [28]. Moreover,

considering a conservative system with no symmetry, choosing to nullify one
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sine coefficient implies that all other sine coefficients are null, hence, problem150

size is divided by almost 2, having only to solve for (H + 1) ak coefficients only

based on the N(H + 1) equations provided by projection on cosine functions

only. Other equations are of course possible such as the CHBM developped

by Coudeyras et al. [29] which involves the eigenvalues analysis of the tangent

system or the integral condition used in AUTO [30].155

When adding an equation, the resulting system (6) for an arbitrarily chosen

ω∗ value is not square anymore: the N(2H+1) Fourier coefficients are described

by the N(2H + 1) + 1 equations (HBM equations plus phase condition). There

are different ways to circumvent this problem as stated in [5].

The rest of the paper focuses on undamped NNMs which can be described by

a collection of cosine coefficients only. Systems with out-of-unison behaviour as

defined by Hill et al. [31] are excluded. This is equivalent to a phase condition

imposing a null velocity at initial time for one dof for systems without symme-

tries. Using this assumption, all the equations derived from the projection onto

sine functions sin(kωt) are useless and then removed. Equation (8) still holds

but with the following definitions replacing definitions given in Eq. (7):
Hl(ω) = diag(Λ0,Λ1, . . . ,ΛH)

Λ0 = K, Λk = K− (kω)2M ∈MN (R)

uH = {aT
0 , . . . ,a

T
H}T

(9)

For a given ω∗ value, the system is then square, having N(H + 1) unknowns160

(a0,a1, . . . ,aH) driven by N(H + 1) equations (projections of Eq. (2) onto

[1/
√

2, cos(ωt), . . . , cos(Hωt)] functions).

3.2. PGD combined to HBM

According to Chinesta et al. [12] and Grolet and Thouverez [14], a PGD

process can simply be reduced to three fundamental steps: separating variables,165

obtaining as many subproblems as there are variables, and run an alternated di-

rections algorithm which solves each subproblem with the other variables which

are fixed, in a same loop iteration. In this section the temporal and the spa-
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tial problems are obtained and coupled with HBM features to produce a global

PGD/HBM algorithm.170

3.2.1. Separable variables assumption

As a first PGD requirement, we choose to look for a specific form of solutions

including a space-time separation. u(t), solution of Eq. (2), is sought as:

u(t) ≈
m∑
j=1

pjqj(t)⇔ u(t) ≈ Pq(t) with P = [p1, . . . ,pm] (10)

where m is a positive integer such as m << N and denotes the number of PGD

modes used for u decomposition, P ∈ MN,m(R) is the matrix of the m PGD

mode shapes pj , and q(t) ∈ Rm is the vector containing the time dependence

of each PGD mode. As a product of two data is involved, the spatial modes pj175

are normalized to 1 arbitrarily; amplitude information is then reflected by qj(t)

only.

One of the main advantages of the PGD approach is to split the problem

into two smaller problems: one in space returning a value of P and one in time

to get q. As we are here looking for periodic solutions, q will be decomposed

using HBM. Following Sec. 3.1, q(t) is approximated by its truncated Fourier

series:

q(t) =
a0√

2
+

H∑
k=1

ak cos(kωt) (11)

A compact way to write q(t) is then:

q(t) = QHhH(t, ω), where

 QH = [a0,a1, . . . ]

hH = [1/
√

2, cos(ωt), . . . ]T
(12)

Computing q(t) is then equivalent to computing both QH and ω. For examples

of problems solved by PGD in the time domain, the reader can refer to Nouy

[13] for instance.180

3.2.2. Temporal problem Tm

In this part, the mode shapes P are assumed to be known. The objective is

to compute q(t) – i.e. QH and ω – with P as a parameter. To this end, a weak
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formulation is used: the test function u?(t) is written u?(t) = P q?(t) and q(t)

must satisfy Eq. (13) for an oscillation period It = [0, 2π/ω].

∀t ∈ It ∀q?(t)

∫
It

q?T (t)PTR(Pq(t))dt = 0 (13)

A few matricial calculus are needed to get the temporal problem (14) from the

weak formulation (13):

∀t ∈ It Mrq̈(t) + Krq(t) + fnlr(Pq(t)) = 0 (14)

where {Mr = PTMP,Kr = PTKP} ∈ Mm(R)2 and fnlr = PT fnl ∈ Rm.

This subproblem is a system of m second order ODEs with a nonlinear con-

tribution solved using HBM as described in Sec. 3.1. A new algebraic system

with m (H+1) equations and m (H+1)+1 unknowns – QH and ω – is then ob-

tained. Indeed ω is unknown for a NNM computation and a constraint equation

c(qH , ω) is needed to make the system square. Using the notations introduced

in Eq. (8) and (9), the temporal problem Tm can be defined as follows:

Tm(QH , ω|P) = 0⇔

Hl(ω)qH + Hnl(qH , ω) = 0

c(qH , ω) = 0
(15)

where qH = {aT
0 ,a

T
1 , . . . }T contains the columns of QH , Hl is the linear con-185

tribution, Hnl is the vector of Fourier coefficients of the nonlinear contribution

of Eq. (14), and c(qH , ω) ∈ R is an arbitrary constraint equation which allows

to get a square system. c(qH , ω) will be specified in Sec. 4.1 as a continuation

criterion.

3.2.3. Spatial problem Sm190

In this part, q(t) – that is QH and ω – are supposed to be known and only

P is modified. The test function is then u? =

m∑
k=1

p?
kqk which leads to a set of

m systems with N equations:

∀k ∈ [[1;m]],

m∑
j=1

(∫
It

qkq̈j dtM +

∫
It

qkqj dtK

)
pj +

∫
It

qkfnl(Pq(t)) dt = 0

(16)
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This can be written in a more compact way as a unique N ×m sized system

defining Sm:195

Sm(P|QH , ω) = 0⇔ Sl p̃ + Snl(p̃) = 0 (17)

where

• p̃ = {pT
1 , . . . ,p

T
m}T ∈ RN×m contains the columns of P;

• Sl can be defined analytically:

Sl = I2 ⊗M + I0 ⊗K (18)

with I0 =
π

w
QHQT

H , I2 = −πωQHD2QT
H and D = diag(0, 1, . . . ,H);

• Snl(p̃) = [
∫
It
qkfnl(Pq(t)) dt]1≤k≤m is computed using the AFT approach

described in Sec. 3.1.200

The size of this system depends on N so this is more expensive to solve than

the temporal problem as m << N , especially in an industrial context.

3.2.4. PGD/HBM core global algorithm

Both temporal and spatial problem being properly defined, they are embed-

ded in the global PGD/HBM algorithm which also addresses the convergence cri-205

terion issue and additional modes initialization. It is described in Algorithm 1.

First, an error measure ε is defined (lines 1 and 11). It compares the norm

of the residue vector R(u(t)) where u(t) = PQHhH(t, ω) to the norm of the

linear stiffness contribution over a period It. This lets us introduce a conver-

gence criterion for the alternated directions algorithm loop (line 4) while Grolet210

and Thouverez [14] imposed to loop over k three times without checking the

convergence. The loop is then broken as soon as the number of iterations k

becomes larger than a given value kmax or the error measure ε becomes smaller

than a given limit εmax or when the current iteration did not provide enough

error reduction, that is, when ε > radεprev, with rad < 1 an arbitrary positive215

factor, and εprev being the error measured at the end of the previous iteration.
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Algorithm 1: PGD/HBM global algorithm

Parameters: Values for mmax, kmax, εmax and rad;

Definition of c(qH , ω) used in Tm;

LNMs: Φ = [φn0
, . . . ,φn].

Data: Initial values for m, P, QH and ω.

1 ε← maxt∈It(||R(u(t))||/||Ku(t)||);

2 while m ≤ mmax and ε > εmax do

3 k ← 0, εprev ← 2 ε;

4 while k ≤ kmax and ε ≥ εmax and ε ≤ radεprev do /* AD loop

*/

5 k ← k + 1, εprev ← ε;

6 QH , ω ← solutions of Tm(QH , ω|P) = 0;

7 P ← solution of Sm(P|QH , ω) = 0;

8 for j ← 1 to m do /* Mode normalization */

9 pj ← pj/||pj ||;

10 end

11 ε← maxt∈It(||R(u(t))||/||Ku(t)||);

12 end

13 if ε ≥ εmax then /* Next mode initialization */

14 P← [P,φn0+m], QH ←

[
QH

01,H+1

]
;

15 m← m+ 1;

16 end

17 end

18 Return m, P, QH , ω and ε;
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Inside the alternated directions algorithm loop, temporal and spatial prob-

lems are solved (lines 6 and 7 respectively). Once a new P matrix is computed,

each spatial mode pj is normalized as stated in Sec. 3.2.1.

Once the loop is broken, if the convergence criterion ε ≤ εmax is not fulfilled,

a new PGD mode is added (from line 13): m is increased and a new column

is added to P matrix while a new row is added to QH matrix. The choice of

these additional values is important as it will greatly influence the convergence

of the next resolution loop. Grolet and Thouverez [14] chose to add random

values for QH , and processed the spatial problem before the temporal one. We

propose here to process the temporal problem first based on the new spatial

mode introduced φn0+m, with n0 being the index of the n0-th NNM. Indeed,

we do not know much of the relevant temporal information to inject: having to

initialize QH is a real difficulty. However, the LNMs φk solutions of:

(K− ω2
kM)φk = 0 (19)

can be easily computed and are known to form a basis. Using this spatial220

information then seems a better choice than using random values. When trying

to compute the n0-th NNM, it seems relevant to look for an additional spatial

mode close to the next LNM. Starting from this point, the algorithm then

adjusts this spatial mode by solving Sm subproblem.

4. Branches of solutions using continuation with PGD/HBM modes225

enrichment

In this section a full algorithm to compute NNMs is proposed. It uses PGD

combined to HBM with on the fly enrichment in conjunction with a continuation

technique. A highly reduced and economical description of NNMs is obtained:

one PGD mode is required near the n0-th LNM and new PGD modes are added230

only when it is necessary along the path. This dimension varying continuation

scheme keeps the number of variables used to describe the branch as small as

possible while energy grows and the system behaviour becomes more complex.
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The main interest of this work does not consist in the continuation technique

in itself but in the handling of a variable size of the solution space as PGD modes235

are added along the path. In what follows, the main ingredients of a classical

prediction-correction continuation scheme are briefly defined before introducing

the choices made to tackle the variable size.

To simplify the notations, we will denote yn the n-th point on the current

path. This point gathers the PGD modes as well as the circular frequency

information, P, QH and ω and hence has size N m+ (H + 1)m+ 1:

yn ≡ {Pn,QHn, ωn} (20)

Moreover, the distance d(yn−1,yn) between two consecutive points yn−1 and

yn is defined using separated weights for each variable:

d(yn−1,yn) =
√
α2
P ||Pn −Pn−1||2 + α2

Q||QHn −QHn−1||2 + α2
ω|ωn − ωn−1|2

(21)

where αP , αQ and αω are strictly positive constants which provide a mean

to manage the different orders of magnitudes of the three variables. Each of240

them can be set to 1 but they can also be adjusted so as to give more or less

importance to each of these variables by compensating for the difference in order

of magnitudes.

4.1. Continuation process

As stated above, a very simple continuation procedure is used. More complex245

procedures can be found in [32]. Let us assume that n points y1, . . . ,yn have

already been computed. The next point y? is sought using a prediction step

which returns ypred
? ; this point is used as an initialization point for the correction

step which, in our case, relies on the coupled PGD/HBM method described in

Sec. 3.2 with a specific constraint equation c(qH , ω) = 0 linked to the chosen250

correction method. The global algorithm is depicted in Algorithm 2.

The prediction is based on a secant method:

ypred
? = yn + ∆s

yn − yn−1
d(yn−1,yn)

(22)
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∆s defines “how far” the point is predicted. It is usually adapted along the path:

for areas where the solution does not vary a lot, a large value should be used

to save computation time; on the contrary, if the solution does vary “rapidly”

small values provide better predictions and fewer correction steps. Here, we255

use a rough adaptation scheme depending on the convergence of the correction

step and the error measure value ε (see Algorithm 1 in Sec. 3.2.4) once a new

point was computed: if the correction step did not provide a satisfying new

point, ∆s is decreased by multiplying it by rdivs < 1 (see line 17) leading further

to a new prediction point ypred
? closer to yn; if the correction step provided a260

satisfying point for which the error measure is less than rεεmax with rε < 1, ∆s

is multiplied by rmult
s > 1 (see lines 13 and 14); otherwise, ∆s is kept constant

for the next prediction step.

This secant prediction implies that at least 2 points have already been com-

puted. The first point of the path is taken equal to the LNM associated to the265

studied NNM with null amplitude. Using notations introduced in Eq. (19) and

(20): y1 ≡ {φn0
,01,H+1, ωn0

}. To find the second point, we choose to impose

the amplitude of the j-th dof at t = 0: uj(t = 0) = uj0 with uj0 6= 0. This

prevents the algorithm from returning the null (and trivial) solution. This con-

dition is denoted c2(qH , ω) in Algorithm 2 and defines the constraint equation270

c(qH , ω) = 0 of Algorithm 1. The coupled PGD/HBM method can then be

applied to find y2 starting from y1.

The correction step consists in applying the PGD/HBM method described in

Algorithm 1 with ypred
? as a startpoint and using a specific constraint equation

c(qH , ω) involved in the time problem Tm.275

This equation is denoted cp(qH , ω) in Algorithm 2. It defines the correction

method and can be freely chosen among the classical possibilities [24]. An

arclength correction is used for applications studied in Sec. 5:

cp(qH?, ω?) = d(yn,y?)2 −∆s2 (23)

This condition also involves P? which is the last value of spatial modes returned

after the spatial problem Sm when processing the current temporal problem Tm.
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As said above, these steps are rather classical for a prediction/correction

based continuation procedure. The important difference lies in the possibility

of increasing the problem dimension when stepping from yn to yn+1 as the280

correction step managed by the PGD/HBM method described in Algorithm 1

can add up to ∆m modes to yn+1 (see line 7 in Algorithm 2 which defines mmax

used in Algorithm 1). This leads to continuation points with possibly different

sizes which has to be dealt with.

The termination criterion in Algorithm 2 (line 6) involves the maximum285

number of PGD mode mmax tot. This criterion could of course be advantageously

replaced by a more meaningful criterion involving the frequency or the amplitude

of a given dof for example.
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Algorithm 2: Continuation with on the fly PGD enrichment algorithm

Parameters: Values for ∆m, mmax tot, rε, r
mult
s , rdivs and ∆s;

Values for Algorithm 1:

- kmax, εmax and rad;

- LNMs: Φ = [φn0
, . . . ,φn];

- Constraint equations: c2(qH , ω) and cp(qH , ω).

Data: Circular frequency of n0-th mode ωn0
.

1 y1 ← {φn0
,01,H+1, ωn0

}; // First point

2 c(qH , ω)← c2(qH , ω), mmax ← mmax tot; // Second point

3 Compute y2 using Algorithm 1 with y1 as initial value;

4 c(qH , ω)← cp(qH , ω); // Continuation loop

5 p← 2;

6 while m ≤ mmax tot do

7 mmax ← m+ ∆m;

8 Compute ypred
? using secant method // Prediction

with yp, yp−1 and ∆s;

9 Compute y? using Algorithm 1 // Correction

with ypred
? as initial value;

10 if ε < εmax then

11 yp+1 ← y?;

12 p← p+ 1;

13 if ε < rεεmax then

14 ∆s← rmult
s ∆s;

15 end

16 else

17 ∆s← rdivs ∆s;

18 end

19 end
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4.2. Management of a variable problem size during the continuation290

Having to deal with different problem dimensions along the path is not a

problem in itself but it implies to decide for rules when yn points with different

sizes have to be considered at the same time. This may happen during the

prediction step when yn has a greater size than yn−1 and during the correction

procedure when trying to enforce the arclength condition Eq. (23). Each time,295

it is possible either to pad the point with the smallest size with zeros for missing

components or to delete the supernumerary components of the point with the

bigger size. The choices for each of the two steps may not be identical.

4.2.1. Prediction step

If yn−1 and yn have different sizes m the secant prediction needs a slight300

adaptation because the distance given by Eq. (21) need summations of matrices

that do not have the same sizes. The choice made is to pad yn−1 missing

components with zeros instead of truncating yn. Hence, all computed data are

taken into account to reach a better prediction.

4.2.2. Correction step305

The same dimension issue happens when it comes to evaluate cp(qH , ω).

When y? is described with more PGD modes than yn a truncation is applied

for the current point. The use of an arclenght correction requires the distance

between yn and y? so it is evaluated in a space which has the size of yn. This

does not impose any conditions on the new component introduced in y?.310

5. Application to two beam cases

In this section the main branch of the NNM1 (nonlinear normal mode tan-

gent to the first linear mode for small energy levels) of two mechanical systems

is built using the PGD/HBM based continuation method described in previous

sections. Both systems are Euler-Bernoulli bending beams with one end clamped315

and a spring at its free end. Two different classes of conservative nonlinearities

are then added and detailed. These models are generated using MATLABr
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directly: the need for nonlinear forces fnl expression makes it difficult to use the

method in conjunction with a commercial FEM software.

Let us define the values of the beam properties: Young modulus E =320

210 GPa, density ρ = 7800 kg.m−3, area of the square section S = 9 10−4 m2,

second area moment I = 6.71 10−8 m4 for an in-plane bending and length

L = 1 m. The linear stiffness of the spring is k = 4 104 N.m−1. The beam is

discretized with Ne = 20 elements by FEM with two dof per node: a transverse

displacement u and a rotation θ. This leads to N = 40 dof once the clamping is325

taken into account. The first eigenvalues of the beam alone and beam plus the

linear spring are given in Table 1.

i 1 2 3 4 5 6

ωi (rad.s−1)
Beam alone 157 988 2765 5419 8959 13385

With spring 217 999 2769 5420 8960 13386

Table 1: First eigenvalues of the clamped-free beam alone and with the linear spring attached

to the free end.

Both studied cases are illustrated in Fig. 1. In the first case a polynomial

nonlinearity is chosen by introducing a cubic stiffness knl to the spring. The

second case examines a unilateral contact problem: the spring has a linear330

stiffness but there is a gap g between the free end of the beam and the spring.

The parameters required by Algorithm 2 are given in Table 2 for both studied

(a) (b)

Figure 1: Euler-Bernouilli cantilever beam (a) with a transverse cubic spring at dof 1 (b) with

a transverse gap between dof 1 and the linear spring.
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cases.

∆m mmax tot rε rmult
s rdivs ∆s

Cubic spring case 1 10 0.1 1 0.5 1.5

Contact case 5 10 0.5 1.07 0.5 1

kmax εmax rad y2 : u1(t = 0) {αP , αq , αω}

Cubic spring case 10 10−3 0.8 10−2 m {1, 10−1, 10−4}

Contact case 10 10−3 0.8 5 10−4 m {0, 10−6, 1}

Table 2: Algorithm 2 required parameters.

5.1. Bending beam with a cubic spring at its free end

The underlying linear system is made of the mass and stiffness matrices of335

the beam plus the linear stiffness of the spring – i.e. K11 = K11 beam + k. Its

linear modal properties are given at the last row in Table 1. The nonlinear

contribution is fnl(u) = [knlu
3
1(t) 0N−1]T with knl = 9.2 105 N.m−3. On an

exploratory basis, H = 50 harmonics are considered. It is further showed that

no more than ten harmonics are really needed for this problem.340

Fig. 2 provides an overview of the results in a Frequency-Energy plot (FEP),

which is a convenient way to display the NNM branches [1, 5]. On this figure

and all the following ones Npt is the index of converged solution points through

the continuation. We will focus on the 35 first computed points of the branch

(Npt ≤ 35, solid line on Fig. 2) for the sake of clarity in the analysis.345

Only 4 PGD modes are needed to describe the studied branch (Fig. 3 and

solid line on Fig. 2) and only 6 PGD modes are required to build the whole

plotted branch (including dotted line on Fig. 2). The NNM shape at null velocity

gives interesting data as the studied NNM framework is the Rosenberg’s one [3]:

all dofs reach their maximum at the same time. On Fig. 2, the more energy grows350

the more the nonlinear spring takes importance against the bending inertia of

the beam, generating localized curvature inversions near the free end. Kerschen

qualitatively gives similar results for another cantilever beam with cubic spring

in [19].
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Figure 2: Beam with cubic spring – (a) Main branch of NNM1 in a FEP and (b) its mode

shape at null velocity points for three continuation points. Squares: solution points where a

PGD mode is added.

The error measure ε along the path is depicted along with the number of355

PGD modes on Fig. 3. Its evolution is consistent with the evolution of m: PGD

modes are added when ε reaches the limit value εmax which, in turns, decreases

the error. Moreover Fig. 2 shows the PGD modes are gradually added along

the branch as expected with a smooth cubic nonlinearity. Note that the error

for the first point Npt = 1 is not displayed as it is null and cannot appear in a360

logarithmic scale.

Fig. 4 provides an analysis of PGD spatial modes pj . PGD modes globally

keep their shape through continuation. An interesting feature proper to the

presented method is the presence of PGD modes which involve the participation

of several LNMs. Such a “combined mode” is here the PGD mode 3, which365

gathers contributions of the first 6 LNMs. With such an approach, high order

LMNs can be taken into account in a reduced range of PGD mode shapes: here

4 PGD modes are sufficient to describe a system behaviour which involves at
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Figure 3: Beam with cubic spring – (a) Number of PGD modes m and (b) error measure ε

against point index Npt.
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Figure 4: Beam with cubic spring – Analysis of PGD spatial modes. First row: PGD mode

shapes. Normalization is made at the maximum deflection point. Dotted line: shape when

the mode is first introduced; Solid line: shape at the end of the branch (Npt = 35). Second

row: Participation factors of LNMs in each PGD mode. Crosses: factors when the mode is

introduced; Circles: factors at the end of the branch (Npt = 35).

The temporal information is plotted on Fig. 5. The significant variations370

of the temporal part through the MNL branch are expected as the previously

described spatial part does not significantly change. Otherwise only odd har-

monics are not null because of the cubic nature of the nonlinearity. As a global
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trend high order harmonics have less influence: all the amplitudes |ak| are sub-

millimetric from k = 11, for all the PGD modes. The PGD mode 1 behaviour375

is the simplest as it stays mainly led by the fundamental cosine. Other PGD

modes have a richer harmonic behaviour with shared influences of |a1|, |a3|,

|a5| and |a7|. This complex harmonic spectrum is partly due to the fact that

PGD mode shapes are combinations of LMNs. All these qualitative interpre-

tations also highlight the growing complexification of the beam behaviour and380

the growing influence of high harmonics as energy grows.
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Figure 5: Beam with cubic spring – Amplitudes of (cosine) Fourier coefficients of PGD modes.

Crosses: coefficients when the mode is first introduced; Circles: coefficients at the end of the

branch (Npt = 35).

Finally the main objectives of the method are met: to describe a NNM

branch with a few variables, to keep the number of PGD modes as small as

possible by incrementing m only when the convergence criterion is not fulfilled,

and obviously to retrieve all physical data belonging to the case under study.385
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In the next section the method is tested on a non polynomial nonlinearity.

5.2. Bending beam with a unilateral contact

In this example the underlying linear system is the Euler-Bernoulli cantilever

beam. Its modal properties are given in the first row of Table 1. The unilateral

contact is modelled as follows:390

fnl(u) =

[k(u1(t)− g) 0N−1]T , if u1(t) > g

0N , otherwise

with g = 2 cm. This law is kept non smooth and the contact is quite hard as

k/
3EI

L3
= 94.56% with

3EI

L3
the spring rate of the cantilever beam taken alone.

A similar contact problem from the stiffness point of view is a contact between

this beam and another identical one. Looking for periodical solutions for this395

class of problem usually requires a wide range of harmonics so the arbitrary

value H = 70 is chosen. The consistency of this value is shown a posteriori in

Fig. 9.

NNM1 branch displayed in Fig. 6 is built with only 6 PGD modes and 199

solution points for the set of parameters given in Table 2. On the FEP given400

on Fig. 6, from Npt = 1 to Npt = 21, NNM1 is exactly equal to LNM1 – a

pure fundamental cosine – as the beam does not touch the spring yet. Then a

transition zone occurs for 22 ≤ Npt ≤ 85 where 5 PGD modes are added on 5

close points. Finally the rest of the branch is computed. Note that two internal

resonances extracted from two others simulations are drawn with dotted lines.405

These data are obtained by manually modifying the parameters of Table 2 at

the beginning or through the simulation. Analogous FEPs of related contact

systems are studied by Moussi and Cochelin [33, 34] for example.
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Figure 6: Beam with unilateral contact – NNM1 main branch (solid) and internal resonances

(dotted) in a FEP. Squares: points where PGD modes are added.

In this example again the error measure ε follows the evolution of m as shown

on Fig. 7. Here 5 PGD modes are required to significantly decrease the error.410

Other simulations with different continuation parameters add these 5 modes in

one single point when it is allowed by using ∆m = 5. Note that by contrast

with the cubic spring case all the PGD modes needed to build the branch are

added in the same narrow area in the FEP. This shows that describing sharp

or gradual changes of the system behaviour by the PGD/HBM continuation415

scheme with on the fly enrichment is feasible.
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Figure 7: Beam with unilateral contact – (a) m and (b) residue ε against Npt. Dotted line:

convergence threshold.

As shown on Fig. 8, for this problem PGD mode shapes do not significantly

vary except the two last modes. The fifth PGD mode shape strongly changes

between Npt = 82 and Npt = 199, mostly because of LNM4 participation.

However its final shape is about to be reached at Npt = 85, when PGD mode 6420

is introduced, and PGD mode 5 does not evolve a lot from this point. The last

PGD mode has remarkable coupling with high order LNMs. It condenses in a

single mode a lot of modal information which illustrates the economical benefits

of the presented method.
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Figure 8: Beam with unilateral contact – Analysis of PGD spatial modes. Left column: PGD

mode shapes. Normalization is made at the maximum deflection point. Dotted line: shape

when the mode is first introduced; Solid line: shape at the end of the branch (Npt = 199).

Right column: Participation factors of LMNs in each PGD mode. Crosses: factors when the

mode is introduced; Circles: factors at the end of the branch (Npt = 199).

The harmonic decomposition associated to each PGD mode is given on425

Fig. 9. The temporal part is complex as the contact issue generates a lot of

important high harmonics but global trends can be considered. First a pre-

dominant cosine in PGD mode 1 drives the linear behaviour at the beginning

of the range, then the amplitude of the whole harmonic set increases as energy

grows. The free flight of the beam during a period can help to explain why low430

frequency harmonics are always significant through the continuation. Note that
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non negligible static coefficients a0 appear because of the static term introduced

in the nonlinear vector fnl(u).

0 20 30 40 50 6010 70
10-10

10-8

10-6

10-4

10-2

100

0 20 30 40 50 6010 70
10-10

10-8

10-6

10-4

10-2

100

0 20 30 40 50 6010 70
10-10

10-8

10-6

10-4

10-2

100

0 20 30 40 50 6010 70
10-10

10-8

10-6

10-4

10-2

100

0 20 30 40 50 6010 70
10-10

10-8

10-6

10-4

10-2

100

0 20 30 40 50 6010 70
10-10

10-8

10-6

10-4

10-2

100

PGD mode 1 PGD mode 2 PGD mode 3

PGD mode 4 PGD mode 5 PGD mode 6

Figure 9: Beam with unilateral contact – Amplitudes of (cosine) Fourier coefficients of PGD

modes. Crosses: coefficients when the mode is first introduced; Circles: coefficients at the end

of the branch (Npt = 199).

5.3. Numerical considerations

The main objective of reduced model approaches is reached as few descriptors435

are processed and stored with the presented approach, as shown in Table 3.

A classical HBM continuation requires N × (H + 1) descriptors by solution

point whereas the implemented PGD/HBM continuation only needs m× (N +

H + 1) ones. Obviously calculating a solution point via PGD/HBM is relevant

if and only if m× (N +H+1) < N× (H+1). An easy proof gives the necessary440

condition for the PGD/HBM method to be more interesting than a classical

HBM approach: m < H + 1. In other words, the PGD/HBM method is useful

for problems which require a large number of harmonics.
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PGD/HBM HBM

Cubic spring

case

m = 1

(2 pts)

m = 2

(11 pts)

m = 3

(16 pts)

m = 4

(6 pts)
Total

184 2013 4384 2190 8771 71435

Contact case

m = 1

(79 pts)

2 ≤ m ≤ 5

(5 pts)

m = 6

(115 pts)
Total

7268 2007 62905 71971 406159

Table 3: Comparaison between the number of descriptors needed by PGD/HBM – m(N +

H + 1) + 1 by point – and classical HBM – N(H + 1) + 1 by point – for both examples.

In both examples the saving of variables with respect to a classical HBM

can be assessed with the ratio 1 − m×(N+H+1)
N×(H+1) . The PGD reduction is very445

efficient, with 88% and 82% less variables for the cubic spring and the contact

cases respectively.

We now focus on the underlying numerical solver and its iteration data when

the subproblems are solved. The trust-region algorithm used requires function

and abscissa tolerances – set on 10−9 here – and allows to set a maximum450

number of iterations Nitemax. The value Nitemax = 100 is set but this limit is

never reached (max. 54 iterations for the spatial problem of the cubic spring

case, when PGD mode 4 is about to be added). In Table. 4 are given mean

and maximum numbers of solver iterations for temporal and spatial problems

through the continuation, for both examples.455

Mean Standard Maximum

iteration number deviation iteration number

Cubic spring case
Tm 6.23 4.89 22

Sm 16 10.92 54

Contact case
Tm 2.18 1.53 16

Sm 9.77 8.68 49

Table 4: Mean, standard deviation and maximum of iteration numbers for Tm and Sm prob-

lems, through the continuation.

As expected the spatial problem is heavier and the given maxima are reached

when a PGD mode is about to be added. Nitemax could be an interesting
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control parameter for bigger problems as one can keep it very small and save

computation time by “converting” convergence issues into new PGD modes or

a reduced arclength ∆s.460

Another performance indicator is the CPU time. The total computational

time spent to build NNM1 of the cubic spring case was approximately 380s

with the PGD/HBM approach, against 10400s for a classic HBM, that is about

27 times less. Computations used the same continuation scheme, 36 solutions

points were found in both cases and branches were computed up to Emax ≈465

4.1 104J; they were run on a desktop computer with MATLABr R2017a, 32

GB of RAM and an Intelr Core i7 CPU.

Finally we compare the numerical efficiency of Algorithm 1 when using the

proposed algorithm and when processing the spatial problem Sm first. As ex-

plained in Sec. 3.2.4, when Sm is solved before Tm, the lack of temporal data to470

initialize the spatial problem is filled by using random values for QH . Hence,

uniformly distributed random numbers between 0 and 1 are used to initialize

QH . The cubic spring case is computed with exactly the same parameters ex-

cept the random new PGD modes. In the non-random case, 35 attempts are

made to compute the 35 solution points: line 17 in Alg. 2 is never called. To475

compare the result, among 25 draws of the random case we focus on the number

of converged points computed with 35 attempts, the maximum energy reached

Emax and the number of iterations data of all the draws. The iteration num-

ber of the failed attempts are counted into the iteration number of the next

converged point. The results are given in Table 5.480

Min. Mean
Standard

Max.
deviation

Converged points 5 21.2 9.31 31

Emax (J) 3.74 10−10 3.71 103 4.4 103 1.99 104

Iteration number for Tm 3 209.93 389.59 3000

Iteration number for Sm 3 110.62 192.03 1463

Table 5: Mean, standard deviation and extrema of simulation features for 25 random draws.
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Unlike the non-random computation, there are always failed attempts. The

number of computed iterations is far bigger. In particular the temporal problem

is heavily penalized by the random coefficients. Otherwise no point reaches the

final energy of the non-random branch. Some draws stay at a very low level

of energy and 24 out of 25 draws have solutions points which go back into the485

NNM branch. This shows initializing new modes with random values leads to

non robust predictions.

In addition to these points, the main advantage of the presented non-random

method against the random variant is the reproducibility of its results.

6. Conclusion490

The computation of NNMs using a PGD/HBM continuation technique with

on the fly enrichment derived in this paper has been presented and successfully

applied on two classical nonlinear examples with either smooth or non smooth

nonlinearities. The only limitation of the method is to have access to nonlinear

forces value fnl(u) at some specific points u. A significant decrease of the num-495

ber of needed variables has been noticed when compared with a classical HBM

approach; this demonstrates that NNM branches can be described in a highly

reduced manner. The PGD modes obtained provide relevant physical data as

spatial initializations are the LNMs of the system. The numerical aspects de-

veloped here are highly adaptable as many parameters are let free (cf. Table 2),500

giving a certain flexibility to the algorithm.

The presented approach could be used to process bigger structures with dif-

ferent kinds of nonlinearities. It could be interesting for systems which present

many contact issues for example. Variants of the algorithm could then be con-

sidered in order to alleviate the cost of the spatial subproblem by using a pro-505

gressive PGD method which only addresses a spatial problem when a PGD

mode is added. On the fly impoverishment of the PGD modes set could also be

considered so as to keep it as small as possible.

Finally, future prospects could include the computation of damped NNM or
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forced responses of a structure.510
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