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Abstract

A theorem of Gao, Jackson and Seward, originally conjectured to be
false by Glasner and Uspenskij, asserts that every countable group admits
a 2-coloring. A direct consequence of this result is that every countable
group has a strongly aperiodic subshift on the alphabet {0, 1}. In this
article, we use Lovász local lemma to first give a new simple proof of
said theorem, and second to prove the existence of a G-effectively closed
strongly aperiodic subshift for any finitely generated group G. We also
study the problem of constructing subshifts which generalize a property
of Sturmian sequences to finitely generated groups. More precisely, a
subshift over the alphabet {0, 1} has uniform density α ∈ [0, 1] if for
every configuration the density of 1’s in any increasing sequence of balls
converges to α. We show a slightly more general result which implies
that these subshifts always exist in the case of groups of subexponential
growth.

Keywords: Symbolic dynamics, Countable groups, Amenable groups, Stur-
mian sequences, Aperiodic subshift.

Introduction

Symbolic dynamics is concerned with the study of subshifts on groups. Subshifts
are sets of colorings of a group G by some finite alphabet A that respect local
constraints given by forbidden patterns, or equivalently, subsets of AG that are
both closed for the product topology and shift-invariant. They can be used
to model dynamical systems [12, 22], but can also be seen as computational
models [13]. Subshifts of finite type (SFT) – those which can be defined by
forbidding a finite set of patterns – constitute an interesting class of subshifts
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since they are defined by local conditions, and can model real-world phenomena.
Classical symbolic dynamics has focused on the one-dimensional case G = Z [12,
15] and more recently G = Zd with d ≥ 2 [13, 21]. Subshifts on free groups have
also been studied [19, 20]. Very recent results tackle computational aspects of
subshifts on finitely generated groups [1, 4, 6, 7, 14].

In this article we consider two general aspects of realizability which concern
subshifts in groups: The first one asks if it is possible to construct a strongly
aperiodic subshift, that is, one such that the stabilizer of every element is the
trivial subgroup. The second aspect is inspired by Sturmian words, by the
fact that the factors of length n carry a density of 1’s which converges to the
slope of the irrational rotation which generates the word. Here, given a finitely
generated group and its word metric given by a set of generators, we ask if it is
possible to construct a subshift X ⊂ {0, 1}G such that for every configuration
x ∈ X and every sequence (gn)n∈N of group elements, the density of 1’s over
the balls B(gn, n) always converges to a fixed density α ∈ [0, 1]. We call this
property uniform density.

The existence of a countable group which does not admit a non-empty
strongly aperiodic subshift over the alphabet {0, 1} was asked in [11] and subse-
quently answered negatively in [10]. Nevertheless, their proof is very technical.
In this article we combine the asymmetric version of Lovász local lemma [3] and
compactness of the set of configurations to get a nice tool to prove non-emptiness
of subshifts defined by forbidden patterns. This technique, which in some sense
is the analogue of the probabilistic method in graph theory, provides very short
proofs of the existence of configurations in subshifts. We use it to prove again
in a succinct way the existence of a strongly aperiodic subshift on any countable
group. We also extend the previous result by showing that in finitely generated
groups it is also possible to construct non-empty strongly aperiodic subshifts
which satisfy the condition of being G-effectively closed, that is, that they can
be defined as the complement of a recursively enumerable union of cylinders by
a Turing machine which has access to the word problem of G. That is, we show:

Theorem 2.4. Every countable group G has a non-empty, strongly aperiodic
subshift on the alphabet {0, 1}.

Theorem 2.6. Every finitely generated group G has a non-empty G-effectively
closed strongly aperiodic subshift.

A bi-infinite sequence of 0’s and 1’s is balanced if for every n ∈ N, every
factor of size n can have only two possible quantities of symbols 1. Most famous
examples of balanced sequences are Sturmian sequences, which are both bal-
anced and aperiodic, or equivalently, codifications of irrational rotations in the
circle [16, 18]. Some attempts have been made to generalize Sturmian sequences
to dimension 2 [5, 9]. In general groups a configuration such that the amount
of 1’s over any finite connected support of size n has at most two values is not
possible as the group’s geometry is too wild. Instead, we propose this uniform
density property of a subshift mentioned above as a generalization of the afore-
mentioned property of Sturmian subshifts. In this direction, we are able to prove
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a more technical result which implies the existence of non-empty subshifts with
uniform density in every group of subexponential growth. Formally, we show
the following result.

Theorem 3.1. Let G be an infinite and finitely generated amenable group
and α ∈ [0, 1]. Then there exists a non-empty subshift Xα ⊂ {0, 1}G with
limn→∞ dens(1, Fn, x) = α for any x ∈ Xα and any Følner sequence (Fn)n∈N.

That is, by replacing the sequence of intervals of Z for a general Følner se-
quence we produce a subshift where the densities of 1’s converge to a fixed value
α. We show that the subshifts given by our construction are weakly aperiodic
if α /∈ Q. Our example loses some of the properties of those constructions, like
balancedness, but instead uses a two-symbol alphabet and is available on any
infinite, finitely generated and amenable group.

1 Preliminaries

Throughout this article the groups G considered will always be countable; we
denote their identity element 1G. When G is finitely generated we associate a
finite set S ⊂ G of generators and the undirected right Cayley graph Γ(G,S) =
(G, {{g, gs} | g ∈ G, s ∈ S}) so that (G, d) is a metric space where d is the
distance induced on G by Γ(G,S). If two words w1, w2 in S∗ represent the
same element in G, we write w1 =G w2. We shall denote by B(g, n) = {h ∈
G | d(g, h) ≤ n} the ball of size n centered in g ∈ G. In general we denote
BΓ(v, n) the ball of size n centered in v of an arbitrary graph Γ. For g ∈ G, we
denote by |g| the length of a shortest path from 1G to g in Γ(G,S), that is to
say |g| = d(1G, g). We also denote by WP(G) := {w ∈ (S ∪ S−1)∗ | w =G 1G}
the set of words which can be written using elements from S and their inverses
which are equal to 1G in the group G. If WP(G) is a decidable language we say
that G has decidable word problem. For more references see [17].

We now give some basic definitions of symbolic dynamics. For a more com-
plete introduction the reader may refer to [15, 8]. Let A be a finite alphabet
and G a countable group. The set AG = {x : G → A} equipped with the
left group action σ : G × AG → AG defined by (σg(x))h = xg−1h is the G-
fullshift. The elements a ∈ A and x ∈ AG are called symbols and configurations
respectively. By taking the discrete topology on A we obtain that the set of
configurations AG is compact and metrizable. In the case of a countable group,
given an enumeration 1G = g0, g1, . . . of G, the topology is generated by the
metric d(x, y) = 2− inf({n∈N| xgn 6=ygn}). If E is a subset of AG, we denote by E
its topological closure. In the case of a finitely generated group another possibil-
ity which is more practical is d(x, y) = 2− inf{|g| | g∈G: xg 6=yg}. This topology is
generated by a clopen basis given by the cylinders [a]g = {x ∈ AG|xg = a ∈ A}.
A support is a finite subset F ⊂ G. Given a support F , a pattern with support
F is an element p of AF , i.e. a finite configuration and we write supp(p) = F .
We also denote the cylinder generated by p centered in g as [p]g =

⋂

h∈F [ph]gh
One says that a pattern p ∈ AF appears in a configuration x ∈ AG if there
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exists g ∈ G such that for any h ∈ F , xgh = ph, said otherwise, if there exists
g such that x ∈ [p]g. In this case we write p ⊏ x. We denote the set of finite
patterns over G as A∗

G :=
⋃

F⊂G,|F |<∞A
F .

Definition 1.1. A subset X of AG is a G-subshift if it is σ-invariant – σ(X) ⊂
X – and closed for the cylinder topology. Equivalently, X is a G-subshift if and
only if there exists a set of forbidden patterns F ⊂ A∗

G that defines it.

X = XF :=
{

x ∈ AG | ∀p ∈ F , p 6⊏ x
}

=
⋂

p∈F ,g∈G

AG \ [p]g.

That is, a G-subshift is a shift-invariant subset of AG which can be written
as the complement of a union of cylinders. If it is clear from the context, we
will drop the G and simply refer to a subshift. A subshift X ⊆ AG is of finite
type – G-SFT for short – if there exists a finite set of forbidden patterns F such
that X = XF .

Consider a group which is generated by a finite set S. A pattern coding c
is a finite set of tuples c = (wi, ai)1≤i≤n where wi ∈ (S ∪ S−1)∗ and ai ∈ A.
We say that a pattern coding is consistent if for every pair of tuples such that
wi =G wj (wi and wj represent the same element under G) then ai = aj . We
say a consistent pattern coding c codifies a pattern P if every wi represents an
element of supp(P ) and for every g ∈ supp(P ) there exists a tuple (wi, ai) ∈ c
such that g =G wi and Pg = ai.

Definition 1.2. For a finitely generated group G we say a subshift X ⊆ AG

is G-effectively closed if there exists a Turing machine with oracle WP(G) which
recognizes a set of pattern codings such that the consistent ones codify a set of
patterns F such that X = XF . If the same property is valid without the oracle
we say X is effectively closed.

Being G-effectively closed is a generalization of the same concept for Z-
subshifts where the set of forbidden patterns is a recursively enumerable set of
words.

Let x ∈ AG be a configuration. The orbit of x is the set of configurations
orbσ(x) = {σg(x) | g ∈ G}, and the stabilizer of x is the set of group elements
stabσ(x) = { g ∈ G | σg(x) = x}.

Definition 1.3. A G-subshift X ⊆ AG is weakly aperiodic if for every config-
uration x ∈ X, |orbσ(x)| = ∞. A G-subshift X ⊆ AG is strongly aperiodic if
for every configuration x ∈ X, stabσ(x) = {1G}.

For infinite groups the weak concept of aperiodicity is relevant and implied
by strong aperiodicity.

2 Non-empty strongly aperiodic subshifts

In this section we construct non-empty strongly aperiodic subshifts on any
countable group. As mentionned in the introduction, the question of the exis-
tence of an infinite countable group G that does not admit a non-empty strongly
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aperiodic subshift over the alphabet {0, 1} was asked in [11] and subsequently
answered in the negative in [10]. In this section we present a short proof based
on Lovász local lemma [3]. For finitely generated groups, we also give a second
proof – inspired by the use of local lemma in [2] – which is quite easy to visualize
and gives a G-effectively closed subshift, but this proof uses a large alphabet
and only works in finitely generated groups.

We begin by introducing the asymmetric version of the local lemma. We then
extract a corollary to show how it can be used in order to produce configurations
in subshifts by using the compactness of the set of configurations and then we
proceed to the construction of the strongly aperiodic subshifts.

2.1 Lovász local lemma

Lemma 2.1. [Asymmetric Lovász local lemma] Let A := {A1, A2, . . . , An} be a
finite collection of measurable sets in a probability space (X,µ,B). For A ∈ A ,
let Γ(A) be the smallest subset of A such that A is independent of the collection
A \ ({A} ∪ Γ(A)). Suppose there exists a function x : A → (0, 1) such that:

∀A ∈ A : µ(A) ≤ x(A)
∏

B∈Γ(A)

(1− x(B))

then the probability of avoiding all events in A is positive. Specifically

µ

(

X \
n
⋃

i=1

Ai

)

≥
∏

A∈A

(1− x(A)) > 0.

The sets A1, A2, . . . , An can be seen as bad events that we want to avoid.
In the context of the present article where A is a finite alphabet and G a
countable group, we will choose the probability space to be X = AG with µ
any Bernoulli probability measure on AG. Suppose X is a subshift defined
by a set of forbidden patterns F =

⋃

n≥1 Fn where Fn ⊂ ASn is a finite set
of patterns with finite support Sn. We will consider the bad events An,g =
⋃

p∈Fn
[p]g =

{

x ∈ AG : x|gSn
∈ Fn

}

, that is to say one of the forbidden patterns
p ∈ Fn appears in position g. Subshifts might be defined by an infinite amount
of forbidden patterns while the lemma only holds for a finite collection of bad
events. Nevertheless the compactness of AG allows us to use the lemma anyway,
as explained in what follows.

Lemma 2.2. Let G a countable group and X ⊂ AG a subshift defined by the
set of forbidden patterns F =

⋃

n≥1 Fn, where Fn ⊂ ASn . Let µ be a Bernoulli

probability measure on AG. Suppose that there exists a function x : N × G →
(0, 1) such that:

∀n ∈ N, g ∈ G, µ(An,g) ≤ x(n, g)
∏

gSn∩hSk 6=∅
(k,h) 6=(n,g)

(1− x(k, h)), (∗)

where An,g =
{

x ∈ AG : x|gSn
∈ Fn

}

. Then the subshift X is non-empty.
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Proof. Consider an enumeration {gk}k∈N of G. For every n ∈ N, we apply
Lemma 2.1 to construct a configuration xn ∈ AG that satisfies the following
property: for every forbidden pattern p ∈ Fk such that k ≤ n and every g ∈
(gk)k≤n such that gSk ⊆ {gk}k≤n, we have (xn) /∈ [p]g – in other terms, the
configuration xn avoids all the forbidden patterns in

⋃

k≤n Fk on the finite set
{g1, . . . , gn} ⊂ G. Indeed, in order to show the existence of xn we only need
that for every k ≤ n and g ∈ G such that gSk ⊆ {gk}k≤n,

µ(Ak,g) ≤ x(k, g)
∏

gSk∩hSk′ 6=∅
hSk′⊆{g0,...,gn}
(k′,h) 6=(k,g),k≤n

(1 − x(k′, h))

which is a relaxation of condition (∗) by the fact that 0 ≤ x(k′, h) ≤ 1. The
local lemma holds since the set {g0, . . . , gn} is finite and we only consider a finite
number of forbidden patterns, consequently we only consider a finite number of
bad events Ak,g.

By compactness, we can extract from this sequence of configurations (xn)n∈N

a subsequence (xφ(n))n∈N converging to some x ∈ AG. Then x does not contain
any forbidden pattern p ∈ F . Suppose it were the case, that is to say, there
exists some g ∈ G and p ∈ Fm such that x ∈ [p]g. Since there exists also
n, l such that g = gl and gSm ⊂ {g0, . . . , gn}, by definition of the metric there
exists some N ≥ max{m,n, l} sufficiently big such that φ(N) appears in the
subsequence (φ(n))n∈N. Then xN contains the forbidden pattern p somewhere
in (xN )|{g1,...,gN}. This contradicts the construction of the sequence (xn)n∈N,
thus x ∈ XF .

2.2 A non-empty strongly aperiodic subshift over {0, 1} in
any countable group.

Consider a configuration x ∈ {0, 1}G. We say that x has the distinct neighbor-
hood property – in [10] they call x a 2-coloring – if for every h ∈ G \ {1G} there
exists a finite subset T ⊂ G such that:

∀g ∈ G : x|ghT 6= x|gT .

Proposition 2.3. If a configuration x ∈ {0, 1}G has the distinct neighborhood
property, then the G-subshift X := orbσ(x) is strongly aperiodic.

Proof. Let y ∈ X . By definition there exists a sequence (gi)i∈N such that σgi(x)
converges to y in the product topology. Suppose there is h 6= 1G such that
σh(y) = y, then by continuity of the shift action under the product topology
we have that σhgi(x) → σh(y) = y. Since x has the distinct neighborhood
property, there exists a finite subset T of G – associated to h−1 – such that
∀g ∈ G : x|gh−1T 6= x|gT . By definition of convergence in the metric, there
exists n ∈ N such that T ⊂ {g0, g1, . . . , gn} and m ∈ N satisfying:

σhgm(x)|{g0,g1,...,gn} = y|{g0,g1,...,gn} = σgm(x)|{g0,g1,...,gn}

6



Therefore σhgm(x)|T = σgm(x)|T which implies that x|g−1
m h−1T = x|g−1

m T , a
contradiction.

Theorem 2.4. Every countable group G has a non-empty, strongly aperiodic
subshift on the alphabet {0, 1}.

Proof. The case where G is finite is trivial, as the G-SFT given by

X := {x ∈ {0, 1}G | |x−1(1)| = 1}

is strongly aperiodic. Indeed, let x ∈ X and g ∈ G be the only element such that
xg = 1. Let h ∈ stabσ(x) then σh(x) = x which implies that xh−1g = xg = 1
and thus h = 1G. For the rest of the proof we suppose that G is infinite.

Let (si)i∈N be an enumeration of G such that s0 = 1G. Choose (Ti)i∈N a
sequence of finite subsets of G such that for every i ∈ N, Ti ∩ siTi = ∅ and
|Ti| = C · i, where C is a constant to be defined later. These sets always exist
as G is infinite.

Consider the uniform Bernoulli probability µ in {0, 1}G and the collection of
sets A := {An,g}n≥1,g∈G given by An,g = {x ∈ {0, 1}G | x|gTn

= x|gsnTn
}. Note

that each set is a union of cylinders and that the existence of a configuration x̃
in the intersection of the complement of these sets allows us to conclude the
theorem by producing a configuration with the distinct neighborhood property.
Our strategy is to apply Lemma 2.2 to ensure its existence.

As the intersection snTn ∩ Tn is empty we have that µ(An,g) = 2−|Tn| =
2−Cn. Consider one set An,g. The number of sets Am,g′ for a fixed m ∈ N

which are not independent from An,g is at most 4C2nm – observe that An,g is
independent from Am,g′ if and only if (gTn ∪ gsnTn) does not intersect (g

′Tm ∪

g′smTm). We also define x(An,g) := 2−
Cn
2 . Therefore, in order to conclude we

must prove that:

2−Cn ≤ 2−
Cn
2

∞
∏

m=1

(1− 2−
Cm
2 )4C

2nm.

Using the fact that 1− x ≥ 2−2x if x ≤ 1/2 we obtain the following bound:

2−
Cn
2

∞
∏

m=1

(1− 2−
Cm
2 )4C

2nm ≥ 2−
Cn
2

∞
∏

m=1

2−8C2nm2−
Cm
2

= 2−
Cn
2 2−8C2

∑∞
m=1

nm2−
Cm
2

7



Therefore, it suffices to prove that:

2−
Cn
2 ≤ 2−8C2

∑∞
m=1

nm2−
Cm
2

⇐⇒ 1 ≥ 16C

∞
∑

m=1

m2−
Cm
2

⇐⇒ 1 ≥ 16C
2

C
2

(2
C
2 − 1)2

The previous inequality holds true for C ≥ 17. Therefore choosing C = 17
completes the proof by application of Lemma 2.2.

2.3 A graph-oriented construction and some computational

properties

In this subsection we present another construction of a non-empty strongly
aperiodic subshift. This construction is not as general as the previous one, as it
only holds for finitely generated groups, and the size of the alphabet is rather
large. Nevertheless, it can be defined by a natural property which allows us to
use it in computability constructions with ease.

Let Γ = (V,E) be a simple graph, consider a finite alphabet A and a coloring
x ∈ AV of the vertices of Γ. We say x contains a vertex-square path if there exists
an odd length path p = v1 . . . v2n such that xvi = xvi+n

for every 1 ≤ i ≤ n. If
the coloring x does not contain any vertex-square path then we say it is a square-
free vertex coloring. Next we show a proposition which is a slight modification
of a proof which can be found in [2, Theorem 1].

Proposition 2.5. Let G be a group which is generated by the finite set S.
Then there exists a square-free vertex coloring of the undirected right Cayley
graph Γ(G,S) with 219|S|2 colors.

Proof. Consider a finite alphabet A and let X = AΓ(G,S) be the set of all vertex
colorings of the Cayley graph Γ(G,S). We define µ as the uniform Bernoulli
probability, that is, for a ∈ A and g ∈ G then

µ({x ∈ X | xg = a}) =
1

|A|
.

Consider P as the set of all odd length paths in Γ(G,S). For p ∈ P let Ap

be the set of colorings of Γ(G,S) such that p is a square under that coloring and
note that if p is of length 2n−1 then µ(Ap) = |A|−n if there exists a path of said
length. Consider An = {Ap | p has length 2n − 1} and A = {Ap | p ∈ P} =
⋃

n≥1An. In order to apply Lemma 2.2, we define x(Ap) := (8|S|2)−n for Ap ∈
An. The lemma holds if for every A ∈ A then µ(A) ≤ x(A)

∏

B∈Γ(A)(1−x(B)).
Replacing both sides yields the necessary condition:

8



∀n ≥ 1, |A|−n ≤ (8|S|2)−n
∏

j≥1

(1− (8|S|2)−j)|Γ(Ap)∩Aj |.

|Γ(Ap)∩Aj | corresponds to the amount of paths of length 2j−1 which share a
vertex with p. If p has length 2n−1 this can be bounded by 4nj(2|S|)2j. Indeed,
there are at most (2|S|)2j paths of length 2j − 1 starting from a vertex v. Each
of these paths can intersect a given vertex of p in 2j positions and there are 2n
vertices in p. Hence, we need to show:

∀n ≥ 1, |A|−n ≤ (8|S|2)−n
∏

j≥1

(1− (8|S|2)−j)4nj(2|S|)2j .

Using the inequality 1 − x ≥ 2−2x if x ≤ 1/2, the requirement to apply the
lemma can be restrained further so that the following is required to conclude:

∀n ≥ 1, |A|−n ≤ (8|S|2)−n
∏

j≥1

2−8nj(8|S|2)−j(4|S|2)j

= (8|S|2)−n
∏

j≥1

2−8nj2−j

or equivalently:

|A| ≥ (8|S|2)28
∑

j≥1
j2−j

≥ 219|S|2.

The latter inequality is satisfied by hypothesis, therefore, there exists a col-
oring of the graph such that no path of odd length is a square under that
coloring.

Theorem 2.6. Every finitely generated group G has a non-empty G-effectively
closed strongly aperiodic subshift.

Proof. Let S be a set of generators of G and A an alphabet such that |A| ≥
219|S|2. Consider the set of forbidden patterns F defined as follows: Take P
the set of all finite paths of odd length of Γ(G,S). For every p ∈ P we define
the set of patterns Πp as those with support p and such that they are vertex-
square paths. Let F =

⋃

p∈P Πp and let X = XF be the G-effectively closed
subshift – vertex-square paths can be recognized with a Turing machine with
access to WP(G) – defined by this set of forbidden patterns. By Proposition 2.5
this subshift is non-empty. We claim it is strongly aperiodic.

Let x ∈ X and g ∈ stabσ(x). We are going to show that if g 6= 1G then
x contains a vertex-square path. Consider an expression of g as an element
of (S ∪ S−1)∗ such it can be factorized as g =G uwv with u =G v−1. This
can always be done by choosing u = v = ε and w a product of generators
producing g. Amongst all those possible representations choose one such that
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|w| is minimal. Clearly |w| = 0 implies that g = 1G, so we suppose |w| > 0. Let
w = w1 . . . wn and consider the odd length walk π = v0v1 . . . v2n−1 defined by:

vi =











1G if i = 0

w1 . . . wi if i ∈ {1, . . . , n}

ww1 . . . wi−n if i ∈ {n+ 1, . . . , 2n− 1}

We claim that π is a path. Indeed, by definition, w can not be reduced and
thus there are no repeated vertices in v0v1 . . . vn nor in vn+1 . . . v2n−1. Therefore
if there is a repeated vertex then it appears once in both parts. Suppose that it
happens, thus we can consider two factorizations w = ab and w = cd such that
a =G abc. We obtain that b = c−1. Obviously |c| = |b|, if not, w can be written
as abcc−1 =G ac−1 or b−1bcd =G b−1d which contradicts the minimality of |w|.
Without loss of generality, we can replace c by the word obtained by reversing
the order and inversing the letters of b. Moreover, |c| > 0 and thus |b| > 0 which
means that w is written as follows:

w = a1 . . . akb1 . . . bl = b−1
l . . . b−1

1 d1 . . . dk

Therefore we can factorize b−1
l and bl from both sides obtaining a smaller

word w′ in the representation of g. This contradiction shows that indeed π is
a path. We now show that it is a square-vertex path. As g ∈ stabσ(x), we
also have g−1 ∈ stabσ(x) and thus for each h ∈ G we have xgh = xh. Fix
h = uw1 . . . wj for some j ∈ {1, . . . , n}, we obtain that

xuw1...wj
= xuwu−1uw1...wj

= xuww1...wj
.

Applying σu to both sides we obtain that xw1...wj
= xww1...wj

and therefore
xvj = xvj+n

, yielding a square-vertex path. Therefore |w| = 0 and thus g =
uv = 1G.

Theorem 2.6 provides a non-empty strongly aperiodic G-effectively closed
subshift. Recently Jeandel [14] has shown that for recursively presented groups,
if the group admits an effectively closed strongly aperiodic subshift then its
word problem is decidable. Moreover, he has shown that the same conclusion
stands when we allow every configuration to have a finite –instead of trivial–
stabilizer. Our result actually shows the converse, that is, that every recursively
presented group with decidable word problem admits a non-empty strongly
aperiodic effectively closed subshift. In the remainder of this section we prove
this equivalence.

Lemma 2.7. Let G be a finitely generated group and X ⊂ AG a non-empty
strongly aperiodic subshift. There exists a function f : N → N such that for
every x ∈ X , if g ∈ B(1G, n) \ {1G} then x|B(1G,f(n)) 6= x|B(g,f(n)).

Proof. Suppose f does not exist, thus there exists n ∈ N and a sequence
(xj , gj)j∈N ⊂ X×B(1G, n)\{1G} such that xj |B(1G,j) = xj |B(gj ,j). As B(1G, n)
is finite there exists ḡ 6= 1G which appears infinitely often in (gj)j∈N. Consider
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the subsequence (xk)k∈N,gk=ḡ and from there extract a converging subsequence
(xkα

) → x̄ ∈ X . We claim that ḡ−1 ∈ stabσ(x̄). By definition of convergence,
for every m ∈ N there exists Nα ≥ m such that x̄|B(1G,m+n) = (xNα

)|B(1G,m+n)

and thus

x̄|B(1G,m) = (xNα
)|B(1G,m) = (xNα

)|B(ḡ,m) = x̄|B(ḡ,m)

So for every m ∈ N we have x̄|B(1G,m) = x̄|B(ḡ,m) and therefore ∀g ∈ G :
x̄g = x̄ḡg. Which yields a contradiction as X is strongly aperiodic.

Theorem 2.8. Let G be a recursively presented and finitely generated group.
There exists a non-empty strongly aperiodic effectively closed subshift if and only
if WP(G) is decidable.

Proof. Every G-effectively closed subshift is effectively closed when WP(G) is
decidable. Therefore Theorem 2.6 yields the desired construction. Conversely,
suppose there is a non-empty effectively closed subshift X which is strongly
aperiodic. As G is recursively presented then WP(G) is recognizable. Let T be a
Turing machine which accepts every inconsistent pattern coding and a maximal
set of consistent pattern codings which generates F such that X = XF . The
existence of such a machine in the case of a recursively presented group is given
in [1].

Let w ∈ (S ∪ S−1)∗. We present an algorithm which accepts if and only
if w 6=G 1G. Consider the ball of size n in the free monoid over the alphabet
(S∪S−1)∗, that is Λn = {u ∈ (S∪S−1)∗||u| ≤ n} and consider the set Λn∪wΛn.
For each one of these sets we construct the set Πn of all pattern codings c such
that for u ∈ Λn then (u, a) ∈ c if and only if (wu, a) ∈ c. That is, we force the
ball of size n around the empty word ǫ and w to be the same. Consider the
algorithm which iteratively runs T on every pattern coding of Π1,Π2, . . .Πj up
to j steps and then does j ← j + 1 and which accepts w if and only if every
pattern coding in a particular Πi is accepted by T . If w =G 1G the algorithm can
never accept as it would mean no patterns are constructible around 1G and thus
X = ∅. Conversely, if w 6=G 1G then using the function f given by Lemma 2.7
we get that for every x ∈ X if w 6=G 1G then x|B(1G,f(|w|)) 6= x|B(w,f(|w|)) thus
every pattern in Πf(|w|) is either inconsistent or represents a forbidden pattern,
and therefore T must accept every pattern of Πf(|w|).

One may ask if it is possible to construct non-empty strongly aperiodic
subshifts which satisfy stronger constrains, such a being of finite type, sofic or
effectively closed. The previous result shows that our construction is in this
sense optimal for recursively presented groups with undecidable word problem.

3 Realization of densities

In this section we construct over any infinite and finitely generated group a
non-empty subshift over {0, 1} with the property that the density of 1’s over
any Følner sequence converges to a fixed α ∈ [0, 1]. From this result we derive
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the existence of uniform density subshifts for infinite groups of subexponential
growth for any finite set of generators. Furthermore, we show that said subshifts
are always weakly aperiodic.

Definition 3.1. Let F ⊂ G be a finite subset of a group and x ∈ {0, 1}G be a
configuration. We define the density of 1’s in F and x as:

dens(1, x|F ) = dens(1, F, x) =
|{g ∈ F | xg = 1}|

|F |
.

Similarly if P ∈ AF is a pattern with support F , we denote by dens(1, P )

the ratio
|{g∈F |Pg=1}|

|F | .

Definition 3.2. Let G be a finitely generated group and S a finite set of gen-
erators. We say a G-subshift over {0, 1} has uniform density α ∈ [0, 1] if for
every configuration x ∈ X and for every sequence (gn)n∈N of elements in G,
one has dens(1, B(gn, n), x)→ α.

In a way similar to the previous definition, we could say a configuration
x ∈ {0, 1}G has density α ∈ [0, 1] for some sequence of subsets (Tn)n∈N if for each
sequence of elements (gn)n∈N we have that dens(1, gnTn, x)→ α. Nevertheless,
contrary to the preceding section, Lovász local lemma cannot directly be applied
to prove the existence of such configurations. If we define the forbidden sets to
be An,g = {x ∈ {0, 1}G | | dens(1, gTn, x)−α| > δnα} for some sequence of error
terms δn → 0 we obtain that the measure of this set can be bounded above
using the Chernoff bounds by 2 exp(δ2nα|Tn|/3). For any function which bounds
these values above, and after some elimination of exponents, we obtain that
the left hand side of the inequality required by the local lemma depends on δn
while the right hand side is constant. Therefore we tackle this problem with a
different approach.

Nevertheless, if the condition that the group is amenable is added, not only
it is possible to obtain a result like the one defined in the previous paragraph,
moreover, the density over every Følner sequence can be asked to converge to
the same fixed α.

A group G is called amenable if there exists a left-invariant finitely additive
probability measure µ : P(G) → [0, 1] on G. The amenability of a group
has many equivalent definitions – many of which can be found in [8]. From a
combinatorial point of view the Følner condition states that a group is amenable
if and only if it admits a Følner net, that is, a net Fα of non-empty finite subsets
of G such that ∀g ∈ G:

lim
α

|gFα△Fα|

|Fα|
= 0.

Let Int(F,K) := {g ∈ F |∀k ∈ K, gk ∈ F} be the interior of F with respect
to K and ∂KF := F \ Int(F,K) the boundary of F with respect to K. In the
case of countable groups the net can be just taken to be a sequence and thus
amenability can be shown to be equivalent to the fact for every finite K ⊂ G

we have limn→∞
|∂KFn|
|Fn|

= 0. That is to say, for any finite set K the boundaries

of the sets Fn with respect to K grow slower than themselves.
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Theorem 3.1. Let G be an infinite and finitely generated amenable group
and α ∈ [0, 1]. Then there exists a non-empty subshift Xα ⊂ {0, 1}G with
limn→∞ dens(1, Fn, x) = α for any x ∈ Xα and any Følner sequence (Fn)n∈N.

Before proving this theorem we prove a useful property of metric spaces.

Definition 3.3. Let (X, d) be a metric space. We say F ⊂ X is r-covering if
for each x ∈ X there is y ∈ F such that d(x, y) ≤ r. We say F is s-separating
if for each x 6= y ∈ F then d(x, y) > s.

Figure 1: In green, an example of 2-covering and 2-separating set in PSL(2,Z) ∼=
Z/2Z ∗ Z/3Z. Green vertices are at distance at least 3 from each other, and
every vertex is at distance at most 2 from a green vertex.

Lemma 3.2. Let (X, d) be a metric space and r ∈ N. There exists a set Fr ⊂ X
which is r-separating and r-covering.

Proof. Suppose we have an r-separating set F which is not r-covering. Then
the set K := {x ∈ X | d(F, x) > r} is not empty and F can be extended by an
element of K. Thus any maximal r-separating set is also r-covering.

We only need to show that maximal r-separating sets exist. Let (S,⊂) be
the set of r-separating subsets of X ordered by inclusion. Clearly ∅ ∈ S and
given a chain {Ai}i∈I ⊂ S we have that A =

⋃

i∈I Ai is an upper-bound. Indeed,
if x, y ∈ A then x ∈ Ai and y ∈ Aj for some i, j ∈ I. As {Ai}i∈I is a chain,
then either Ai ⊂ Aj or Aj ⊂ Ai. As any of these two sets is r-separating we
get that d(x, y) > r and hence A ∈ S. By Zorn’s lemma there exists a maximal
r-separating set.

Now we are ready to begin the proof of Theorem 3.1.
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Proof. If α ∈ {0, 1} the result is trivial. Let α ∈ (0, 1), and define Kn :=
B(1G, 5

n) and consider the subshift Xα given by the set of forbidden patterns
F such that for P ∈ {0, 1}F (where F ⊂ G, |F | <∞) belongs to F if and only
if the following condition is not satisfied:

2n|∂Kn
F | < |F | =⇒ | dens(1, P )− α| ≤

1

n

In other words, we forbid a pattern P with support F if the ratio
|∂KnF |

|F | is

sufficiently small and the density of ones in P is further than 1
n
from α.

Consider a Følner sequence (Fn)n∈N and let m ∈ N and x ∈ Xα. As

limn→∞
|∂KmFn|

|Fn|
= 0 there exists N ∈ N such that

∀n ≥ N
|∂Km

Fn|

|Fn|
<

1

2m

Therefore, for every n ≥ N we get that | dens(1, x|Fn
) − α| ≤ 1

m
. As m can

be made arbitrarily big we obtain that limn→∞ dens(1, Fn, x) = α.

We only need to show that Xα 6= ∅. Our strategy will be to inductively con-
struct an infinite covering forest of G, and then put a Sturmian word along an
enumeration of the leaves of each of its trees. The configuration x ∈ {0, 1}G ob-
tained by this process will belong to Xα. The following objects – that are
formally described below – will be used to formalize this idea: a sequence
(An)n∈N ⊂ 2G of subsets of G, a sequence (pn)n∈N : G → An of functions
and a sequence (Γn)n∈N of graphs on vertex sets (An)n∈N respectively. They
are defined by the following recurrences, with base cases A0 = G, p0 = id and
Γ0 = Γ(G,S) where S is a finite set of generators of G:

1. The set An+1 is chosen as a 2-separating and 2-covering subset of An for
the distance induced by Γn. In particular, the sets (An)n∈N are nested.

2. Suppose pn : G → An is already defined, we first define pn+1 on An and
then extend it to G. Consider an element g ∈ An. Since An+1 2-covers
An in Γn, there are only three possible cases.

• g ∈ An+1: in this case we set pn+1(g) = g.

• dΓn
(g,An+1) = 1: there exists a unique h ∈ An+1 that satisfies

dΓn
(g, h) = 1 – uniqueness comes from the fact that An+1 is 2-

separating – and we set pn+1(g) = h.

• dΓn
(g,An+1) = 2: we arbitrarily choose one h ∈ An+1 that realizes

dΓn
(g, h) = 2 and set pn+1(g) = h.

For g′ ∈ G \An we finally extend this function by pn+1 := pn+1 ◦ pn.

3. For g ∈ An define the n-cluster of g by Cn(g) := {h ∈ G | pn(h) = g}. The
element g ∈ An is called the center of the cluster Cn(g). The graph Γn+1
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has vertex set An+1, and there is an edge in Γn+1 between two elements
g, h ∈ An+1 if and only if there exist g′ ∈ Cn(g) and h′ ∈ Cn(h) that are
neighbors in Γ(G,S).

The covering forest defined by the sequence (An, pn,Γn)n∈N is (V,E), where
the set of vertices V is the multiset

⊔

n∈N
An, and the edges are given by the

parent functions: (g, h) ∈ E if and only if g ∈ An, h ∈ An+1 and pn(g) = h. In
particular the successive applications of p1, . . . , pn to an element g ∈ G = A0

gives the path from the leaf labeled by g to its height n parent. The cluster Cn(g)
corresponds to the set of labels of descendants of the node labeled by g that
appears at height n in the covering forest. The cluster Cn+1(g) is obtained as the
union of the cluster Cn(g), all clusters Cn(h) for h ∈ An such that dΓn

(g, h) = 1
and clusters Cn(h′) for h′ ∈ An such that dΓn

(g, h′) = 2 for which the parent
function pn+1(h

′) has been chosen to be g (see Figure 2). Remark that every
cluster Cn(g) is connected in Γ as it is the finite union of adjacent connected
sets in Γ.

g

g

g

h

p1(h)

p2 ◦ p1(h)

C1(g) C2(g)

A0

p1

⊆

A1

p2

⊆

A2

...

...

...

Figure 2: A covering forest of G. In the left section of the image the edge
structure is emphasized by writing explicitly the parent functions. In the right
section we remark the cluster structure for g ∈ A2.

Note that definition 3 above is equivalent to what follows: for g, h ∈ An+1

then the edge (g, h) is in E(Γn+1) if and only if there exists a path g1 =
g, g2, . . . , gm = h from g to h in Γ(G,S) such that for every i ∈ {1, . . . ,m}
we have pn+1(gi) ∈ {g, h}.

Claim 3.1. Let g ∈ An, then B(g, n) ⊂ Cn(g) ⊂ B(g, 12 (5
n − 1)).

Proof. We prove the claim by induction. It stands true for n = 0.

• Consider Cn(g). By induction hypothesis, B(g, n− 1) ⊂ Cn−1(g) ⊂ Cn(g).
Let h ∈ B(g, n) \ B(g, n − 1). Either h ∈ Cn−1(g) and we are done, or
h ∈ Cn−1(g

′) for some g′ ∈ An−1. Then necessarily dΓn−1
(g, g′) = 1, since
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hs ∈ B(g, n − 1) ⊂ Cn−1(g) for some s ∈ S ∪ S−1. Finally as An is a
2-separating subset of the vertices of Γn−1 we get that Cn−1(g

′) ⊂ Cn(g)
thus h ∈ Cn(g). We conclude that B(g, n) ⊂ Cn(g). Note that the same
argument proves that Cn(g′) · (S ∪ S−1) ⊂ Cn+1(g

′) for every n ∈ N and
g′ ∈ An+1.

• Suppose inductively that for every g ∈ An−1 the inclusion Cn−1(g) ⊂
B(g, 1

2 (5
n−1− 1)) holds. Fix one g ∈ An and consider an element h in the

cluster Cn(g). We show that dG(h, g) ≤
1
2 (5

n − 1) by constructing a path
of length at most 1

2 (5
n−1) from h to g. By definition of the cluster Cn(g),

we know that the element h′ ∈ An−1 such that h ∈ Cn−1(h
′) satisfies

dΓn−1
(g, h′) ≤ 2. In the sequel we will only consider the case where this

distance is exactly 2 as it is the worst case. Thus we assume that there
exists a path h′ → h′′ → g of length 2 between this h′ and g in Γn−1. By
definition of the graph Γn−1, this implies the existence of k′ ∈ Cn−1(h

′)
and k′′ ∈ Cn−1(h

′′) that are neighbors in Γ(G,S) and ℓ′′ ∈ Cn−1(h
′′) and

ℓ ∈ Cn−1(g) that are neighbors in Γ(G,S). Putting everything together,
we can build the following path in Γ(G,S) (see Figure 3):

h→ · · · → h′ → · · · → k′ → k′′ → · · · → h′′ → · · · → ℓ′′ → ℓ→ · · · → g.

h

h′

Cn−1(h
′)

k′ k′′

h′′

Cn−1(h
′′)

ℓ′′ ℓ
g

Cn−1(g)

Figure 3: A path from an element h of Cn(g) to g which inductively proves the
inclusion Cn(g) ⊂ B(g, 1

2 (5
n − 1)).

Since they all link an element of a cluster of level n − 1 to the center of
this cluster, the induction hypothesis implies that we can choose the five
subpaths h → · · · → h′, h′ → . . . k′, k′′ → · · · → h′′, h′′ → · · · → ℓ′′

and ℓ→ · · · → g of length at most 1
2 (5

n−1 − 1). Thus the total length of
the path is at most 5 · 12 (5

n−1 − 1) + 2 ≤ 1
2 (5

n − 1). Therefore Cn(g) ⊂
B(g, 1

2 (5
n − 1)).
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Let x ∈ {0, 1}G be a configuration such that for every n ∈ N and g ∈ An

⌊α|Cn(g)|⌋ ≤ |{h ∈ Cn(g) | xh = 1}| ≤ ⌊α|Cn(g)|⌋+ 1. (1)

Claim 3.2. There exists a configuration x that satisfies condition (1).

Proof. Consider the covering forest given by some sequence (An, pn,Γn)n∈N as
specified above. For every component C of this forest, take φC a convex enu-
meration of its leaves: if g and g′ are two leaves of C with the same parent
of height n for some n ∈ N – i.e. pn(g) = pn(g

′) – then the preimage h of
every integer between φC(g) and φC(g

′) satisfies that pn(h) = pn(g). Such an
enumeration always exists.

Let (wk)k∈N be a Sturmian word of slope α. We can build a configuration
x by putting the Sturmian sequence (wk)k∈N along the convex enumeration
chosen for every component of the forest. Since Sturmian words are balanced,
we deduce that the configuration x satisfies condition (1).

Claim 3.3. If a configuration x ∈ {0, 1}G satisfies condition (1), then x belongs
to Xα.

Proof. Let x be such a configuration and take some n ∈ N. Let F be a set
such that 2n|∂Kn

F | < |F | – remember that Kn is B(1G, 5
n) – and consider

the pattern P := x|F . Let V := Int(F,B(1G,
1
2 (5

n − 1))) ∩ An and R =
F \

⋃

v∈V Cn(v). As
⋃

v∈V Cn(v) ⊂
⋃

v∈V vB(1G,
1
2 (5

n − 1)) ⊂ F we get that:

1

|F |

∑

v∈V

(⌊α|Cn(v)|⌋) ≤ dens(1, P ) ≤
1

|F |

∑

v∈V

(⌊α|Cn(v)|⌋+ 1) +
|R|

|F |
.

Before working on those inequalities we remark two facts:

1. R ⊂ ∂Kn
F . Therefore |R|

|F | <
1
2n .

2. |V | ≤ |F |
|B(1G,n)| .

Indeed, let r ∈ Int(F,Kn). That is, for all g ∈ Kn then rg ∈ F . As d(r, pn(r)) ≤
1
2 (5

n−1) then pn(r) ∈ Int(F,B(1G, 5
n− 1

2 (5
n−1))) ⊂ Int(F,B(1G,

1
2 (5

n−1)))
therefore pn(r) ∈ V . That means that r /∈ R, therefore R ⊂ F \ Int(F,Kn) =
∂Kn

F . The second remark is a consequence of Claim 3.1.
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From the left side we get:

dens(1, P ) ≥
1

|F |

∑

v∈V

(⌊α|Cn(v)|⌋)

≥
α

|F |

∑

v∈V

|Cn(v)| −
|V |

|F |

≥ α
|
⋃

v∈V Cn(v)|

|F |
−

|F |

|F ||B(1G, n)|

≥ α
|F \R|

|F |
−

1

|B(1G, n)|

≥ α(1−
1

2n
)−

1

2n

≥ α−
1

n
.

While from the right side:

dens(1, P ) ≤
1

|F |

∑

v∈V

(⌊α|Cn(v)|⌋+ 1) +
|R|

|F |

≤
α

|F |

∑

v∈V

(|Cn(v)|) +
|V |

|F |
+

1

2n

≤ α
|
⋃

v∈V Cn(v)|

|F |
+

|F |

|F ||B(1G, n)|
+

1

2n

≤ α+
1

n
.

Putting together Claims 3.2, 3.1 and 3.3, we obtain that Xα 6= ∅ which
completes the proof of Theorem 3.1.

Remark. In the case where α is a computable number, the subshift Xα given
in the previous proof is G-effectively closed.

By noting that in the case of a group of subexponential growth, the sequence
of balls always forms a Følner sequence [8, Theorem 6.11.2], we obtain the
following result.

Corollary 3.3. Let G be a group of subexponential growth, for every set of
generators S and α ∈ [0, 1] there exists a non-empty G-subshift with uniform
density.
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Definition 3.4. Let G be a group and S a finite set of generators. The rate of
convergence of a subshift X with uniform density α is the function

θX(n) := inf{k ∈ N | sup
g∈G,x∈X

| dens(1, B(g, k), x)− α| ≤
1

n
}.

As the construction given in Theorem 3.1 is explicit, we can give bounds
for the rate of convergence of Xα. Indeed, let γ denote the growth of a group
G, that is, γ(k) = |B(1G, k)| for a fixed set of generators S. Let x ∈ X ,
g ∈ G and Bk := B(g, k). By definition of Xα, if 2n|∂B(1G,5n)Bk| < |Bk| then

| dens(1, Bk, x)− α| < 1
n
for each x ∈ X and g ∈ G.

As ∂B(1G,5n)Bk = Bk \Bk−2·5n if k ≥ 2 · 5n, we obtain that:

θXα
(n) = inf{k ≥ 2 · 5n | 2n(γ(k)− γ(k − 2 · 5n)) < γ(k)}.

Therefore a lower bound is always θXα
(n) ≥ 2·5n. The upper bound depends

on the growth rate of the group. For instance, if G has polynomial growth then
θXα

(n) = O(n · 5n). Indeed, if γ(k) = kd for some d ≥ 1 we can write:

2n(kd − (k − 2 · 5n)d) < kd ⇐⇒ 1− (1 −
2 · 5n

k
)d <

1

2n

⇐⇒ (1 −
2 · 5n

k
)d > 1−

1

2n

By Bernoulli’s inequality, (1− 2·5n

k
)d ≥ 1− 2d5n

k
. Hence it suffices to choose

k > 4nd5n. This shows that θXα
(n) = O(n · 5n). In the case of a group of

subexponential growth, an upper bound can be computed with an analogous

reasoning given the exact rate of growth 2k
β

for some β ∈ (0, 1).
Sturmian sequences are classical examples of aperiodic sequences [18]. As

Xα shares this uniform density property which makes it similar to Sturmian
sequences, it is a natural question to ask if it satisfies a form of aperiodicity.

Proposition 3.4. Let α ∈ [0, 1] \Q. Then Xα is weakly aperiodic.

Proof. Suppose there exist a configuration x ∈ Xα and an integer n ∈ N such
that |Orbσ(x)| = n. Let D := {gi}1≤i≤n ⊂ G such that each σgi (x) represents a
different element of Orbσ(x), with g1 = 1G. Consider also α

′ = dens(1, x|D) ∈ Q

and N = max1≤i≤n d(1G, gi).
Let m ∈ N such that 2

m
< |α − α′| and 5m > N

2 . Recall that Km :=
B(1G, 5

m) and consider a finite subset F ⊂ G such that 2m|∂Km
F | < |F |

– by amenability of G such a subset always exists. As x ∈ Xα we get that
| dens(1, x|F )−α| < 1

m
. Let V = Int(F,B(1G, N))∩ stabσ(x) and R = F \V D.

Note that by definition ofN , V D =
⋃

v∈V vD ⊂ F and that as each v ∈ stabσ(x)
then dens(1, x|VD) = dens(1, x|D) = α′. We obtain:

dens(1, x|D)
|V D|

|F |
≤ dens(1, x|F ) ≤ dens(1, x|D)

|V D|

|F |
+
|R|

|F |
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Let g ∈ Int(F,Km). Since the configuration x is supposed to have finite orbit
{x, σg2(x), . . . , σgn(x)}, there exists l ∈ {1, . . . , n} such that σg−1 (x) = σgl(x).

Therefore g−1
l g−1 ∈ stabσ(x) which is a subgroup, thus ggl ∈ stabσ(x). As

d(g, ggl) ≤ N and ggl ∈ V then we conclude that Int(F,Km) ⊂ V D (because
we have chosen g1 = 1G) and therefore R ⊂ ∂Km

F .
Similarly to the previous proof, we bound each side using this relation, ob-

taining:

α′ |V D|

|F |
≤ dens(1, x|F ) ≤α

′ |V D|

|F |
+
|R|

|F |

α′ |F \R|

|F |
≤ dens(1, x|F ) ≤ α′ +

|∂Km
F |

|F |

α′(1 −
1

2m
) ≤ dens(1, x|F ) ≤ α′ +

1

2m

α′ −
1

2m
≤ dens(1, x|F ) ≤ α′ +

1

2m

Therefore | dens(1, x|F )−α′| < 1
m

and | dens(1, x|F )−α| < 1
m

which implies
that |α− α′| < 2

m
contradicting the definition of m.

In the case of Z2, the subshift Xα defined in the proof of Theorem 3.1 is
not strongly aperiodic, since it contains the following configurations with non-
trivial stabilizer: take a bi-infinite Sturmian word and repeat it vertically so
that a configuration x ∈ {0, 1}Z

2

is defined. Then x ∈ Xα since no forbidden
pattern defining Xα appears in x. Thus Proposition 3.4 is in some sense the
best we can do for this particular construction.

The statement of Theorem 3.1 itself requires amenability for the group G in
order to be meaningful, since we want the density to converge to α for every
Følner sequence. Therefore, it doesn’t say anything about non-amenable groups.
For free groups, we can build configurations (and therefore, subshifts) with
uniform density by constructing a regular covering tree and putting a Sturmian
sequence on every level of this tree. Nevertheless, we still don’t know if this
kind of construction is always possible. To our knowledge the following question
remains open:

Question. Let G be an infinite group generated by a finite set S and α ∈ [0, 1].
Does there exist a subshift Yα ⊂ {0, 1}G with uniform density α?

Acknoledgements: This work was partially supported by the ANR project
CoCoGro (ANR-16-CE40-0005).

References

[1] Nathalie Aubrun, Sebastián Barbieri, and Mathieu Sablik. A notion of ef-
fectiveness for subshifts on finitely generated groups. Theoretical Computer
Science, 661:35–55, 2017.

20



[2] Noga Alon, Jaroslaw Grytczuk, Mariusz Haluszczak, and Oliver Riordan.
Nonrepetitive colorings of graphs. Random Structures & Algorithms, 21(3-
4):336–346, 2002.

[3] Noga Alon and Joel H. Spencer. The probabilistic method. Wiley, 2008.

[4] Alexis Ballier and Maya Stein. The domino problem on groups of polyno-
mial growth. arXiv preprint arXiv:1311.4222, 2013.
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