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Abstract. We present a cut-cell method for the simulation of 2D incompressible flows past ob-
stacles. It consists in using the MAC scheme on cartesian grids and imposing Dirchlet boundary
conditions for the velocity field on the boundary of solid structures following the Shortley-Weller
formulation. In order to ensure local conservation properties, viscous and convecting terms are
discretized in a finite volume way. The scheme is second order implicit in time for the linear
part, the linear systems are solved by the use of the capacitance matrix method for non-moving
obstacles. Numerical results of flows around an impulsively started circular cylinder are pre-
sented which confirm the efficiency of the method, for Reynolds numbers 1000 and 3000. An
example of flows around a moving rigid body at Reynolds number 800 is also shown, a solver
using the PETSc-Library has been prefered in this context to solve the linear systems.

1. Introduction

For some decades, many researchers and engineers have been considering the numerical so-
lution of fluid flows, for different kind of fluids and different geometries. With the increasing
performance of super-computers, it has been possible to tackle more and more challenging prob-
lems, for higher Reynolds numbers and complex geometries. Several different discretization
techniques can be used to consider these problems: Finite Element Methods, Finite Volumes
Methods, Spectral Methods, and Finite Difference Methods. The MAC scheme on cartesian grids
[15] can be viewed both as a Finite Volume Method or a Finite Difference Method on staggered
grids, and is adapted to 2D or 3D flows in simple geometries, for example for lid-driven cavity or
backward facing step. To take into account some obstacles in the flows (or complex geometries),
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immersed boundary techniques have been developped by Peskin in the 80’s ([26, 27]), consisting
in using Dirac functions to model the interacting force between the fluid and the solid structure.
These methods have inspired many authors in the following years, Mohd-Yusof has combined
them with the use of B-Splines ([24]) in his momentum forcing methods to consider complex
geometries. The main advantage of these techniques is that the forcing term does not change
the spatial operators, making them quite easy to implement (see [23] for a review, and refences
therein). As an alternative, Bruno et al. have developped penalization techniques to inforce
suitable boundary conditions [1]. Similar techniques have also been investigated by Maury et al.
[17] and justified from a mathematical point of view in [21]. These methods have been shown
to be efficient in the context of several particles in a flow [19], and when considering possible
collisions between them [32].

Arbitrary Lagrangian Eulerian (ALE) methods have been developped for flows in geometries
which vary in time (see [28, 29, 33] where authors use some of the ideas of [5]). The aim is
to formulate the equation in a fixed reference domain, by using a mapping from the reference
domain Ω(0) to the domain Ω(t) occupied by the fluid at time t. The position of the moving
bodies, which correspond to the boundary of Ω(t), being available, the velocity field of these
bodies defined on ∂Ω(t) have to be extended to Ω(t). Once this is done (generally with harmonic
extensions), the equations are written in the reference domain by using the chain-rule formula.

For problems involving non-rigid bodies, Roshchenko et al. (see [30]) have used splitting
methods to solve first the evolution of the velocity field in the fluid, and then to consider the
deformation of the body. These ideas of splitting the model can be viewed as similar to the
projection techniques (see [11], and [14] for a review and references therein).

The method presented in this work joints another family of methods, called cut-cell methods.
The idea of these methods is to modify the discretization of the Navier-Stokes Equations in the
cells cut by the immersed boundary (see [34, 22, 31, 12]). One can discretize the equations on
smallest cells obtained by intersecting the grid-cell with the domain occupied by the fluid, or
one can merge these smallest cells with a neighbouring one. These methods can be combined
with the levelset methods to track the boundary of the fixed or moving body (see [25]). These
ideas are used in the present work: the body in the fluid is represented by a levelset function,
and the location of the velocity components are modified in the cut-cells (see [7]), the pressure
remaining placed at the center of cartesian grid cells for both fluid-cells and cut-cells. For the
Laplacian of the velocity, the classical five-point approximation must be replaced by a local
6-point formula, for which the truncation error is only first order. But as in [20], global second
order convergence of the method is recovered. This second-order convergence for the velocity
and the pressure with our cut-cell scheme has been obtained for the flow past a circular cylinder
at Re=40 in [16] by comparing with the reference solution proposed in [13].

The paper is organized as follows: Section 2 is devoted to the presentation of the problem.
The Navier-Stokes Equations are considered in a 2D geometry, which is supposed to be fixed
for the sake of clarity. We also introduce there the notation for the grids, and detail space
discretization. In Section 3, we give some information about computational aspects. In the case
of fixed domain, a fast solver adapted from the capacitance matrix method (see [10, 9]) is used
to solve the linear systems for both components and for the pressure. We also show that the
method can be adapted in the case of moving domain. In this context, the preprocessing step
of the capacitance matrix method would need to be done at each time-iteration which would
then increase the CPU time. Therefore, we have prefered for this case a parallel version of
an algebraic multigrid method (HYPRE BoomerAMG) implemented using the PETSc Fortran
library (see [2, 3]).

Section 4 is then devoted to numerical tests, where we compare our results with theoretical
predictions and other numerical results available in the literature. A conclusion is given in
section 5.
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Figure 1. The solid body ΩS with boundary ΓS and the surrounding computa-
tional domain ΩF in which the flow is to be simulated.

2. The Setting of the Problem

2.1. Flows past obstacles. We consider a flow in a two-dimensional domain Ω = (0, L)×(0, H)
which contains a domain ΩS occupied by the solid which is supposed to be fixed for the sake of
simplicity. We denote then ΩF = Ω \ ΩS the domain occupied by the fluid (see Fig. 1).

The velocity field in the fluid satisfies the Navier-Stokes equations, with no-slip boundary
conditions. We consider then the problem:

∂u

∂t
− 1

Re
∆u + ∇ · (u⊗ u) + ∇p = 0,(1)

∇ · u = 0,(2)

u(x, t = 0) = u0,(3)

where u(x, t) = (u, v) is the velocity field at x = (x, y) ∈ ΩF at time t > 0, u0 is the initial con-
dition and Re is the Reynolds number. We impose homogeneous Dirichlet boundary conditions
for the velocity field on ∂ΩF :

u = 0 on ∂ΩF(4)

We mention that non-homogenous Dirichlet boundary conditions can also be treated with the
method presented here.

2.2. Discretization. For the time-discretization of (1)–(3), we use a second-order backward
difference (BDF2) projection scheme. In a first step, the velocity field is advanced in time with
a semi-implicit scheme decoupling the velocity and pressure unknowns. Then, the intermediate
velocity is projected in order to obtain a free-divergence velocity field.

Let δt > 0 stand for the time step and tk = k δt discrete time values. Let us consider that
(uj , P j) are known for j ≤ k. The computation of (uk+1, P k+1) needs two steps:

(5)
3ũk+1 − 4uk + uk−1

2δt
− 1

Re
∆ũk+1 +∇P k = −2∇ · (uk ⊗ uk) +∇ · (uk−1 ⊗ uk−1)

with homogeneous Dirichlet boundary condition for ũk+1.
Then the intermediate velocity field ũk+1 is projected in the free-divergence space to get uk+1:

uk+1 − ũk+1

δt
+

2

3
∇(P k+1 − P k) = 0,

∇ · uk+1 = 0, (uk+1 − ũk+1) · n = 0 on Γ.

(6)

For the spatial discretization, we modify the MAC scheme near the boundary by changing the
location of the unknowns of the velocity components for the cells cut by the solid as depicted
on Fig. 2 , the pressure unknowns remaining in their original place (see [7] for more details).
To discretize the Laplacian in (5), we must replace the five-point formula by a six-point dis-
cretization. For the convective terms, the fluxes are computed at the midle of the vertical and
horizontal edges (see Fig. 3). For the pressure, linear interpolation are used rather than chang-
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Figure 2. Location of the unknowns near the solid body

Figure 3. Location of the computation of the fluxes near the solid body

ing the location of the pressure unknowns. The same kind of linear interpolation is used to get
consistant evaluation of the pressure gradient in (6).

Although the truncation error is only first order in space for the resulting numerical scheme,
the second order accuracy is recovered which is due to a superconvergence phenomena analoguous
to those proven in [20]. This second order has been observed in [16] by showing results in
comparison with those of [13].

3. Computational Aspects

3.1. A fast parallel direct solver to treat fixed solid strutures. When considering fixed
solid bodies, the use of a direct solver with a preprocessing procedure is efficient. Once the
preprocessing computations have been done, the cost paid to solve the linear systems is about
twice the case of a numerical simulation in the same computational domain without obstacles.
We summarize hereafter the fast direct solver derived from the capacitance matrix method
and adapted to the case of non uniform grids (see [7] and [8] for the details) which has been
implemented in our code.

After spatial discretization of the Navier-Stokes equations, one linear equation is obtained
per node in the part of the computational domain filled by the fluid and per unknown that is
u, v and p. We complete these sets of linear equations by adding similar ones for nodes of the
cartesian grid lying inside the solid obstacle but with zero as right-hand side. The unknowns
corresponding to mesh points in ΩS

h are fictitious ones. As in ΩF , the numerical scheme accounts

for the boundary conditions on ΓS
h , the fluid unknowns are independant to the solid ones. We

therefore obtain linear algebraic systems defined on the whole cartesian grid with nx× ny mesh
points whose sizes are (nx − 1)× ny for u, nx × (ny − 1) for v and (nx − 1)× (ny − 1) for p. All
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three linear systems are similar in nature : the resulting matrices have similar structures with
five or six non-zero coefficients per row.

Let us consider one of these linear system. We denote by N its size and by A ∈ MN (R) its
matrix. Then at each time iteration, we have to solve a linear system

(7) AX = Z

with the right-hand side Z computed from the velocity and the pressure at previous time steps.
As it is mentioned above, the matrix A is non-symmetric. Let us consider now the matrix G
obtained with the same discretization on the whole computational domain Ω totally filled by
a fluid that is with no obstacles. The matrices A and G differ only on rows corresponding to
computational meshes for which the five-point stencil interacts with a cut-cell. Let us denote by
nc this total number of rows, namely rows such that A−G have non-vanishing coefficients. The
efficiency of our direct solver is due to the fact that nc is small compared with N and that the
non-zero coefficients on each row of A−G is bounded. The linear system (7) can be rewritten
as

(8) GX = Z − QY

where Q is a matrix of dimensions N × nc with one non-vanishing coefficient per column, equal
to one, and Y ∈ Rnc such that

QY = (A−G)X.

It can be easily shown, using QtQ = Inc , that Y is solution of the following linear system

(9)
(
Inc + M G−1Q

)
Y = M G−1 Z

with M = Qt(A−G). The matrix Inc + M G−1Q is a non-singular matrix (see [8] for a proof)
of size nc.

Based on these relations, the algorithm implemented to solve (7) consists in a preprocessing
step where the matrix Inc + M G−1Q is factorized (we use a LU -factorization) followed by

i) Compute Z and solve GW = Z ;
ii) Compute MW and solve (9) ;
iii) Compute QY and solve GX = Z − QY .

Recalling that G is the matrix corresponding to the standard MAC scheme on the whole com-
putational mesh, steps i) and iii) can be performed by using any efficient solvers available on
cartesian grids. In the present work, we use Discrete Fourier transforms in the vertical direc-
tion (where the mesh is uniform) combined with LU -factorizations of the resulting tridiagonal
systems.

The parallel version of this direct solver is based on explicit communications performed by
calling functions of the MPI library. The main feature of MPI is that a parallel application
consists in running p independant processes which may be executed on different computers,
processors or cores. These processes can exchange datas by sending/receiving messages via a
network connecting all the involved computing units.

The first step when developping a parallel algorithm is to define a suitable and efficient
splitting of the datas among the MPI processes : each MPI process will treat datas associated
with a part of the total computational mesh. For our problem, this choice is straightforward
and is related to the algorithm used to solve the linear systems. Indeed, it is much easier to
implement a parallel resolution of tridiagonal linear systems rather than a parallel version of the
DFT. Therefore, the parallel version of the code is based on a splitting of the datas along the
horizontal axis, so that each MPI process works with a vertical slice of the computational mesh
as it is illustrated on Figure 4.

In the framework of finite volume or finite difference schemes on cartesian grids, the explicit
computation of spatial derivatives is local and involves very few communications. The only tricky
part concerns the resolution of the linear systems. The step ii) of the direct solver described
in the previous section consists in solving a linear system involving the matrix Inc + M G−1Q.
As the LU -factorization of this matrix has been computed and stored in a pre-processing step
at the beginning of the time iterations, we have to solve two triangular systems which can
not be efficiently performed on parallel computers. As nc is small compared to the size of the
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Pk−1 Pk Pk+1

Figure 4. Splitting of the computational grid among the MPI processes Pk, k =
0, . . . , p − 1. The gray zone refers to additional (ghost points) storage used for
the MPI communications between neighbooring processes.

global problem, we choose to dedicate this task to one given MPI process (fixed in advance)
per unknown, that is u, v and p. Once these linear systems are solved, the resulting vectors are
scattered from these MPI processes to the other ones.

As it was previously mentioned, linear systems of steps i) and ii) are solved by first applying
a DFT in the y-direction : these computations are independant and can be performed without
any communications due to the distribution of datas among the MPI processes. This results
in a collection, one per grid point in the y-direction, of independant tridiagonal linear systems
connecting all nodes of the mesh in the x-direction. A parallel direct solver based on the
divide and conquer approach (DAC) for tridiagonal matrices has been implemented (see [6]).
The DAC method, applied to solve one tridiagonal linear system on np > 1 MPI processes,
consists in splitting the tridiagonal matrix into np independant blocks (one per MPI process).
The solutions of these systems have to be corrected in order to recover the solution of the global
system. These corrections correspond to 2np−1 values which are solutions of a tridiagonal linear
system of size 2np − 1. This phase of the DAC method is sequential and has to be performed
on one process inducing a useless waiting time for the other processes. However, as we have to
solve ny such systems simultaneously, this sequential part can be distributed among all the np
processes. In this context, the DAC algorithm leads to an efficient parallel code.

The parallel code has a good level of performance : less than 15% of the CPU time is spent in
communications between MPI processes. The sequential part performed on one process repre-
sents a negligible amount of CPU time. The computations presented here have been performed
on a DELL cluster using up to 32 cores of Xeon processors. A low latency bandwith network
connects the cluster nodes.

3.2. Iterative solver for the case of moving bodies. For solid bodies moving in a com-
putational domain filled by a fluid, as the case considered in Section 4.2, cut-cells may change
at each time iteration. Therefore, the coefficients of the matrices of the linear systems for the
velocity components, issued from the discretizetion of the momentum equations, and for the
pressure increment computed in the projection step of the time scheme, have to be recomputed
at each time step. In that context, the use of the fast direct solver described in the previous
section is cumbersome and inefficient except on coarse meshes. In order to be able to treat such
configurations, we have implemented a PETSc version [2, 3] of our cut-cell scheme. The main
advantage of the PETSc Library is that, in a parallel programming environment based on MPI,
many iterative solvers combined with different preconditionners can be used. The choice can be
made at run time.
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4. Numerical Results

4.1. Flow past a circular cylinder at Re = 1000 and 3000. In this section, we present
numerical simulations, performed with the parallel direct solver method described in Section
3.1. We consider the case of flows past a fixed circular cylinder of diameter D. The Reynolds
number is defined based on the diameter D of the cylinder, i.e. Re = U∞D/ν where U∞ is the
horizontal free stream velocity. As non-dimensional time, we consider T = 2U∞t/D.

A circular cylinder of diameter equals to unity is centered at the origin of the computational
domain Ω = (−Lx, Lx) × (−Ly, Ly). As boundary conditions, a uniform velocity profile u(x =
−Lx, t) = (1, 0) is imposed at the inflow and a convective boundary condition is applied at the
exit, namely the convective equation

(10)
∂u

∂t
+ (1, 0) ·∇u = 0

is solved at x = Lx. On the top and bottom boundaries, that is y = ±Ly, slip boundary

conditions are used that is ∂u
∂n = 0 and v = 0. Finally, no-slip (u|ΓS

= 0) boundary condition is
applied on the surface of the obstacle.

For this problem important quantities reflecting the dynamics of the vortices formed in the
vicinity of the solid boundary and developping at the rear of the cylinder are the pressure drag
and lift coefficients. They are derived from the total drag force on the body, which is computed
as

(11) Fb =

∫
ΓS

(
−pn +

1

Re

∂u

∂n

)
ds.

The pressure drag and lift coefficients Cp and C` are given by Cp = 2Fb · ex and C` = 2Fb ·
ey and the (total) drag coefficient is Cd = Cp + C`. Starting with a flow at rest, the drag

coefficient behaves as T−1/2 in the early stage of the development of the vortices. This square-
root singularity has been theoretically predicted by Bar-Lev and Yang in [4]. They have derived
the following expression for the (total) drag coefficient

(12) Cpred = 4

√
2π

ReT
+

2π

Re

(
9− 15√

π

)
.

As whown in Figure 5, the values obtained with the cut-cell scheme on a grid with 4096 ×
8192 mesh points discretizing the domain Ω = (−10, 10)2 perfectly match the theoretical curve
drawing (12) on the time interval T ∈ [0, 0.2] for Re = 1000. Our cut-cell method captures
the square-root singularity of the drag coefficient. This simulation has been run using 16 MPI
processes. On longer time interval, namely T ∈ [0, 5], the results are in good agreement with
those obtained by Koumoutsakos and Leonard in [18] with a vortex method. In order to test
the grid convergence of these results, the same simulation has been conducted on a grid with
two times more points in both spatial directions, that is 8192× 16384 mesh points, in the same
computational domain. In that case, 32 MPI processes have been used. Both results are almost
indistinguishable on Figure 6 indicating that the coarser resolution is enough to capture the
essential features of the flow at this Reynolds number. The development of the flow around the
impulsively started cylinder at Re = 1000 can be seen on Figure 7. In the early stage T ≤ 1,
a primary vortex develops in the vinicity of the boundary at the rear of the cylinder. Then for
T ∈ [1, 2] a secondary vortex appears trying to move insight the primary vortex and to push
it away from the solid boundary (T ≥ 4). A tertiary vortex is visible at T = 3 which remains
sticked to the boundary constrained by the two other vortices having more strength. These
results compare well with the same flow representations shown in [18]. As expected on short
time interval (T ≤ 5) the flow remains symmetric.

At Re = 3000, the time evolution of the drag coefficient plotted on Figure 8 exhibits also
the square-root singularity on short time interval and is in good agreement with the results of
Koumoutsakos and Leonard. As expected, the drag coefficients remains almost constant for
T ∈ [2, 3] (see [18]). Note that on this time interval, a small difference exists between the
results computed on the two different grids. However, the coarser simulation is fine enough to
capture the flow dynamics at Re = 3000. The mesh size of the coarser grid, which is constant
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Figure 5. Evolution of the drag coefficient of a circular cylinder at Re = 1000.
Solid line (red): theoretical prediction (12); Blue dots : numerical results on a
4096× 8192 grid in Ω = (−10, 10)2.
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Figure 6. Evolution of the drag coefficient of a circular cylinder at Re = 1000.
Red solid line: numerical results on a 4096× 8192 grid in Ω = (−10, 10)2; Green
solid line: numerical results on a 8192× 16384 grid in Ω = (−10, 10)2; Blue dots:
results from [18].

in the vicinity of the solid boundary, is h = 20/8192 ≈ 2.44 × 10−3. Note that the size of
the computational domain and the boundary conditions imposed at the exit may influence the
results. Estimating the values for Lx and Ly required so that the numerical results being of the
order of the numerical scheme error, namely O(h2), is an open question. This will be addressed
in further works. At this Reynolds number, a scenario similar than that at Re = 1000 can
be observed on Figure 9 with the development of three vortices in the early stage of the flow
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T = 0 T = 1

T = 2 T = 3

T = 4 T = 5

T = 6 T = 7

Figure 7. Vorticity of a flow past a circular cylinder at Re = 1000 simulated on
a grid with 4096×8192 mesh points in the computational domain Ω = (−10, 10)2

at different times T ∈ [0, 7].

dynamics. The secondary vortex penetrates further inside the primary vortex aera and the
tertiary vortex has more strength as it could be expected with less effects of the viscous forces
at Re = 3000. Again, an overall good agreement is found with the vortcity contours shown
in [18] at the same Reynolds number and time T .
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Figure 8. Evolution of the drag coefficient of a circular cylinder at Re = 3000.
Red solid line: numerical results on a 4096× 8192 grid in Ω = (−10, 10)2; Green
solid line: numerical results on a 8192× 16384 grid in Ω = (−10, 10)2; Blue dots:
results from [18].

As previously mentioned, the flow remains symmetric at the beginning of the simulations for
these flows around an impulsively started cylinder. By carrying the time integration over a much
longer time interval T ∈ [0, 200] instabilities due to round-off errors and to the nonlinearity of
the system develop so that the flow becomes non symmetric for T ≥ 100 at Re = 1000 and
T ≥ 50 at Re = 3000 as it can be seen on Figures 10 and 11 representing the time history of
the drag coefficient. After a transient period, an increase of the drag coeffient is observed which
stabilizes and oscillates around a mean value.

4.2. Flow around moving bodies. The purpose of this section is to show that the present
numerical method is also able to simulate incompressible flows around moving bodies. Let us
consider a cylinder which starts to move impulsively at t = 0 with the sinusoidal translational
motion

(13) ubody(t) =

(
2 sin

(
t

2

)
; 0

)
in a fluid initially at rest for Reynolds number 800. We suppose that the fluid is confined within a
rectangular computational domain Ω = [−3; 3]×[−1; 1] with no-slip boundary condition on ∂ΩF .
The diameter of the cylinder is equal to 1 and it is initially centered at the origin. The boundary
condition (13) at the body surface ∂ΩS is enforced through the non exhaustive following right

hand side terms which vanish in the case of fixed obstacle : u(κu,Si,j ), u(ξSi,j−1/2, yj−1/2), ubody(κSi,j)

and so on. This terms are respectively taking into account in the convective terms, Laplacian
operator and continuity equation. More details can be found in [7].

As the obstacle moves from one time step to another, we have to update matrices of the
linear systems corresponding to Poisson and momentum equations at each iteration. Therefore,
in such configuration, the direct solver requires much more CPU time compared to some iterative
solver, which does not require a preprocessing step. For large problems, the faster solver we have
found is an algebraic multigrid method (HYPRE BoomerAMG) implemented using the PETSc
library [2, 3].

A constant mesh size h = 5 × 10−3 is used in both directions and the value of the time
step, satisfying a CFL stability condition, is 10−3. As shown in Figure 12, vortices interact
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T = 2 T = 3

T = 4 T = 5

T = 6 T = 7

T = 8 T = 9

Figure 9. Flow around a circular cylinder at Re = 3000 simulated on a grid
with 4096 × 8192 mesh points in the computational domain Ω = (−10, 10)2 at
different times T ∈ [0, 9].

with each other and also with the boundaries. The flow remains perfectly symmetric until
t = 6π, thereafter the symmetry of the flow is lost due to rounding errors inherent in computer
calculations (see Figure 13).
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Figure 10. Evolution of the drag coefficient of a circular cylinder for Re = 1000
simulated on a grid with 4096× 8192 mesh points in the computational domain
Ω = (−10, 10)2.

 0

 0.5

 1

 1.5

 2

 2.5

 0  50  100  150  200

D
ra

g
 c

o
e
ffi

ci
e
n
t

Time T

Figure 11. Evolution of the drag coefficient of a circular cylinder for Re = 3000
simulated on a grid with 4096× 8192 mesh points in the computational domain
Ω = (−10, 10)2.

5. Conclusion

We have presented a cut-cell method for the numerical solution of flows past obstacles. We
have detailed the numerical method and the computational aspects for fixed obstacles, and
shown numerical results for fixed and moving rigid bodies. The parallel version of the algorithm
presented here allows computations of flows at Reynolds number up to 3000. The numerical
tests confirm some results of the literature, a good agreement is observed with the numerical
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t = 0

t = π

t = 2π

t = 3π

Figure 12. Flow around a moving circular cylinder at Re = 800 in the compu-
tational domain Ω = (−3, 3)× (−1, 1) discretized with 1200× 400 mesh points.

simulations in [18]. We have also shown that the computation of the drag coefficient matches the
theoretical square-root singularity predicted by [4]. The choice of the size of the box (compared
with the grid size h) is one of the questions that we would like to investigate with this method
in further works, we also would like to deal with rigid bodies following the fluid flow.
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T = 4π

T = 5π

T = 6π

T = 7π

Figure 13. Flow around a moving circular cylinder at Re = 800 in the compu-
tational domain Ω = (−3, 3)× (−1, 1) discretized with 1200× 400 mesh points.
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