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Locally quadratic modules and minuscule representations
Adrien Deloro

27th January 2017

Being natural is simply a pose, and the most irritating pose I know.

Abstract
We give a new, geometric proof of a theorem by Timmesfeld showing that for simple Che-

valley groups, abstract modules where all roots act quadratically are direct sums of minuscule
representations. Our proof is uniform, treats finite and infinite fields on an equal footing, and
includes Lie rings.

The present article deals with Chevalley groups over arbitrary fields, the attached Lie rings,
and some of their representations seen as abstract modules. By attached Lie ring we mean the
(+; [·, ·])-structure one gets when forgetting the linear structure from the Lie algebra; thanks to
Chevalley bases, the Lie ring of a Chevalley group over an arbitrary field makes sense.

In order to handle modules over groups and Lie rings in a single statement one needs a bit of
terminology and notation. If V is any abelian group, then End(V ) is naturally a Lie ring; now if g
is any Lie ring, a g-module structure on V is simply a Lie ring homomorphism g→ End(V ). As it
is compatible with the abelian group structure, V is actually a (g,Z)-bimodule. Slightly abusing
notation for a convenience dictated by analogy with the group case, we shall call V a Z[g]-module
(although we define no ring denoted by Z[g], in contrast to the group case). So the phrase: “V is
a Z[g]-module” merely means that V is an abelian group acted on by the Lie ring g. Likewise, we
call K[g]-module any K-vector space with a linear g-action; if g happens to be a Lie K-algebra this
is the same thing as a representation of g as a Lie K-algebra.

Notation.

• If G is a group and V is a Z[G]-module, let ZV (G) = CV (G) = {v ∈ V : ∀g ∈ G, g · v = v}
and bG,V c = [G,V ] = 〈g · v − v : (g, v) ∈ G× V 〉;

• if g is a Lie ring and V is a Z[g]-module, let ZV (g) = AnnV (g) = {v ∈ V : ∀z ∈ g, z · v = 0}
and bg, V c = g · V = 〈z · v : (z, v) ∈ g× V 〉.

Main Theorem (cf. [14]: see §1.4 below). Let K be a field of characteristic 6= 2 with more
than three elements and G be one of the simple algebraic groups (of classical or exceptional type;
untwisted). Let G = GK be the abstract group of K-points of the functor G and g = (LieG)K be the
abstract Lie ring of K-points of the functor LieG. Let G be either G or g and V be a Z[G]-module.

Suppose that all roots act quadratically. Then V = ZV (G)⊕ bG, V c and bG, V c can be equipped
with a K-vector space structure making it isomorphic to a direct sum of minuscule representations
of G as a K[G]-module.

Remark. The Main Theorem equips a certain Z[G]-module with a compatible K-linear structure
such that the resulting K[G]-module structure is well-understood. But if V is already given as a
K[G]-module, then the compatible K-linear structure we construct need not coincide with the given
one, and one would then see two rival K-linear structures on the same Z[G]-module.

For instance one could start with V = ϕM , the “twisted” version of a minuscule representa-
tion M by some non-trivial base field automorphism ϕ. Then V and M are not isomorphic as
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K[G]-modules. But there is, on the underlying Z[G]-module V̌ obtained from V by forgetting K,
a compatible K-linear structure ˆ̌

V constructed by the Main Theorem, and for which ˆ̌
V ' M as

K[G]-modules. (Of course V and ˆ̌
V are only Z[G]-isomorphic.)

We view the result as a first instance of a more general “theorem-template” one should invest-
igate systematically. We comment on that in §1.1 of the introduction hereafter. Then we move to
explaining some notions: quadraticity in §1.2 and minuscule representations in §1.3. Our result and
method are compared to those of Timmesfeld [14] in §1.4, then some further remarks are sketched
in §1.5. The proof is in §2, which will begin with an overview of the argument.

We thank Patrick Polo for introducing us to the elegance of root data, and a first referee for
very accurate comments, in particular on finite groups.

1 Introduction
Before we start mentioning Curtis-Phan-Tits Theorems and quadratic pairs, we must warn the
reader: the present article is not in finite group theory. This will become clear when we discuss
method in §1.4.

1.1 Local-to-Global results
There is in algebra a wide class of local-to-global identification results which determine the iso-
morphism type of an algebraic structure A from a collection of substructures (Aα)α∈Ψ such that:

• the isomorphism type of the “atoms” Aα is known;

• the “chemical bonds”, i.e. the substructures generated by pairs 〈Aα,Aβ〉, have known iso-
morphism type.

The best example is given by the celebrated Curtis-Phan-Tits theorem(s) identifying a Chevalley
group from a collection of subgroups of type (P)SL2(K) provided these pairwise generate what
they should according to the expected Dynkin diagram. See [13] for a powerful form, and [8] for a
thorough account of all existing group-theoretic versions. (Curtis-Phan-Tits theorems themselves
are not used anywhere in the present paper; they serve as an inspiration and an analogy.)

We wish to suggest that similar results should exist beyond the classical topic of group identi-
fication; as a matter of fact our Main Theorem resembles such a result for representations. It is not
literally of the above type as the acting structure is already supposed to be Chevalley, viz. known
in terms of atoms and bonds; what we identify is the acted module, under assumptions of a local
nature. Namely, given an algebraic structure G which is either a simple (untwisted) Chevalley
group G with root SL2-subgroups Gα or the associated Lie ring g with root sl2-subrings gα, and
an abstract Z[G]-module V , we identify V as a G-module under assumptions on V as a Gα-module
for the various roots α. We treat only the simplest possible case where all root substructures act
quadratically, i.e. where each Gα essentially sees sums of trivial spaces and natural representations
(the equivalence is explained in §1.2).

The resulting statement is — in the sole case where G = G is a group — already in [14]; we
give a completely different proof which is not group-theoretic but more deeply structural, at the
level of the root system, and thus remains valid for the associated Lie ring g.

Quite interestingly (but parenthetically as it is not our present concern), Curtis-Phan-Tits
theorems do not seem to have been systematically investigated for Lie rings. It would be nice to
have a result of the form: “if g is a Lie ring with subrings gα ' sl2(K) generating what they should
according to the Dynkin diagram ∆, then g ' (LieG)K for G the group with Dynkin diagram ∆”.
We do not know of any such statement in the literature. The reason might be that abstract Lie
rings deserved little attention, and that in the usual case of finite-dimensional Lie algebras the
adjoint action is much handier a tool.

We mentioned the latter question only to demonstrate that the topic of local-to-global theorems
goes well beyond abstract group identification results.
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1.2 Quadratic Actions
Recalling our original inspiration will serve a double purpose: offering a convenient introduction
to minuscule modules, and quoting the only prerequisites needed for the proof besides familiarity
with Chevalley groups. It is the following theorem which was proved in the mid-eighties by S.
Smith and F.G. Timmesfeld, independently. U stands for a unipotent subgroup of SL2(K), say the
group of upper-triangular matrices with 1 on the diagonal; quadraticity of the G-module V means
that [U,U, V ] = 0 (which does not depend on the unipotent subgroup by conjugacy).
Timmesfeld’s Quadratic Theorem ([12, Exercise 3.8.1 of chapter I]; also [9]). Let K be a
field of characteristic 6= 2 with more than three elements, G = SL2(K), and V be a quadratic G-
module. Then V = CV (G)⊕ [G,V ], and there exists a K-vector space structure on [G,V ] making
it isomorphic to a direct sum of copies of Nat SL2(K) as a K[G]-module.

Since the field K is rather arbitrary, there are no character-theoretic nor Lie-theoretic methods
available; SL2(K) is seen as an abstract group with no extra structure, and the proof is therefore
by computation. One fixes generators and works with the so-called Steinberg relations for SL2(K).

The lack of Lie-theoretic information incidently suggests to ask the same question about sl2(K)-
modules. For the problem of linear reconstruction to make sense we view sl2(K) as a Lie ring, viz. an
abelian group with a bracket (forgetting the underlying vector space structure); an sl2(K)-module
need not be a vector space over K. We let u+ and u− be the abelian subrings of upper-triangular,
resp. lower-triangular, matrices with 0 on the diagonal. Quadraticity of the g-module V now
means that both u2

+ · V = u2
− · V = 0 (see §1.5.1 for more on this two-sided assumption).

Lie-ring analogue ([4]). Let K be a field of characteristic 6= 2, g = sl2(K), and V be a quadratic
g-module. Then V = AnnV (g)⊕ g · V , and there exists a K-vector space structure on g · V making
it isomorphic to a direct sum of copies of Nat sl2(K) as a K[g]-module.

We have two comments.
• Quadraticity is fundamental in our proof to get the analysis started (§2.2), but no more. The

classical topic of quadratic pairs in the sense of Thompson [11] plays absolutely no role here.

• Results similar to the Quadratic Theorem and its Lie-ring analogue can be proved relaxing
the quadraticity assumption to higher unipotence (resp., nilpotence) length of U (resp., u±)
[5, 6]. This goes smoothly in the case of the Lie ring [5]. In the case of the group [6] the
length cannot exceed 5, and computations are much more unpleasant than for the Quadratic
Theorem.
Existence of such results suggests that one ought to look for a generalisation of our Main
Theorem to the case where root substructures act with length 3, using similar methods but
now taking [5, 6] as the base case analysis. We shall return to this in §1.5.4.

1.3 Minuscule Representations
No deep understanding of what “minuscule” means is required to read the article. According
to one of the possible equivalent definitions [2, Chap. VIII, §7.3, Definition 1], the minuscule
representations of a semisimple Lie algebra are its irreducible representations such that the action
of the Weyl group on the set of weights is transitive; the latter condition is equivalent to: every
root element acts with x2 = 0 [2, Chap. VIII, §7.3, Propositions 6 and 7].

In the simple case, the list of the minuscule weights can be determined from that of the funda-
mental weights, and the minuscule representations of the various simple Lie algebras are therefore
known. They are as follows: all exterior powers of the natural representation for type An, the
spin representation for type Bn, the natural representation for type Cn, the natural and the two
half-spin representations for type Dn, two representations for type E6, one for type E7, none for
types E8, F4, G2 [2, Chap. VIII, end of §7.3]. (The contents of this list can be forgotten; what
matters is that the list exists.)

It is tempting to see Timmesfeld’s Quadratic Theorem and its Lie-ring analogue as identification
results for the unique minuscule representation of the algebraic group SL2 among abstract G- or
g-modules. And indeed, the statement is the natural extension of Timmesfeld’s quadratic theorem
to the other simple algebraic groups and their Lie algebras seen as Lie rings.
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1.4 The method
We mentioned that Timmesfeld has already obtained a result similar to ours.

Fact (Timmesfeld, [14]). Let G be a finite Lie-type group over GF (q), q = pn, p 6= 2, different from
SL2(3), with Dynkin diagram ∆ = ∆(I) and let V a ZpG-module, on which the root groups of G act
quadratically, i.e. [V,Ar, Ar] = 0 for all roots r of the root system of G. Then V = CV (G)⊕ [V,G]
and [V,G] is the direct sum of irreducible ZpG-modules Vj [the list of which is as expected and
explicitly given].

No statement is stronger than the other and we highlight a few differences. Despite his version
being given for finite groups, Timmesfeld states that in the case of classical groups his proof applies
to infinite fields of characteristic not 2 (see [14, p.36]). However his treatment of E6(K) and E7(K)
does require finiteness of K. He also deals with the field with three elements more thoroughly than
we do (see §1.5.2 for a discussion of what our argument achieves in this case). And he handles
twisted groups, notably SUn. We do not do the twist but the main reason is our lack of expertise
of such groups; perhaps our method applies to these as well.

On the other hand, we have no restriction on the isomorphism type of G if K is infinite. We
can also treat Lie rings by the same argument, and this is by no means a corollary to the group
case since we fall short of any form of Lie correspondence in the present abstract setting.

Beyond statements, we wish to emphasize that our method seems robust and hopefully general
as it takes place at a more geometric level. Our proof is indeed:

• group-independent, while [14] is a case division (we shall return to this in §1.5.3);

• completely field-independent as we said (characteristic 2 and F3 left aside);

• representation-independent. Our method linearises without caring for what the resulting rep-
resentation will be (something determined afterwards), while the philosophy of [14] involves
explicit module identification. In particular, complete reducibility is to us a late and virtually
trivial by-product of the analysis;

• entirely self-contained modulo the Quadratic Theorem and its Lie-ring analogue (§1.2), while
[14] requires non-trivial representation-theoretic information ([14, end of §1]; [14, Lemma 2.6]
is one crux of the argument);

• effective since the linear structure is defined explicitly provided one has realised one root
substructure of type A1 and the global Weyl group;

• transparent — in our opinion. It is sometimes hard to tell which arguments on finite groups of
Lie type come from finiteness miracles, and which are just consequences of general Chevalley
theory in the spirit of Steinberg [10].
But our proof obviously takes place at the general Chevalley level. It is about minuscule
weights and transitivity of the Weyl group, which are the natural phenomena to investigate
when one is talking about minuscule representations. The structure of the argument is
explained at the beginning of §2.

Yet our proof has one thing in common with Timmesfeld’s: it relies on the action of central
involutions in root SL2-subgroups: this will be obvious in the proofs of Propositions 9 and 11.
As a consequence it is essential for us to work in characteristic not 2. We do not know how to
dispense with these involutions and it is not clear whether their role is that of mere accelerators
or more essential. The latter question makes sense for art’s sake but there is in any case no hope
to extend the Main Theorem to characteristic 2 (the Lie ring being of course left aside), since
complete reducibility for quadratic SL2(K)-modules fails in characteristic 2: as pointed out by a
first referee, the action of a copy of SL2(K) on the unipotent radical inside a parabolic subgroup of
Sp4(K) in characteristic 2 is not completely reducible. Hence the very cornerstone of the analysis,
Proposition 6, fails in that case.
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1.5 Remarks and Questions
Our last introductory subsection consists of remarks on the statement and its proof, together with
a few questions on possible extensions. None is necessary in order to understand the proof in §2.

1.5.1 The Quadraticity Assumption

Our interpretation of “all roots act quadratically” is that all root SL2-substructures in one real-
isation of G act quadratically. This was explained in §1.2. For α a root let Uα be the associated
1-parameter root substructure (i.e., root subgroup Uα or root Lie subring uα isomorphic to K+;
the reader with a doubt will find all notation in §2.2 of the proof).

1. As stated the assumption means: for α ∈ Φ (the root system), bUα, bUα, V cc = 0.

2. One may try to restrict to positive roots: for α ∈ Φ+ (positive roots), bUα, bUα, V cc = 0.

3. One may try to restrict to simple roots: for α ∈ Φs (simple roots), bUα, bUα, V cc = 0.

4. One may try to restrict to root elements: for α ∈ Φ (resp. Φ+, Φs) and some yα ∈ Uα not
the identity, byα, byα, V cc = 0.

These slight variations can have unexpected effects.

• For instance, supposing that the positive Lie subring u+ ≤ sl2(K) acts quadratically does
not fully guarantee that so does the negative Lie subring u−. In characteristic neither 2 nor
3 these turn out to be equivalent [4, Variation 12] but in characteristic 3 one can construct
sl2(K)-modules with u2

+ · V = 0 6= u2
− · V [4, §4.3]. (For a more general discussion of the

non-equality of nilpotence orders of generators of u+ and u− in End(V ), see [5, §§3.2 and
3.3].) As a consequence, an assumption restricted to positive roots is too weak in the case of
the Lie ring.

• The reader is now aware that in the case of the Lie ring, lifting the action of the Weyl group
on roots to an action on the module is non-trivial. The caveat extends to Lie rings not of type
A1. It is therefore not clear whether all roots of the same length must have similar actions
on V since conjugacy under the Weyl group may fail to be compatible with the action on the
module.
So in the case of the Lie ring, even an assumption restricted to simple roots and their opposites
could be too weak.

• Finally, it is the case that for an action of SL2(K) in characteristic neither 2 nor 3, (u−1)2 = 0
for some element u ∈ U \ {1} implies [U,U, V ] = 0 [4, Variation 7]; we do not know what
happens in characteristic 3 (bear in mind that the field can be infinite; the “SL2-lemma” [12,
V.1.12] requires some finite-dimensionality and there is no such assumption here).
For an action of sl2(K) it suffices to be in characteristic not 2: x2 ·V = 0 for some x ∈ u+\{0}
does imply u2

+ · V = 0 [4, Variation 9] (but in characteristic 3 the latter does however not
entail u2

− · V = 0 as we just said). Hence an assumption restricted to root elements is too
weak.

There are two conclusions. First, in the case of the group and characteristic not 3, it would
be enough to suppose that one element in one root subgroup of each length is quadratic — which
makes an assumption on at most two elements. Second, in the case of Lie rings, apparently minor
changes in the hypothesis can give rise to pathologies. Here is our only positive claim.

Corollary. Let K be a field of characteristic 6= 2 with more than three elements and G be one of
the simple algebraic groups of type A − D − E but not A1. Let g = (LieG)K be the abstract Lie
ring of K-points of the functor LieG. Let V be a Z[g]-module.

Suppose that one root element acts quadratically. Then V is as in the Main Theorem.
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Proof. It suffices to prove that all root subrings act quadratically, and then apply the Main The-
orem; it suffices to do it for G of type A2, i.e. g = sl3(K) with bracket denoted J·, ·K. Recall that
one may not apply Weyl reflections, so a little computation is required.

However in type A2 it suffices to show that if one root acts quadratically, then any root adjacent
to it (i.e. with angle ±π3 ) acts quadratically too. Say that the root system is generated by α and
β with angle 2π

3 and suppose that uα acts quadratically; we shall prove that uα+β does too.
We may fix generators xγ of the various root subrings uγ (γ any root in the system) in such

a way that Jxα, xβK = xα+β . For any root γ let x′γ = 1
2xγ ∈ g, which makes sense since g is a

K-vector space.
Our assumption is that x2

α = 0 in End(V ). In End(V ) one sees:

xαx
′
α+β = xαJxα, x′βK = −xαx′βxα = −Jxα, x′βKxα = −x′α+βxα = −xαx′α+β

Hence xαxα+β = 2xαx′α+β = 0.
Then always in End(V ):

x2
α+β = Jxα, x′βKxα+β = xαx

′
βxα+β = xαxα+βx

′
β = 0

So x2
α+β = 0, which suffices as noted.

The final word belongs to Timmesfeld, who has a nice Corollary [14, p.36] on finite groups of
type A−D−E: to be under the assumptions of the Main Theorem it suffices that some g ∈ G\{1}
(not assumed to be unipotent) acts quadratically. But the method clearly belongs to finite group
theory and even involves non-trivial external material on quadratic pairs in characteristic 3.

1.5.2 The Field with Three Elements

It has been observed by a first referee that over F3 (where perfectness of Gα ' SL2(K) and the
version of Timmesfeld’s Quadratic Theorem we quoted in §1.2 fail; notice that the Lie-ring analogue
remains however true), our method immediately yields the following variation.

Corollary. Let K = F3 be the field with three elements and G be one of the simple algebraic
groups (of classical or exceptional type; untwisted). Let G = GF3 be the abstract group of F3-points
of the functor G and g = (LieG)F3 be the abstract Lie ring of F3-points of the functor LieG. Let
G be either G or g and V be a Z[G]-module.

Suppose that all roots act quadratically. If G = G is a group, suppose in addition that funda-
mental root (P)SL2-subgroups satisfy the conclusion of Timmesfeld’s Quadratic Theorem. Then
the conclusion of the Main Theorem holds.

The proof is exactly that of our Main Theorem: the hypothesis simply shortcuts the “local
analysis”, Proposition 6 of §2.2 in the problematic case. The rest of our argument does not require
perfectness of SL2(K) and can be kept without a change.

Interestingly, Timmesfeld in [14, §3] handles the case where K = F3 without our extra assump-
tion, but using specific computations: over F3 and in Lie rank not 1, the additional requirement is
not needed in the Corollary. But this is more involved again; we have nothing better to say on the
topic than Timmesfeld. In any case our focus is not on finite groups.

1.5.3 Towards More Groups

As we said our linearisation argument goes uniformly and does not require any form of module
identification, so knowing the precise isomorphism type of G is never necessary. A careful reader
will wonder how much information is really needed. The next few words are of a speculative nature.

• It is not clear whether one can avoid assuming simplicity of G.
Of course reductivity looks like a minimal requirement, but even at the semi-simple level
things are not obvious. Say for instance G = G1 ×G2 acts on V with quadratic roots. The
method gives two linear structures on V , conveniently thought of as actions of isomorphic
fields Ki (attached to Gi). The Ki-structure from our proof is given by the action of the
torus of Gi; now Gi+1 commutes Gi, so acts Ki-linearly.
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These linear structures need not coincide, so it is not clear at all whether a third, better linear
structure on V exists for which one would analyse further V in terms of tensor products of
minuscule representations of G1 and G2. It is a mystery to us; but for one thing, it is not in
the scope of the method.
The situation can get even more confusing. Our arguments would apply equally to G1 =
G1(K1) and G2 = G2(K2) over different fields of the same characteristic, a case in which
nothing decent can be conjectured.

• The crux of the method is generation by root substructures. An infinite set of roots à la
Kac-Moody could be a further direction to explore; we lack knowledge on the topic.

1.5.4 Towards More Modules

A more concrete question of interest is the following. Can one use the same or a similar method
to identify other representations of the simple Chevalley groups? For instance, so-called quasi-
minuscule representations are defined by the clause that the Weyl group is transitive in its action on
non-zero weights. Can one characterise quasi-minuscule representations among abstract modules?

Being suddenly modest — can one, using the same method, characterise the adjoint action of
a structure of type A2? The following needs some notation from §2.2, namely Notation 5.

Question. Let K be a field of characteristic 6= 2, 3; let G = SL3(K) and g = sl3(K); let G = G or
g; let V be a simple Z[G]-module.

Suppose that all roots act cubically (i.e., with length equal to 3). Suppose in addition that for
fixed α ∈ Φ, the kernel ker ∂α,λ does not depend on λ ∈ K \ {0}.

Can V be equipped with a K-vector space structure making it isomorphic to the adjoint repres-
entation of G as a K[G]-module?

The results briefly mentioned at the end of §1.2 would serve as the basis. Removing module
simplicity could be more painful.

2 The Proof
For the reader’s convenience let us state our Main Theorem again.

Main Theorem. Let K be a field of characteristic 6= 2 with more than three elements and G be
one of the simple algebraic groups (of classical or exceptional type; untwisted). Let G = GK be the
abstract group of K-points of the functor G and g = (LieG)K be the abstract Lie ring of K-points
of the functor LieG. Let G be either G or g and V be a Z[G]-module.

Suppose that all roots act quadratically. Then V = ZV (G)⊕ bG, V c and bG, V c can be equipped
with a K-vector space structure making it isomorphic to a direct sum of minuscule representations
of G as a K[G]-module.

Let us sketch the strategy.
Recall from [2, Chap. VIII, §7.3, Proposition 6] that an irreducible representation of a semi-

simple Lie algebra is minuscule iff for any weight µ and root α, one has (in classical notation)
µ(hα) ∈ {−1, 0, 1}. For our purpose the latter property seems more tractable at first than a
definition in terms of the action of the Weyl group.

The proof will therefore focus on weights and weight spaces. Of course in the absence of a field
action the definition requires some care; the relevant analogues of weights and weight spaces will
be called masses and spots (Definition 7).

We shall first show that the module is the direct sum of its spots (Proposition 9); the decom-
position of an element of the module can be computed effectively. We then study how Weyl group
elements permute spots. One point should be noted: if G = G, one can find elements lifting Weyl
reflections in the normaliser of a maximal torus; if G = g, we must go to the enveloping ring since
there are no suitable elements inside the Lie ring. But there is a slight trick enabling us to encode
these in any case.
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The action of the Weyl group is then as expected (Proposition 11); the argument is the only
step in the proof where we feel we actually do something. Then Proposition 13 quickly enables us
to reduce to an isotypical summand, where the Weyl group acts transitively on masses.

Once this is done we may define a field action on one arbitrary spot and use transitivity of the
Weyl group to carry it around (Notation 15; here again the linear structure is given explicitly).
Linearity is easily proved in Proposition 16.

At this stage we shall have a K[G]-module with unknown weights and possibly infinite dimension.
But the earlier analysis in terms of spots will pay: after showing that we are actually dealing with
minuscule weights (Proposition 18), complete reducibility will be immediate.

2.1 Prelude
All necessary information on Chevalley groups can be found in [3] or [10]. We presume the reader
familiar with root systems, the Weyl group, and how elements of the normaliser of a maximal torus
permute the various root subgroups: this will be one of the key ingredients of the proof. But we
also wish to use products of “root involutions” in algebraic groups and the reader will find some
refreshments here.

Fix a realisation of a simple algebraic group G = GK, and recall that central involutions of the
various root SL2-subgroups can be computed from those attached to simple roots in the following
way:

since for any root α, one has iα = α∨(−1) (where α∨ is the cocharacter K× → T , the
torus), it suffices to express coroots in the cobasis.

Consider for instance the case of C2.
Let 〈·, ·〉 be the abstract root datum pairing between roots and coroots, and (·, ·) be the standard

Euclidean dot product on the root space (only the former will play a role in the remainder of the
argument; the latter is of course more visual). Normalising in such a way that 〈δ, ε∨〉 is given by
(δ, ε∨), we may represent the dual system on the same picture where the dual of a short root γ
corresponds to 2γ (abusing language, a long root is “self-dual”).

β∨

α

β

α∨

α+ β

(α+ β)∨

It is then clear without computing that (α+ β)∨ = α∨ + 2β∨, and therefore iα+β = iαi
2
β = iα.

The same picture allows of course to determine conjugates of root subgroups by elements of the
Weyl group, still with no computations. (We hope the following notation to be standard; in any
case it will be introduced in Notation 2 below.) Remember that wγ acts on root subgroups as σγ ,
the reflection in hyperplane γ⊥, acts on roots: hence wγUδw−1

γ = Uσγ(δ) can be found graphically.
And of course there is something similar for the other rank 2 systems. This “visual computing”

will be used freely in the argument, viz. in Propositions 9 and 11.

2.2 Local Analysis
The proof starts here. We may suppose the action to be non-trivial. Let us first realise G,
following the Chevalley-Steinberg ideology. We apologise for the necessarily heavy notation: we
must introduce the relevant elements for the group and also for the Lie ring; once this is done
we then introduce common designations and forget the specialised ones. This results in a rather
awkward moment, but most of our notation can be disposed of quickly.
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The idea is merely to realise the root (P)SL2-subgroups (resp., sl2-subrings) and work with the
elements:

uα,λ =
(

1 λ
0 1

)
, tα,λ =

(
λ

λ−1

)
, wα =

(
1

−1

)
in the case of the group, or:

xα,λ =
(

0 λ
0 0

)
, yα,λ =

(
0 0
λ 0

)
, hα,λ =

(
λ
−λ

)
in the case of the Lie ring. Follows one ugly page just to say this. The well-versed reader may
immediately skip to Notation 5.

As far as root data are concerned, we follow standard conventions.

Notation 1 (naming the root datum: L,Φ, L∨,Φ∨, 〈·, ·〉, E, σα,Φ+,Φs).

• Let (L,Φ, L∨,Φ∨) be the root datum of G and 〈·, ·〉 : L × L∨ → Z be the pairing; let E =
R⊗Z ZΦ.

• For α ∈ Φ, let σα be the linear map on E mapping e to e− 〈e, α∨〉α.

• Let Φ+ be a choice of positive roots and Φs be the (positive) simple roots.

With this at hand we can realise G. General information on Chevalley groups can be found
in [3] (in particular Chapters 5 and 6 there) or [10]; sometimes our notation differs as we use u
for unipotent elements and t for toral (semi-simple) elements; for elements associated to the Weyl
group we use w. A particularly thorough reference is [7, Exposé 23] but we shall avoid using
geometric language.

Notation 2 (realising G: T,Uα, Gα, uα,λ, uα, wα, iα, tα,λ).

• Fix an algebraic torus T ≤ G; root subgroups will refer to this particular torus.

• For α ∈ Φ, let Uα be the root subgroup and Gα = G−α = 〈Uα, U−α〉 be the root SL2-subgroup.

• Realising enables us to fix isomorphisms ϕα : (P)SL2(K) ' Gα mapping upper-triangular
matrices to Uα and diagonal matrices to T ∩Gα and such that ϕ−1

α ◦ ϕ−α = ϕ−1
−α ◦ ϕα is the

inverse-transpose automorphism. Let:

uα,λ = ϕα

((
1 λ
0 1

))
, tα,λ = ϕα

((
λ

λ−1

))
For simplicity write uα = uα,1.

• Let wα = uα · u−1
−α · uα ∈ NG(T ) and iα = w2

α, an element with order at most 2.
(It will be a consequence of Proposition 6 below that iα has order exactly 2.)

In particular, it should be noted that w−α = wα and wαuα,λw
−1
α = u−α,λ. Moreover, t−α,λ =

tα,λ−1 . Importantly enough, wαUβw−1
α = Uσα(β). Now to g.

Notation 3 (realising g: t, uα, gα, xα,λ, xα, hα,λ, hα).

• Fix a decomposition g = t ⊕ ⊕α∈Φuα with t a Cartan subring and uα the root subrings. Let
gα = g−α = 〈uα, u−α〉 be the root sl2-subring.

• Realising enables us to fix isomorphisms ψα : sl2(K) ' gα mapping upper-triangular matrices
to gα and diagonal matrices to t ∩ gα and such that ψ−1

α ◦ ψ−α = ψ−1
−α ◦ ψα is the oppose-

transpose automorphism. Let:

xα,λ = ψα

((
0 λ
0 0

))
, hα,λ = ψα

((
λ
−λ

))
For simplicity write xα = uα,1 and hα = hα,1.
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Remark 4. If one were to let yα,λ = ψα

((
0 0
λ 0

))
, one would have yα,λ = −x−α,λ = x−α,−λ.

(The author finds computations less confusing to perform or check when working in the basis
(h, x, y).)

Let us now provide uniform notation. The reason for choosing letter ω (which more classically
stands for the fundamental weights, see [2]) is by analogy with w for elements of the group lifting
the Weyl group. Checking that ωα behaves as expected in the case of the Lie ring as well is not
obvious and will be carried in Proposition 6.

Notation 5 (realising G by assembling Notations 2 and 3: T ,Uα,Gα, ωα, ∂α,λ, τα,λ).

• If G = G let T = T , let Uα = Uα and Gα = Gα. Also let ωα = wα; for λ ∈ K× let
∂α,λ = uα,λ − 1 and τα,λ = tα,λ;

• if G = g let T = t, let Uα = uα and Gα = gα. Also let ωα = 1− h2
α + xα + x−α; for λ ∈ K+

let ∂α,λ = xα,λ and τα,λ = hα,λ.

Let us apologise again for this notation storm; on second thought, the reader will find that we
mostly wanted to have toral (“τ”) and root (“∂”) elements, and to encode Weyl elements (“ω”) in
a consistent way.

Proposition 6 (local analysis). For α ∈ Φ, one has V = ZV (Gα) ⊕ [Gα, V ] and bGα, V c =
bUα, V c ⊕ bU−α, V c can be equipped with a K-vector space structure making it isomorphic to a
direct sum of natural representations of Gα as a K[Gα]-module.

Consequently:

• in the case of the group, CV (Gα) = CV (iα) and [Gα, V ] = [iα, V ];

• ωα = ω−α is a bijection fixing ZV (Gα) pointwise and mapping bUα, V c to bU−α, V c and
conversely; ω2

α acts as −1 on bGα, V c;

• for v ∈ bUα, V c = ZbGα,V c(Uα), one has ∂α,λωαv = −τα,λv;

• for α ∈ Φ, one has ωα∂α,λω−1
α = ∂−α,λ; moreover ωα normalises the image of T in End(V ).

Before the proof, bear in mind that for the Corollary in §1.5.2 above, i.e. in the case G = GF3

of the group over the field with three elements, we assume the main conclusion of Proposition 6,
and the few remaining details follow as below. There will be no more mention of the order of the
field in our argument as perfectness plays no further role.

Proof. By assumption Gα acts quadratically. So most claims follow from Timmesfeld’s Quadratic
Theorem and its Lie-ring analogue from §1.2, and inspection in the natural SL2-module (possibly
with a few computations).

We urge the reader not to underestimate the fact that ∂α,λωαv = −τα,λv for v ∈ bUα, V c:
here we can see it by inspection again, but this rather deep equation is the crux of the Quadratic
Theorem. (The curious reader interested in extending this remarkable formula to other rational
representations of SL2(K) may be directed to the proof of [6, Theorem 2].)

We now prove the final statement, and begin with ωα∂α,λω−1
α = ∂−α,λ. This is clear in the case

of the group (the formula holds in Gα, replacing ∂ by u); for the Lie ring, proceed piecewise. On
AnnV (gα) this is clear as both hands are zero. So let us work on gα · V , where h2

α = 1, so that ωα
simplifies into xα +x−α. Let Jf, gK = fg− gf in End(V ) (we avoid [·, ·] which we reserve for group
commutators). Then using quadraticity of gα and with a possible look at Remark 4 one can check
that on gα · V :

ωα∂α,λω
−1
α = −(xα + x−α)xα,λ(xα + x−α) = −x−αxα,λx−α

= −Jx−α, xα,λKx−α = −hα,λx−α = −Jx−α,λ, xαKx−α
= −x−α,λJxα, x−αK = x−α,λhα = x−α,λ = ∂−α,λ

We now show that ωα normalises the image in End(V ) of T : here again the case of the group
is obvious so we turn to the Lie ring. Let α, β be roots. Then:
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• first, Jωα, τβ,λK = Jxα + x−α, hβ,λK = x−α,〈α,β∨〉λ − xα,〈α,β∨〉λ;

• by piecewise inspection one has x−α,λxα − xα,λx−α = hα,λ and xα,λhα = −xα,λ in End(V );
also notice that ω−1

α = −xα − x−α + 1− h2
α;

• therefore (x−α,λ − xα,λ)ω−1
α = (x−α,λ − xα,λ)(−xα − x−α) = −x−α,λxα + xα,λx−α = −hα,λ;

• as a consequence ωατβ,λω−1
α = (Jωα, τβ,λK + τβ,λωα)ω−1

α = (x−α,〈α,β∨〉λ − xα,〈α,β∨〉λ)ω−1
α +

hβ,λ = −hα,〈α,β∨〉λ + hβ,λ.

Hence ωα normalises the image of t.

Notice that if G = G, then since G is simple as an algebraic group and the action is non-
trivial, for any α ∈ Φ the root SL2-subgroup Gα must act non-trivially on V . As a consequence
Gα ' SL2(K) and iα is a genuine involution.

2.3 Spots and Masses
Capturing weight spaces requires a little care in the absence of a linear structure.

In the case of the Lie ring G = g there is a straightforward approach. Diagonalise all operators
hα, for α ∈ Φs, simultaneously (the reader with a doubt will find what we precisely mean at the
very beginning of the proof of Proposition 9). The various eigenspaces will be the weight spaces
for the action of the Cartan subring t. But there is no such argument in the case of the group
G = G. Yet returning to the Lie ring one sees by inspection that ker(hα − 1) = uα · V = bUα, V c
whereas ker(hα) = AnnV (gα) = ZV (Gα). This suggests a general method.

Recall from Notation 1 that Φ (resp. Φ∨) denotes the root (resp. dual root) system and E the
underlying Euclidean space. We had also let 〈·, ·〉 : L× L∨ → Z denote the pairing.

Definition 7.

• For µ ∈ E and α a root define V(µ,α∨) as follows:

– if 〈µ, α∨〉 = −1 let V(µ,α∨) = bU−α, V c;
– if 〈µ, α∨〉 = 0 let V(µ,α∨) = ZV (Gα);
– if 〈µ, α∨〉 = 1 let V(µ,α∨) = bUα, V c;
– if 〈µ, α∨〉 /∈ {−1, 0, 1} let V(µ,α∨) = {0}.

• For µ ∈ E let Sµ =
⋂
α∈Φs V(µ,α∨) be the spot with mass µ.

• Let M = {µ ∈ E : Sµ 6= {0}} be the set of masses. (Being a mass certainly implies:
∀α ∈ Φs, 〈µ, α∨〉 ∈ {−1, 0, 1}, but the condition is not sufficient.)

Notice how in the presence of a field, a mass µ will become a weight. (The idea in taking the
intersection over the set of simple roots Φs is that the behaviour of simple roots should determine
that of all roots; we shall neither need nor prove this.)

Remark 8.

1. Sµ is a T -submodule of V .

2. Suppose G = g and 〈µ, α∨〉 ∈ {−1, 0, 1}. Then V(µ,α∨) = ker(hα − 〈µ, α∨〉).

We now show that V is the direct sum of its spots.

Proposition 9. V = ⊕µ∈MSµ.

Remark 10. As a matter of fact during the proof we shall see:

• that the components vµ ∈ Sµ in a decomposition v =
∑
µ∈M vµ all lie in 〈G · v〉;

• that if G = G and G = G2, then V = S0 (with 0 the null mass).
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Proof of Proposition 9. In the case of the Lie ring g this is obvious. Using the Lie-ring analogue to
the Quadratic Theorem, for any root α ∈ Φs, V decomposes as ker(hα+1)⊕ker(hα)⊕ker(hα−1),
which — despite lack of a K-linear structure so far — we suggestively call “diagonalising hα”.
Since the various hα (always α ∈ Φs) commute, diagonalisation is simultaneous. The various
{−1, 0, 1}Φs-eigenspaces are the spots by Remark 8.

We then focus on the case of the group G; nothing so quick is available, since no toral element
in Gα suffices to determine the value of 〈µ, α∨〉: looking at the involution can distinguish 0 from
±1, but no further. We need a closer look.

Bear in mind from Proposition 6 that for any α ∈ Φ, one has CV (iα) = CV (Gα) and [iα, V ] =
[Gα, V ]; also [Uα, V ] = C[Gα,V ](Uα). Finally if v ∈ [Uα, V ], then ∂αwαv = −v.
Claim 1. The sum is direct.

Proof of Claim. Let
∑
µ∈M1

vµ = 0 be an identity minimal with respect to: for all µ ∈ M1,
vµ ∈ Sµ \ {0}. Let ν ∈M1 (if any) and α ∈ Φs be fixed.

• If 〈ν, α∨〉 = 0 then iαvν = vν , so that
∑
µ∈M1

(iαvµ − vµ) = 0 is a shorter relation. It follows
that iαvµ = vµ for all µ ∈M1, meaning 〈µ, α∨〉 = 0.

• If 〈ν, α∨〉 = 1 then ∂αwαvν = −vν ; notice that whenever 〈µ, α∨〉 6= 1, one has ∂αwαvµ = 0.
So minimality again forces 〈µ, α∨〉 = 1 for all µ ∈M1.

• There is a similar argument if 〈ν, α∨〉 = −1.

This shows that all µ ∈M1 coincide on all α ∈ Φs, a spanning set of E: M1 is at most a singleton,
hence empty, as desired. ♦

Now let R(V ) = ⊕µ∈MSµ and fix v ∈ V ; we aim at showing v ∈ R(V ). This we do by induction
on the rank of G, or equivalently, on the Dynkin diagram.

Let α ∈ Φs be extremal in the Dynkin diagram and β be its neighbour; we may suppose α
not to be longer than β. By induction, we know the result for the subgroup with Dynkin diagram
Φs \ {α}. Hence we may assume that for any γ ∈ Φs \ {α}, the element v is already decomposed
under the action of Gγ , viz.:

v ∈ CV (iγ) ∪ [Uγ , V ] ∪ [U−γ , V ]

Claim 2. We may suppose v ∈ [iα, V ].

Proof of Claim. Write v = v0+v± with respect to the action of iα, meaning v0 ∈ CV (iα) = CV (Gα)
and v± ∈ [iα, V ] = [Gα, V ]; as a matter of fact v± = 1

2 [iα, v] (which makes sense since [iα, V ] is a
vector space over K). Since iα centralises Gγ for γ ∈ Φs \ {α, β}, v0 remains decomposed under
the action of such root SL2-subgroups; by construction, it is decomposed under that of Gα. Now
iα normalises Uβ and U−β (hence also Gβ). As a consequence:

• if v ∈ CV (Gβ) then iαv, v±, and v0 lie in CV (Gβ);

• if v ∈ [Uβ , V ] then iαv, v±, and v0 lie in [Uβ , V ];

• there is a similar argument if v ∈ [U−β , V ].

As a conclusion, v0 is decomposed under the action of Gβ as well: hence v0 ∈ R(V ). We may
therefore assume v = v± ∈ [iα, V ]. ♦

It follows from inspection in Nat SL2(K) that v = v+ + v− with v+ = −∂αwαv ∈ [Uα, V ] and
v− = −wα∂αv ∈ [U−α, V ]. We aim at showing v+, v− ∈ R(V ). By construction the latter elements
are already decomposed under the action of Gα and Gγ for γ ∈ Φs \ {α, β}, but it remains to
see what happened under the action of Gβ . This we do dividing three cases (remember that we
assumed α not to be longer than β). We use classical notation for Dynkin diagrams: −, =, and ≡;
an arrow goes from a long root to a short root.
Claim 3. If α− β, then v ∈ R(V ).
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Proof of Claim.

β

α α+ β

Here iα+β = iαiβ (the reader may wish to return to §2.1); also notice that iβwα = wαiαiβ . Since
〈α, β∨〉 = −1, the involution iβ inverts Uα; observe that iβ∂αwαv = −∂αiβwαv = −∂αwαiαiβv.

• If v ∈ CV (iβ), then ∂αwαv ∈ CV (iβ) = CV (Gβ); hence v+, v− ∈ R(V ): we are done.

• If v ∈ [Uβ , V ], then both iβ and iα invert v: hence iα+β = iαiβ centralises it, so that
v = wα+βv ∈ [wα+βUβw

−1
α+β , V ] = [U−α, V ]. Hence v = v− is already decomposed under the

action of both Gα and Gβ : therefore v ∈ R(V ).

• Likewise, if v ∈ [U−β , V ], then v = v+ ∈ [Uα, V ] and v ∈ R(V ) again. ♦

Claim 4. If α⇐ β, then v ∈ R(V ).

Proof of Claim.

β

α α+ β

2α+ β

Now i2α+β = iαiβ and iβwα = wαi2α+β . Since 〈α, β∨〉 = −1, the involution iβ inverts Uα, and
one still has iβ∂αwαv = −∂αwαiαiβv.

• If v ∈ CV (iβ), then iβ∂αwαv = ∂αwαv, so v+ lies in CV (iβ); since v as well, so does v−. As
a consequence v+, v− ∈ R(V ).

• If v ∈ [Uβ , V ], then wαv ∈ [wαUβw−1
α , V ] = [U2α+β , V ]. Now [Uα, U2α+β ] = 1 in the group,

so by the three subgroups lemma v+ = −∂αwαv ∈ [U2α+β , V ] ≤ [i2α+β , V ].
However iαiβ∂αwαv = ∂αwαv so v+ ∈ CV (iαiβ) = CV (i2α+β). This shows v+ = 0, and
therefore v = v− ∈ R(V ).

• There is a similar argument showing v = v+ ∈ R(V ) if v ∈ [U−β , V ]. ♦

Claim 5. If αW β, then v = 0 ∈ R(V ).

Proof of Claim.

β

α α+ β

2α+ β

3α+ 2β3α+ β

Finally iα+β = iαiβ = i3α+β ; also i2α+β = iβ and i3α+2β = iα.
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• If v ∈ CV (iβ) then it can be checked that iβ∂αwαv = −∂αwαiαiβv = ∂αwαv, implying
that v+ = wβv+ ∈ [wβUαw−1

β , V ] = [Uα+β , V ] and v+ = w2α+βv+ ∈ [w2α+βUαw
−1
2α+β , V ] =

[U−α−β , V ], so v+ = 0. One can show v− = 0 as well; hence v = 0 ∈ R(V ).

• If v ∈ [Uβ , V ], then both iα and iβ invert v; as a consequence one has v = wα+βv ∈
[wα+βUβw

−1
α+β , V ] = [U−3α−2β , V ] and v = w3α+βv ∈ [w3α+βUβw

−1
3α+β , V ] = [U3α+2β , V ], so

v = 0 ∈ R(V ).

• There is a similar argument if v ∈ [U−β , V ].

Notice that in case G = G2 we proved v = v0 in the above notation. This means that V is
centralised by iα and therefore by Gα, so by simplicity of G the action of G on V is actually
trivial. ♦

This completes the proof of Proposition 9.

2.4 Weyl Group Action
By Proposition 9, V is the direct sum of its various mass spots, which mimicks the decomposition
into weight spaces.

We now wish to see how the Weyl group permutes spots: it is as expected, with the major
warning that it is not entirely clear what this means in the case of the Lie ring (see §1.5.1 for why
this is not meaningful a priori for the Lie ring, and remember our contortions in Notation 5). Our
approach is elementary again.

In Notation 1, for any α ∈ Φ we introduced the reflection on the root space σα(e) = e−〈e, α∨〉α.
Also remember from Notation 5 that we have let ωα = wα if G = G and ωα = 1− h2

α + xα − x−α
if G = g; the action of ωα is as expected by Proposition 6.

Before the statement, observe that will shall be working with simple roots throughout. The
author did not think about extending to other roots; in any case this will not be necessary.

Proposition 11. For all (α, µ) ∈ Φs ×M , one has ωαSµ = Sσα(µ).

Proof. The case of the Lie ring is straightforward and will be dealt with quickly.
Claim 1. We may suppose G = G.

Proof of Claim. Suppose G = g; let µ ∈M be a mass; let α, β be any two (possibly equal) simple
roots. First notice that in the Lie ring (End(V ),+, J·, ·K), one has Jhβ , ωαK = Jhβ , xα + x−αK =
〈α, β∨〉(xα − x−α). On the other hand, as one checks by piecewise inspection with the help of
Proposition 6, for v ∈ V(µ,α∨) holds: (x−α−xα)v = −〈µ, α∨〉ωαv. So for v ∈ Sµ ≤ V(µ,α∨)∩V(µ,β∨),
one has:

(hβ − 〈σα(µ), β∨〉)ωαv = (ωαhβ + 〈α, β∨〉(xα − x−α)− (〈µ, β∨〉 − 〈µ, α∨〉〈α, β∨〉)ωα) v
= (〈µ, β∨〉 − 〈α, β∨〉〈µ, α∨〉 − 〈µ, β∨〉+ 〈µ, α∨〉〈α, β∨〉)ωαv
= 0

showing that ωαSµ ≤ ker(hβ − 〈σα(µ), β∨〉).
We claim that ker(hβ−〈σα(µ), β∨〉) = V(σα(µ),β∨); by construction (see Remark 8) it suffices to

see why 〈σα(µ), β∨〉 ∈ {−1, 0, 1}. But let γ ∈ E satisfy γ∨ = σ∨α(β∨) = β∨ − 〈α, β∨〉α∨; we know
that γ ∈ Φ (not necessarily simple though). Now,

hγ = γ∨(1) = β∨(1)− 〈α, β∨〉α∨(1) = hβ − 〈α, β∨〉hα

acts on Sµ as the integer
〈µ, β∨〉 − 〈α, β∨〉〈µ, α∨〉 = 〈σα(µ), β∨〉

Since gγ is quadratic — bear in mind the assumption was on all roots — this integer remains in
{−1, 0, 1}, as desired.

Therefore ωαSµ ≤ ker(hβ − 〈σα(µ), β∨〉) = V(σα(µ),β∨). Since this holds for any β ∈ Φs, one
has ωαSµ ≤ Sσα(µ). Since this holds for any mass µ ∈ M , one also finds ωαSσα(µ) ≤ Sµ, proving
equality. ♦
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We move to the case of the group, for which there is no such argument: exactly as in Proposi-
tion 9, no toral element in Gα suffices to determine the value of 〈µ, α∨〉.
Claim 2. We may assume 〈µ, α∨〉 = 1; it is enough to prove that for any β ∈ Φs,

ωαSµ ≤ V(µ−α,β∨) (∗)

Proof of Claim. First suppose 〈µ, α∨〉 = 0. Then σα(µ) = µ and ωα acts as Id on Sµ: there is
nothing to prove. We then turn to 〈µ, α∨〉 = ±1. Observe how it suffices to check ωαSµ ≤ Sσα(µ):
then one will find Sµ = ω2

αSµ ≤ ωαSσα(µ) ≤ Sµ, proving equality.
So it suffices to see that ωαSµ ≤ Sσα(µ); without loss of generality, we may assume 〈µ, α∨〉 = 1,

so that σα(µ) = µ− α. We then wish to show ωαSµ ≤ Sµ−α. This we shall do by taking another
simple root β ∈ Φs and showing that the action of Gβ on ωαSµ is as expected, viz. condition (∗)
above. ♦

We start a case divison based on the nature of the bound between α and β in the Dynkin
diagram. Now there are five cases.
Claim 3. If β is not bound to α then (∗) holds.

Proof of Claim. If β equals α then with the assumption that 〈µ, α∨〉 = 1, one finds Sµ ≤ V(µ,α∨) =
bUα, V c, and:

ωαSµ ≤ ωαbUα, V c = bU−α, V c = V(σα(µ),α∨) ♦

If β is neither bound nor equal to α, then (∗) is obvious since the images of Gα and Gβ in End(V )
commute, and 〈σα(µ), β∨〉 = 〈µ, β∨〉.

Claim 4. If α− β, then (∗) holds.

Proof of Claim. There is a picture on page 13; in particular bear in mind that iα+β = iαiβ . Also
notice that 〈µ− α, β∨〉 = 〈µ, β∨〉+ 1.

• Suppose 〈µ, β∨〉 = −1; notice that 〈µ− α, β∨〉 = 0. Since both iα and iβ invert Sµ, one has
Sµ ≤ CV (iα+β) = CV (Gα+β), and wαSµ ≤ CV (wαGα+βw

−1
α ) = CV (Gβ) = V(µ−α,β∨).

• Now suppose 〈µ, β∨〉 = 0; hence 〈µ − α, β∨〉 = 1. Then iβ centralises Sµ, so Sµ = wβSµ ≤
[wβUαw−1

β , V ] = [Uα+β , V ]. Hence wαSµ ≤ [wαUα+βw
−1
α , V ] = [Uβ , V ] = V(µ−α,β∨).

• Finally suppose 〈µ, β∨〉 = 1; notice that now 〈µ− α, β∨〉 = 2 and there is a contradiction in
the air. Here again, both iα and iβ invert Sµ so iα+β centralises it. Therefore Sµ = wα+βSµ ≤
[wα+βUαw

−1
α+β , V ] = [U−β , V ], and Sµ ≤ [Uβ , V ] ∩ [U−β , V ] = 0. This is a contradiction to

µ ∈M , that is, Sµ 6= 0 (see Definition 7). ♦

Claim 5. If α⇐ β then (∗) holds.

Proof of Claim. There is a picture on page 13; one has iα+β = iα and i2α+β = iαiβ . Notice that
〈µ− α, β∨〉 = 〈µ, β∨〉+ 1.

• Suppose 〈µ, β∨〉 = −1, so that 〈µ−α, β∨〉 = 0. Both iα and iβ invert Sµ, so Sµ ≤ CV (iαiβ) =
CV (i2α+β) and wαSµ ≤ CV (wαG2α+βw

−1
α ) = CV (Gβ), as desired.

• Now suppose 〈µ, β∨〉 = 0, so that 〈µ − α, β∨〉 = 1. Then Uα, Uβ , and therefore U2α+β as
well, centralise Sµ. On the other hand i2α+β = iαiβ inverts it, so Sµ ≤ [i2α+β , CV (U2α+β)] =
[U2α+β , V ] and wαSµ ≤ [wαU2α+βw

−1
α , V ] = [Uβ , V ] = V(µ−α,β∨).

• Finally suppose 〈µ, β∨〉 = 1, so that 〈µ−α, β∨〉 = 2. Here again both iα and iβ invert Sµ: so
iα+2β centralises it, and therefore Sµ = wα+2βSµ ≤ [wα+2βUαw

−1
α+2β , V ] = [U−α−β , V ]. But

Uα, Uβ , and therefore Uα+β as well, centralise Sµ, showing Sµ = 0: against µ ∈M . ♦

Claim 6. If α⇒ β then (∗) holds.

Proof of Claim. Be careful that β is now the short root; hence iα+β = iβ and iα+2β = iαiβ . Notice
that 〈µ− α, β∨〉 = 〈µ, β∨〉+ 2.

15



• Suppose 〈µ, β∨〉 = −1, so that 〈µ − α, β∨〉 = 1. Then both iα and iβ invert Sµ: so iα+2β
centralises it, and therefore Sµ = wα+2βSµ ≤ [wα+2βU−βw

−1
α+2β , V ] = [Uα+β , V ]. Hence

wαSµ ≤ [wαUα+βw
−1
α , V ] = [Uβ , V ].

• Now suppose 〈µ, β∨〉 = 0, so that 〈µ − α, β∨〉 = 2. Then iα+β = iβ centralises Sµ: as
a consequence Sµ = wα+βSµ ≤ [wα+βUαw

−1
α+β , V ] = [U−α−2β , V ]. But Uα+2β ≤ 〈Uα, Uβ〉

centralises Sµ, showing Sµ = 0. This is a contradiction to µ ∈M .

• Finally, the case 〈µ, β∨〉 = 1 was dealt with in the previous configuration. ♦

We have already proved inconsistency of a configuration of type G2 (Remark 10).
This completes the proof of Proposition 11.

As a consequence (and this was not obvious a priori), the Weyl group does act on the set of
masses M ⊆ E; in particular for µ ∈M and α, β ∈ Φs, one has 〈σα(µ), β∨〉 ∈ {−1, 0, 1}. Therefore
if µ ∈M and α, β ∈ Φs are adjacent in the Dynkin diagram, one cannot have 〈µ, α∨〉 = 〈µ, β∨〉 = 1.
(Notice that the proof of Proposition 11 did remove such configurations.)

2.5 Intermezzo — Isotypical Summands
We know from Propositions 9 and 11 that V is the direct sum of its spots, and that elements of
End(V ) which stand for the standard generators of the Weyl group act as expected. This enables
us to reduce to a single orbit in Proposition 13.

Notation 12.

• Let µ ∈M and cl(µ) be the orbit of µ under the action of the Weyl group of G;

• let Vcl(µ) = ⊕ν∈cl(µ)Sν .

Proposition 13. Vcl(µ) is G-invariant.

Proof. It suffices to prove invariance under all maps ∂±α,λ for (α, λ) ∈ Φs × K. So let ν ∈ cl(µ)
and v ∈ Sν .

• If 〈ν, α∨〉 = 0 then Sν ≤ ZV (Gα) is annihilated by ∂±α,λ.

• Now suppose 〈ν, α∨〉 = 1. Then Sν ≤ bUα, V c is annihilated by ∂α,λ. Recall from Proposi-
tion 6 that in End(V ) holds ∂−α,λ = ωα∂α,λω

−1
α . As a consequence,

∂−α,λv = ωα∂α,λω
−1
α v = −ωα∂α,λωαv = ωατα,λv ∈ ωαSν = Sσα(ν) ≤ Vcl(µ)

• There is a similar argument if 〈ν, α∨〉 = −1.

2.6 Linear Structure
By Proposition 13 we may suppose V = Vcl(µ0) for some µ0 ∈M ; if µ0 = 0 then cl(µ0) = {0} and
V = ZV (G): we are done. So we may suppose µ0 6= 0 and will construct a linear action. Notice
that our construction is as uniform as one can hope since it depends neither on the field nor on
the root system. Determination of the isomorphism type of V as a representation will be handled
in §2.7.

Notation 14.

• Let α0 ∈ Φs with 〈µ0, α
∨
0 〉 = 1 (up to taking σα0(µ0) instead of µ0 there is one such).

• For γ = (α1, . . . , αd) ∈ Φds, let σγ = σβd ◦ · · · ◦ σα1 and ωγ = ωαd . . . ωα1 ∈ End(V ).
(Be careful that despite the notation, the element σγ of the Weyl group need not be a reflec-
tion.)

We now define a field action piecewise on the various spots. Notice that whenever σγ(µ) = ν,
then by Proposition 11, ωγ restricts to a group isomorphism Sµ → Sν .
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Notation 15. Let λ ∈ K and v ∈ Sµ for some µ ∈ cl(µ0). Take γ ∈ Φds with σγ(µ0) = µ and
define:

λ · v = ωγτα0,λω
−1
γ v

Proposition 16. This turns V = Vcl(µ0) into a K[G]-module.

Proof. Here again we make a series of claims.
Claim 1. Notation 15 is well-defined.

Proof of Claim. By the definition of cl(µ0) and since the reflections σα (α ∈ Φs) generate the Weyl
group, there is at least one sequence γ ∈ Φds with σγ(µ0) = ν. The problem is that the actual
operator ωγ may depend on γ: the basic example is σ2

α0
(µ0) = µ0, whereas ω2

α0
acts on Sµ0 as −1.

It suffices to show the following: if γ, γ′ are sequences such that σγ(µ0) = σγ′(µ0), then there is
ε ∈ {±1} with (ωγ)|Sµ0

= ε(ωγ′)|Sµ0
. Notice by inspection that (ω−1

α )Sµ equals ±(ωα)Sµ (the sign
is even given by (−1)〈µ,α∨〉 as one can see), so we may replace any ωα by its inverse in a product
of type ωγ .

So applying ω−1
γ′ it therefore suffices to prove: if σγ(µ0) = µ0 then ωγ acts as ±1 on Sµ0 . (We

may have missed something as this looks decently obvious but we failed to convey this feeling and
have no better reason to offer the reader than the following argument.)

Write γ = (α1, . . . , αd); for i ∈ {1, . . . , d} let µi = σαi(µi−1). We suppose µd = µ0 and
shall prove that there is ε ∈ {±1} such that for any v ∈ Sµ0 , one has ωγv = εv (be careful
that ε will depend on both γ and µ0). The proof will be by induction on d. For convenience let
ki = 〈µi−1, α

∨
i 〉 ∈ {−1, 0, 1}; by definition, µi = µi−1 − kiαi.

First suppose that there is i ∈ {1, . . . , d} with ki = 0. Let γ′ = (α1, . . . , α̂i, . . . , αd) (i.e., remove
αi from the sequence). By assumption, µi = µi−1; hence σγ′(µ0) = σγ(µ0) = µ0. Also recall that
ki = 〈µi−1, α

∨
i 〉 = 0 implies that Sµi−1 ≤ ZV (Gαi): hence ωαi fixes Sµi−1 pointwise. So ωγv = ωγ′v

and we may apply induction to conclude.
Now suppose there is i ∈ {1, . . . , d− 1} with ki+1 = −ki. The left-hand side is:

ki+1 = 〈µi, α∨i+1〉 = 〈σαi(µi−1), α∨i+1〉 = 〈µi−1, α
∨
i+1〉 − ki〈αi, α∨i+1〉

Hence 〈µi−1, α
∨
i+1〉 = ki(〈αi, α∨i+1〉 − 1) ∈ {−1, 0, 1}.

• If 〈αi, α∨i+1〉 = 2 then αi+1 = αi. Let γ′ = (α1, . . . , α̂i, α̂i+1, . . . , αd); clearly σγ′(µ0) = µ0
and ωγv = −ωγ′v; apply induction.

• Otherwise 〈αi, α∨i+1〉 ≤ 0 and the above equality forces 〈αi, α∨i+1〉 = 0: the roots are not
adjacent, implying that σαi and σαi+1 on the one hand, ωαi and ωαi+1 on the other hand,
commute. So swapping αi and αi+1 in γ, the new sequence γ′ = (α1, . . . , αi+1, αi, . . . , αd)
enjoys both σγ′(µ0) = σγ(µ0) and ωγ′v = ωγv. However, one has k′i = ki+1 and k′i+1 = ki
with obvious notation. (The careful reader will note that µi changes, but µi is a mere gadget
in our argument.)

Inductively applying the previous, we may suppose that there is ` ≤ d with k1 = · · · = k` =
−k`+1 = · · · = −kd. Now µ0 = σγ(µ0) = µ0− k1(α1 + · · ·+α`−α`+1 · · · −αd). Since simple roots
are linearly independent in the vector space they span, there is i ≤ ` maximal with αi = α`+1.
But like above, we see that α`+1 is never adjacent to αj for j ∈ {i + 1, . . . , `}. In particular the
sequence γ′ = (α1, . . . , αi, α`+1, αi+1, . . . , α`, α`+2, . . . , αd) obtained from γ by moving α`+1 right
after αi enjoys both σγ′(µ0) = µ0 and ωγ′v = ωγv. Now γ′ bears a redundancy, viz. k′i+1 = 0;
conclude as above, by induction. ♦

Claim 2. Notation 15 defines a field action.

Proof of Claim. We argue piecewise; it clearly suffices to prove the claim in the action on Sµ0 .
Additivity in v is obvious, so we now fix v ∈ Sµ0 . Since α0 is the only root involved in the
argument, we shall conveniently let α = α0.

If G = g, then additivity in λ is obvious since τα,λ = hα,λ; we turn to multiplicativity. Observe
how, since v ∈ Sµ0 ≤ V(µ0,α∨) = uα · V , and looking if necessary at Remark 4:

λ · v = hα,λv = x−αxα,λv − xα,λx−αv = −xα,λx−αv = −xαx−α,λv

17



so that, using quadraticity of uα:

λ(λ′v) = xαx−α,λxα,λ′x−αv

= xαhα,λλ′x−αv

= −2xα,λλ′x−αv + hα,λλ′xαx−αv

= 2hα,λλ′v − hα,λλ′v
= (λλ′)v

as desired.
If G = G, then multiplicativity in λ is now obvious since τα,λ = tα,λ; we turn to additivity. But

remember from Proposition 6 that ∂α,λwαv = −tα,λv, so that, using quadraticity of Uα:

(λ+ λ′)v = −∂α,λ+λ′wαv

= −(uα,λ+λ′ − 1)wαv
= −(uα,λuα,λ′ − 1)wαv
= −(∂α,λ + ∂α,λ′ + ∂α,λ∂α,λ′)wαv
= −∂α,λwαv − ∂α,λ′wαv
= λv + λ′v

as desired. ♦

Claim 3. The action of G on the K-vector space V is linear.

Proof of Claim. Remark that all operators ωβ for β ∈ Φs are linear by construction (and well-
definedness of the action).

It could be tempting to prove linearity of one root SL2-substructure, say Gα0 , and of the Weyl
group. The problem is that properly speaking, the Weyl group (the group of automorphisms of the
root system generated by {σβ : β ∈ Φs}) does not act on V . Of course we just observed that ωβ
does act linearly; the problem remains to see why the image of G in End(V ) is generated by Gα0

and the operators {ωβ : β ∈ Φs}. This is obvious in the case of the group but not entirely so in
the case of the Lie ring. And though the latter question may be of independent interest, we take
a side approach.

We shall first prove that all operators τβ,λ for (β, λ) ∈ Φs × K× are linear. Notice that since
h−β,λ = −hβ,λ and t−β,λ = t−1

β,λ (see our realisation in §2.2 if necessary), this will actually imply
linearity of τ±β,λ.

In the case of the group G = G, assuming ν = σγ(µ0) and letting v ∈ Sν :

τβ,λ(λ′ · v) = τβ,λωγτα0,λ′ω
−1
γ v

= ωγτα0,λ′ω
−1
γ τβ,λv

= λ′ · (τβ,λv)

since ωγτα0,λ′ω
−1
γ ∈ T ≤ CG(τβ,λ).

In the case of the Lie ring G = g remember from Proposition 6 that in End(V ) the operators ωα
(and therefore operators ωγ as well) normalise the image of the Cartan subring t which is abelian.
So we can carry exactly the same argument.

Hence T acts linearly in any case.
We can now deduce that all elements ∂±β,λ for (β, λ) ∈ Φs × K+ are linear. This will suffice

for the linearity of G. Fix ν ∈ cl(µ0) and v ∈ Sν ; also take λ′ ∈ K. We show that ∂±β,λ(λ′ · v) =
λ′ · ∂±β,λv. If 〈ν, β∨〉 = 0 there is nothing to prove as ∂±β,λ acts trivially on Sν . By symmetry we
may assume 〈ν, β∨〉 = −1. Then ∂−β,λ acts as the zero map on Sν and therefore is linear. Now
ωβSν = Sσβ(ν) ≤ bUβ , V c so for any v ∈ Sν one has by Proposition 6:

∂β,λv = −∂β,λω2
βv = τβ,λωβv

In particular, thanks to linearity of T and of ωβ :

∂β,λ(λ′v) = τβ,λωβ(λ′v) = λ′ · τβ,λωβv = λ′ · ∂β,λv

which proves linearity of ∂β,λ. ♦
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This completes the proof of Proposition 16.

Remark 17. The linear structure may seem to depend on both µ0 and α0. It actually depends on
neither. This can be seen as a consequence of the remainder of the argument (but will not be used).

2.7 Complete reducibility
So far we could assume that V = Vcl(µ0) with µ0 6= 0, and turned it into a K[G]-module. Complete
reducibility of V , and therefore its isomorphism type, is however not perfectly clear. The reader
may even object that if K = Fp (the field with p elements), constructing a compatible K-vector
space structure on V was not very impressive.

But actually we did much more than retrieving a linear structure: we explicitly performed the
weight space decomposition of V . We contend that in order to conclude to complete reducibility
and identification, it actually suffices to determine the weights involved — which we do now by
elementary means without invoking [2, Chap. VIII, §7.3], as we promised that the present work
would be self-contained.

Proposition 18. µ0 is a minuscule weight.

The list of minuscule weights is given in [2, Chap. VIII, end of §7.3]; we mentioned it in §1.3.

Remark 19. As a matter of fact very little of Proposition 18 is actually needed to prove complete
reducibility: Claims 1 and 2 suffice, namely the fact that up to the Weyl group action, we may
assume µ0 to be non-negative on Φs and positive at exactly one α0 ∈ Φs.

The rest of the proof will actually retrieve the list of minuscule weights.

Proof of Proposition 18.
Claim 1. We may suppose that for all β ∈ Φs, 〈µ0, β

∨〉 ≥ 0.

Proof of Claim. This is because the topological closure of the positive chamber is a fundamental
domain for the action of W on E [1, Chap. V, §3.3, Théorème 2]. ♦

Remember that a consequence of Proposition 11 we made explicit after its proof is that if µ ∈M
and α, β ∈ Φs are adjacent in the Dynkin diagram, one cannot have 〈µ, α∨〉 = 〈µ, β∨〉 = 1. This
will be used repeatedly in the argument.
Claim 2. There is exactly one α ∈ Φs with 〈µ0, α

∨〉 = 1.

Proof of Claim. Suppose that there are a segment Σ of the Dynkin diagram and a mass µ with
both ∀γ ∈ Σ, 〈µ, γ∨〉 ≥ 0 and two distinct α, β ∈ Σ with 〈µ, α∨〉 = 〈µ, β∨〉 = 1. We may suppose
the distance between α and β to be minimal.

Notice that by Proposition 11, α and β are not adjacent. Let γ be the neighbour of α in [αβ];
by assumption, 〈µ, γ∨〉 ≥ 0; by minimality, 〈µ, γ∨〉 = 0.

Let ν = σα(µ); clearly ν takes non-negative values on [γβ] and 〈ν, γ∨〉 = 〈ν, β∨〉 = 1, against
minimality of [αβ]. ♦

Let α0 be the unique simple root with 〈µ0, α
∨
0 〉 = 1. We shall draw Dynkin diagrams and label

each simple root α with the value 〈µ, α∨〉.
In case G = An, we are done (see the list of minuscule weights for An); let us now handle types

Bn and Cn.
Claim 3. If the Dynkin diagram contains a double bond, then α0 is the extremal short root.

Proof of Claim. Notice that by Proposition 11, the following is inconsistent for any mass µ:

0 1
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Therefore, inductively reflecting along the coroot with value 1, the following is inconsistent as well:

0 0 0 1

On the other hand, reflecting in the middle then in the left root, the following is inconsistent
too:

0 1 0

Inductively reflecting in the next-to-left then in the left coroot, so is the following:

0 1 0 0 0 ♦

In particular this covers the cases of Bn and Cn. We move to types Dn and En.
Claim 4. If G = Dn or En then α0 is extremal.

Proof of Claim. The following is easily seen inconsistent:

0 1 0

0

Therefore so is the following:

0 1 0 0

0

By induction so is the following:

0 1 0 0 0

0

♦

This covers case Dn. We are not done with case En.
Claim 5. If G = En then n = 6 or 7 and α0 is one of the roots (resp. the root) farthest from the
arity 3 root.
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Proof of Claim. We know from Claim 4 that α0 is extremal but there remains a number of config-
urations to kill.

First, we shall check the following is inconsistent:

0 0 0 0 0

1

We see this by bringing the diagram into the following state:

0 1 −1 1 0

0

Then into:

−1 0 1 0 −1

0

an inconsistent configuration as we know from the proof of Claim 4.
The counting reader will find three more configurations to kill: one for E7, two for E8. We can

remove two simultaneously. Perhaps we ought to make our notation more compact. Consider the
diagram:

β1 β2 β3 β4 β5 β6 (β7)

γ

We tabulate consecutive masses until we reach inconsistency (each row describes a mass obtained
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from the previous by reflecting in a coroot with value 1; an empty cell is an unchanged value):

γ β1 β2 β3 β4 β5 β6 (β7)
0 1 0 0 0 0 0
−1 1
0 −1 1

1 0 −1 1
0 −1 1

0 −1 1
−1 1
0 1 −1 1

0 −1 0
1 −1 1

1 0 −1 0
−1 0

In the final state, the value at β∨i for i ∈ {1, . . . , 6} is non-negative, and positive at both β∨1 and
β∨6 : this contradicts Claim 2.

So there remains only one E8 configuration, which we handle as follows.

γ β1 β2 β3 β4 β5 β6 β7
0 0 0 0 0 0 0 1

1 −1
1 −1 0

1 −1 0
1 −1 0

1 1 −1 0
−1 0

1 −1 1
−1 0

0 1 −1 1
0 −1 0

1 −1 1
1 0 −1 0
−1 0

1 −1 1
1 −1 0

0 1 −1 0
1 −1 0
−1 0

1 −1 1
1 −1 0

1 −1 0
1 1 −1 0
−1 0

and [β2β7] proves inconsistency of the final state. ♦

Claim 6. For G = F4 the configuration is inconsistent.

Proof of Claim. By Claim 3 only the following need be considered:

1 0 0 0

We leave it to the reader to push the configuration to inconsistency. ♦
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Claim 7. For G = G2 the configuration is inconsistent.

Proof of Claim. By Proposition 11, α0 cannot be the long simple root (call it β) and is therefore
the short root; reflecting in α∨0 we find 〈σα0(µ0), β∨〉 = −〈α0, β

∨〉 = 1, and then 〈σβσα0(µ0), α∨0 〉 =
−1 + 3 /∈ {−1, 0, 1}: a contradiction. ♦

This shows that µ0 is one of the minuscule weights.

Remark 20. It is a consequence of the first two Claims 1 and 2 of Proposition 18 that µ0 ∈ cl(µ0)
and suitable α0 are uniquely determined.

In particular, once the realisation of G is fixed in Notation 5, there is no choice involved in our
construction of the K-linear structure.

Let us now finish the proof of the Main Theorem. We claim that T acts by scalars on V . We
first see this on Sµ0 , by definition of the action (Notation 15) and the first two Claims 1 and 2
of Proposition 18. This is true of T ∩ Gα0 by construction, and the other intersections T ∩ Gβ
for β ∈ Φs \ {α0} act trivially; together they do generate T . Now since operators ωγ (defined in
Notations 5 and 14) normalise the image of T in End(V ) by Proposition 6, we find that T acts by
scalars on all of V = Vcl(µ0).

For v ∈ Sµ0 \ {0} let Mv = ⊕Kωγv, where the sum is taken over a minimal set of sequences γ
representing the orbit cl(µ0) (otherwise it would fail to be a direct sum). By Proposition 6 again
and the equation there, we now understand the action of ∂β,λ for (β, λ) ∈ Φs × K× on all rooms.
In particular 〈G · v〉 = Mv.

The latter is irreducible, even as a Z[G]-module. Indeed, let a ∈ Mv \ {0}; we want to show
v ∈ 〈G · a〉. Remember that V = Vcl(µ0) = ⊕µ∈cl(µ0)Sµ. Write a =

∑
µ aµ for components

aµ ∈ Sµ. In the proof of Proposition 9, such components were obtained by using operators in G
(see Remark 10); hence each aµ ∈Mv. Now because Φs is a spanning set of E, there is a product,
say f , of operators ∂β for β ∈ Φ, such that f(a) = f(aµ1) 6= 0 for one µ1 ∈ cl(µ0). So we may
as well suppose a = aµ1 ∈ Mv ∩ Sµ1 . Since the Weyl group is transitive on cl(µ0) by definition
(and since it can be encoded in Z[G] even in the case of the Lie ring), we may suppose µ1 = µ0,
i.e. a ∈ Mv ∩ Sµ0 , which is a vector line. Transitivity of T on the latter (minus 0) now proves
v ∈ 〈G · a〉.

We then let M denote a maximal direct sum of such modules Mv, for various v ∈ Sµ0 \ {0}.
The isomorphism type of M is known: it is a direct sum of representations with highest weight
µ0 (which is minuscule in the classical sense, as proved by Proposition 18). Finally V = Vcl(µ0) =
〈G · Sµ0〉 = M .

Future variations will see our return to model theory: we shall untensor a cubic SL2(K)-module
in the finite Morley rank category.
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