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Abstract. This paper deals with the optimal design of an antagonis-
tically actuated X-shape Snelson tensegrity mechanism to be used in a
preliminary bird neck model made of a series of cascaded such mecha-
nisms. The mechanism, subject to its own weight and to the weight of
the subsequent mechanisms, is designed to maximize its wrench feasible
workspace under given maximal actuation forces. Moreover, the mech-
anism is constrained to stand in a prescribed rest configuration. The
optimized parameters are the link lengths and the springs stiffness.
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1 Introduction

This work falls within the frame of the AVINECK project, a collaboration project
with biologists, in which a robotic model of a bird neck shall be designed and
built. Birds use their neck as an arm. It exhibits very interesting properties such
as a high dexterity (e.g. the vulture can tear meat inside a carcass), a high dy-
namics (e.g. the woodpecker makes holes with high-frequency motions) or a high
payload-to-weight ratio (e.g. the parrot can hang from a cage bar using its beak
and thus carry its own weight). Contrary to muscular hydrostats (elephant trunks
or cephalopod tentacles), bird necks have a skeletal spine like snakes, but con-
trary to the latter, bird necks do not lie on the ground. The concept of tensegrity
has been chosen in this project as a general paradigm able to link the interests
of biologists and roboticists. A tensegrity structure is made of compressive and
tensile components held together in equilibrium [1], [2]. Tensegrity structures
were first used in art [3] and have then been applied in civil engineering [4] and
robotics [5], [6], [7], [15]. There are suitable to model muskuloskeleton structures
where the bones are the compressive components and the muscles and tendons
are the tensile elements [8]. A preliminary, planar bird neck robotic model is
considered in this paper. This model is built upon stacking a series of Snelson’s
X-shape mechanisms [2]. Although simplified because it is planar, this model
goes beyond the only available bird neck model in the literature that uses a
simple planar articulated linkage [13]. Snelson’s X-shape mechanisms have been
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studied by a number of researchers, either as a single mechanism [5],[7],[9] or
assembled in series [10],[11],[12]. In this paper, the mechanism is actuated with
two lateral tendons threaded through the spring attachment points like in [12].
This mechanism differs from to the ones analyzed in [5],[7],[9],[10],[11] in that its
upper link is a rigid bar, a choice that aims at keeping to one the mobility of each
mechanism. This mechanism is a tensegrity mechanism of class 2 (2 compressive
elements linked together [4]) and the neck model resulting from stacking several
such mechansims if of class 3. Finally, the mechanism is supposed to operate in
a vertical plane and is thus subject to gravity, unlike in [12], where the mecha-
nism was used in a snake-like manipulator moving on the ground. The goal of
this study is to provide a preliminary design scheme of the elementary tensegrity
mechanisms that are to be cascaded in a preliminary bird neck model prototype.

2 Description of the neck model and design strategy

We would like to build a prototype composed of a number of stacked elementary
mechanisms or segments where each segment represents a vertebra of a bird neck.
The number of vertebrae depends on the bird specie (from 10 in the parrot to
26 in the swan [14]). The design aims at determining the optimal link lengths
and springs stiffness for a maximal wrench feasible workspace under prescribed
maximal actuation force constraints. Moreover, the mechanism is constrained
to stand in a prescribed rest configuration, so that, when all the mechanisms
are stacked together, the resulting model takes the characteristic S-shape rest
posture observed in all bird necks [14], see Figure 1 .

The design of the full neck model is conducted in statics only, which makes it
possible to reduce the design problem to the sequential design of each segment,
starting with the last one. Each segment must carry the sub-chain made of the
mechanisms stacked overhead and the head (only the head for the last segment).
Accordingly, the segment under design is subject to a vertical force FP acting on
a point P , where P is the center of gravity of the aforementioned sub-chain and
FP is its weight. Each segment is described in its base reference frame, defined
such that its origin coincides with hinge A and the x-axis is aligned with the base
link 1 (Figure 2). The coordinates x̂P , ŷP of P are defined in a frame attached to
the upper link 4 as in Figure 2. These coordinates are assumed known and their
determination is out of the scope of this study as they rely on the determination
of some critical configuration, which is not straightforward.

A single segment of the bird neck model consists of a symmetric four-bar
mechanism with crossed links and two pre-tensioned springs, as shown in Figure
2. The four links are rigid, homogeneous and linear bars of mass mi, i = 1..4,
jointed at A, B, C and D. The two crossed bars (resp. the upper and lower bar)
are of equal length L (resp. b). The two springs connect A and D, and B and
C, respectively. Their free length is defined as l0 = L− b, which corresponds to
the minimal length of AD and BC reached when the mechanism is in its flat
singular configurations. Since the mechanism is constrained to operate out of its
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singularities (we impose −π < α < π), l0 = L − b ensures that the springs are
always in tension.

The mechanism is actuated by tendons connected at D and C and threaded
through the springs. The tendons are assumed infinitely stiff, hence input forces
F1 and F2 are considered to act directly on D and C, respectively. Since the
tendons cannot push, F1 and F2 are always positive and they are bounded by
Fmax, which depends on the actuators used.

Fig. 1: Bird neck model at rest
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Fig. 2: Model of a single segment.

The rigid bars will be 3D printed with ABS material of circular cross section with
a fixed diameter. Thus, m2 = m3 = ρmL, m4 = m1 = ρmb, where ρm is the mass
per unit length. With a cross section diameter fixed to 0.01m, ρm = 0.0825 kg/m.
Two adjacent segments share the same bar, namely, the upper bar of the lower
segment is the base bar of the upper segment.

The spring masses mri, i = 1, 2 cannot be neglected here as they turn out to
be of the same order as the bar masses. In order to express mri as a function of
the stiffness ki and L, the two relations below are used:

ki =
Gd5

8D3l0
(1) mri = ρs

π2Ddl0
4

(2)

where G and ρs are the shear modulus and density, respectively ; D and d are
the spring and wire diameters, respectively and are linearly dependent: D=λd.
Combining (1) and (2), mri can be expressed as mri = νkil

2
0, where ν is a

parameter depending on the spring material and geometry. For a steel spring,
choosing λ = 8 and knowing that l0 = L− b, mri = 0.008ki(L− b)2.

Without loss of generality, the length of the base and upper bars are fixed
to b = 0.1m and the only length parameter to be optimized is L. For the
optimization problem, finally, there are only three design parameters for each
segment: L, k1 and k2.

3 Segment modeling

The orientation of the mechanism upper bar α is chosen to specify the configu-
ration of each segment. The orientation of movable links 2 and 3 are defined by
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φ and ψ, respectively (Figure 2). The loop-closure constraint equation written
in A along x and y:

b+ L cos(ψ) + b cos(α)− L cos(φ) = 0 (3a)
L sin(ψ) + b sin(α)− L sin(φ) = 0 (3b)

allows one to write φ and ψ as a function of α:

φ(α) = 2 arctan

[
2bL sin(α) + S

(2b2 + 2bL) [cos(α) + 1]

]
(4a)

ψ(α) = 2 arctan

[
−2bL sin(α)− S

(2b2 − 2bL) [cos(α) + 1]

]
(4b)

with S =

√
(−2bL sin(α))

2
+ (−2bL [cos(α) + 1])

2 − (2b2 [cos(α) + 1])
2.

Using the cosine rule, the spring lengths can be expressed as follows:

l1 =
√
b2 + L2 + 2bL cos(ψ) (5a)

l2 =
√
b2 + L2 − 2bL cos(φ) (5b)

The static model of the segment can be obtained with its potential energy
V and the potential function Eex associated to the external wrench, assumed
to be conservative [4]. Here, the external wrench represents the two actuation
forces F1,F2 and the weight of the overhead sub-chain FP . The segment is in
equilibrium when:

V ′ = E′
ex (6)

where the ′ means the partial derivative with respect to α : ∂
∂α . The potential

energy V is the sum of the potential energy Vb associated with the bar masses
and the potential energy Vs associated with the springs stiffnesses and masses:

Vb =
g
2 [m2L sin(φ) + (m3 + 2m4)L sin(ψ) +m4b sin(α)] (7a)

Vs =
1
2k1(l1 − l0)

2 + 1
2k2(l2 − l0)

2 + g
2 (mr1l1 +mr2l2) cos(

α
2 ) (7b)

Note that for writing simplification purposes, the base of the segment under
study is supposed to be horizontal here. For any other base orientation, a com-
ponent of the gravity vector along x must be considered, with the only technical
consequence of making (7), (10c) and (10d) more lengthy.

The potential Eex is defined as:

Eex = −F1l1 − F2l2 − Fp(L sin(ψ) + x̂P sin(α) + ŷP cos(α)) (8)

where x̂P and ŷP are the coordinates of P in the frame attached to the upper
link (Figure 2).

Reporting equations (8) and (7) into (6) and using (5), (4a) and (4b) yields
the static equilibrium equation:

Gb(α,L) +Gs(α,L, k1, k2) = Z1(α,L)F1 + Z2(α,L)F2 + Zp(α,L)FP (9)
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where:

Zi(α,L) = −l′i for i = 1, 2 (10a)
ZP (α,L) = −L cos(ψ)ψ′ − x̂P cos(α) + ŷP sin(α) (10b)
Gb(α,L) =

g
2 [m2L cos(φ)φ′ + (m3 + 2m4)L cos(ψ)ψ′ +m4b cos(α)]

(10c)

Gs(α,L, k1, k2) = k1
[
l′1(l1 − l0)−

g
4νl

2
0l1 sin(

α
2 ) +

g
2νl

2
0l

′
1 cos(

α
2 )
]

+ k2
[
l′2(l2 − l0)−

g
4νl

2
0l2 sin(

α
2 ) +

g
2νl

2
0l

′
2 cos(

α
2 )
]

(10d)

The static equilibrium equations above depend only on α and on the design
parameters L, k1 and k2. Indeed, ψ and φ, l1 and l2 can be expressed as a
function of α using equations (5), (4), l0 = L − b and all mass parameters can
be expressed as a function of L (remember also that b was fixed to 0.1 m).

To avoid lengthy derivations in the next section, the above equation is rewrit-
ten in a more compact way below:

Gs(α,L, k1, k2) = k1X1(α,L) + k2X2(α,L) (11)

Two situations will be considered for the design process: the neck is at rest
and the two actuation forces are active. The behavior of the mechanism in these
two situations are studied in the next sections.

4 Behavior of the mechanism at rest

The behavior at rest is defined from (9) as the behavior without actuation:
F1 = F2 = 0N . Differentiating (9) with respect to α gives the mechanism
stiffness Kα [5]:

Kα(α,L, k1, k2) = G′
b(α,L) +G′

s(α,L, k1, k2)− Z ′
p(α,L)FP (12)

The design should allow the mechanism to have a stable equilibrium in a
prescribed rest configuration α0. Accordingly, its stiffness Kα should be strictly
positive. For a better response to external perturbations, a minimal stiffness
is even imposed: Kα(α0, L, k1, k2) > Kmin. The objective now is to determine
the spring stiffnesses satisfying the minimal mechanism stiffness Kmin at the
prescribed rest configuration α0, for a given dimension L. Combining (11) and
(9) yields :

Gb + k2X2 + k1X1 = ZpFP (13)

where the dependency on L and α0 is omitted to simplify the writting. Thus k2
can be expressed as a function of k1, α0 and L :

k2 =
ZpFP −Gg − k1X1

X2
(14)

Using (11), (12), the condition on the mechanism stiffness writes:

G′
b + k2X

′
2 + k1X

′
1 − Z ′

pFP > Kmin (15)



6 M. Furet et al.

Reporting (14) into (15) yields, after rearranging the terms:

k1

[
X ′

1 −
X1

X2
X ′

2

]
> Kmin + Z ′

pFP −G′
b −

ZpFP −Gg
X2

X ′
2 (16)

Since
[
X ′

1 − X1

X2
X ′

2

]
> 0 the condition on k1 can be written as k1 > k1min ,

with:

k1min
=

(Kmin + Z ′
pFP −G′

b)X2 − (ZpFP −Gb)X ′
2

X2X ′
1 −X1X ′

2

(17)

Figure 3 shows the plots of k1min and k2min against the rest position α0 for
several lengths L. Note that k2min was plotted using (14) with k1 = k1min to
confirm the symmetric behavior. Fp was chosen here as Fp = 5.9N , a weight that
would represent the mass of about ten segments. The spring stiffness strongly
depends on the link length L, which shows the direct influence of the geometric
parameters on the mechanism stiffness Kα(α,L, k1, k2). It is worth noting that
if α0 is too large, namely if α0 < −π/2 or α0 > π/2, excessive spring stiffnesses
are generally required for the mechanism minimal stiffness to be satisfied.

Fig. 3: Minimal spring stiffness k1min (left) and k2min (right) for different link
lengths L, against the prescribed rest configuration α0 (Kmin = 1Nm/rad,
FP = 5.9N and (x̂P , ŷP ) = (0.05, 0.1)).

5 Description of the Wrench feasible workspace and
influence of the parameters

Using (9), and rearranging the terms, the static equilibrium condition is:

Gb(α,L) +Gs(α,L, k1)− Zp(α,L)FP = Z1(α,L)F1 + Z2(α,L)F2 (18)
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The right-hand side of (18) is the actuation wrench. The wrench feasible
workspace (WFW) must satisfy, by definition [9], the geometric constraints (3),
the static equilibrium (9) and the limits of the external forces Fmax and Fmin as
introduced in Sec. 2. The coefficients Z1 and Z2 defined by (10a) can be shown
to satisfy Z1(α) > 0 and Z2(α) < 0 for −π < α < π.

Accordingly, it is possible to determine the limits of the actuation wrench as
a function of the limits of the actuation forces as follows:

Γmax(α) = Z1(α)Fmax + Z2(α)Fmin

Γmin(α) = Z1(α)Fmin + Z2(α)Fmax
(19)

Figure 4 shows the bounds of the actuation wrenches for different link lengths as
defined by (19) . The area enclosed by the dashed curves indicates the feasible
wrench area. Several instances of G(α) = Gb(α,L) +Gs(α,L, k1)− Zp(α,L)FP
are present in the figures as well. The static equilibrium equation (9) can be
satisfied for a range of α where G is within the feasible wrench bounding curves:

Γmin(α) ≤ G(α) ≤ Γmax(α) (20)

Fig. 4: Actuation wrench bounds and G(α) for varying link lengths L.

The limits of the WFW are determined by the intersections of G(α) with
Γmin and Γmax. If several intersections occur between G(α) and Γmin or Γmax,
the WFW is non-connected, meaning that it is not fully reachable in statics.
Accordingly, the bounds of the WFW are taken as the first intersections that
occur starting from the rest position α0. In Figure 4, three instances of G were
plotted for different link lengths L : for each length L , the minimal stiffnesses
k1min and k2min were computed (here for Kmin = 1Nm/rad, FP = 5.9N ,
(x̂P , ŷP ) = (0.05, 0.1) and α0 = 0). Γmin and Γmax are influenced by L, F1
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and F2 (here Fmin = 0N and Fmax = 50N). It is apparent that the size of
the WFW depends on L. Here the WFW is the smallest for L = 0.11m, but
is greater for L = 0.2m than for L = 0.4m, which means that depending on
the desired parameters (α0, FP and its application point P (x̂P , ŷP )), an optimal
value L can be found in order to maximize the WFW.

Figure 5 shows the influence of the different external parameters. Prescrib-
ing a non-zero rest position α0 shifts the WFW and reduces it; decreasing FP
increases the size of the WFW. The bounds of the WFW are also influenced by
the position of P with respect to the upper bar.

Fig. 5: Actuation wrench bounds and G(α) for varying desired parameters α0,
FP and (x̂P , ŷP ). Blue and red (resp. blue and yellow, yellow and purple) curves
G(α) show the effect of a change in α0 (resp. x̂P , FP ).

6 Optimal design of the tensegrity mechanism for given
specifications

As shown in previous section, one can find a minimal stiffness for the springs
depending on the link length L, given that the minimal segment stiffness Kmin,
the application point, the force FP and the rest position α0 are prescribed. Since
the minimal and maximal wrenches applied by the cables also depend on L (Fmax
and Fmin are known), an optimal value of the link length L can be found for the
aforementioned prescribed parameters.

An algorithm has been written in order to compute the size of the WFW Ws

defined as : Ws = |αmax − αmin|. αmax (resp. αmin) is obtained by computing
the two first intersection of G with Γmax and/or Γmin from the rest position α0.
The optimal length L is found when Ws is maximal.

Figure 6 shows the size of the WFW and the optimal value of L for different
sets of prescribed parameters. When comparing the blue and the red curves, it
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is apparent that the optimal link length and the size of the WFW increase when
FP decreases, which means that for higher external wrenches, the mechanism
needs to be more compact and has a reduced WFW. For instance, the blue
curve shows the optimal value for a rest configuration α0 = 0 of a segment
that must carry around 10 segments above it. This value can be used to design a
segment near the base of the neck. On the other hand, the red curve is computed
for the same prescribed parameters but with a low external wrench, which can
emphasize the case of a segment close to the bird head. When comparing the
blue and the purple curves, plotted for α0 = 0 and α0 = −π/4, respectively,
one can see that depending on the rest position, the optimal value of L will
be different. Those three curves were plotted for the minimal values of k1 and
k2 found to satisfy (14) and (17). Nevertheless, higher stiffness values can be
chosen, as illustrated by the yellow curve (k1 = 2k1min, k2 = k1 as α0 = 0).
In this case, the size of the WFW is reduced but as the mechanism is stiffer,
the optimal length value is increased. Accordingly, the minimal spring stiffness
should be taken into account for the final design of the segment. It can also be
observed in Figure 6 that the size of the WFW does not change significantly
when L is increased from its optimal value. A drastic change is observed if L is
diminished for large workspaces but not for small workspaces.

Fig. 6: Size of the WFW and optimal length L. For each case Kmin = 1Nm/rad
and (x̂P , ŷP ) = (0.05, 0.1).

7 Conclusion

A methodology to design cascaded Snelson X-shape mechanisms with two lat-
eral springs used in a bird neck model, has been proposed in this paper. The
mechanisms are subject to their own weight and to an external wrench FP . The
link lengths and the spring stiffnesses of the mechanism are optimized as a func-
tion of a prescribed rest configuration with a given stiffness at rest and for a
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maximal wrench feasible workspace. The proposed methodology will be applied
in an iterative scheme to design the complete S-shape bird neck model made of
n segments. The top segment (segment n) is first designed, where FP defines
the head weight. Then segment n − 1 is designed and this time FP integrates
the weight of segment n in addition to the head weight, and so on until the
base segment. In this work, constant limits on the actuation forces have been
assumed. The choice of the actuation scheme of the complete mechanism is still
an open issue and will be decided later in the light of the muscle organization of
the bird neck, which is under investigation by our biologist partners.
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