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Magnetic resonance elastography (MRE) is a non-invasive imaging technique, using the

propagation of mechanical waves as a probe to palpate biological tissues. It consists in

three main steps: production of shear waves within the tissue; encoding subsequent

tissue displacement in magnetic resonance images; and extraction of mechanical

parameters based on dedicated reconstruction methods. These three steps require an

acoustic-frequency mechanical actuator, magnetic resonance imaging acquisition, and a

post-processing tool for which no turnkey technology is available. The aim of the present

review is to outline the state of the art of reported set-ups to investigate rodent brain

mechanical properties. The impact of experimental conditions in dimensioning the set-up

(wavelength and amplitude of the propagated wave, spatial resolution, and signal-to-

noise ratio of the acquisition) on the accuracy and precision of the extracted parameters

is discussed, as well as the influence of different imaging sequences, scanners,

electromagnetic coils, and reconstruction algorithms. Finally, the performance of MRE in

demonstrating viscoelastic differences between structures constituting the physiological

rodent brain, and the changes in brain parameters under pathological conditions, are

summarized. The recently established link between biomechanical properties of the

brain as obtained on MRE and structural factors assessed by histology is also studied.

This review intends to give an accessible outline on how to conduct an elastography

experiment, and on the potential of the technique in providing valuable information

for neuroscientists.
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INTRODUCTION

Elastography is an imaging technique which derives mechanical property maps from a
visualization of shear waves propagating within soft biological tissues. Originally developed
in 2D using ultrasound imaging (1), elastography rapidly came to be associated to magnetic
resonance imaging (MRI) methods, which have the advantage of visualizing shear waves in
3D (2). Magnetic Resonance Elastography (MRE) requires several basic experimental steps: (i)
a mechanical actuator to generate shear waves within the biological tissue; (ii) encoding of
consequent tissue displacements in the phase of MR images, using Motion Encoding Gradients
(MEG); and (iii) inversion of the motion equation for each voxel of the images, using a dedicated
reconstruction method.

Elastography provides similar information to palpation, and the mechanical properties
measured in vivo are derived from rheological models. Compared to other MRI methods,
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MRE-derived parameters provide the largest “variations [. . . ]
over 5 orders of magnitude among various physiological states”
(3), making MRE sensitive to various kinds of microscopic
change (4), and turning MRE into a unique non-invasive tool
able to probe tissue at a microscopic scale (5, 6). In the last
decade, MRE has shown itself particularly useful for studying
the brain, as both palpation, and ultrasound elastography are
prevented by the presence of the skull. Several studies in
humans reported physiological differences between brain areas,
along with alterations in viscoelastic parameters in various
diseases (tumor, hydrocephalus and neurodegenerative disease)
recently reviewed in (7, 8). These proof-of-concept studies
motivated application of MRE in rodents as a crucial step to
identify the pathophysiological processes underlying changes
in viscoelasticity (9). As of today, this powerful non-invasive
technique has provided first in vivomechanical characterizations
of healthy and pathological rodent brain even though disparity
in results can be pointed out. The goal of this review is to present
pros and cons of the diverse actuation, imaging, and inversion
methods developed so far as well as some important results drawn
out in the field of rodent brain MRE, in order to identify the
remaining obstacles to pulling this field out of the hands of expert
only.

IN VIVO RODENT BRAIN MRE

Dimensioning MRE Experiments
The accuracy and precision of MRE reconstruction methods
inherently depends on the wavelength and amplitude of the
propagating wave, the size of the biological structures, and the
spatial resolution and signal-to-noise ratio (SNR) of the MRE
acquisition. Therefore, as reported in two studies of the quality
of MRE-reconstructed data, MRE experimental parameters have
to present: a wavelength-to-pixel-size ratio of 15 to 30 (10)
or 6 to 10 (11), depending on the reconstruction technique; a
minimum phase accrual induced by motion encoding (i.e., wave
amplitude) about 10-fold higher than the standard deviation of
the phase noise; and, like in morphological MRI, a minimum
number of pixels per unit length to image the structure of
interest. For rodent MRE, a brain size of about 1 cm implies
a working frequency of about 1,000Hz, i.e., a wavelength of
1 to 2.5mm. To satisfy the previous wavelength-to-pixel-size
ratio criteria, the spatial resolution needs to be in the range
of 0.1 × 0.1 to 0.5 × 0.5 mm². Wave amplitude should range
between a few micrometers and 40µm. Figure S1 illustrates
frequency and resolution relationship in human and mice
brain.

MRE Transducer
For monochromatic wave propagation in the brain, the rodent
head should be kept immobilized, with permanent contact with
the actuator. Head locking is usually secured with bite and/or
ear bars (9) integrated in the anesthesia mask (12–16). Custom-
made head-holders have also been developed: basket-shaped (17)
and plaster baskets (18) keeping the animals (young rats or

mice) supine to further maximize coupling with the actuator, or
3D-printed plastic neck holders (19, 20).

In the first mouse brain MRE experiments, effective actuator
binding was ensured by a nut directly glued to the skull
after scalp incision (9). Now, one of the most widespread
non-invasive actuation methods avoids the skull (and its
associated wave attenuation or reflection) and relies on bite-
bars, already used for constraint (13, 14, 21). However,
this can provoke bulk motion, diminishing transmission
efficiency, and impairing wave quality. It was therefore
replaced in certain cases by a simple piston positioned on
the top of the head of animals lying supine (17, 18). 3D-
printing techniques facilitated the development of new designs.
A nose-cone held in place by an elastic band can both
deliver gaseous anesthesia and transmit mechanical vibration
(19, 20).

Waves can be produced in continuous mode using
electromechanical or acoustic transducers (13, 17, 18, 20, 22, 23)
in order to establish the mechanical steady-state required
to satisfy the motion equation used for reconstruction (14).
The magnetic components of such transducers compel their
positioning outside the MRI bore. This relatively long distance
(50–100 cm, depending on the fringe field) requires high
transducer force and minimal friction in order to achieve
efficient transmission (20, 22). Some piezoelectric drivers are
compatible with MRI and can be placed in close proximity to the
animal (5–15 cm) to preserve wave amplitude (14, 21, 24–27).

Finally, electromagnetic transducers have been built based on
a shielded solenoid coil positioned with its axis perpendicular to
the static magnetic field (9, 16, 28–33). Both piezoelectric and
electromagnetic transducers require a wave generator combined
with an amplifier.

Actuators are able to generate waves from 100 (13) to 2,500Hz
(34). To increase amplitude, frequencies corresponding to the
resonance of the loaded system can be used, determined using
accelerometers (13) or vibrometers (25, 26).

Overall, a large number of actuation devices for MRE have
been reported, combined with various constraint and coupling
devices. This technological diversity is bound to produce waves
with differences in amplitude and relative proportions of shear
and compression waves, and artifacts (e.g., wave wrapping
at different parts of the brain). For instance, the use of a
piezoelectric actuator coupled with an incisor bar was able to
generate waves with amplitudes of 1 to 2.5µm for a frequency
range of 600–1,800Hz for a specific set-up (14), whereas it
reached 40µm at 877Hz in another set-up (26). A summary of
the advantages and drawbacks of the various experimental set-up
elements can be found in Figure 1.

In conclusion, a large span of set-ups is reported in the
literature, an evolution toward an easy to handle standardized
solution could facilitate direct comparison between the results
from different teams.

MRE Pulse Sequences
MRE sequences are generally based on conventional MRI
sequences, but MEGs are added to sensitize movement in
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FIGURE 1 | Illustration of different brain MRE set-ups reported in the litterature. (1) Picture of a piezoelectric actuator linked to a bite-bar by a plastic rod, Clayton

2011. (2) schema of a modal actuator driving a vertical piston hitting the back of the rodent head, Chatelin 2016. (3) Electromagnetic actuator driving a vertical piston

glued on the mouse skull, Atay 2008. (4) Schema of the external transducer transmitting excitation to a nose cone maintained on the mouse head by rubber bands

and picture of the nose cone and plots maintaining the mouse head, Patz 2017. Advantages (+) and drawbacks (–) of the actuation transmitters and actuators are

listed. Actuation movements are symbolized by orange arrows. Pictures extracted from (14) © Institute of Physics and Engineering in Medicine. Reproduced by

permission of IOP Publishing. All rights reserved; and (20).

the phase image. These MEGs are synchronized at different
wave propagation time-points in order to obtain an image at
different steps over this propagation period. To avoid other
phase encoding (for example, due to static magnetic field)
being superimposed on shear wave motion, a straightforward
solution is to acquire MRE images without inducing vibration,
to be subtracted from the image with vibration (9, 21). Another
solution to increase phase-to-noise ratio is to invert the MEG
polarity (14, 16, 27–30, 35) of the image to be subtracted.
Most of the sequences are spin-echo-based, to avoid signal loss
due to magnetic field inhomogeneity (25), but a gradient-echo
FLASH sequence has also been used to shorten acquisition
time and reduce echo time, especially at low frequency (36).
Encoding motion with 2D sequences in the three directions for
8 time-steps takes approximately 1 h, with pixels from 0.2 ×

0.2 to 0.55 × 0.55 mm² and slice thickness of 0.2 to 2mm.
Decreasing acquisition time requires single-slice acquisition,
motion encoding in a single direction and a smaller number
of time-steps, but impairs reconstruction quality and may limit
the reconstruction methods able to be used. A Sample Interval
Modulation (SLIM) sequence, simultaneously encoding the
three directions of motion with MEGs of different frequencies,
has been newly developed, shortening total acquisition time
from 51 to 17 minutes, without noticeable change in SNR
(21).

In conclusion, reducing acquisition time while preserving
SNR is still a challenge inMRE, but new encoding strategies could
contribute to a more efficient MRE imaging technique.

Static Magnetic Field, Gradients, and
Radio Frequency Coils
High-field MR scanners offer the possibility of greater spatial
resolution and SNR, but at the cost of greater absolute
magnetic field inhomogeneity and artifacts. For small-animal
imaging, 0.1 (13) to 11.7 T (9) fields have been used. Recently,
a 0.5 T benchtop scanner to study ex vivo tissue in tube
was described, coupled with a preamplifier and amplifier,
raising MEG strength to 1.2 T.m−1 and motion sensitivity
to that of high-field micro-MRE (37). Using low-field MRI
scanners does not appear to be a major drawback for MRE
imaging, especially when filling factors are maximized. With
this in mind, surface coils (19, 20), custom-built birdcages
(38), and small RF coils (13) have been used; although no
comparisons of SNR have been made between scanners and
coils, reconstruction of viscoelastic parameters appeared possible
with similar spatial resolution (voxel volume < 0.03 mm3) for
magnetic fields ≥ 4.7 T. Another obstacle to high frequency
MRE can be gradient rise-time. Yasar et al. reported difficulty
in working beyond 3.8 kHz as gradients could not reach its

Frontiers in Neurology | www.frontiersin.org 3 November 2018 | Volume 9 | Article 1010

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Bigot et al. MRE of Rodent Brain

maximum strength sufficiently fast and without image artifacts
(39).

Reconstruction
The objective of this section is to give a quick overview of
how wave (speed and attenuation) and mechanical parameters
(complex shear modulus) can be derived from MRE phase
images. Different methods have been developed: wavelength
estimation method (40, 41), nonlinear inversion finite-element
method (42), or direct inversion (43, 44). The first does not
accurately detect interfaces and is not suitable for detection
of viscoelastic changes in small areas within the brain. Finite-
element-based methods are recent, accurate techniques, but are
not widespread as they require large calculation capacity and
expertise in numerical computation. Finally, direct inversion
is the most widely used method in small-animal studies. A
thorough explanation of reconstruction methods can be found
in (45, 46). For the sake of simplicity, only the direct inversion
method is briefly described below. It consists in two main steps.

Extraction of Shear Wave Field From Measured

Phase Images
This step consists first in getting rid of phase shifts >2π. This
can be done using commercial solutions (9) or unwrapping
algorithms previously developed in other contexts (47–49). Next,
the first harmonic component of motion u, also called the
displacement field, is isolated in the frequency domain with a
temporal Fourier transform in order to get rid of the static offset
caused by susceptibility and B0 inhomogeneity (45). Then, shear
waves are extracted from u by calculating the curl operator of the
measured displacement field or by applying a high-pass filter to
remove low-frequency bulk-waves. The curl-based technique has
the disadvantage of being sensitive to noise, and hence greatly
depends on SNR and filtering methods.

Quantification of Shear Mechanical Properties by

Solving an Inverse Problem
The displacement field is linked to the shear mechanical
properties of tissues by complex motion equations. A locally
homogenous, linear isotropic viscoelastic medium is often
assumed. Inversion methods taking account of anisotropy have
also been proposed to eliminate possible errors caused by myelin
fibers that could propagate waves in a particular direction and
thus skew the estimate of mechanical properties (50). To our
knowledge, no studies confirmed an effect of these fibers on
propagation in mice; however, studies on human brain are
beginning to show the interest of such a method, as indicated
by Murphy et al. in their review (8). To perform reconstruction,
displacement field matrices can be inversed directly, but fit
algorithms help to reduce discrepancies in the field.

Various algorithms have been developed to post-process
MRE data. However, at different steps of the preprocessing and
inversion algorithm, a wide variety of filters (high-pass, bandpass,
Gaussian, median, directional) have been used for different
purposes (compressional waves suppression, noise reduction,
data smoothing and direction weight assessment, respectively).

Attributing cut-off frequencies and determining the size of
the filter is delicate, and often empirically determined from
simulations or phantom experiments, and so may not fit complex
living tissues.

Despite this apparent diversity of reconstruction methods
(51), standardized solutions such as the Elastography Software
Pipeline (52) recently appeared. Some are available online: the
multi-frequency wave number recovery (53) and the multi-
frequency direct inversion (54) and wavelength estimation and
direct inversion methods (55, 56).

Finally, depending on the rheological model used for the
reconstruction method, different parameters can be used to
characterize the mechanical properties of the tissue. One
major consequence is the difficulty of comparing different
MRE studies. Most recent studies used the curl-based method,
allowing extraction of the complex shear modulus G∗ (kPa),
the real and imaginary parts of which comprise the storage
modulus G’, representing elasticity, and the loss modulus
G”, representing viscosity. Fewer studies have reported wave
velocity and attenuation, as these parameters are completely
entangled compared to G’ and G”, although these are well-
known in the ultrasound community, and have direct and
intuitive interpretation. Finally the parameters of the spring pot
model, µ (kPa) and α (dimensionless), representing frequency-
independent elasticity and structure, respectively, can help in
inferring structural information from tissues at a microscopic
scale (57).

MRE-DERIVED BRAIN PARAMETERS IN
RODENTS

Healthy Animals
Reported values of viscoelastic parameters for healthy animals
vary widely. For example, whole-brain magnitude of the complex
shear modulus |G∗| ranges from 2 to 11 kPa (13, 14) and
cortical µ, computed for the sake of comparison as indicated by
Hiscox et al. (7), from 3 to 13 kPa (13, 30). A first explanation
is the large frequency range used (180–1,800Hz): according
to the power-law model (14), loss and conservation moduli
are expected to increase with frequency. Other methodological
differences in the MRE imaging set-up, reconstruction method,
or filters may contribute to these discrepancies. Even though
absolute quantitative MRE has not yet been achieved, several
reports comparing brain structures showed agreement between
animal and human studies: hippocampus was found to be
stiffer than thalamus and cortex by Boulet et al. (25), which
was confirmed in subsequent studies in rodents (18, 30) and
corresponds to human findings (7). Cerebellum was found to
be softer than cerebrum in mice (32) and in several human
studies (7). Except for one recent study (58), corpus callosum
was generally identified as the stiffest area in the brain (17),
corroborating findings in humans (59). Generally, structures with
higher fiber density appear stiffer (33). Figure 2 summarizes
the frequency and |G∗| ranges reported in healthy rodents.
Moreover, MRE demonstrated sensitivity to structural changes
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FIGURE 2 | Summary of the rodent brain areas studied by MRE, labeled as follows: -(first line) name of brain area, with relevant publications listed below;

-(second line) frequency ranges used to probe the area;

-(third line) when available, the minimum value of |G* | - the average of |G* | values reported at 900 and 1,000Hz – maximum reported |G* | value. |G* | was chosen as it

is the most fequently reported parameter and 900-1,000Hz studies the most frequent in the literature.

1—Atay 2008; 2—Bertalan 2017; 3—Boulet 2011; 4—Châtelin 2016; 5—Clayton 2012; 6—Diguet 2009; 7—Freimann 2013; 8—Hain 2016; 9—Jamin 2015;

10—Jugé 2016; 11—Klein 2014; 12—Majumdar 2017; 13—Millward 2015; 14—Munder 2017; 15—Murphy 2012; 16—Patz 2017; 17 – Salameh 2011;

18—Schregel 2012; 19—Vappou 2008; 20—Yin 2017.

occurring with age in maturing rodents (17, 30) and older
humans (59).

Finally, agreement with a power-law model has been
established for small animals (14), larger animal and humans
(60), allowing multi-frequency studies to explore the brain’s
dispersive properties. These studies could lead to a precise
estimate of mechanical parameters independent of frequency
[e.g., µ, α and Φ = arctan(G”/G’)] and to more accurate
elastograms.

Pathological Conditions
Several pathologies affect the biomechanical properties of the
brain. In models of traumatic brain injury, both G’ and G”
were reduced (25, 26). Brain tumors were softer (i.e., less
elastic and viscous) than the surrounding parenchyma by a
factor 0.6 to 0.8, and biomechanical parameters might help
in grading brain malignancies (19, 24, 61, 62). This decrease
in both G’ and G” could be associated with cell death and
decreased microvessel density (62). |G∗| decrease was of the
same order of magnitude (< 40%) in hydrocephalus (22), stroke
(28) and multiple sclerosis models (31, 32), while ϕ remained
constant over disease course. This loss was correlated with
decreased mean diffusivity on Diffusion Tensor Imaging (22)
and with neuron loss on histopathology (28). Reduction in
phase angle was associated with demyelination and diminution
of |G∗| with the destruction of the extracellular matrix (17). In

mouse models of Alzheimer’s and Parkinson’s disease, |G∗| also
appeared to drop with the number of neurons (15, 16, 29, 30,
35).

To summarize, MRE appears to be a promising non-invasive
tool to diagnose and stage various brain diseases, by probing
changes in viscoelasticity. However, multiple pathophysiological
processes, such as inflammation, neuron and glial cell density
and organization, and vascularization, can potentially affect
biomechanical parameters. The link between microstructure
revealed by optical microscopy and its impact on themacroscopic
mechanical properties of the tissue is delicate to establish as (i)
brain microstructure in healthy and pathological states is still
not well established (63, 64); the development of quantitative
and 3D histological methods and registration pipeline might help
furthering recent works aiming to establish brain atlases (65);
(ii) Question addressed by Verdier et al. subsists: “Are tissues
just a macroscopic generalization of the cell properties?” (4).
Comparison between elastograms and other in vivo imaging
techniques such as DTI or PET are also used to decipher the
links between the various parameters evaluated by MRE and the
underlying microscopic structure and organization of the brain.
Interestingly, vasodilatation caused by activation of cannabinoid
receptors showed that blood-flow-dependent tissue softening
should not be overlooked when interpreting brain viscoelasticity
changes (18). On the other hand, such findings suggest that
MRE may also be used for functional brain imaging under a
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stimulation paradigm (20). Although MRE offers a wide range of
potential applications, most exploratory studies published so far
have not demonstrated increased sensitivity to specific changes of
the tissue microstructure in comparison to other methods. This
is a necessary prior step for MRE to be developed as a powerful
diagnostic and brain research tool.

CONCLUSION

MRE is still a recent imaging technique and lacks standardization
at small-animal scale, making reliable quantitative data difficult
to obtain. It could benefit from concertation of different
MRE experts and, as for human MRE, the development
of a commercial solution could help to democratize rodent
MRE and ascertain preliminary results. The gold standard for
measuring elasticity and viscosity is currently rheometry, which
operates at frequencies far lower than those used in small-
animal MRE (50–200Hz vs. 200–1,800Hz). Phantom and ex
vivo comparisons with rheometry and simulation are currently
the best leads toward establishing a gold standard in MRE,
but the use of various homemade elements in the imaging
and reconstruction chains, along with an empirical approach
to filter setting currently prevent standardization in in vivo
systems.

Nevertheless, MRE already proved effective in comparing
brain structures and physiological and pathological states. Recent
studies have begun to unveil the link between brain structure
and the changes in various parameters. For example, some
MRE studies claim that neuron density is the most important
element affecting loss and conservation moduli; this was shown
in neurodegenerative disease models, but also in healthy rodents,
where the neuron-rich hippocampus is stiffer than the cortex

or thalamus. The composition of the extracellular matrix and
its disorganization by inflammation or edema can also impact
viscoelastic parameters. More detailed comparisons between
MRE, histology, microscopy and other imaging techniques are
mandatory to disentangle the relationship between mechanical
parameters in the brain and biological processes.
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