
HAL Id: hal-01989760
https://hal.science/hal-01989760

Submitted on 21 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

About the Domino Problem for Subshifts on Groups
Nathalie Aubrun, Sebastián Barbieri, Emmanuel Jeandel

To cite this version:
Nathalie Aubrun, Sebastián Barbieri, Emmanuel Jeandel. About the Domino Problem for Subshifts
on Groups. Valérie Berthé; M Rigo. Sequences, Groups, and Number Theory, Birkhäuser, Cham,
pp.331-389, 2018, Trends in Mathematics, 978-3-319-69151-0. �10.1007/978-3-319-69152-7_9�. �hal-
01989760�

https://hal.science/hal-01989760
https://hal.archives-ouvertes.fr

About the Domino problem for subshifts on groups

Nathalie Aubrun1, Sebastián Barbieri1, and Emmanuel Jeandel2

1LIP, ENS de Lyon – 46 allée d’Italie – 69007 Lyon France
2LORIA – Campus Scientifique - BP 239 – 54506 Vandoeuvre-Les-Nancy France

February 21, 2024

Abstract

From a classical point of view, the domino problem is the question of the existence of an
algorithm which can decide whether a finite set of square tiles with colored edges can tile the
plane, subject to the restriction that adjacent tiles share the same color along their adjacent
edges. This question has already been settled in the negative by Berger in 1966, however,
these tilings can be reinterpreted in dynamical terms using the formalism of subshifts of finite
type, and hence the same question can be formulated for arbitrary finitely generated groups.
In this chapter we present the state of the art concerning the domino problem in this extended
framework. We also discuss different notions of effectiveness in subshifts defined over groups,
that is, the ways in which these dynamical objects can be described through Turing machines.
NOTICE: This is the author’s version of a work accepted for publication by Springer. Changes
resulting from the publishing process, including peer review, editing, corrections, structural for-
matting and other quality control mechanisms, may not be reflected in this document. Changes
may have been made to this work since it was submitted for publication. The definitive version
has been published in the book Sequences, Groups, and Number Theory DOI: 10.1007/978-3-
319-69152-7 9

1

https://doi.org/10.1007/978-3-319-69152-7_9
https://doi.org/10.1007/978-3-319-69152-7_9

Contents

1 Introduction 3

2 Subshifts of finite type on Z2, Wang tiles and the domino problem 5
2.1 Definitions . 5
2.2 Turing machines and the Halting problem . 5
2.3 Reductions . 8
2.4 Domino problem with constrained origin . 9
2.5 Domino problem . 10

3 Subshifts of finite type on finitely generated groups 14
3.1 Definitions . 14

3.1.1 Group presentations and the word problem 14
3.1.2 SFT on finitely generated groups . 15

3.2 Domino Problem . 17
3.2.1 Definitions . 17
3.2.2 Basic properties . 18

3.3 Inheritance properties . 19
3.4 Classes of groups . 21

3.4.1 Virtually free groups . 21
3.4.2 Polycyclic groups . 21
3.4.3 Baumslag-Solitar groups . 22
3.4.4 Groups G1 ×G2 . 25

3.5 Discussion . 27
3.5.1 Muller & Schupp theorem . 27
3.5.2 Hyperbolic groups . 28
3.5.3 Translation-like and quasi-isometric groups 28

4 Towards a definition of effective subshifts on groups 29
4.1 Link between Z and Z2 . 29

4.1.1 Projective subdynamics: definition and example 29
4.1.2 Effectively closed subshifts on Zd . 30
4.1.3 Simulation theorem . 32

4.2 Effectiveness on groups . 33
4.2.1 Definition and basic properties . 33
4.2.2 The case of non recursively presented groups 36
4.2.3 The one-or-less subshift X≤1 . 36

4.3 Two larger notions of effectiveness . 37
4.3.1 G-effectiveness . 37
4.3.2 Enumeration effectiveness . 39
4.3.3 Towards a simulation theorem . 41

5 Exercises 42

2

1 Introduction

Symbolic dynamics is the study of a particular type of dynamical systems which are called
shift spaces or subshifts. These systems can be defined as sets of colorings of a group G by a
finite alphabet A which are closed under the product topology and invariant under the shift
action induced by the group. These objects were first introduced as a tool to study dynamical
systems through discretization in the work of Hadamard [19] and then largely popularized in
the highly influential article by Morse and Hedlund [20] where they were studied not only as
tools but as inherently interesting objects.

A fundamental property of subshifts is the fact that they can be defined in a purely
combinatorial way. Namely, a set of colorings of a group G by a finite alphabet A is a subshift
if and only if it can be defined as the set of configurations which avoid a list of forbidden
patterns. This motivates the notion of subshift of finite type (SFT), that is, the set of subshifts
which can be defined through a finite number of forbidden patterns.

Subshifts of finite type are of high interest from a computational point of view since they
can be described by a finite amount of information – a finite set of forbidden patterns that
defines the subshift – and thus decidability and algorithmic questions arise naturally. For
instance, given a finite set of forbidden patterns F , the simplest question one can formulate
is the following: does the subshift XF defined by F contain at least one configuration? The
main goal of this chapter is to present the state of the art concerning that question.

The domino problem of a finitely generated group G (sometimes noted DP(G) in the sequel)
asks essentially the following: is there an algorithm that takes as input a coding of a finite set of
forbidden patterns F and outputs Yes if the SFT defined by F is non-empty and No otherwise?
In the particular case where the group G is Z, this problem is decidable: one-dimensional SFTs
can be represented by a finite graph [36], and the existence of a configuration in the SFT (i.e.
an infinite word) is equivalent to the existence of an infinite path in the graph. The two-
dimensional case is much more interesting, since SFTs lack a good graph representation as it
exists in 1D, even if some generalizations exist [43, 38].

In the 2D case, the emptiness problem for SFTs is equivalent to the problem of tiling the
plane with Wang tiles. A Wang tile is a unit square with a color on each side, that cannot
be rotated or reflected. The domino problem DP(Z2) is the algorithmic question of whether a
given finite set of Wang tiles can be arranged along a Z2-lattice in such a way that adjacent
tiles have the same color on their adjacent edges. This model is just another way to express
local constraints: a set of tilings by Wang tiles can be seen as an SFT – the finite set of tiles
stands for the finite alphabet – with constraints on the adjacent tiles. Reciprocally and up
to a local recoding of the alphabet, an SFT can be transformed into a set of tilings by Wang
tiles.

Originally, the domino problem was formulated on Z2 by Wang [58] as a toy problem to
study a fragment of first order logic (FO). He conjectured that every non-empty SFT on Z2

admits a periodic configuration, which implies the decidability of domino problem on Z2. His
conjecture was proven wrong by Berger [7] who both exhibited an aperiodic set of 104 Wang
tiles and proved the undecidability of the domino problem. This construction, later simplified
by Robinson [48], proceeds by reduction from the halting problem of Turing machines.

The domino problem on other structures than Z and Z2 has also been successfully inves-
tigated. Robinson did not manage to prove undecidability of the problem on the hyperbolic
plane, but obtained as a preliminary step the undecidability of the origin constrained ver-
sion [49] –in this weaker version, noted OCDP for Origin constrained domino problem, one
asks whether there exists in the SFT a configuration with a given letter at the origin. The
undecidability of the unconstrained problem on the hyperbolic plane was proven later by
Kari [29], and can also be obtained from the construction of a hierarchical aperiodic tiling on
the hyperbolic plane by Goodman-Strauss [18].

For finitely generated groups, the question was formulated as such only very recently. For
now no characterization of the groups which have decidable DP is known, and the problem
seems very difficult to solve. Nevertheless a sufficient condition for decidability of DP exists:
virtually free groups have decidable domino problem. The fact that they are indeed the only
groups where we know the domino problem is decidable motivates the following conjecture:
a group has decidable domino problem if and only if it is virtually free. This is further
motivated by the following result: if a group is not virtually free, it has a thick end [60] and

3

then arbitrarily large grids as minors by Halin’s theorem (see [15] for a recent proof). It
should then be possible to somehow use these grids as computation zones – similarly to what
is done in Robinson’s tiling [48] – to encode Turing machine computations and use them to
obtain the undecidability of DP. But the main problem is that even if we know that such
grids exist, we do not know where they appear and even less how to code them using local
rules. Recent preprints support the conjecture: to our knowledge, the only other results are
that decidability of DP is a quasi-isometry invariant for finitely presented groups [13] – i.e.
a geometric property of the group – and that the conjecture holds true for Baumslag-Solitar
groups [2], polycyclic groups [23] and groups of the form G1 ×G2 [24].

To better understand SFTs, we can study them through the prism of projective subdy-
namics. This operation modifies the group G on which a subshift X is defined into one of its
subgroups H: starting from a G-subshift X, the subshift πH(X) is defined as the set of con-
figurations of X restricted to H. For instance one may consider the set of rows that appear in
a Z2-subshift. What can be said about projective subdynamics of SFTs? Addressed this way,
this question is unfortunately hard to solve, even for Z2-SFTs. No complete characterization
is known, even if some partial results exist [45]. Nevertheless, if we allow the initial subshift
to be sofic –the image of an SFT under a contiguous and shift-commuting map– we get a
strong result, known as the simulation theorem. Initially proven by Hochman [21] for sofic
Z3-subshifts, and then generalized to Z2-subshifts independently in [16] and [3], this result
states that the class of projective subdynamics of sofic Z3 or Z2-subshifts coincides exactly
with the class of effectively closed subshifts, i.e. subshifts that can be defined by a recursively
enumerable set of forbidden patterns. This result motivates the study of these objects.

The chapter is organized as follows. Section 2 presents the standard background in di-
mension 2, and explains where undecidability comes from for the domino problem on Z2. The
heart of the chapter is Section 3, that surveys all existing results about the decidability or
undecidability of the domino problem for finitely generated groups. Finally Section 4 is a
reflexion about the notion of effectively closed subshift on a finitely generated group. Three
different notions of effectiveness are defined, studied and compared.

4

2 Subshifts of finite type on Z2, Wang tiles and the
domino problem

A Wang tile is a unit square with a color on each side, that cannot be rotated or reflected.
In order to tile the plane, Wang tiles can be arranged side by side only if the colors on their
adjacent sides match. With this model of tilings in hand, one may wonder whether a given
finite set of Wang tiles can tile the entire plane or not. This problem is known as the domino
problem, and was originally formulated by Wang [58] as a toy problem to study the ∀∃∀
fragment of first order logic. He conjectured that every finite set of Wang tiles that can tile
the entire plane can also do it in a periodic way, which implies the decidability of domino
problem. His conjecture was proven wrong by Berger [8, 7] who both exhibited an aperiodic
set of 104 Wang tiles and proved the undecidability of the domino problem. The construction,
later simplified by Robinson [48], consists in a tile set that forces all possible tilings to contain
a hierarchy of arbitrarily big squares – the plane can be decomposed in squares of order
n which are themselves obtained by gluing together the squares of order n − 1 and so on;
aperiodicity comes from the fact that every translation cannot leave all levels of the structure
invariant. These squares are then used as computation zones to run one arbitrary Turing
machineM; the final set of tiles associated with the Turing machineM has the property of
being non-empty if and only if the machineM halts on the empty entry. By reduction from
the halting problem, we conclude the undecidability of the domino problem.

In this section, we do not present Robinson’s construction, but a proof due to Kari [28] that
can be generalized to Baumslag-Solitar groups, as described in Section 3.4.3. This alternative
proof uses an encoding of rational piecewise affine maps into Wang tiles, and undecidability
of the domino problem follows from a reduction to the Mortality problem for piecewise affine
maps.

2.1 Definitions

A Wang tile is a 4-tuple t = (tN , tW , tS , tE) ∈ C4 where C is a finite set. It represents a unit
square whose edges are colored according to the tuple interpreting the letters N,S,W,E as
north, south, west and east respectively. See Figure 1.

tS

tN
tW tE

Figure 1: If the set C is to be interpreted as a finite set of colors, a Wang tile defined by a tuple
(tN , tW , tS , tE) of colors can be represented as shown.

A set τ ⊂ C4 of Wang tiles is called a tileset. We say x : Z2 → τ is a valid tiling of the
plane by τ if and only if for every (i, j) ∈ Z2:

x(i, j)N = x(i, j + 1)S and x(i, j)E = x(i+ 1, j)W .

Said otherwise, a valid tiling is an assignment of tiles from τ to every position of Z2 such
that adjacent Wang tiles share the same color over adjacent edges.

A natural question which arises from this setting is the following: Is there a finite procedure
which takes as input a tileset τ and decides whether there exists a valid tiling of the plane?
In the next section we introduce the formal concepts needed to precisely state this question.

2.2 Turing machines and the Halting problem

In this section we give some classical definitions, that can be found with more details in [54].
Turing machines were initially introduced by Alan Turing [57] as a mathematical model that
would serve for representing computations made by a human being. It is commonly accepted
that Turing machines exactly catch what human can compute. This constitutes the Church-
Turing thesis, which is the hypothesis under which functions computable by Turing machines
are exactly functions computable by a human being – with no memory nor time limitation.

5

Figure 2: A tileset τ and a partial valid tiling of the plane.

Turing machines are similar to finite automata, except that they can use an unlimited
memory with a read/write access. The memory is realized by an infinite tape divided into cells,
each cell carrying a symbol chosen among a finite alphabet. At each step of the computation,
the head – i.e. the finite automaton – of the Turing machine can read the content of the
tape, and depending on the read symbol and its internal state, the head can do some of the
following actions: modify the content of the tape, change its internal state and move to a
neighbor cell.

A Turing machine is a tuple (Q,Γ,Σ, ♯, δ, q0, qa, qr) where Q,Σ are finite sets and

• Q is the set of states,

• Γ is a finite alphabet, the tape alphabet,

• Σ ⊂ Γ is the input alphabet,

• ♯ ∈ Γ \ Σ is the blank symbol,

• δ : Q× Γ→ Q× Γ× {−1, 0, 1} is the transition function,

• q0 ∈ Q is the initial state,

• qa and qr are the accepting and rejecting states, with qa ̸= qr.

A configuration of the Turing machine M is a tuple (x, i, q) where x ∈ ΣZ is an infinite
tape, i ∈ Z is the position of the computation head and q its state. If w is a finite word, we
will write (w, i, q) for the configuration where the tape is filled with blank symbols, except on
positions 0 . . . |w| − 1 where the word w is written.

Given a configuration C = (x, i, q), the machineM computes on C as follows. If δ(q, x) =
(q′, x′, ϵ), then the machines goes to configuration (y, i + ϵ, q′) where yn = xn for all n ̸= i
and yi = x′. When the Turing machineM can go from configuration C to C′ in one step, we

denote C
M−→ C′.

We say that the Turing machineM accepts (resp. rejects) an input word w ∈ Σ∗ if starting
from configuration (w, 0, q0), the machine reaches the accepting state qa (resp. rejecting state
qr) after a finite number of steps of computation. Given an input word w ∈ Σ∗, the machine
M thus has three possible behaviors: it accepts, rejects or runs infinitely (loops). IfM does
not run infinitely, it is said to halt on w.

6

Example 1 An example of Turing machine and the first steps of a computation starting with
configuration (. . . ♯10♯ . . . , 0, q0).

δ(q, x)
Symbol x

0 1 ♯

S
ta
te
q q0 (q0, 0, 1) (q0, 1, 1) (q+, ♯,−1)

q+ (qf , 1, .) (q+, 0,−1) (qf , 1, .)

qf (qf , 0, .) (qf , 1, .) (qf , ♯, .)

step 0 ♯ ♯ ♯ ♯ ♯ ♯ ♯ ♯1 0

q0

step 1 ♯ ♯ ♯ ♯ ♯ ♯ ♯ ♯1 0

q0

step 2 ♯ ♯ ♯ ♯ ♯ ♯ ♯ ♯1 0

q0

step 3 ♯ ♯ ♯ ♯ ♯ ♯ ♯ ♯1 0

q+

This Turing machine has the following behavior. If there is a finite number of symbols
0’s and 1’s around the computation head on the initial tape, then the machine adds 1 to the
number coded in binary on the tape, and then halts. Otherwise, the machine never halts.

In our definition, the tape is fixed and the computation head moves, but Turing machines
can equivalently be defined with a fixed computation head and a moving tape. This variant
is called moving tape Turing machine [32], and configurations in this model are of the form
(x, q) where x ∈ ΣZ is an infinite tape and q ∈ Q is the current state.

By definition, there are at most countably many Turing machines, and each given Turing
machines can be encoded in a finite word, which is denoted ⟨M⟩. More generally, we denote
⟨a, b⟩ the word that encodes the pair of objects (a, b) – objects can be words, Turing machines,
or everything that possesses a finite description.

A language L is decidable if there exists a Turing machineM such thatM accepts a word
w if w ∈ L and rejects w if w /∈ L. A language L is recursively enumerable if there exists a
Turing machineM such thatM accepts a word w if and only if w ∈ L – it can reject or loop
otherwise.

A decision problem is a problem that takes an input that can be encoded into a finite
word, and has a Yes/No answer. A decision problem is decidable if the language of encodings
of its inputs with positive answer is decidable, undecidable otherwise.

A natural decision problem about Wang tiling is the so-called domino problem.

Definition 1 The domino problem is the decision problem that takes as input a finite tileset
τ , and outputs Yes if and only if there exists a valid tiling of the plane by τ .

Wang originally conjectured that if a set of Wang tiles can tile the plane, then they can
always be arranged to do so periodically. Here by periodic tiling we mean that the tiling
can be constructed by repeating a rectangular pattern, where occurrences of this pattern
are arranged on a sublattice of Z2. If this conjecture were true, then we could decide the
domino problem by running in parallel the two following semi-algorithms – procedures that
do not necessarily halt. The first semi-algorithm searches for a periodic rectangular pattern
in the sense given above, by enumerating valid rectangular patterns by increasing size, and
checking if the sequences of colors that label the North and South edges (resp. West and East
edges) match up to a cyclic permutation. The second semi-algorithm tries to tile bigger and
bigger squares by a brute-force strategy. The first semi-algorithm halts if and only if there
exists a periodic pattern; the second halts if and only if the set of tiles cannot tile the plane.
Thus Wang’s conjecture implies the decidability of the domino problem. In other words, the
undecidability of the domino problem implies the existence of a set of Wang tiles that tiles
the plane, but never in a periodic way – such sets of tiles are called aperiodic sets of tiles.
Wang’s conjecture was disproven by Berger [8], who proved the undecidability of the domino
problem. It is noteworthy that his proof relies on the construction of an aperiodic set of tiles.

Theorem 2 (Berger, [7, 8]) The domino problem is undecidable.

A detailed proof of the undecidability of the domino problem will be given in Section 2.5.

7

Definition 2 The Halting problem is the decision problem that takes as input a Turing ma-
chineM and an input word w, and outputs Yes if and only if the machineM reaches a final
state during its computation on w.

Theorem 3 (Turing, [57]) The Halting problem is undecidable.

Proof: Suppose that the following language

HALT = {⟨M, w⟩ | M halts on w}

is decidable. Then there exists a Turing machine H with the following behavior: H accepts
the entry ⟨M, w⟩ ifM halts on w, and rejects ⟨M, w⟩ ifM loops on w. We construct a Turing
machine N that uses H as a subroutine. More precisely, on the input ⟨M⟩, the machine N
runs H on the input ⟨M, ⟨M⟩⟩, accepts if H rejects and loops if H accepts. Running N on its
own coding ⟨N⟩ leads to a contradiction, since the machine N should both accept and loop !
Thus the machine H cannot exist. ■

In what precedes, Turing machines are seen as a device that can accept, reject or loop on
a given input. Another way to use this computational model is to consider the finite word
written on the tape when a final state is reached as the output of the machine. A function
f : D ⊆ {0, 1}∗ → {0, 1}∗ is computable if there exists a Turing machineM with the following
behavior: if w ∈ D, then the machine accepts on entry w, and the tape contains f(w) when
the final state is reached.

2.3 Reductions

In what follows, L denotes the complement of the language L.
Reductions aim at comparing the computational difficulty of decision problems. In this

section we present two of them which are meaningful for this chapter, Turing reduction and
many-one reduction. In Section 4.3.2 a third one will be introduced, the enumeration reduc-
tion.

An oracle Turing machine is a couple (M, L), whereM is a classical Turing machine with
an additional state called the oracle state, and L ⊂ Γ∗ is a language called the oracle, that can
be queried in a single step of computation. When that machineM enters its oracle state, it
can asks whether the word written on its tape belongs to L or not, and then evolves according
to the answer. The oracle does not need to be a recursive or recursively enumerable language,
so that the addition of an oracle may increase the computational power of the model. We will
not explain in details how the oracle can be formalized as an extension of a classical Turing
machine, but the reader can find details in [54].

Definition 3 The language L is Turing reducible to L′, denoted L ≤T L′, if there exists a
Turing machine with oracle L′ that computes L. We note L ≡T L′ if L ≤T L′ and L′ ≤T L.

Example 4 One has that HALT ≤T HALT . Indeed, consider the Turing machine with
oracle HALT that immediately requests the oracle on its input word, and then returns the
negation of the oracle result. This machine accepts an input word ⟨M, w⟩ if ⟨M, w⟩ /∈ HALT
and rejects otherwise. So it is a Turing machine with oracle HALT that computes HALT .

Definition 4 The language L is many-one reducible (also called mapping reducible in [54])
to L′, denoted L ≤m L′, if there exists a computable function f such that x ∈ L iff f(x) ∈ L′

for every x. We note L ≡m L′ if L ≤m L′ and L′ ≤m L.

Example 5 One has that HALT ≰m HALT . Indeed, suppose HALT ≤m HALT , that is
to say there exists a computable function f such that x ∈ HALT iff f(x) ∈ HALT for every
x. We construct the Turing machine Mm as follows. On an input ⟨M, w⟩, it first computes
the word f (⟨M, w⟩) = ⟨M′, w′⟩. Then the machines simulates in parellel –one step for each
simulation– the machine M on w and the machine M′ on w′. If M halts on w, then the
machineMm accepts. IfM′ halts on w′, the machineMm rejects. One can check thatMm

computes HALT , raising a contradiction.

One can show that many-one reducibility is stronger than Turing reducibility (see Exer-
cise 1).

8

Definition 5 The Blank tape Halting problem is the decision problem that takes as input
a Turing machine M, and outputs Yes if and only if the machine M reaches a final state
during its computation initiated on the empty tape

HALTb = {⟨M⟩ | M halts on the empty input} .

As an example of Turing reduction, we show the following.

Proposition 6 (Folklore) The Blank tape Halting problem is undecidable.

Proof: We prove that HALTb ≤T HALT , which is enough to prove that the Blank tape
Halting problem is undecidable. The fundamental ingredient in this proof is that the encoding
(a 7→ ⟨a⟩ or (a, b) 7→ ⟨a, b⟩) and decoding (⟨a⟩ 7→ a or ⟨a, b⟩ 7→ (a, b)) functions of finite objects
are computable.

Let Mb be the Turing machine with oracle HALT with the following behavior. On a
given input word m, it first decodes m as a ⟨M⟩, and then encodes ⟨M, ε⟩ as a new word
w that is now written on the tape (ε denotes the empty word). The machine now changes
its state to enter the oracle state: if the word w written on the tape belongs to HALT then
the machines accepts, otherwise it rejects. Thus the language HALTb is computed by the
machineMb with oracle HALT . ■

2.4 Domino problem with constrained origin

As explained above, the behavior of a Turing machine only depends on local information (the
state of the head and the content of the tape). Consequently, this is relatively easy to encode
it inside a finite set of Wang tiles. We give a concrete encoding of the behavior of a given
Turing machineM inside a finite tileset τM.

Definition 6 The Origin Constrained domino problem is the decision problem that takes as
input a finite tileset τ and a tile t ∈ τ , and outputs Yes if and only if there exists a valid tiling
of the plane by τ with the tile t at the origin.

Remark 7 Suppose the Origin Constrained domino problem is decidable, and fix a finite
tileset τ . Then it suffices to run the corresponding algorithm successively on the inputs (τ, t)
for every tile t ∈ τ to get the decidability of the domino problem.

Theorem 8 (Kahr, Moore & Wang [27], Büchi [10]) The Origin Constrained domino
problem is undecidable.

Proof: Let M be a Turing machine. Consider the following tileset τM, where tiles are
defined for every a ∈ Σ, for every (q, a) ∈ Q×Σ such that δ(q, a) = (q′, a′, .), for every (r, a) ∈
Q×Σ such that δ(r, a) = (r′, a′, 1) and for every (s, a) ∈ Q×Σ such that δ(s, a) = (s′, a′,−1):

a

a

. .

(q, a)

(q′, a′)

. .

(r, a)

a′

. (r, a)

b

(r′, b)

(r, a) .

?

?

? ?

b

(s′, b)

. (s, a)

(s, a)

a′

(s, a) .

⊥

(q0, ♯)

0 0

⊥

♯

0 0

?

⊥

⊥ ⊥

Impose that the tile t0 = ⊥

(q0, ♯)

0 0

appears at the origin. Then there is exactly one way to fill
in the first row and the half-plane below it. Morevoer, tiles located strictly to the left of the
origin are also uniquely determined. Thus only the filling of upper-right quadrant depends
on the Turing machineM.

9

?

?

? ?

?

?

? ?

?

?

? ?

?

?

? ?

?

?

? ?

?

?

? ?

?

?

? ?

?

?

? ?

?

?

? ?

?

⊥

⊥ ⊥

?

⊥

⊥ ⊥

?

⊥

⊥ ⊥

?

⊥

⊥ ⊥

?

⊥

⊥ ⊥

?

⊥

⊥ ⊥

?

⊥

⊥ ⊥

?

⊥

⊥ ⊥

?

⊥

⊥ ⊥

⊥

♯

0 0

⊥

♯

0 0

⊥

♯

0 0

⊥

(q0, ♯)

0 0

⊥

♯

0 0

⊥

♯

0 0

⊥

♯

0 0

⊥

♯

0 0

⊥

♯

0 0

♯

♯

. .

♯

♯

. .

♯

♯

. .

(q0, ♯)

a

. (q0, ♯)

♯

(q1, ♯)

(q0, ♯) .

♯

♯

. .

♯

♯

. .

♯

♯

. .

♯

♯

. .

♯

♯

. .

♯

♯

. .

♯

♯

. .

a

a

. .

(q1, ♯)

b

. (q1, ♯)

♯

(q2, ♯)

(q1, ♯) .

♯

♯

. .

♯

♯

. .

♯

♯

. .

♯

♯

. .

♯

♯

. .

♯

♯

. .

a

a

. .

b

b

. .

(q2, ♯)

(q2, c)

. .

♯

♯

. .

♯

♯

. .

♯

♯

. .

Suppose that the tiling presented above has been extended to a tiling until the ith row.
Then on the top edge of row i, one can read the configuration Ci = (w0 . . . wn . . . , j, q), the
ith configuration of M on ε. So the tiling can be extended to row i + 1 if and only if there
exists a configuration Ci+1 = Next(Ci). Thus the computation of M on ε is infinite if and
only if there exists a tiling by τM with tile t0 at the origin. Since the Blank tape Halting
problem is undecidable, we conclude the Origin constrained domino problem is undecidable.
■

2.5 Domino problem

The undecidability of the domino problem was originally proven by Berger [8]. We present
here an alternative proof, given by Kari [28], that has one main advantage for the purpose of
this chapter: the construction can be adapted to other groups than Z2 (see Section 3.4.3).

Definition 7 The Mortality problem of Turing machines is the decision problem that takes
as input a deterministic Turing machineM with an halting state, and outputs Yes if and only
if there exists a non-halting configuration – configuration that never evolves into the halting
state.

It is important to note that in this problem, the machine does not start from an initial
configuration: the starting state and the starting tape are arbitrary. It is interesting to know
that, while the first proof of the undecidability of the domino Problem comes from Berger,
a student of Wang, the main ingredient for this new proof is from another student of Wang.
Technical details can be found in [22].

Theorem 9 (Hooper, [22]) The Mortality problem of Turing machines is undecidable.

The proof proceeds by several reductions: the immortality problem of Turing machines
reduces to the immortality problem of 4-counters machines, that itself reduces to the halting
problem of 2-counters machines, that finally reduces to the halting problem for Turing ma-
chines, which is undecidable by Theorem 3. Note that the undecidability of the Mortality
problem for reversible Turing machines, a stronger result, was proven in [30] with a much
simpler proof.

Given a system of rational affine transformations of the plane f1, f2, . . . , fn associated
with disjoint unit squares U1, U2, . . . , Un with integer corners, we define a partial function
f : R2 → R2 with domain U = ∪n

i=1Ui given by

−→x 7→ fi(
−→x) if −→x ∈ Ui.

A point −→x ∈ R2 is an immortal starting point if for every n ∈ N, the point fn(−→x) lies inside
the domain U .

10

Definition 8 The Mortality problem of piecewise affine maps is the decision problem that
takes as input a system of rational affine transformations of the plane f1, f2, . . . , fn associated
with disjoint unit squares U1, U2, . . . , Un with integer corners, and outputs Yes if and only if
the system has an immortal starting point.

Theorem 10 ([28]) The Mortality problem of piecewise affine maps is undecidable.

Proof: Given a Turing machineM, we construct a system of piecewise affine maps that has
an immortal starting point if and only ifM has an immortal configuration. The construction
presented here is the one from [28], and refers to [31, 9]. We assume that the machine
M is a moving tape machine (see Section 2.2), and that its states and alphabet are A =
{0, 1, . . . , a − 1} and Q = {0, 1, . . . , b − 1}. The current configuration (x, q) of the machine
will be coded by the two real numbers

ℓ =

−∞∑
i=−1

M ixi

and

r =Mq +

∞∑
i=0

M−ixi,

where M is an integer such that M > a and M > b− 1. The integer ⌊r⌋ =Mq+x0 is enough
to determine the next configuration, and a transition of the Turing machine corresponds to
an affine map with matrix(

M 0
0 1

M

)
,

(
1 0
0 1

)
or

(
1
M

0
0 M

)
depending on the tape movement. The translation constant of the affine map is adjusted
to code the change of state and the change of the symbol on the tape. For instance, the
transition δ(q, a) = (q′, a′, 1) is coded by the affine transformation(

ℓ
r

)
7→

(
1
M

0
0 M

)(
ℓ
r

)
+

(
a′

M(q′ − a−Mq)

)
.

The domain of this affine map is the unit square with integer coordinates [0, 1]× [Mq,Mq+1].
With this procedure we transform a Turing machine M into a finite set of rational affine
transformations f1, . . . , fn and disjoint unit squares with integer coordinates U1, . . . , Un. One
can check that immortality is preserved under this transformation: the Turing machineM has
an immoral configuration if and only if the system of affine maps f1, . . . , fn has an immortal
point. From Theorem 9 we conclude the the immortality problem of piecewise affine maps is
undecidable. ■

Theorem 11 The domino problem is undecidable.

Proof: We present the proof due to Kari [28], that proceeds by reduction from the Mortality
problem of piecewise affine maps. Consider f : R2 → R2 a rational affine map. We construct
a finite set of Wang tiles τf whose colors are chosen in R2. We first give an idea of how the
tileset is made, and will explain further how colors are chosen to get only a finite number of
tiles. The tile

−→n

−→s

−→w −→e

is said to compute the affine function f if

f(−→n) +−→w = −→s +−→e .

In other terms, −→n is the input on the top edge, and the output −→s is computed on the
bottom edge. The computation is not exact: a carry −→w from the left edge is added to f(−→n)
and a carry −→e from the right edge is added to −→s . Suppose now that a finite portion of a row
is tiled with tiles that compute the function f as pictured below.

11

−→w = −→w 1

−→n 1

−→s 1

−→n 2

−→s 2

. . .

−→n k−1

−→s k−1

−→n k

−→s k

−→e k = −→e

In the case where f is affine and since ei = wi+1 for i = 1 . . . k − 1 by matching rules, it
follows that

f

(−→n 1 + · · ·+−→n k

k

)
+

1

k
−→w =

−→s 1 + · · ·+−→s k

k
+

1

k
−→e .

The carries will eventually vanish as the size of the finite portion tends to infinity, so that
roughly speaking the average of the bottom labels will be the image by f of the average of
the top labels.

Let fi be the rational affine map with domain Ui = [n, n+ 1]× [m,m+ 1], given by

fi(
−→x) =M−→x +

−→
b .

To describe the finite set of tiles that encodes fi, we need some additional definitions. For
−→x ∈ R2 and k ∈ Z, denote Ak(

−→x) = ⌊k−→x ⌋, where ⌊(x, y)⌋ = (⌊x⌋, ⌊y⌋). Denote also

Bk(
−→x) = Ak(

−→x)−Ak−1(
−→x) = ⌊k−→x ⌋ − ⌊(k − 1)−→x ⌋.

If −→x is in the domain Ui = [n, n+1]× [m,m+1], one can check that Bk(
−→x) ∈ {(n,m), (n,m+

1), (n + 1,m), (n + 1,m + 1)} for every k ∈ Z. In other words, (Bk(
−→x))k∈Z is a sequence of

elements chosen in {(n,m), (n,m+ 1), (n+ 1,m), (n+ 1,m+ 1)}.
We say that a bi-infinite sequence (xk)k∈Z of i’s and (i + 1)’s represents a real number

x ∈ [i, i + 1] if there exists a sequence of intervals I1 ⊂ I2 ⊂ · · · ⊂ Z of increasing lengths
n1 < n2 < . . . such that

lim
k→∞

∑
j∈Ik

xj

nk
= x,

that is to say there is an infinite sequence of intervals of increasing lengths whose averages
converge to x. Note that if (xk)k∈Z is a representation of x, all the shifted sequences (xℓ+k)k∈Z
for every ℓ ∈ Z are also representations of x. Note also that a sequence (xk)k∈Z can represent
several distinct real numbers, since different interval sequences may converge to different
points, and that by a compactness argument, every sequence (xk)k∈Z does represent at least
one real number x.

Clearly the bi-infinite sequence (Bk(
−→x))k∈Z is a representation of −→x in the sense defined

above. It is called a balanced representation of −→x .

The tileset τfi corresponding to fi(
−→x) =M−→x +

−→
b consists of tiles

Bk(
−→x)

Bk(fi(
−→x))

fi(Ak−1(
−→x))−Ak−1(fi(

−→x))

+(k − 1)
−→
b

fi(Ak(
−→x))−Ak(fi(

−→x))

+k
−→
b

for every k ∈ Z and −→x ∈ Ui. One can check that these tiles compute the function fi.

δ = fi(
−→n) +−→w −−→s −−→e

= fi (Bk(
−→x)) + fi (Ak−1(

−→x))−Ak−1 (fi(
−→x)) + (k − 1)

−→
b −Bk (fi(

−→x))

− fi (Ak(
−→x)) +Ak (fi(

−→x))− k
−→
b

=M⌊k−→x ⌋ −M⌊(k − 1)−→x ⌋+
−→
b +M⌊(k − 1)−→x ⌋+

−→
b − ⌊(k − 1)fi(

−→x)⌋

+ (k − 1)
−→
b − ⌊kfi(−→x)⌋+ ⌊(k − 1)fi(

−→x)⌋ −M⌊k−→x ⌋ −
−→
b + ⌊kfi(−→x)⌋ − k

−→
b

= 0.

Denote by Ai the finite alphabet used to color the edges of tiles in τfi . Since the domain
Ui is bounded, there are only finitely many possible values for the top and bottom colors in
the tileset. The case of left and right colors is a little bit more subtle. Denote

ck(
−→x) = fi(Ak(

−→x))−Ak(fi(
−→x)) + k

−→
b

12

the color on the right edge of the tile of the figure above, so that the left color is ck−1(
−→x).

By using the fact that
−→x −−→1 ≤ ⌊−→x ⌋ < −→x

for every −→x ∈ R2, where
−→
1 denotes the vector (1, 1), we get that

M(k−→x −−→1) +
−→
b − k(M−→x +

−→
b) + k

−→
b ≤ ck(−→x) ≤Mk−→x +

−→
b − k(M−→x +

−→
b) +

−→
1 + k

−→
b

−M · −→1 +
−→
b ≤ ck(−→x) ≤

−→
b +
−→
1 .

Since
−→
b is a rational vector and M has rational coefficients, by taking q the lcm of the

denominators of all the rational numbers appearing in
−→
b and M , we get the existence of

−→p1,−→p2 ∈ Z2 such that

−→p1
q
≤ ck(−→x) ≤

−→p2
q
,

where −→p1 is chosen maximal and −→p2 minimal. And even better than that, it happens that all
values ck(

−→x) are in the finite set{−→p1
q
,
−→p1 + (0, 1)

q
,
−→p1 + (1, 0)

q
,
−→p1 +

−→
1

q
, . . . ,

−→p2
q

}
⊂ Q

for every k ∈ Z and every −→x ∈ Ui. Indeed, a careful observation of all rational numbers that
appear inside the expression of ck(

−→x) shows that it can be written as
−→p
q
, and the fact that

−→p1 ≤ −→p ≤ −→p2 directly follows from the definition of −→p1 and −→p2. So the tileset τfi corresponding
to fi is finite. By definition of τfi , for a given −→x ∈ Ui, one can tile a row with τfi such that the
balanced representations of −→x and fi(

−→x) appear on the top and bottom labels respectively.
Suppose now that we have a system of rational affine maps f1, f2, . . . , fn associated with

unit squares U1, U2, . . . , Un with integer corners. From each function fi we construct a finite
set of tiles τfi that computes fi as explained above, whose top colors −→n are in Ui and bottom
colors −→s in fi(Ui). We use an additional marking on the tiles –for instance by adding the color
i ∈ {1, . . . , n} to every color from Ai– so that a row can be tiled only with tiles constructed
from the same fi. We get a final finite tileset τf ⊂

⋃n
i=1 (Ai × {i})4.It remains to prove

that the tileset τf admits a tiling of the plane if and only if the system f1, f2, . . . , fn has an
immortal point.

Suppose that the system f1, f2, . . . , fn has an immortal point x in one of the Ui. We

construct the tiling t ∈ τZ
2

f by assigning to every position (k, j) ∈ Z2 the tile

Bk

(
f j(−→x)

)

Bk

(
f j+1(−→x)

)
f
(
Ak−1

(
f j(−→x)

))
−Ak−1(f

j+1(−→x))

+(k − 1)
−→
b

f
(
Ak

(
f j(−→x)

))
−Ak(f

j+1(−→x))

+k
−→
b

which gives a valid tiling in Xτf . Reciprocally, suppose that τf admits a valid tiling of the

plane t ∈ τZ
2

f . There is no reason that would force the sequences of top labels that appear
on a given row to be the balanced representation of a number x ∈ U . Nevertheless, we can
proceed by extraction to prove the existence of an immortal point for f . Consider the intervals
Ik = {−k, . . . , k} for all k ∈N. Define vectors (−→xk)k∈N as follows:

−→xk =

∑k
i=−k

−→n (ti,0)

2k + 1
,

in other words we look at the mean of increasing sums of top labels of the first row in the
tiling t. Be definition of the tileset τf , we immediately get that there exists some 1 ≤ i ≤ n
such that −→xk ∈ Ui for every k ∈ N. By compactness of Ui, we extract a sequence

(−−−→xϕ(k)
)
that

converges to −→x ∈ Ui. By continuity of each fi, we can check that −→x is an immortal point for
f . ■

13

3 Subshifts of finite type on finitely generated groups

3.1 Definitions

3.1.1 Group presentations and the word problem

Let G be a group. For words u, v ∈ G∗ we write u =G v if after applying the group operation
on each pair of contiguous symbols the same element of G is obtained on both sides.

Definition 9 Let G be a group and F ⊂ G. The group generated by F is the set

⟨F ⟩ := {g ∈ G | ∃u ∈ (F ∪ F−1)∗ such that u =G g}.

It is clear that ⟨F ⟩ is the smallest subgroup of G that contains F .

Definition 10 We say a group G is finitely generated if there exists a finite subset S ⊂ G
such that G = ⟨S⟩. Such a set S is called a set of generators for G. The rank of G is defined
as the smallest cardinality of a set of generators for G.

Example 12 The group of complex numbers of the form e2iπnα for n ∈ mathbbZ with mul-
tiplication as the operation is finitely generated with rank 1. Indeed, it is generated by e2iπα.
Note that this group is infinite if and only if α /∈ Q.

Example 13 The group (Q,+) of rational numbers with addition has infinite rank. Indeed,
for any set of finite rational numbers p1/q1, . . . , pn, qn, the denominator of any element of
⟨p1/q1, . . . , pn, qn⟩ is bounded by

∏n
i=1 qi. Therefore it cannot generate Q.

By definition of ⟨S⟩, each element of a finitely generated group can be seen as a word in
(S∪ S−1)∗. From now on, we will use the convention that every set of generators contains its
inverses to avoid writing S ∪ S−1.

Definition 11 Let G be a group and S ⊂ G. The right Cayley graph of G with respect to
S is the colored directed graph Γ(G,S) whose vertex set is G and its set of arcs is given by
E =

⋃
s∈SEs where Es is the set of arcs colored by s ∈ S defined by Es := {(g, gs) | g ∈ G}.

If S generates G then Γ(G,S) is connected. For g ∈ G we denote |g|S the length of the
shortest path from 1G to g in Γ(G,S). This induces a distance dS(g, h) := |g−1h|. We denote
the closed ball centered in g ∈ G of radius r by BS(g, r) = {h ∈ G | dS(g, h) ≤ r}.

Example 14 Consider the group Z2 endowed with coordinate-wise sum as the operation. Let
S = {(0, 1), (1, 0), (0,−1), (−1, 0)} be the canonical set of generators. Then Γ(Z2, S) is the
bi-infinite grid and |(n1, n2)|S = |n1|+ |n2| is the taxicab norm.

Definition 12 Let S be a set and consider a copy S−1 = {s−1 | s ∈ S}. We say a word in
(S ∪ S−1)∗ is reduced if it does not contain ss−1 or s−1s as subwords. Every word in can
be reduced to an unique minimal word by successively eliminating every apparition of ss−1 or
s−1s.

Definition 13 The free group over S is defined as the group FS of all reduced words in
(S ∪ S−1)∗ endowed with word concatenation followed by reduction as the operation.

A more combinatorial way to look at groups is using presentations. A group presentation
is a pair (S,R) where S is a set and R ⊂ (S∪ S−1)∗ is a set of words. Elements of S are called
generators and words of R are called relators.

Definition 14 Let G be a group. We say (S,R) is a presentation of G if G is isomorphic to
⟨S|R⟩ where

⟨S|R⟩ = FS/NR.

Here FS is the free group over S and NR is the conjugate closure of R, that is, NR =
⟨{grg−1 | g ∈ FS and r ∈ R}⟩.

In other words, ⟨S|R⟩ is the largest quotient of the free group over S such that every word
in R is identified to the empty word.

Example 15 We have that Z2 ∼= ⟨a, b | aba−1b−1⟩.

14

Definition 15 We say a group G is recursively presented if there exists a presentation (S,R)
such that G ∼= ⟨S|R⟩, S is recursive and R is a recursively enumerable language. If there exists
a presentation for G for which both S and R are finite we say G is finitely presented.

Definition 16 The word problem of a group G with respect to a set of generators S is the
language WP(G,S) = {u ∈ S∗ | u =G 1G}.

Proposition 16 Let S1,S2 be two finite sets of generators for G. Then WP(G,S1) is many-one
equivalent to WP(G,S2).

Proof: As ⟨S2⟩ = G we have that each s ∈ S1 can be written as u(s) ∈ S∗
2 such that

s =G u(s). As S1 is finite, the function which sends a word s0 · · · sk ∈ S∗
1 to u(s0) · · ·u(sk) ∈ S∗

2

is total computable and s0 · · · sk = 1G ⇐⇒ u(s0) · · ·u(sk) = 1G.
In view of Proposition 16 in terms of computability we can unambiguously speak about

the word problem of a group G and denote it as WP(G).

Proposition 17 A finitely generated group G is recursively presented if and only if WP(G) is
recursively enumerable.

Proof: If WP(G,S) is recursively enumerable one can choose (S, WP(G,S)) as a presentation
for G. Conversely, as G is recursively presented then G ∼= FS/NR for some recursively enu-
merable R ⊂ S∗. Given u ∈ FS we have u =G 1G ⇐⇒ u ∈ NR, therefore it suffices to be
able to recognize this set. An algorithm which does this is the following: Iteratively for each
n ∈ N run for n steps the algorithm recognizing R on all words on S∗ of length at most n.
Let An be the list of accepted words so far. Build Bn = {wℓw−1 | |w| < n, ℓ ∈ Bn} and
Cn = {u ∈ B∗

n | |u| ≤ n}. The set Cn approximates the conjugate closure of R. It is easy to
see that every possible word in NR appears in Cn for large enough n.

3.1.2 SFT on finitely generated groups

Most of the definitions are analogous to the one-dimensional case. Let A be a finite alphabet.
The set AG endowed with the left group action S : G×AG → AG given by Sg(x)h = xg−1h is a

full shift. The elements a ∈ A and x ∈ AG are called symbols and configurations respectively.
With the product of the discrete topology on A the set of configurations AG is a compact
metric space that has the cylinders [a]g = {x ∈ AG|xg = a} as a subbasis. A support is a
finite subset F ⊂ G. Given a support F , a pattern with support F is an element p ∈ AF

and we write supp(p) = F . We also denote the cylinder generated by p in position g as
[p]g =

⋂
h∈F [ph]gh, and [p] = [p]1G .

Definition 17 A subshift is a subset X ⊂ AG which is closed and shift invariant, that is,
S(X) ⊂ X. Equivalently a subshift is the set of configurations XF defined by a set of forbidden
patterns F as follows:

XF = AG \
⋃

p∈F,g∈G

[p]g.

Definition 18 The language of a subshift L(X) is the set of patterns p that appear in a
configuration of X, that is, [p] ∩X ̸= ∅. In particular L(AG) is the set of all patterns.

Let X ⊂ AG and Y ⊂ BG be subshifts. A continuous map σ : X → Y such that SY ◦ σ =
σ ◦ SX where SX , SY are the shift actions on X and Y respectively is called a morphism. A
well-known Theorem of Curtis, Lyndon and Hedlund which can be found in full generality
in [11] asserts that morphisms are equivalent to maps defined by local rules as follows: There

exists a finite F ⊂ G and Φ : AF → B such that ∀x ∈ X : σ(x)g = Φ(Sg−1

(x)|F). A surjective
morphism is called a factor map and we denote the existence of a factor map from X to Y
by X ↠ Y . A bijective morphism is called a conjugacy and the fact that two subshifts are
conjugate is written X ∼= Y .

Definition 19 A subshift X ⊂ AG is of finite type or SFT if there exist a finite set F ⊂
L(AG) of forbidden patterns such that X = XF . A subshift is sofic if it’s the image of an
SFT via a factor map.

15

. . . →

Figure 3: In the left we see for n = 2 a set of patterns which do not contain forbidden subpatterns.
In the right the transformation of one of these patterns into a Wang tile.

Definition 20 Let S be a set of generators for the group G. A subshift X ⊂ AG is said to
be nearest neighbor with respect to S if there exists a set F ⊂ L(AG) such that X = XF
and every pattern p ∈ F satisfies supp(p) = {1G, s} for some s ∈ S. Such a set of forbidden
patterns is also said to be nearest neighbor.

Nearest neighbor subshifts can be seen as colorings of the Cayley graph Γ(G,S) such that
for each edge (g, gs) the choices of color are restricted.

Example 18 The set X = {x ∈ AG | ∀s ∈ S, xg ̸= xgs} is a nearest neighbor subshift.

This notion also encompasses Wang tiles as studied in Section 2.1. The following example
makes this explicit.

Example 19 Consider Z2 with the set of generators S = {(1, 0), (0, 1)}. Given a set of
Wang tiles τ the set of all tilings of the plane by τ is a nearest neighbor subshift. In-

deed, it corresponds to XF ⊂ τZ
2

where the patterns p ∈ F with support {(0, 0), (1, 0)}
(respectively {(0, 0), (1, 0)}) are exactly those such that (p(0,0))E ̸= (p(1,0))W (respectively
(p(0,0))N ̸= (p(0,1))S).

Every nearest neighbor subshift is of finite type, indeed, any set F satisfying the constrains
satisfies #(F) ≤ #(A)2#(S). The converse is false. For instance, the sequence of Z-subshifts
{Xn}n∈N where Xn ⊂ {0, 1}Z is defined by Fn = {1n} is a countable set of subshifts of finite
type which satisfy that 1n−1 ∈ L(Xn) \

⋃
m<n L(Xm). Therefore an infinite number of them

are forcefully not nearest neighbor. Nevertheless, every subshift of finite type is conjugate to
a nearest neighbor subshift.

Before showing that result in generality, we illustrate informally in Figure 3 how this
conjugacy works in the case we would like to turn a Z2 subshift into an equivalent set of
Wang tiles. As the set of forbidden patterns is finite, there exists a big enough n ∈ N such
that the support of every forbidden pattern is contained in [0, n]2. Then one can construct
the set of colorings of [0, n]2 which do not contain forbidden patterns and turn each one of
them into Wang tiles which through their adjacency colors force two contiguous patterns to
overlap. This technique gives a one to one correspondence between the set of valid tilings of
the Wang tiles and the configurations in the original subshift which can be shown to be a
conjugacy.

Proposition 20 Every subshift of finite type is conjugate to a nearest neighbor subshift.

Proof: Let F be a finite set of forbidden patterns defining XF ⊂ AG and let N =
maxp∈F,g∈supp(p) |g|S. We define the alphabet

B = {p̃ ∈ ABS(1G,N) | ∀p ∈ F , p̃|supp(p) ̸= p}.

Consider the set of forbidden patterns G containing q ∈ B{1G,s} if and only if ∃g ∈
BS(1G, N)∩BS(s,N) such that (q1G)g ̸= (qs)s−1g. By definition XG is nearest neighbor for S.
We claim XG ∼= XF . Indeed, consider the morphism σ : XG → XF given by σ(y)g = (yg)1G .
Let y, z be two different configurations in XG . Modulo shifting these configurations we can
suppose y1G ̸= z1G , meaning there exists h ∈ BS(1G, N) such that (y1G)h ̸= (z1G)h. Write
h =G s1, · · · , sn for some n ≤ N such that each si ∈ S. The forbidden patterns of G force
that (y1G)h = (ys1)s−1

1 h
and (ys1)s−1

1 h
= (ys1s2)s−1

2 s−1
1 h

and so on we obtain:

(y1G)h = (ys1,··· ,sn)s−1
n ,··· ,s−1

1 h
= (yh)1G .

Similarly, (z1G)h = (zh)1G , therefore (yh)1G ̸= (zh)1G and thus σ(y)h ̸= σ(z)h showing

that σ is injective. Given x ∈ XF we can define y ∈ BG given by yg = Sg−1

(x)|BS(1G,N). y
satisfies σ(y) = x and y ∈ XG thus proving the surjectivity of σ. Hence σ is a conjugacy. ■

16

We remark that the subshift XG constructed in the previous proof is called the higher-block
shift of X and denoted by X [N] in dimension one [35].

3.2 Domino Problem

From their representation with a finite automaton [36], the existence of a configuration in a
Z-SFT is equivalent to the existence of a cycle in a finite labeled graph, which is decidable.

In Z2 the domino problem asks for an algorithm which receives as an input a set of Wang
tiles and decides whether they admit a tiling of the plane. A similar problem in the context
of subshift would be to take a set of forbidden patterns F and ask whether the subshift XF
is non-empty. These two problems, while defined in different settings do inherently refer to
the same objects and are both undecidable as shown in Section 2.4.

In general groups these problems become more complex to define for two reasons. From
the side of the domino problem we have to replace Wang tiles by nearest neighbor subshifts,
which raises the question of which set of generators to use. From the side of the emptiness
problem we need a way to code the set of forbidden patterns such that a Turing machine can
interpret them.

3.2.1 Definitions

We start this section by giving formal definitions for the domino problem and the Emptiness
problem, then we prove that the decidability status of these two problems are the same, and
does not depend on the choice for the generating set of the group considered.

Definition 21 Let S be a fixed set of generators for a group G. The domino problem with
respect to S is defined as the set DP(G,S) of codings of nearest neighbor for S sets of forbidden
patterns F such that XF ̸= ∅.

One way to formally code a nearest neighbor set of forbidden patterns is to identify each
pattern as a triple in A2 × S and identify A to a finite set of words in {0, 1}∗. We say that
the domino problem with respect to S is decidable if DP(G,S) is a decidable language.

In order to define the emptiness problem, we first need to describe how to code general
patterns.

Definition 22 Let G be a finitely generated group, S ⊂ G a finite generating set and A a
finite alphabet. A pattern coding c is a finite set of tuples c = {(wi, ai)}i∈I where wi ∈ S∗

and ai ∈ A. Given a set C of pattern codings we define the subshift XC by:

XC = AG \
⋃

g∈G,c∈C

⋂
(w,a)∈c

[a]gw

Note that if a pattern coding does not represent an actual pattern, that is, if two words
representing the same group element get paired with different letters then

⋂
(w,a)∈c[a]gw is

empty and the coding does not contribute at all in the formula above.

Definition 23 Let S be a fixed set of generators for a group G. The emptiness problem with
respect to S is defined as the set EP(G,S) of sets of pattern codings C such that XC ̸= ∅.

Using the same technique as in Proposition 16 we obtain that the computational properties
of the emptiness problem are independent of the chosen set of generators. Therefore, analo-
gously to the case of the word problem for groups, we can plainly speak about the emptiness
problem for a given group EP(G) and use an arbitrary set of generators.

Proposition 21 For every pair S, S′ of finite set of generators of G we have that EP(G,S) is
many-one equivalent to EP(G,S′).

Proposition 22 Let S be a finite set of generators of G. Then DP(G,S) is many-one equiv-
alent to EP(G,S).

17

Proof: Clearly DP(G,S) ≤m EP(G,S) as any instance of DP(G,S) is an instance of EP(G,S).
To prove the converse, we would like to use the conjugacy from Proposition 20 but the
construction of the new alphabet might not be computable if the word problem of G is
undecidable. We bypass this problem as follows. Given a set of pattern codings C we compute
N = maxc∈C max(wi,ai)∈c |wi| and

B = {b :
⋃

n≤N

Sn → A | ∀c ∈ C, ∃(w, a) ∈ c : bw ̸= a}

That is, the set of all colorings of words of length at most N such that no pattern coding
from C appears. This set is computable, and the nearest neighbor set of forbidden patterns
G containing q ∈ B{1G,s} if and only if ∃w ∈

⋃
n≤N−1 S

n such that (q1G)sw ̸= (qs)w also is.
Therefore we obtain an instance of DP(G,S).

If XC is non-empty we can construct y ∈ XG by setting (yg)w = xgh where h =G w is
the group element coded by w. It clearly does not contain any coding from C by definition.
Conversely, analogously to the proof of Proposition 20 we obtain that for every y ∈ XG ,
g ∈ BS(1G, N) and w ∈

⋃
n≤N Sn such that g =G w then (y1G)w = (yg)ϵ where ϵ is the

empty word. In particular we deduce that every symbol b ∈ B appearing in a configuration
must satisfy that bw1 = bw2 for each w1 =G w2. We can thus construct a configuration
x ∈ XC from y ∈ XG defined as xg = (yg)ϵ. We conclude that EP(G,S) ≤m DP(G,S) and thus
DP(G,S) ≡m EP(G,S) ■

Mixing the two previous propositions, we get:

DP(G,S) ≡m EP(G,S) ≡m EP(G,S′) ≡m DP(G,S′)

Corollary 23 Let S,S′ be a finite set of generators of G. Then DP(G,S) is many-one equiv-
alent to DP(G,S′).

We can therefore just speak plainly about the domino problem DP(G) of a group G as the
domino problem with respect to any set of generators. The results of this sections give us the
liberty to treat the domino problem in any of the previous formats, that is, using any finite
set of generators, and either with nearest neighbor forbidden patterns or with sets of pattern
codings.

3.2.2 Basic properties

Theorem 24 For any group G then WP(G) ≤m DP(G). In particular the domino problem is
undecidable for any group with undecidable word problem.

Proof: More precisely, we are going to show WP(G) ≤m EP(G). Consider the alphabet
A = {0, 1, 2}. Given w ∈ S∗ an input of the word problem we associate the set of pattern
codings C = {c0, c1, c2} where ci = {(ϵ, i), (w, i)}. This set C is clearly computable from w.
In other words, the set C forces the symbol in each group element g to be different from the
one in gw.

If w ∈ WP(G) then w =G 1G, therefore [i]ϵ ∩ [i]w = [i]1G and so XC ∩ [i]w = ∅ for each
i ∈ {0, 1, 2}. We deduce that

∅ =
⋃

i∈{0,1,2}

XC ∩ [i]w = XC ∩AG = XC and thus C ∈ EP(G).

In the case where w ̸=G 1G we show that XC ̸= ∅. Indeed, let w =G g ∈ G. As g ̸= 1G
then ⟨g⟩ is a non-trivial cyclic subgroup. So either ⟨g⟩ ∼= Z or ⟨g⟩ ∼= Z/nZ for some n ≥ 2. We
construct y ∈ A⟨g⟩ differently for each case as follows: In the case ⟨g⟩ ∼= Z we set ygm = m
mod 2. In the case ⟨g⟩ ∼= Z/nZ we distinguish again two cases, if n is even then we set
ygm = m mod 2. Otherwise we just set ygm = m mod 2 if n ∤ m, otherwise ygm = 2. One
can verify that in each case ∀h ∈ ⟨g⟩ y /∈ [i]h ∩ [i]hg.

Consider a set of left representatives L for the quotient G/⟨g⟩. We can define x ∈ AG by
xℓh = yh for every ℓ ∈ L and h ∈ ⟨g⟩. By definition we have for each ℓ, h and i ∈ A then
x /∈ [i]ℓh ∩ [i]ℓhw and thus x ∈ XC and hence XC ̸= ∅. ■

Fix a group G, a finite generating set S, a finite alphabet and a set of codings of nearest
neighbor forbidden patterns F . Suppose XF is empty. Then by compactness, there exists a

18

size N such that the ball of size BS(1G, N) fails to be colored without patterns from F . So
a naive procedure, that would consist in exhaustively searching for a valid coloring of balls
of increasing size, will eventually stop because such a coloring does not exist for the ball of
size N . This only restriction we need to perform such a procedure is that the group structure
should be enumerable, which in formalized in the following proposition.

Proposition 25 The domino problem is co-recursively enumerable for any recursively pre-
sented group.

Proof: As G is recursively presented, there is a Turing machineM1 which on input w ∈ S∗

returns YES if and only if w =G 1G. Consider the following algorithmM2:

1. Initialize n← 1.

2. Do the following procedure:

• For each pair of words u, v ∈ S∗ of length at most n. Run n steps M1 on entry
uv−1.

• For each m ∈ {1, · · · , n} construct the set Xm of functions p :
⋃

k≤m Sk → A such
that pu = pv for each pair (u, v) where M answered YES and where no forbidden
pattern appears.

3. If some Xm is empty, return YES. Otherwise do n← n+ 1 and go to 2.

The previous algorithm answers YES if and only if the instance of DP(G) generates an empty
subshift. Indeed, if the subshift X is non-empty then we can take x ∈ X and define p ∈ Xm as
pw = xw. Conversely if X ⊂ AG is empty there exists N ∈ N such that every p ∈ ABS(1G,N)

satisfies X ∩ [p] = ∅. Otherwise we may choose xn ∈ [pn] ∩X where pn ∈ ABS(1G,n) and any
accumulation point of {xn}n∈N would be in X. Therefore it suffices to run the procedure for
sufficient steps such that every pair (u, v) of length at most N such that u =G v is identified
andM2 will forcefully obtain that XN = ∅ and answer YES. ■

In other words, Proposition 25 means that as soon as the group is recursively presented,
the difficult part of the domino problem is to detect if a valid tiling exists.

3.3 Inheritance properties

Proposition 26 For every finitely generated H ≤ G we have DP(H) ≤m DP(G).

Proof: Let SH and SG be sets of generators for H and G respectively. As H ≤ G then
SG ∪ SH also generates G. Any input of DP(H, SH) is also an input of DP(G,SH ∪ SG). If the
original input produces an empty subshift, then it also does so in the image as the subgroup
H ≤ G admits no valid configuration. Conversely, if the original input admits a configuration,
then it can be used to tile each lateral class G/H as in the proof of Theorem 24 and therefore
the subshift produced by the image is also non-empty. ■

From Theorem 11 and Proposition 26 we get:

Corollary 27 If Z2 embeds into G then DP(G) is undecidable.

Proposition 28 For every finitely generated normal subgroup H ⊴G we have DP(G/H) ≤m

DP(G).

Proof: Every quotient of a finitely generated group is finitely generated so DP(G/H) is
well defined. Let L be a set of representatives of G/H in G and let η : G/H → L be this
identification. Consider finite sets SG/H , SH of generators of G/H and H respectively and let
SL = η(SG/H). We remark that if f1, f2 ∈ G/H then η(f1f2) = η(f1)η(f2)h for some h ∈ H.
In particular as every g ∈ G can be written as g = ℓh for some ℓ ∈ L and h ∈ H we obtain
that each g ∈ G can be written as uv where u ∈ SL and v ∈ SH . Therefore SL ∪ SH generate
G.

Consider an instance F of DP(G/H, SG/H). We construct an instance G = G1 ∪ G2 of
DP(G,SL ∪ SH) such that XG = ∅ if and only if XF = ∅. For each pattern with support
{1G/H , r} with r ∈ SG/H in the original instance we add the same pattern with support
{1G, η(r)} in G1. We construct G2 as the set of all patterns p with support {1G, s} for s ∈ SH

such that p1G ̸= ps. Namely G1 copies the original rules in every quotient and G2 forces that

19

∀y ∈ XG every configuration is invariant by translations by H. This construction of G is
computable and gives an instance of DP(G,SL ∪ SH).

Suppose XF ⊂ AG/H is non-empty. Then from x ∈ XF we can construct y ∈ AG defined
by yℓh = xη−1(ℓ). By definition we have that for each g ∈ G and s ∈ SH then yg = ygs and so
no pattern from G2 appears. Also, given r ∈ SL we have

yℓhr = yℓr(r−1hr)

= y(ℓr)h′ for some h′ ∈ H as H ⊴G

= yℓ′h′′h′ for some h′′ ∈ H
= yℓ′

Where ℓ′ = η(η−1(ℓ)η−1(r)). Therefore yℓhr = xη−1(ℓ)η−1(r) meaning that no patterns from
G1 appear. Therefore y ∈ XG .

Conversely let y ∈ XG and consider x ∈ AG/H defined by xg = yη(g). Suppose a
forbidden pattern with support {1G/H,r} from F appears in x in position g. Therefore
yη(gr) = yη(g)η(r)h = yη(g)η(r) for some h ∈ H and thus the same forbidden pattern appears
in y with support {1G, η(r)}. This implies that x ∈ XF ̸= ∅. ■

Proposition 29 Let H ≤ G such that [G : H] <∞. Then DP(G) ≡m DP(H).

Proof: The direction DP(H) ≤m DP(G) is direct from Proposition 26. Conversely, to prove
DP(G) ≤m DP(H) we can suppose that H ⊴G. Indeed, if H is not normal we can find N ≤ H
such that N ⊴ G and [G : N] < ∞ (see Exercise 9). If we prove that DP(G) ≤m DP(N) we
would have DP(G) ≤m DP(N) ≤m DP(H) and thus DP(G) ≤m DP(H).

Let X ⊂ AG be a subshift and R a set of representatives of the right lateral classes G\H
which contains 1G. We define the R-higher power shift of X as the set

X [R] := {y ∈ (AR)H | ∃x ∈ X, ∀(h, r) ∈ H ×R, (yh)r = xhr}.

The set X [R] is indeed an H-subshift and X = ∅ ⇐⇒ X [R] = ∅. As every finite index
subgroup of a finitely generated group is itself finitely generated (see Exercise 10) we can
take a set of generators SH for H and thus SH ∪ R is a finite set of generators for G. Let
D = SH ∪ (RRR−1∩H) and E = RDR−1. Note that as both R and SH are finite then E also
is. Furthermore as 1G ∈ R then SH ⊂ E and as H ⊴G we have E ⊂ H, therefore H = ⟨E⟩.
Given an instance F of DP(G,SH ∪R) with alphabet A we are going to construct an instance

G of DP(H,E) with alphabet AR such that XG = X
[R]
F as follows: for every pattern p ∈ F

with supp(p) = {1G, s} with s ∈ SH and r ∈ R we put in G all the patterns q with support
{1H , rsr−1} such that (q1H)r = p1G and (qrsr−1)r = ps. This will take care of all patterns
with support {1G, s} and s ∈ SH . For the remaining patterns let (a, b) ∈ R2. By definition it
is always possible to write ab = h̄c for some c ∈ R and some h̄ ∈ RRR−1 ∩H. Now for every
pattern p ∈ F with supp(p) = {1G, b} with b ∈ R and a ∈ R we let h̄ ∈ RRR−1 ∩H such that
ab = h̄c and we add to G all patterns q with support {1H , a−1h̄} such that (q1H)a = p1G and
(qa−1h̄)c = pb.

Some of the patterns in G defined above will have some trivial support, in this case we
just consider that as a restriction on the alphabet AR. Clearly as R is fixed beforehand this
construction can be computed from an instance of DP(G,SH ∪R). We leave as an exercise to

the reader to verify that XG = X
[R]
F and thus conclude that DP(G) ≤m DP(H). ■

We say two groups G1, G2 are commensurable if they contain finite index subgroups H1 ≤
G1 and H2 ≤ G2 such that H1

∼= H2.

Corollary 30 Let G1, G2 be two commensurable groups, then DP(G1) ≡m DP(G2). Said oth-
erwise, the domino problem is an invariant of commensurability.

20

3.4 Classes of groups

3.4.1 Virtually free groups

Proposition 31 Let F be a free group of finite rank. Then DP(F) is decidable.

Proof: Let n = rank(F) and let S = {s1, . . . , sn, s−1
1 , · · · , s−1

n } be the set of free generators
of F . Consider an instance F of DP(F, S) over an alphabet A. We say a symbol a ∈ A is
extensible with respect to B ⊂ A if for every s ∈ S there exists b ∈ B such that neither of the
patterns p, q with supports supp(p) = {1F , s} and supp(p) = {1F , s−1} defined by p1F = a,
ps = b, q1F = b, qs−1 = a belong to F . Said otherwise, a is extensible with respect to B if
for every direction s ∈ S it’s possible to put an a next to some b ∈ B in position s without
creating a forbidden pattern.

Consider the Turing machine M which receives an instance of DP(F, S) and does the
following:

1. Initialize E ← A

2. Let E′ be the subset of symbols of E which are extensible with respect to E.

3. If E′ ̸= E assign E ← E′ and go to step 2.

4. If E ̸= ∅ answer YES. Otherwise answer NO.

This procedure always ends in at most |A| iterations of step 2. Clearly non-extensible
symbols cannot appear in a configuration of XF . We deduce therefore that XF ⊂ EF at any
step of the algorithm. This implies that ifM answers NO then indeed XF = ∅. IfM answers
YES then E stabilizes into a non-empty set of extensible with respect to E symbols. Fix for
every a ∈ E a function φa : S → E which gives an symbol in E which can be put next to
a in direction s. We define x ∈ EF inductively as follows: Fix x1G = a ∈ E. Suppose x
is defined over all words w ∈ S∗ of length |w| ≤ n. For each non-reducible word ws we let
xws = φ(xw)(s). As the Cayley graph of F is a 2n-regular infinite tree this construction does
not generate any forbidden patterns and hence x ∈ XF . ■

Definition 24 Let P be a group property. A group is said to be virtually P if it contains a
finite index subgroup which satisfies such property.

Integrating the previous proposition with Proposition 29 we obtain the following theorem.

Theorem 32 Every virtually free group has decidable word problem.

We would like to remark a nice application of Proposition 31. If G is finitely generated by
some finite set S it admits a presentation G ∼= ⟨S|R⟩ = FS/NR where NR ⊴ FS. As DP(FS) is
decidable, Proposition 28 implies that if NR is finitely generated then DP(G) is decidable. If
we put this together with the Nielsen-Schreier [37] theorem which states that every subgroup
of a free group is itself free, we can write it in the following way.

Corollary 33 Let (S,R) be a group presentation. If DP(⟨S|R⟩) is undecidable then the free
group NR generated by the conjugate closure of R has infinite rank.

Example 34 Let [a, b] = aba−1b−1 denote the commutator of a and b. Let Z2 ∼= ⟨a, b | [a, b]⟩.
As DP(Z2) is undecidable, then N[a,b] has infinite rank. One can also easily verify that N[a,b] =
[F, F] = {[g, h] | g, h ∈ F}. This constitutes a new (and algebraic topology free) proof of the
classical result stating that the commutator subgroup of a free group of rank 2 has infinite
rank.

3.4.2 Polycyclic groups

The class of polycyclic groups is one of the largest for which we can obtain a complete
classification concerning the undecidability of the domino problem. This is achieved through
the use of the properties proved in section 3.3. Polycyclic groups have indeed a lot of nice
properties due to the fact that this is one of the largest classes of groups which is closed under
subgroups and quotients, and that contain only finitely presented groups with decidable word
problem. See [51] and [34] for more details on polycyclic groups.

Polycyclic groups are the solvable groups for which every subgroup is finitely generated.
The best way to give examples of polycyclic groups is by the Auslander-Swan theorem:

21

Theorem 35 Polycyclic groups are precisely solvable subgroups of GLn(Z).
See [51, Chapter 5, Theorem 5] or [34, section 3.3] for a proof. By Tits Alternative [55], we
therefore obtain that virtually polycyclic groups are precisely the subgroups of GLn(Z) that
do not contain non-abelian free groups, or equivalently amenable subgroups of GLn(Z).

Polycyclic groups form a nice class of groups due to their many closure properties:

Proposition 36 Quotients and subgroups of polycyclic groups are polycyclic. In particular,
subgroups of polycyclic groups are always finitely generated.

This property opens the possibility to do inductive proofs on polycyclic groups. This is done
formally with the concept of the Hirsch number. The Hirsch number h(G) of a polycyclic
group G is the number of infinite factors in a series with cyclic or finite factors. The Hirsch
number is always finite, and subgroups and quotients have a smaller Hirsch number than the
group. More precisely:

Proposition 37 • If G1 is a subgroup of G2, then h(G1) ≤ h(G2).

• If H is a normal subgroup of G, then h(G) = h(G/H) + h(H)

• h(G) = 0 iff G is finite

• h(G) = 1 iff G is virtually Z
• h(G) = 2 iff G is virtually Z2.

See in particular [51, Chapter 1.C].
We now are ready for the main theorem of this section

Theorem 38 Let G be a virtually polycyclic group. Then G has an undecidable domino
problem if and only if G is not virtually cyclic.

Proof: One direction is clear. By Proposition 29, it is sufficient to prove the result for
polycyclic groups.

We prove the result by induction on the Hirsch number. The result is clear for Hirsch
number 0, 1, 2. Now let G be a group of Hirsch number no less than 3.

It is known that every polycyclic group admit a non-trivial normal free abelian subgroup
[51, Chapter 1, lemma 8].

Let H be such a subgroup. If H = Zn for some n > 2, then H has an undecidable
domino problem, and therefore G also has an undecidable domino problem by Proposition 26.
Otherwise H = Z. Then G/H is a polycyclic subgroup of Hirsch number h(G) − 1 ≥ 2 and
therefore has an undecidable domino problem. We conclude again by Proposition 28 that G
has an undecidable domino problem. ■.

To which extent this theorem can be extended is open. Of course any group that contains
a polycyclic group of Hirsch number greater than 2 also has an undecidable domino problem.

A natural direction is extending the theorem to all finitely generated solvable groups. How
to do this is unclear. First, there are finitely generated solvable groups with an undecidable
word problem. Furthermore, some of them do not contain a copy of Z2 which means the
previous method cannot work. Examples include the Lamplighter groups and the Baumslag-
Solitar groups. Baumslag-Solitar groups will be treated in the next section. Whether the
Lamplighter group admits an undecidable domino problem remains open.

3.4.3 Baumslag-Solitar groups

In this section we prove the undecidability of the domino problem on Baumslag-Solitar groups.
Given two non-zero integersm and n, we define BS(m,n) the Baumslag-Solitar group of order
(m,n) as the two-generators and one-relator group with presentation

BS(m,n) =< a, b|amb = ban > .

In particular BS(1, 1) is isomorphic to Z2. Since BS(−m,−n) is isomorphic to BS(m,n),
it is enough to consider groups with m > 0. For simplicity, we also assume that n > 0. The
case n < 0 is analogous.

We first discuss Γm,n, the Cayley graph of BS(m,n) for m,n > 0. Since BS(m,n) has
two generators, every vertex in its Cayley graph Γm,n has in-degree and out-degree 2.

22

The level associated with g of the Cayley graph Γm,n is the induced subgraph obtained
by keeping only the vertices of the coset g⟨a⟩ =

{
g.ak : k ∈ Z

}
. We denote it by Lg and we

say that the vertex g defines the level Lg. The level Lgb is a predecessor of the level Lg, while
the latter is a successor of the former, for all group elements g. Note that each level has m
predecessors and n successors.

Our tilings will be colorings of the edges of the Cayley graph Γm,n. The local constraint
is given in terms of a set of allowed patterns on the edges

ε −→ a −→ a2 −→ · · · −→ am −→ amb = ban

and
ε −→ b −→ ba −→ ba2 −→ · · · −→ ban = amb,

see the left side of Figure 4 for the case m = 3, n = 2. For each group element g the pattern
of this shape found at position g must be among the allowed patterns.

g.b g.ba g.ba2

g g.a g.a2 g.a3

L

Figure 4: One the left: the shape of the tiles in Γ3,2. On the right: some levels in Γ3,2. The level
L has two successor levels (drawn below the level) and three predecessor levels (drawn above it).

The Cayley graph Γm,n can be projected into the Euclidean plane by a function Φm,n :
BS(m,n)1R2, defined as follows. Let w be a finite word on the alphabet A = {a, b, a−1, b−1}.
Then any element of BS(m,n) can be represented by such a word, but this representation is
of course non unique. If x is a letter of A, we denote by |w|x the number of occurrences of x
in the word w. We then define for x ∈ A the contribution of x to w by ∥ w ∥x= |w|x−|w|x−1 .

Let ψm,n : A∗1R be the function defined by induction on the length of the word by
ψm,n(ε) = 0 where ε is the empty word
ψm,n(w.b) = ψm,n(w.b

−1) = ψm,n(w)

ψm,n(w.a) = ψm,n(w) +
(
m
n

)∥w∥b

ψm,n(w.a
−1) = ψm,n(w)−

(
m
n

)∥w∥b

Lemma 39 For every u, v ∈ A∗ one has

ψm,n(u.v) = ψm,n(u) +
(m
n

)∥u∥b
ψm,n(v).

Proof: By induction on the length of v. ■
We can now define the projection function Φm,n : BS(m,n) → R2 which associates to

every element g of BS(m,n) its coordinates on the Euclidean plane:

Φm,n(g) = (ψm,n(w), ∥ w ∥b−1) ,

where w is a word representing g. The following proposition states that the definition does
not depend on the choice of w. Its proof is a simple application of Lemma 39.

Proposition 40 The function Φm,n is well defined on BS(m,n).

For every element g ∈ BS(m,n), define the shift of g as the first coordinate of Φm,n(g),
that takes rational values, and the height of g as the second coordinate of Φm,n(g), that takes
integer values.

All elements belonging to the same level project on the same horizontal line, thus we can
speak of the height of a level. The height is ∥ w ∥b−1 for the words w that represent the
elements of the level.

23

Remark 41 The function Φm,n is not injective. Let m = 3 and n = 2. Consider the word

ω = bab−1a2ba−1b−1a−2.

We have
Φ3,2(ω) = Φ3,2(ε) = (0, 0).

However, freely reduced words that do not contain b−1akmb or baknnb−1 as subwords, for
any integer k, cannot represent the identity in BS(m,n). Thus ω and ε represent different
elements of the group. Moreover, Baumslag-Solitar groups are HNN-extensions of Z, thus
from Britton’s lemma it follows that a finite subgroup of Baumslag-Solitar group is conjugate
to a finite subgroup of Z. Since ω is not the identity, it has infinite order in BS(3, 2). We see
that there is an infinite cyclic subgroup that is projected by Φ3,2 to point (0, 0). This will not
be a problem in the sequel: the tile associated with an element g ∈ BS(m,n) will depend only
on Φm,n(g).

Following the ideas from Section 2.5, we can construct a tile set such that if a level in
a tiling of Γm,n represents some −→x ∈ R2, then its successor levels represent f(−→x) where
f : R2 → R2 is a rational affine map. Going from one level to one of its successor level
corresponds to one iteration of f , and a decrease of the height of the level by 1.

−→x 1
−→x 2

−→c −→
d

−→y 1
−→y 2

−→y 3

Figure 5: The general form of tiles in BS(3, 2).

Consider the case BS(3, 2). The tiles are of the form shown in Figure 5. We say that the
tiles compute the function f if the relation

f (−→x 1 +
−→x 2)

2
+−→c =

−→y 1 +
−→y 2 +

−→y 3

3
+
−→
d . (1)

is satisfied.
Consider a sequence of k such tiles on some level, next to each other so that the left vertical

edge of a tile is the same as the right edge of the previous tile. Averaging (1) over all k tiles
yields then

f(−→x) +
−→c 1

k
= −→y +

−→
d k

k

where −→x is the average of the labels on the segment of 2k edges on the previous level, −→y is the
average of the labels on the corresponding segment of 3k edges on the level below, and −→c 1 and−→
d k are the left and right vertical edges of the first and the last tile in the row, respectively.
Letting k grow to infinity, we see that if the previous level represents some −→x ∈ R2 then the
next level necessarily represents f(−→x), as required.

For all g ∈ BS(3, 2) with Φm,n(g) = (α, β) and for every k ∈ Z, we define the translated
balanced representation of −→x as the bi-infinite sequence Bg(−→x) = (Bg

k(
−→x))k∈Z, where

Bg
k(
−→x) =

⌊((m
n

)β

α+ k

)
−→x

⌋
−

⌊((m
n

)β

α+ (k − 1)

)
−→x

⌋
.

24

•g

Bg.b
2k−1 (

−→x) Bg.b
2k (−→x)

cg (k − 1) cg (k)

Bg
3k−2 (f(

−→x)) Bg
3k−1 (f(

−→x)) Bg
3k (f(

−→x))

with cg(k) =
1
2
f
(⌊((

3
2

)β−1
α+ 2k

)−→x ⌋)
− 1

3

⌊((
3
2

)β
α+ 3k

)
f(−→x)

⌋
+ k
−→
b

For the same reasons as those invoked in Section 2.5 (the domain U is bounded, and
the function fi has rational coefficients), any rational function f : U ⊂ R2 → R2 can be
encoded by a finite tile set, so that for a given −→x ∈ U , one can tile a level of BS(3, 2)
such that the balanced representations of −→x and f(−→x) appear on the top and bottom labels
respectively. We deduce the undecidability of the domino problem for BS(3, 2). The proof
for other Baumslag-Solitar groups is similar.

Theorem 42 The domino problem is undecidable on Baumslag-Solitar groups.

3.4.4 Groups G1 ×G2

In this section, we will prove the undecidability of the domino problem for groups that are
direct products of infinite groups, i.e. groups of the form G1 × G2, where G1 and G2 are
infinite and finitely generated.

Of course, the only interesting case is when at least one of the two groups is an infinite
torsion group, i.e. an infinite group where all elements are of finite order. Indeed, if it is not
the case, then both G1 and G2 contain Z as a subgroup, and therefore G1 ×G2 contains Z2

as a subgroup, and thus has an undecidable domino problem by Proposition 26.
However, even if G does not contain a copy of Z, it is still true that the Cayley Graph of

G, as any infinite connected graph, contains infinitely many (undirected) paths. In fact, it
can even been proven that some Cayley Graph of G (for a suitable choice of generators) can
be covered by such paths. This is the purpose of the following theorem:

Theorem 43 ([53]) Let G be an infinite, finitely generated group. Then there exists a finite
set S s.t. the Cayley graph Γ(G,S) of G with S as generators can be covered by disjoint
biinfinite paths.

This is a deep theorem with a non-trivial proof, see [53] for more details.
An equivalent way to say is as follows:

Theorem 44 Let G be an infinite, finitely generated group. Then there exists a finite set
S and a map next : G → G, where next(g) states which element of G is the next one in the
biinfinite path g is lying on and that satisfies the following conditions:

• next is one-to-one and onto. Its inverse will be called prev.

• next(g) is a neighbor of g in Γ(G,S). That is, for all g, g−1next(g) ∈ S

• Each path is infinite: for all n > 0 and all g ∈ G, nextn(g) ̸= g.

The last condition can be reformulated as follows: There is a map h from G to Z s.t.
h(next(g)) = h(g) + 1.

In all that follows, we suppose without loss of generality that S is symmetric, which means
that additionally for all g, g−1prev(g) ∈ S.

Under these conditions, next and prev can be defined locally. Indeed, let n(g) = g−1next(g)
and p(g) = g−1prev(g). Then n and p have values in the finite set S. Furthermore they satisfy
the following two properties:

25

• If n(g) = s then p(gs) = s−1

• If p(g) = s then n(gs) = s−1

n and p can be interpreted in the Cayley Graph Γ(G,S). At each vertex g of the Cayley
Graph, two arrows are poited by. One of them correspond to n(g), the other to p(g). The
first condition above states that if we start from some vertex g, follow the arrow pointed by
n, and then at gn(g) follow the arrow pointed by p we come back to g.

Definition 25 A valid pair for (G,S) is a pair (n, p) of maps from G to S s.t.

• If n(g) = s then p(gs) = s−1.

• If p(g) = s then n(gs) = s−1.

By definition, (n, p) is a valid pair. The two following facts are obvious:

Proposition 45 Let (n, p) be a valid pair for (G,S). Let next(g) = gn(g) and prev(g) = gp(g).
Then next is one-to-one and onto with inverse prev.

Proposition 46 The set of all valid pairs for (G,S) is an SFT. More accurately, define:

XG,S = {x ∈ (S× S)G|∀s ∈ S,
[
(xg)1 = s⇒ (xgs)2 = s−1] ∧ [

(xg)2 = s⇒ (xgs)1 = s−1]}
Then XG,S is an SFT. Furthermore, if x ∈ XG,S, then the pair (n, p) defined by n(g) =

(xg)1 and p(g) = (xg)2 is a valid pair. Conversely, if (n, p) is a valid pair, then the configu-
ration x defined by xg = (n(g), p(g)) is in XG,S.

Note that it might be possible that next and prev are not cyclic. In fact, in a typical
configuration of XG,S, it is quite likely that nexti(g) = g for some g and i > 0.

Intuitively, a configuration x of XG,S corresponds therefore to a partition of the Cayley
graph Γ(G,S) into cycles and bi-infinite paths, where, at each position g ∈ G, we should look
at xg to read the information coding n(g) and p(g) to know what is the next and previous
vertex in the cycle or path. In group terms, we could say intuitively that we have partitioned
the vertices of the Cayley graph of G into copies of the (canonical) Cayley graphs of Z and/or
Z/nZ for some (possibly infinitely many) n. We know also that, if S is chosen to verify the
conclusion of Theorem 44, then at least one configuration of XG,S contains only bi-infinite
paths and no cycles.

We are now almost ready to proceed to the proof. Let G1 and G2 be two infinite, finitely
generated groups and let G = G1 × G2. Let S1 and S2 be two sets of generators for G1 and
G2 that satisfy the conclusion of Theorem 44.

We then obtain two SFTs, XG1,S1 on G1, and XG2,S2 on G2. We extend XG1,S1 to an
SFT on G1×G2 by extending periodically every configuration along G2 (using the same idea
as in Proposition 28), and proceed analogously with XG2,S2 . Taking the product of these two
SFTs, we have now obtained an SFT X over the alphabet S1 × S1 × S2 × S2 s.t.:

• If (n1, p1) is a valid pair for (G1,S1) and (n2, p2) a valid pair for (G2,S2) then the
configuration x defined by x(g1,g2) = (n1(g1), p1(g1), n2(g2), p2(g2)) is in X.

• Furthermore, every configuration of X is of this form.

Intuitively a configuration of X partitions the vertices of the Cayley graph Γ(G,S1× S2) into
copies of the (canonical) Cayley graphs of Z×Z, Z/nZ×Z, Z×Z/nZ and/or Z/mZ×Z/nZ.
We know also that, as S1 and S2 were chosen to verify the conclusion of Theorem 44, that
some configuration of X contains only copies of Z× Z.

We are now ready for the proof of the undecidability of the domino problem onG1×G2. Let
Y be a nearest neighbor SFT on Z2 with alphabet A. Let F1 be the set of forbidden patterns
of Y of support {(0, 0), (1, 0)} and F2 the set of patterns of support {(0, 0), (0, 1)}. We can
interpret F1 and F2 as subsets of A

2, so that y ∈ Y if and only if for all i, j (y(i,j), y(i+1,j)) ̸∈ F1

and (y(i,j), y(i,j+1)) ̸∈ F2

We can define a subshift Z on G1×G2 over the alphabet (S1×S1×S2×S2×A) as follows:

Z =

{
z ∈ X ×AG1×G2

∣∣∣∣∀g ∈ G1 ×G2

(
((zg)5, (zg(zg)1)5) ̸∈ F1

((zg)5, (zg(zg)3)5) ̸∈ F2

)}
.

Basically, an element of z ∈ Z is a configuration of X where each element g is addi-
tionally labeled with a letter from A. At each element g, we forbid the patterns of support
{(0, 0), (1, 0)} to appear in the direction indicated by n1(g), and the patterns of support
{(0, 0), (0, 1)} to appear in the direction indicated by n3(g).

26

Proposition 47 Y is nonempty if and only if Z is nonempty.

Proof: Suppose that Y is nonempty, and let y be an element of Y . Informally, we know
some configuration of X partitions G into copies of Z2. We will thus use y in each copy of
Z× Z to obtain our configuration of Z.

Formally, let nexti, previ, ni, pi, hi, i ∈ {1, 2} the functions that come from Theorem 44.
Consider the configuration x of X that correspond to the valid pairs (n1, p1, n2, n2).

We now define z by (zg)1−4 = (xg) and (z(g1,g2))5 = yh1(g1),h2(g2). Then it is clear that
z ∈ Z. Indeed, let g = (g1, g2) ∈ G1×G2. Then (zg(zg)1)5 = (zg(n1(g1),1G2

))5 = (znext1(g1),g2)5
so that (z5, (z(zg)1g)5) = (yh1(g1),h2(g2), yh1(g1)+1,h2(g2)) ̸∈ F1 by definition of y. Similarly,
(z5, (z(zg)1g)5) ̸∈ F2. Therefore z ∈ Z and Z is nonempty.

Conversely, suppose Z is nonempty and let z ∈ Z. Informally, z partitions G into copies
of Z× Z or bastardized versions of it of the form Z/nZ× Z/mZ. We look at just one of this
copy, and use it to build our configuration on Y , possibly unfolding the copy if necessary.

Formally, let x be defined by xg = (zg)1−4. Then x ∈ X, and therefore corresponds to two
valid pairs (n1, p2) and (n2, p2). Let next1, prev1 and next2, prev2 be the associated functions.

We now define y ∈ AZ2

by y(i,j) = (z((next1)i(1G),(next2)j(1G)))5. Then y ∈ Y .

Indeed. Let (i, j) ∈ Z2. Let g1 = (next1)
i(1G) and g2 = (next2)

j(1G). Then

y(i+1,j) = (z(next1)(g1),g2)5 = (z(g1n1(g1),g2))5 = (z(g1z(g1,g2))1,g2
)5

Therefore (y(i,j), y(i+1,j)) = ((z(g1,g2))5, (z((g1z(g1,g2))1,g2)
)5) ̸∈ F1 by hypothesis on z. Simi-

larly, (y(i,j), y(i,j+1)) ̸∈ F2. Therefore y ∈ Y and Y is nonempty. ■

Corollary 48 Let G1, G2 be two infinite, finitely generated groups. Then G1 × G2 has an
undecidable domino problem.

Proof: Forbidden words for Z can be build effectively from a set of forbidden words of a
nearest neighbor Z2-subshift. ■

Corollary 49 The Grigorchuk group has an undecidable domino problem.

Proof: The Grigorchuk group G is a well-known example of a torsion group. G contains
a subgroup of finite index of the form H = H1 ×H2 with H1, H2 infinite [40]. H1 ×H2 has
an undecidable domino problem by the previous propositions, therefore G has an undecidable
domino problem by Proposition 29. ■

3.5 Discussion

3.5.1 Muller & Schupp theorem

In Section 3.4.1 we proved that virtually free groups have decidable domino problem. The
proof directly gives an algorithm that decides the problem. It is noteworthy that this result can
be obtained by a totally different argument. This comes from the combination of three facts:
first, the domino problem can be expressed in Monadic Second Order logic (MSO) [58, 4];
second, a group is virtually free if and only if it has finite treewidth [41]; third, graphs with
finite treewidth are exactly those with decidable MSO logic [33].

Proposition 50 ([41, 33]) If G is virtually free, then G has decidable domino problem.

The reasoning that leads to decidability of domino problem for virtually free groups using
logics also suggests that this sufficient condition might also be necessary. This assumption
comes from the following reasoning: if a group is not virtually free, then it has arbitrarily
large grids as minors [47]. It should then be possible to somehow use these grids as compu-
tation zones – similarly to what is done in Robinson’s tiling [48] – to encode Turing machine
computations and conclude the undecidability of the domino problem. But the main issue is
that even if we know that such grids exist, we do not know where they appear and even less
how to make them appear inside a tiling by Wang tiles.

Conjecture 1 A finitely presented group has decidable domino problem if and only if it is
virtually free.

27

3.5.2 Hyperbolic groups

The theorems in the previous section indicate that, whenever a group contains (in some sense)
Z× Z or any other non-trivial Baumslag-Solitar group, they automatically have undecidable
domino problem.

A specific class of groups where this result cannot be applied is the class of hyperbolic
groups. Indeed, hyperbolic groups do not contain any copy of Z× Z or any other non-trivial
Baumslag-Solitar group. They also always have decidable word problem, so Theorem 24
cannot apply, and they are always finitely presented.

Furthermore, free groups are hyperbolic, so it it very tempting to think that they always
have decidable domino problem. However, this is not true.

Indeed, by a theorem of Rips [46], there exist hyperbolic groups G and finitely generated
normal subgroups H of G s.t. G/H is isomorphic to Z2. Therefore, they have an undecidable
domino problem by Proposition 28. It is also tempting to think the idea used above for the
domino problem in the Baumslag-Solitar group can be extended for hyperbolic surface groups.

While these two ideas give examples of hyperbolic groups with undecidable domino prob-
lem, how to prove the result for an arbitrary, not virtually free, hyperbolic group, remains an
open problem.

3.5.3 Translation-like and quasi-isometric groups

Section3.4.4 suggests that the undecidability of the domino problem is a geometric property:
As soon as some Cayley graph of G contains a grid structure, G will have an undecidable
domino problem. This is also hinted at in Section3.5.1. There are a few theorems that indeed
suggest, at least for recursively presented groups, that it is indeed the case. In order to study
this idea, we need the notion of quasi-isometry.

The definitions we give here are only valid in the context of finitely generated groups, but
these notions can be defined in the general case of metric spaces.

Definition 26 Let G1, G2 be two finitely generated groups and S1 a set of generators for G1.
A map f : G1 → G2 is Lipschitz if there exists a finite set S2 ∈ H s.t. for all g ∈ G1, and

all s ∈ S1, f(g)
−1f(gs) ∈ S2.

A map f : G1 → G1 is at bounded distance from the identity if there exists a finite set F
for all g ∈ G1, g

−1f(g) ∈ F

Compare the definition with Theorem 44. Geometrically, a Lipschitz map f sends adjacent
vertices in the Cayley graph Γ(G1,S1) to adjacent (or identical) vertices in the Cayley graph
Γ(G2, S2). It can be proven easily that the fact that f is Lipschitz does not depend on S1, so
that it is a property of the function and the group and not of the specific choice of generators.

Notice that if h is a homomorphism from G1 to G2, then h is a Lipschitz map by taking
S2 = h(S1).

Definition 27 G1 and G2 are quasi-isometric if and only if there exists maps f : G1 → G2,
g : G2 → G1 such that:

• f, g are Lipschitz.

• g is a quasi-inverse for f : f ◦ g and g ◦ f are at bounded distance from the identity.

Quasi-isometry intuitively means that a pair of Cayley graphs of G1 and G2 look similar
at large scale.

Definition 28 ([53, 59]) A right action of G on H is an infix operator ⋆ : H ×G→ H s.t.
h ⋆ 1G = h and h ⋆ (g1g2) = (h ⋆ g1) ⋆ g2 for all g1, g2 ∈ G and all h ∈ H.

An action is free if h ⋆ g = h for some h implies g = 1G
An action is translation-like if it is free and for all g ∈ G, the map h→ h⋆g is at bounded

distance from the identity.

It is easy to see that it is sufficient to prove the last property for a set of generators of G.
Therefore the last property can be replaced by: For some (any) set S1 of generators of G,
there exist S2 that generate H s.t. for all s ∈ S1 and all h ∈ H, h−1(h ⋆ s) ∈ S2. Compare
the definition with Theorem 44 when G = Z.

An intuitive way to understand translation-like actions is that it covers some Cayley graph
of H by copies of some Cayley graph of G.

28

Theorem 51 ([13]) Let G and H be quasi-isometric finitely presented groups. G has unde-
cidable domino problem if and only if H has undecidable domino problem.

Theorem 52 ([25]) Let G be a finitely presented group with undecidable domino problem
and H a finitely generated group. If G acts translation-like on H, then H has an undecidable
domino problem

Both proofs are similar to the main proof of Section 3.4.4 in that they consist in seeing
the Cayley graph of H as similar to the Cayley graph of G, or copies of the Cayley graph of
G for the second theorem. The main difference is that we have replaced Z, a free group, with
an arbitrary finitely presented group. In the first theorem, they define a subshift of finite that
codes all quasi-isometries that correspond to some finite sets S1, S2. In the second theorem,
a subshift of finite type analogous to XG,S from Corollary 48 will be defined that somehow
codes all translation-like actions (and also non-free actions) that correspond to a function
from a set of generators of G to a set of generators of H defined by the translation-like action.
However, in this case the group G acting on H is not free, therefore the SFT needs also to
code the relations of G (and hence needs G to be finitely presented for the construction to
work).

4 Towards a definition of effective subshifts on groups

We start this section by presenting the notion of effectively closed subshift on Zd for d ≥ 1.
This class of subshift appears naturally in dimension 1 as a generalization of sofic subshifts
– those with a regular language, thus whose complement of the language is also regular – as
follows: effectively closed subshifts are those which can be defined by a recursively enumerable
set of forbidden patterns. In addition to this fact, effectively closed subshifts also appear in
a natural way when studying some subsystems of two-dimensional SFTs or sofic subshifts,
called projective subdynamics. These links are explained in Section 4.1.

4.1 Link between Z and Z2

To preserve the finiteness of the alphabet and thus compactness of the space of configurations,
we use the projective subdynamics, to be defined in the Section 4.1.1. Note that this notion
of projective subdynamics is different from the notion of subdynamics of a subshift defined
by Hochman in [21].

4.1.1 Projective subdynamics: definition and example

We define the projective subdynamics of a two-dimensional subshift X ⊆ AZ2

as the set of
rows that can appear inside configurations of X :

π(X) =
{
y ∈ AZ | ∃x ∈ X s.t. x(i,0) = yi for every i ∈ Z

}
.

The set of configurations π(X) defined above is a subshift (see Exercise 2).

Example 53 Consider the two dimensional SFT X on alphabet

A =
{
a, a, b, b, c, c, c, ↑ , ↗, ↖, ↑ , ↗, ↖

}
and whose allowed patterns appear in the following configuration.

29

c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c

↗
↗

↖
↖

↖
↖

↖

↗
↗

↗
↗

↗

↖
↖

↖
↖

↖

↗
↗

↗
↗

↑

↑
↑
↑
↑
↑
↑
↑
↑

↑
↑
↑
↑
↑
↑
↑
↑

↑

↑
↑
↑
↑
↑
↑
↑
↑

↑
↑
↑
↑
↑
↑
↑
↑ ↖

↖
↖

↖

↗
↗

↗
↗

↗

↖
↖

↖
↖

↖

↗
↗

↗
↗

↗

↖
↖

↗
↗

↖
↖

↖

↗
↗

↗

↖
↖

↖

↗
↗

↗

↖
↖

↖

↗
↗

↗

↖

a a

↑
↑
↑

↑
↑
↑
↑

↑
↑
↑
↑

↑
↑
↑
↑

↑
↑
↑

↑
↑
↑
↑

↑
↑
↑
↑

↑
↑
↑
↑ ↖

↖

↗
↗

↗

↖
↖

↖

↗
↗

↗

↖
↖

↖

↗
↗

↗

↖
↖

↖
↗

The idea is to ensure that on every row, patterns of the form anbn appear in a sea of c’
– without preoccupying of the colors. Diagonal signals are sent from the leftmost a’ and the
rightmost b’ – they are designated as so if they have a c’ as a neighbor. These diagonal signals
bump on other signals and on symbols c’ when they reach one, and two signals can collide
only at the middle of a pattern anbn – the middle is marked with up-arrows.

It is left as an exercise to prove that the projective subdynamics of the SFT X is not a
sofic subshift (see Exercise 3).

4.1.2 Effectively closed subshifts on Zd

A subshift X ⊆ AZ is effectively closed if there exists a recursively enumerable set of forbidden
patterns that defines it. To defined effectively closed subshifts on Zd for d ≥ 2, take any recur-
sive bijection Φ between Zd and Z – such a bijection always exists. Then a pattern p with finite
support S ⊂ Zd can be coded by the finite set of tuples Φ(p) = {(Φ(i), a) | i ∈ S and px = a}.
The set Φ(p) is called the pattern coding of p. We then define an effectively closed subshift
on Zd as a subshift for which there exists a recursively enumerable set of pattern codings that
defines it.

From that definition, it is easy to check that the class of effectively closed subshifts contains
SFTs and sofic subshifts.

Proposition 54 Subshifts of finite type and sofic subshifts are effectively closed.

Nevertheless, the class of effectively closed subshifts is wider than the class of sofic sub-
shifts, as the following example in dimension 1 shows.

Example 55 Let Y be the subshift defined as π(X) where X is the two dimensional SFT
of Example 53. This subshift Y is not sofic, nevertheless it can be defined as the set of
configurations that avoid the following patterns

{ba, cb, ac} ∪ {cambnc | m ̸= n}.

This set is obviously recursively enumerable, so that the subshift Y is effectively closed but not
sofic.

The previous example cannot be adapted to dimension 2, since we lack an equivalent of
graph representation of sofic subshifts in higher dimension. The difficulty lies in the fact that
it is difficult to prove, in general, that a subshift is not sofic. There exist sufficient conditions
for non-soficness, but no characterization exists. Nevertheless, there are explicit examples of
effectively closed but non-sofic subshifts in dimension 2. The proof of non-soficness uses a
combinatorial argument also used in [56], that can be generalized to prove non-soficness of
well-chosen subshifts on amenable groups [1].

Example 56 We define a two dimensional subshift Xmirror, called the mirror shift. It consists
of all configurations over the alphabet A = { , , } which avoid the following patterns

30

F =

{
, , ,

}
∪

⋃
w∈A∗

{ w , w w̃ , w w̃ } ,

where w̃ denotes the mirror image of the word w, which is the word of length |w| defined
by (w̃)i = w|w|−i+1 for all 1 ≤ i ≤ |w|.

The mirror subshift Xmirror contains the Z2-fullshift { , }Z
2

as a subsystem, but also
all configurations that respect the following conditions: a symbol forces all symbols in the
same column to be also symbols; there is at most one column of symbols; if a symbol

is present on a row, then and symbols of this row are arranged symmetrically with
respect to the symbol.

Figure 6: One configuration in the two-dimensional mirror subshift Xmirror.

The column of , if it appears in a configuration, behaves as a mirror towards the two
half planes it defines, hence the name of the subshift. Obviously this subshift is effectively
closed since the set of forbidden patterns Fmirror can be effectively enumerated, but one can
prove it is not sofic by a direct combinatorial argument.

Proposition 57 The mirror subshift Xmirror ⊂ AZ2

is not sofic.

Proof: Consider S = {(0, 1), (1, 0)} and suppose that the mirror subshift is sofic on Z2,

then there exists a S-nearest neighbor Z2-SFT X ⊂ BZ2

on some finite alphabet B and a
1-block factor code ϕ : X ↠ Xmirror.

Let n be a positive integer and define Λn := [−n, n]2. Notice that ˚Λn+1 = Λn and thus

∂Λn+1 = Λn+1 \ Λn. In LΛn(Xmirror) there are exactly 2(2n+1)2 different patterns that do
not contain a . These patterns are images of patterns of X with support [−n, n]2 under ϕ
and are surrounded with a crown with support ∂Λn+1. There are at most |B|4(2n+2) different
crowns.

Consider now all configurations x ∈ Xmirror in which a mirror appears at the origin, that

is to say x(0,j) = for all j ∈ Z. For n large enough one has |B|4(2n+2) < 2(2n+1)2 , conse-
quently there exist two distinct patterns P1 and P2 with support Λn that appear respectively
in configurations y1 and y2 ofXmirror – assume that y1 and y2 are such that (x1)|Λn+(n2,0) = P1

and (x2)|Λn+(n2,0) = P2 – and such that there exist two distinct configurations x1, x2 in the
extension X of Xmirror with the same crown – (x1)|∂Λn+1+(n2,0) = (x2)|∂Λn+1+(n2,0) – and
such that y1 = ϕ(x1) and y2 = ϕ(x2). As X is nearest neighbor we can construct a new

configuration ỹ ∈ AZ2

defined by

ỹz =

{
(P2)z−(n2,0), if z ∈ Λn + (n2, 0)
(y1)z otherwise,

in other terms ỹ is the same configuration as y1 except that pattern P1 have been replaced by
pattern P2. On the one hand in configuration ỹ a mirror appears at the origin, but since P1

and P2 have been chosen distinct ỹ /∈ Xmirror. On the other hand the configuration x̃ ∈ BZ2

defined by

x̃z =

{
(x2)z−(n2,0), if z ∈ Λn + (n2, 0)
(x1)z otherwise,

does not contain any forbidden pattern for X – that have been chosen nearest neighbor – and
satisfies ỹ = ϕ(x̃), which proves that ỹ ∈ Xmirror hence raising a contradiction.

■

31

y1 ∈ Xmirror

P1P̃1

y2 ∈ Xmirror

P2P̃2

ỹ /∈ Xmirror

P2P̃1

x1 ∈ X

Q1

x2 ∈ X

Q2

x̃ ∈ X

Q2

↓ ϕ ↓ ϕ ↓ ϕ

Figure 7: Two configurations y1 and y2 in the mirror subshift Xmirror with a mirror at the origin,
and that differ on Λn + (n2, 0), but whose pre-images in the nearest neighbor Z2-SFT extension
X are the same on ∂Λn+1. If it were so, one could construct a configuration ỹ – by replacing
(y1)|Λn+(n2,0) by (y2)|Λn+(n2,0) in configuration y1 – which belongs to the image ϕ(X) but does
not belong to Xmirror. This proves Xmirror is not sofic.

Remark 58 One can define mirror subshifts in any dimension as the union of the Zd-fullshift

{ , }Z
d

and the set of configurations x ∈ AZd

with the hyperplane {i} × Zd−1 filled with
symbols for some i ∈ Z, and such that x|{i+j}×Zd−1 = x|{i−j}×Zd−1 for every j ∈ Z. Then

Proposition 57 can be generalized to any dimension.

We now list stability properties satisfied by effectively closed subshifts.

Proposition 59 The class of effectively closed subshifts on Zd is closed under finite inter-
section, finite union and morphism.

Proof: The key ingredient is that one can choose a maximal – for inclusion – and recursively
enumerable set of forbidden patterns to define an effectively closed subshift X. Indeed, the
complement of the language of an effectively closed subshift has this property: it can be
recursively enumerated from any recursively enumerable set of forbidden patterns that defines
X, and is by definition maximal for inclusion.

If X1 and X2 are two effectively closed subshifts, then X1∩X2 (resp. X1∪X2) is defined by
the set of forbidden patterns L1∪L2 (resp. L1∩L2). Since the union (resp. intersection) of two
recursively enumerable languages is also recursively enumerable, effectively closed subshifts
are closed under finite intersection (resp. finite union). Stability under morphisms comes
from the fact that morphism are computable. ■

Proposition 60 The class of effectively closed subshifts on Zd is closed under projective
subdynamics.

Proof: This stability result follows from the fact that projective subdynamics are special
cases of factors of subactions, and by Theorem 3.1 and Proposition 3.3 of [21] which establish
that symbolic factors and subactions preserve effectiveness. ■

4.1.3 Simulation theorem

As seen in the previous section, neither the class of sofic subshifts nor the class of SFTs are
not closed under projective subdynamics. Natural questions are thus: which subshifts can
be obtained as projective subdynamics of sofic subshifts? of SFTs? For the first question, a
complete characterization is known.

Theorem 61 (Hochman, [21]) A subshift Y ⊆ BZk

is effectively closed if and only if it the

the projective subdynamics of a sofic subshift X ⊆ AZk+2

.

The original construction by Hochman can be found in [21].

Theorem 62 (Aubrun & Sablik, [3], Durand, Romaschenko & Shen, [16]) A subshift

Y ⊆ BZk

is effectively closed if and only if it the the projective subdynamics of a sofic subshift

X ⊆ AZk+1

.

32

These two theorems can be used as a blackbox to prove soficness of some complex subshifts,
and lead to several applications. As a first example, consider the following result.

Theorem 63 (Myers, [42]) There exist non-recursive two-dimensional SFTs, i.e. subshifts
of finite type on some alphabet A such that none of their configurations can be described by a
computable function f : Z2 → A.

This theorem was proven a few years after the publication of Robinson’s proof of the un-
decidability of the domino problem. The proof is strongly inspired by Robinson’s techniques,
and is thus very technical. The same result can be obtained as a direct application of the
simulation theorem as follow. Consider a one-dimensional effectively closed subshift X with
no computable configurations (see [12] for an explicit construction). The two-dimensional
sofic subshift, obtained by the simulation theorem, that projects onto X has no computable
configurations (otherwise X would also contain a computable configurations). Since inverses
of factor maps are computable, we get a non-recursive two-dimensional SFT.

Consider now S-adic subshifts, that are defined by a sequence of substitutions. In higher
dimension and if the driving sequence is chosen to be computable, then S-adic subshifts
are sofic [3]. This result generalizes theorems by Mozes [39] and Goodman-Strauss [17] on
substitutive subshifts – when the driving sequence of substitutions is constant – to S-adic
subshifts. The proofs of these two famous theorems are highly technical and difficult to
handle. In contrast, the proof presented in [3] consists in a direct application of the simulation
theorem, combined with a clever encoding of substitutions.

We list other examples of applications of the simulation theorem:

• In [50] the authors prove that tilings obtained by digitizing irrational vector spaces are
aperiodic if and only if the digitized vector spaces are computable.

• In [26] it is proven that sets of periods for multidimensional SFTs are exactly sets of
integers of the complexity class NP.

• In [5] an example of one-dimensional effectively closed subshift with a non-computable
quasi-periodicity function is given.

4.2 Effectiveness on groups

This section is devoted to the study of what kind of subshifts on groups can be defined using
Turing machines. As opposed to what happens in Zd a general group might present extra
difficulties which are related to its word problem.

Before defining the main object of this section, we make a digression with regards to
their name. In the literature a subshift defined by a recursively enumerable set of forbidden
patterns is usually said to be effective. Nevertheless, the name has also been used to talk
about subshifts X whose language L(X) is decidable, see for example [14]. These two notions
define different objects. To avoid confusion we refer to these objects as effectively closed
subshifts, as they would be called in computable analysis.

4.2.1 Definition and basic properties

For the definition of effectiveness in the context of subshift in a general group, we use Defini-
tion 22 of a pattern coding as the standard structure in which the information about forbidden
patterns is given to a Turing machine.

Definition 29 We say a subshift X ⊂ AG is effectively closed if there exists a recursively
enumerable set of pattern codings C such that X = XC.

Usually in computability theory the word effective is used for objects defined by a decidable
set instead of just a recursively enumerable one. In this case the usage of the word is justified,
as effectively closed subshifts coincide with those which are definable by a decidable set of
forbidden pattern codings.

Proposition 64 Let X ⊂ AG be an effectively closed subshift. Then there exists a decidable
set of pattern codings C such that X = XC.

33

Proof: Let C′ a recursively enumerable set of pattern codings such that X = XC′ . If C′ is
finite the result is trivial. Otherwise there exists a recursive enumeration C′ = {c0, c1, . . . }. For
a pattern coding c we define its length as |c| = max(w,a)∈c |w|. For n ∈ N let Ln = maxk≤n |ck|
and define Cn as the finite set of all pattern codings c which satisfy the following properties:

• Every w ∈ S∗ with |w| ≤ Ln appears in exactly one pair in c.

• (w, a) ∈ c implies that |w| ≤ Ln.

• If (w, a) ∈ cn then (w, a) ∈ c.
That is, Cn is the set of all pattern codings which are completions of cn up to every word of
length at most Ln in every possible way. Consider C =

⋃
n∈N Cn. It is easy to check that⋃

c∈Cn

⋂
(w,a)∈c

[a]w =
⋂

(u,b)∈cn

[b]u.

Therefore XC′ = XC. We claim C is decidable.
Consider the algorithm which does the following on input c: It initializes n to 0. Then it

enters into the following loop: First it produces the pattern coding cn. If Ln > |c| it rejects
the input. Otherwise it calculates the set Cn. If c ∈ Cn then it accepts, otherwise it increases
the value of n by 1.

As Ln is increasing and cannot stay in the same value indefinitely this algorithm eventually
ends for every input. ■

It is important to remark that the previous result just gives the existence of one decidable
set of pattern codings which defines the subshift. Even in the case of Z-subshifts there exist
effectively closed subshifts whose language is undecidable. See Exercise 20.

Nevertheless, even with this result in hand, it is often more convenient to define effectively
closed subshifts by a recursively enumerable set of forbidden pattern codings. In particular,
if the group is recursively presented this set can be chosen canonically as the set of pattern
codings which represent the complement of the language.

Proposition 65 Let X ⊂ AG be an effectively closed subshift. If G is recursively presented
then it is possible to choose C to be the recursively enumerable and maximal – for inclusion –
set of pattern codings such that X = XC.

Proof: A pattern coding c belongs to the maximal set C defining X if and only if X ∩⋂
(w,a)∈c[a]w = ∅. Let c ∈ C and C′ a recursively enumerable set such that X = XC′ . Then:⋂

(w,a)∈c

[a]w ⊂
⋃

c′∈C′,g∈G

⋂
(v,b)∈c′

[b]gv.

By compactness we may extract a finite open cover indexed by c′i, gi such that:⋂
(w,a)∈c

[a]w ⊂
⋃
i≤n

⋂
(v,b)∈c′i

[b]giv (⋆)

Note that each of these gi can be seen as a finite word in S∗. Now let T be the Turing
machine which does iteratively for n ∈ N the following:

• Runs n steps the machine T1 recognizing WP(G) for every word in S∗ of length smaller
than n.

• Runs n steps the machine T2 recognizing C′ for every pattern coding defined on a subset
of words of S∗ of length smaller than n.

• Let ∼n be the equivalence relation for words in S∗ of length smaller than n such that
u ∼n v if uv−1 has been already accepted by T1. Let Cn be the pattern codings already
accepted by T2. If every word in c has length smaller than n check if the following
relation is true under ∼n: ⋂

(w,a)∈c

[a]w ⊂
⋃

c′∈Cn,|u|≤n

⋂
(v,b)∈c′

[b]uv

If it is true, accept, otherwise increase n by 1 and continue.

34

Let m be the max of all |w| such that (w, a) ∈ c, and |w′| such that (w′, a′) ∈ c′i and all
|gi|. By definition, there exists an N ∈ N such that every c′i for i ≤ n is accepted and every
word representing 1G of length smaller than 2m is accepted. This means that at stage N
relation (⋆) is satisfied and T accepts c. If c is not in the maximal set, the machine never
accepts. ■

In what follows, we show that the class of effectively closed subshifts is closed under factors
and projective subdynamics when the group is recursively presented.

Proposition 66 For recursively presented groups the class of effectively closed subshifts is
closed under factors.

Proof: Let X ⊂ AG
X be an effectively closed subshift. As G is recursively presented, a

recursively enumerable set of pattern codings CX defining X can be chosen to be maximal by
Proposition 65. Consider a factor code σ : X ↠ Y defined by a local function Φ : AF

X → AY .
Let f1, . . . , f|F | be words in S∗ representing the elements of F .

As σ is surjective, for each a ∈ AY we have |Φ−1(a)| > 0. Therefore we can associate to a
pair (w, a) a non-empty finite set of pattern codings

Cw,a = {(wfi, pfi)i=1,...,|F | | p ∈ Φ−1(a)}.

That is, Cw,a is a finite set of pattern codings over AX representing every possible preimage
of a. For a pattern coding c = (wi, ai)i≤n where ai ∈ AY we define:

Cc = {
⋃

(w,a)∈c

c̃w,a | c̃w,a ∈ Cw,a}.

That is, Cc is the finite set of pattern codings formed by choosing one possible preimage
for each letter. LetM be the Turing machine which on entry c runs the machine recognizing
CX on every pattern coding in Cc. If it accepts for every input, thenM accepts c. Let CY be
the set of pattern codings accepted byM. We claim Y = YCY .

Let y ∈ YCY and n ∈ N. For each pattern coding c defined over all words of length at
most n such that y ∈

⋂
(w,a)∈c[a]w, there is a pattern coding cn ∈ Cc which does not belong

to CX . As CX is maximal we have that
⋂

(v,b)∈cn
[b]v ∩X ̸= ∅. Extracting a configuration xn

from
⋂

(v,b)∈cn
[b]v ∩X we obtain a sequence (xn)n∈N. By compactness there is a converging

subsequence with limit x̃ ∈ X. By continuity of σ we have that y = σ(x̃) ∈ Y . Conversely
if y ∈ Y there exists x ∈ X such that σ(x) = y. Therefore for every finite F ′ ⊂ G and
pattern coding c such that

⋂
(w,a)∈c[a]w = [y|F ′] there exists a pattern coding c̃ ∈ Cc such

that
⋂

(v,b)∈c̃[b]v = [x|F ′F]. Therefore, c /∈ Cy and thus y ∈ Y mathcalCY . ■

Definition 30 Let H ≤ G be a subgroup of G. Given a subshift X ⊂ AG the H-projective
subdynamics of X is the subshift πH(X) ⊂ AH defined as:

πH(X) = {x ∈ AH | ∃y ∈ X, ∀h ∈ H,xh = yh}

Proposition 67 Let G be a recursively presented group and H ≤ G a finitely generated
subgroup of G. If X ⊂ AG is effectively closed, then its H-projective subdynamics πH(X) is
effectively closed.

Proof: As H is finitely generated, there exists a finite set S′ ⊂ H such that ⟨S′⟩ = H. As
G is finitely generated by S there exists a function γ : S′ → S∗ such that s′ =G γ(s′) (that
is, every element of S′ can be written as a word in S∗). Extend the function γ to act by
concatenation over words in S′∗.

As G is recursively presented, by Proposition 65 the set of pattern codings CG defining
X can be chosen to be maximal. Let c = (wi, ai)i∈I a pattern coding where wi ∈ S′∗

and define γ(c) := (γ(wi), ai)i∈I . Let M be the Turing machine which on entry c runs the
algorithm recognizing CG on entry γ(c) and accepts if and only if this machine accepts. Clearly
CH = {c | M accepts c} is recursively enumerable. Also, as CG is a maximal set of pattern
codings then c ∈ CH ⇐⇒

⋂
(w,a)∈γ(c)[a]w ∩X = ∅. Therefore πH(X) = XCH . ■

35

4.2.2 The case of non recursively presented groups

In order to prove some of the properties of effectively closed subshifts we have used the
hypothesis that the group is recursively presented. What could go wrong if this is not the
case? We aim to throw some light into this question.

The main problem we encounter is the failure of Proposition 65. Indeed, it even fails for the
simplest example. The full shift is always effectively closed as the empty set of pattern codings
defines it. Nevertheless if the alphabet A contains at least two symbols then a maximal set
of forbidden pattern codings contains in particular the coding {(ϵ, a), (w, b)} for b ̸= a if and
only if w ∈ WP(G). If this set were recursively enumerable one could use it to enumerate WP(G)
and thus G would be recursively presented.

Consider the case of a sofic subshift Y in a non recursively presented group G. Any SFT
extension σ : X ↠ Y can be represented by a finite set of pattern codings for X and some
fixed coding of the finite set F which defines the block code Φ : AF

X → AY which determines
σ. A recursively enumerable set of pattern codings for Y would consist of a list of patterns
–which in particular– do not appear in Y . This means that every pattern obtained by taking
the preimage under Φ does not appear in X. Nevertheless, the previous argument implies
that we can not test this algorithmically in general. This is the reason why the proof of
Proposition 66 does not extend to this case.

4.2.3 The one-or-less subshift X≤1

Consider the subshift X≤1 ⊂ {0, 1}G whose configurations contain at most one appearance of
the letter 1.

X≤1 = {x ∈ {0, 1}G | 1 ∈ {xg, xh} ⇒ g = h}
We are going to show that even in the case of recursively presented groups this subshift

can fail to be effectively closed.

Proposition 68 If G is infinite, then X≤1 is not an SFT.

Proof: Suppose X≤1 = XF for a finite F and let F =
⋃

p∈F supp(p), U =
⋃

h∈F−1 hF
and note that |U | < ∞. As G is infinite, there exists g ∈ G \ U . Consider the configuration
x ∈ {0, 1}G which takes the value 1 in {1G, g} and 0 elsewhere. Clearly x /∈ [p]h for every
h ∈ G and p ∈ F otherwise {1G, g} ⊂ hF implying that hF ⊂ U and thus g ∈ U . Therefore
x ∈ XF but x /∈ X≤1. ■

Proposition 69 Let G be a recursively presented group. Then X≤1 if effectively closed if
and only if the word problem of G is decidable.

Proof: If WP(G) is decidable thenX≤1 is effectively closed. Indeed, an algorithm recognizing
a maximal set of pattern codings C such that X≤1 = XC is the following: On input c it
considers every pair (w1, 1), (w2, 1) in c and accept if and only if w1w

−1
2 ̸=G 1G for a pair.

Conversely, as G is recursively presented, the word problem is already recursively enumerable.
It suffices to show it is co-recursively enumerable.

By Proposition 65 there exists a maximal set of forbidden pattern codings C with X≤1 =
XC . Given w ∈ S∗, consider the pattern coding cw = {(ϵ, 1), (w, 1)}. Note that w ̸=G 1G ⇐⇒
cw ∈ C. Therefore the the algorithm which on entry w ∈ S∗ runs the algorithm recognizing C
on entry cw and accepts if and only if this one accepts, recognizes S∗ \ WP(G). Hence WP(G)
is co-recursively enumerable. ■

Using Proposition 66 we obtain the following corollary.

Corollary 70 If G is recursively presented and WP(G) is undecidable, then X≤1 is not a sofic
subshift.

36

4.3 Two larger notions of effectiveness

As stated in Section 4.2, the classical notion of effectively closed Zd-subshifts extended to
finitely generated groups fails to be completely satisfying for several reasons. First, the
notion of effectively closed subshift is not directly related to the group G itself: we use
pattern codings, which is in some sense a way to come back to dimension 1. Another way to
formulate this reservation it that, unlike the case of Z where effectively closeness comes with a
natural computational model –classical Turing machines– there is no similar correspondence
for effectively closed subshifts on a finitely generated group G. And second, very simple
subshifts like the one-or-less subshift X≤1 are not effectively closed for recursively presented
groups with undecidable word problem (Proposition 69): it would be natural to ask that this
subshift is always effective, independently of the complexity of the word problem of the group.

In order to escape from these limitations, we study two different extensions of the no-
tion of effectiveness which cover a larger countable class of subshifts. These notions are
G-effectiveness and enumeration-effectiveness.

The notion of G-effectiveness tackles the problems linked to the word problem of the group
by adding the language WP(G) as an oracle. The advantage of this class, besides repairing the
previous problems related to the word problem of the group, is that the set of subshifts defined
by it can be given a natural definition using modified Turing machines which use the group
as a tape. This characterization is interesting in the sense that it allows explicit constructions
to be made with the help of these machines. Some examples can be found in [1].

Then we show the limitations of the notion of G-effectiveness, and propose an alternative
definition of effectiveness for G-subshifts called enumeration effectiveness. This new notion,
which is weaker than G-effectiveness, allows us to generalize Proposition 69 to any group –
the recursive presentation hypothesis is no longer needed.

4.3.1 G-effectiveness

Definition 31 A subshift X ⊂ AG is G-effectively closed if there is a set of pattern codings
C such that X = XC, and C is recursively enumerable with oracle WP(G).

Following from the results of this section, one can directly use the definition above to show
that the following properties hold for any finitely generated group G.

1. If X a G-effectively closed subshift then a maximal set of pattern codings C such that
X = XC is recursively enumerable with oracle WP(G).

2. The class of G-effectively closed subshifts is closed under finite intersections and unions.

3. The class of G-effectively closed subshifts is closed under factors.

4. Being G-effectively closed is a conjugacy invariant.

5. The class of G-effectively closed subshifts contains all sofic subshifts.

6. The class of G-effectively closed subshifts contains all effectively closed subshifts.

7. If WP(G) is decidable, then every G-effectively closed subshift is effectively closed.

8. X≤1 is a G-effectively closed subshift.

Nevertheless, this class fails to be stable under projective subdynamics.

Proposition 71 Let G be a group which is not recursively presented. There exists a (G×Z)-
effectively closed subshift X ⊂ AG×Z such that its Z-projective subdynamics is not Z-effectively
closed.

Proof: Let A = S∪{⋆}. For w ∈ S∗, let pw defined over the support {1G}×{0, . . . |w|+1}
such that (pw)(1G,0) = (pw)(1G,|w|+1) = ⋆ and for j ∈ {1, . . . , |w|} then (pw)(1G,j) = wj . Let
X := XF ⊂ AG×Z be defined by the set of forbidden patterns F = {pw | w ∈ WP(G)}. Clearly
X is (G× Z)-effectively closed. Every Z-coset of a configuration x ∈ X contains a bi-infinite
sequence y ∈ AZ such that either y contains at most one symbol ⋆ or every word appearing
between two appearances of ⋆ represents 1G in G.

We claim that πZ(X) is not effectively closed. If it were, there would exist a maximal set
of forbidden pattern codings which is recursively enumerable and defines πZ(X). Therefore

37

given w ∈ S∗ a machine could run the algorithm for the word ⋆w⋆ and it would be accepted
if and only if w =G 1G. This would imply that G is recursively presented. ■

Although Proposition 71 is a theoretical drawback for the notion of G-effectiveness, it is
noteworthy that this behavior only happens when the projective subdynamics is taken with
respect to a group with strictly weaker word problem. If the projective subdynamics of a
(G× Z)-effectively closed subshift is taken with respect to G, the resulting subshift is indeed
G-effectively closed.

The interest of this class is mainly due to the fact that they can be defined in a natural
way using modified Turing machines. These objects which we call G-machines replace the
bi-infinite tape by a Cayley graph Γ(G,S) of the finitely generated group G.

Definition 32 A G-machine is a 6-tuple (Q,Σ,⊔, q0, QF , δ) where Q is a finite set of states,
Σ is a finite alphabet, ⊔ ∈ Σ is the blank symbol, q0 ∈ Q is the initial state, QF ⊂ Q is the
set of accepting states and δ : Σ×Q→ Σ×Q× S is the transition function.

G-machine T acts on the set ΣG×Q as follows: let (x, q) ∈ ΣG×Q and δ(x1G , q) = (a, q′, s).
Then T (x, q) = (Ss−1(x̃), q′) where x̃|1G = a and x̃|G\{1G} = x|G\{1G}. Figure 8 illustrates
this action when G is a free group. Here the head of the Turing machine is assumed to stay
at a fixed position and the tape moves instead.

a

b

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔ ⊔

⊔

⊔⊔
q1

a

b

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔ ⊔

⊔

⊔⊔
q2

δ(q1,) = (q2, , a)

Figure 8: A transition of an G-machine for the free group on two elements.

Let F ⊂ G be a finite set and p ∈ ΣF . Let xp ∈ ΣG be the configuration such that (xp)|F =
p and (xp)|G\F ≡ ⊔. We say that T accepts p if there is n ∈ N such that Tn(xp, q0) ∈ ΣG×QF .
L ⊂ L(AG) is G-recursively enumerable if there exists a G-machine T which accepts p ∈ Σ∗

G

if and only if p ∈ L. If both L and L(AG) \ L are G-recursively enumerable we say L is
G-decidable.

In [1] it is shown that these machines characterize G-effective subshifts. We say a set of
patterns L ⊂ L(AG) is closed by extensions if for each p1, p2 ∈ L(AG) such that p1 ⊏ p2 then
p1 ∈ L =⇒ p2 ∈ L. Also, for a set of pattern codings C we denote by p(C) the set of patterns
they define in the group G. Formally:

p(C) = {p ∈ L(AG) | ∃c ∈ C, [p] =
⋂

(w,a)∈c

[a]w}

Theorem 72 Let G be a finitely generated infinite group and L ⊂ L(AG) be a set of patterns.
If L is G-recursively enumerable then there exists a recursively enumerable with oracle WP(G)
set of pattern codings C such that L = p(C). Conversely, if C a recursively enumerable with
oracle WP(G) set of pattern codings. If p(C) is closed by extensions, then p(C) is G-recursively
enumerable.

Using the fact that the maximal set of forbidden patterns of a subshift is closed by exten-
sion, we obtain what follows.

Corollary 73 A subshift X ⊂ AG is G-effectively closed if and only if there exists a G-
recursively enumerable set F ⊂ L(AF) such that X = XF .

38

A big drawback of the class of G-effectively closed subshifts is that in general they do not
admit a simulation theorem in the sense of Theorem 62. Specifically, X≤1 is G-effective for
each group, but it cannot be obtained as the projective subdynamics of a sofic subshift if G
is finitely generated, recursively presented group but has undecidable word problem.

Proposition 74 Let G be a finitely generated, recursively presented group with undecidable
word problem and H a finitely generated group such that WP(H) ≤m WP(G). Then X≤1 cannot
be obtained as the G-projective subdynamics of a sofic G×H-subshift.

Proof: As G is recursively presented and WP(H) ≤m WP(G), then H is also recursively
presented and thus G × H is recursively presented. Applying Proposition 66 we get that
sofic G × H-subshifts are effectively closed. Hence, using Proposition 67 the G-projective
subdynamics must also be effectively closed. We conclude as per the fact that X≤1 is not
effectively closed for recursively presented groups with undecidable word problem.

In particular, this means that if G is a finitely generated, recursively presented group
with undecidable word problem, then there is no general simulation theorem for G-effective
subshifts coming from sofic subshifts on G × Zd or even G × · · · × G. It might therefore be
interesting to weaken the notion of G-effectiveness so that even if X≤1 is no longer always in
the class, a general simulation theorem is not proscribed.

4.3.2 Enumeration effectiveness

If A and B are two sets of words in S, we say that A is enumeration reducible to B, denoted
A ≤e B, if there exists an algorithm that produces an enumeration of A from any enumeration
of B. Formally, A ≤e B if there exists a partial computable function f that associates to each
⟨n, i⟩ a finite set Dn,i such that n ∈ A ⇐⇒ ∃i,Dn,i ⊆ B.

Remark 75 A set A is recursively enumerable if and only if A ≤e ∅. Particularly, if A is
recursively enumerable then A ≤e B for any set B.

From this remark, we get a characterization of effectively closed subshifts as those for
which there exists a set of pattern codings C such that X = XC, and C ≤e ∅.

We will use a characterization of enumeration reducibility, that can be found in [44, Ex-
ercise XIV.1.2] and in [52].

Proposition 76 A ≤e B if and only if for every set C, if B is recursively enumerable with
oracle C then A is also recursively enumerable with oracle C.

We can translate the notion of G-effectiveness in term of enumeration reducibility. If we
denote B⊕C the set {(0, x) | x ∈ B}∪{(1, x) | x ∈ C}, we get that A is recursively enumerable
with oracle B if and only if A ≤e B⊕B. As written in Definition 31, a subshift X ⊂ AG is G-
effectively closed if there is a set of pattern codings C such that X = XC, and C is recursively
enumerable with oracle WP(G). We thus get the following characterization of G-effectively
closed subshifts.

Proposition 77 A G-subshift X ⊂ AG is G-effectively closed if there is a set of pattern
codings C such that X = XC, and such that C ≤e WP(G)⊕ WP(G).

Thus with G-effectiveness, forbidden patterns are produced from two enumerations: one
enumeration of the words in S∗ that represent the identity of the group (the word problem
WP(G)), and one enumeration of the word in S∗ that do not represent the identity of the
group (the complement of the word problem WP(G)). But are those two enumerations strictly
necessary to produce forbidden patterns? In order to check whether a pattern coding is
inconsistent, it suffices to check all pairs of words w,w′, and if at some point two words happen
to represent the same group element, check whether they are assigned different symbols.
Only the enumeration of the word problem is needed for that. The notion of enumeration
effectiveness is based on this observation.

Definition 33 A G-subshift X ⊂ AG is G-enumeration effective if there exists a set of pattern
codings C such that X = XC and C ≤e WP(G).

39

We first compare the class of G-enumeration effective subshifts with the classes of effec-
tively closed subshifts and G-effectively closed subshifts. From the characterizations of these
classes with enumeration reduction, it follows immediately that G-enumeration effective sub-
shifts are in-between the two others. The diagram on Figure 9 summarizes the propositions
listed below.

Proposition 78 Let G be a finitely generated group and X an effectively closed subshift.
Then X is G-enumeration effective.

Proof: Since X is G-effectively closed, there exists a set of pattern codings C such that
X = XC , and C ≤e ∅. A fortiori, we get that C ≤e WP(G), thus X is G-enumeration effective.
■

Proposition 79 Let G be a finitely generated group and X a G-enumeration effective sub-
shift. Then X is G-effectively closed.

Proof: Since X is G-enumeration effective, there exists a set of pattern codings C such that
X = XC , and C ≤e WP(G). A fortiori, we get that C ≤e WP(G)⊕WP(G), thus X is G-effectively
closed. ■

Conversely, if WP(G) is enumeration reducible to WP(G), any set enumeration reducible to
WP(G) is also enumeration reducible to WP(G) ⊕ WP(G), from which we deduce that groups
with the property are exactly groups where G-enumeration effectiveness and G-effectiveness
coincide.

Proposition 80 Let G be a finitely generated such that WP(G) ≤e WP(G) and X a G-effectively
closed subshift. Then X is G-enumeration effective.

Proposition 81 G-enumeration effectiveness is closed under factors. In particular, if X is
a sofic subshift, then it is G-enumeration effective.

Proof: Recall that a finitely generated group is recursively presented if and only if WP(G) is
recursively enumerable. Let C be the list of forbidden pattern codings obtained in the proof
of Proposition 66 (with an oracle to WP(G) in this case). We have shown that C is recursively
enumerable if WP(G) is recursively enumerable.

Let C be an arbitrary language such that WP(G) is recursively enumerable with oracle C,
then obviously C is recursively enumerable with oracle C. By Proposition 76 this implies that
C ≤e WP(G). This shows that G-enumeration effectiveness is closed under factors.

Let Y be an SFT extension of X. Clearly Y is always effectively closed: Take a finite list of
forbidden patterns defining it hard code each pattern into a pattern coding. By Proposition 78
we have that Y is G-enumeration effective. As G-enumeration effectiveness is closed under
factors, we conclude that X is also G-enumeration effective. ■

Proposition 82 Let G be a finitely generated group. Then the one-or-less subshift X≤1 is
G-enumeration effective if and only if WP(G) ≤e WP(G).

This is not a vacuous hypothesis: if G is recursively presented (hence WP(G) is recursively
enumerable), this implies that WP(G) is also recursively enumerable, hence recursive. Contrary
to Proposition 69, this characterization of the effectiveness of the one-or-less subshift does not
require the group G to be recursively presented.

Proof: As claimed in Section 4.3.2, the subshift X≤1 is G-effectively closed, which means
that there is a set of pattern codings C such thatX = XC , and such that C ≤e WP(G)⊕WP(G) by
Proposition 77. Suppose that WP(G) ≤e WP(G). Let C be a set such that WP(G) is recursively
enumerable with oracle C, and denoteM the Turing machine with oracle C that recognizes
WP(G). We construct a new Turing machine M′ with oracle C with the following behavior.
Given a pattern coding c,M′ in parallel simulatesMe to enumerate the set {0}× WP(G) and
recursively enumerates {1} × WP(G) from the latter enumeration. From this enumeration of
WP(G)⊕ WP(G), the machineM′ then produces an enumeration of C. Thus C ≤e WP(G).

Reciprocally, first note that in an analogous way to Proposition 65 we can suppose that
any G-enumeration effective subshift is given by a maximal set of forbidden pattern codings.
Let X≤1 be G-enumeration effective and C ≤e WP(G) be the maximal set of pattern codings

40

effectively closed G-enumeration effective G-effectively closed

Sofic

G r.p.

G r.p. WP(G) ≤e WP(G)

WP(G) decidable

Figure 9: Inclusion relations between different classes of G-subshifts for a finitely generated
group G. Inclusion represented by a dashed arrow only holds for groups having the property
labelling the arrow.

defining X≤1. As in the proof of Proposition 69, we can define f : S∗ → C ∪ C where f(w) =
{(ϵ, 1), (w, 1)}. Clearly if w ∈ WP(G) if and only if f(w) ∈ C. Therefore WP(G) ≤m C ≤e WP(G)
which implies WP(G) ≤e WP(G). ■

4.3.3 Towards a simulation theorem

In the case of Zd-subshifts, the notion of effectively closed subshift is quite natural for two
reasons. First it extends the notion of sofic Z-subshift from the point of view of pattern
exclusion: a sofic Z-subshift has a regular language, while an effectively closed Z-subshift has
a recursively enumerable language. Hence sofic subshifts are effectively closed. Second the
class of effectively closed subshifts is stable under projective subdynamics (see Section 4.1).
A reasonable generalization of effectiveness to finitely generated groups should at least satisfy
these two properties, with the hope that a simulation theorem may hold.

Clearly, the notion of effectiveness for a finitely generated group G given in Definition 29
is too restrictive: sofic subshifts are effectively closed for recursively presented groups (Propo-
sition 66), but we do not know what happens for non recursively presented groups. Moreover,
this notion does not behave well with projective subdynamics (see Propositions 71). By Propo-
sitions 81 and 79, sofic subshifts are always G-enumeration effective, and thus G-effectively
closed. Thus among the three definitions presented in this chapter, only G-effectiveness and
G-enumeration effectiveness are likely to fulfill our requirements. Another argument that may
be taken into account to choose between these two notion is the one-or-less subshift X≤1. On
the one hand, this subshift is always G-effectively closed (Section 3.4.1), on the other hand, it
is G-enumeration effective only for finitely generated groups satisfying that WP(G) ≤e WP(G).

What would be a general statement of a simulation theorem for a finitely generated group
G? The two notions of G-enumeration effectiveness and G-effectiveness both depend on the
group G. Apart from torsion groups and with no additional restriction, the operation of
projective subdynamics may transform a G-subshift on a Z-subshift, where the three notions
of effectiveness coincide. So we should consider only projective subdynamics from a group to
a subgroup with the same complexity of WP. The simulation theorems from [21, 6] suggest that
adding the group Z2 to the group G – what is meant by adding has of course to be precise –
makes possible a characterization of projective subdynamics of sofic subshifts on G equipped

41

with Z2 as effective G-subshifts. In Section 3.4.4, the result of [53] is used to extract a grid
structure from a direct product G1 ×G2 where G1 and G2 are both infinite. Hence the idea
to study projective subdynamics of G × G × G-effectively closed subshifts. Unfortunately,
Proposition 74 tells us that for recursively presented groups G with undecidable WP, some
simple G-effectively closed subshifts cannot be realized as the projective subdynamics of a
sofic G × H-subshift, where H is any finitely generated group with WP(H) ≤m WP(G). So
a simulation theorem is excluded for G-effectiveness. To the knowledge of the authors, the
question remains open for G-enumeration effectiveness.

5 Exercises

Exercise 1 Show that if L ≤m L′, then L ≤T L′ Hint: Express L ≤m L′ with a Turing
machine with oracle L′.

Exercise 2 Let X ⊆ AZ2

be a subshift. Show that

π(X) =
{
y ∈ AZ | ∃x ∈ X s.t. x(i,0) = yi for every i ∈ Z

}
is also a subshift.

Exercise 3 Prove that the projective subdynamics of the subshift defined in Example 53 is
not sofic. Hint: Use the fact that the language {anbn | n ∈ N} is not a regular language.

Exercise 4 Give an example of a recursively presented group which is not finitely presented.

Exercise 5 Show that the properties of being an SFT and being a sofic subshift are conjugacy
invariants.

Exercise 6 Show that the domino problem is a group isomorphism invariant, that is, that if
G is isomorphic to H then the domino problem of G is many-one equivalent to the domino
problem of H.

Exercise 7 Find an example of a finitely generated group which contains a non-finitely gen-
erated subgroup. Hint: One possibility is to use Corollary 33.

Exercise 8 Let G be a finitely generated group and H ⊴ G. Show that the quotient group
G/H is also finitely generated.

Exercise 9 Let H ≤ G be a subgroup such that [G : H] <∞. Show that there exists N ≤ H
such that N ⊴G and [G : N] < ∞. Hint: define N as the stabilizer of the action of G over
the lateral classes G/H by left multiplication.

Exercise 10 Let G be a finitely generated group and H ≤ G a subgroup of finite index. Show
that H is finitely generated. Hint: Let L = {ℓ1 . . . , ℓn} be a set of representatives of the left
lateral classes containing 1G. For each generator s of G write sℓi = ℓi,shi,s for some ℓi,s ∈ L
and hi,s ∈ H. Show that the set of all hi,s generates H.

Exercise 11 Fill in the details from Proposition 29. In particular, show that the subshift
defined by G is indeed X

[R]
F .

Exercise 12 Let G be the subgroup of GL2(Q) generated by the matrices a =

(
1 1
0 1

)
and

b =

(
2 0
0 1

)
. Show that every matrix in G is of the form

(
x y
0 z

)
where x, y, z are dyadic

rationals (rationals of the form p/2q), and that all such matrices with x = z = 1 belong
to G. Deduce that G contains a subgroup that is not finitely generated. Show that G is a
Baumslag-Solitar group.

Exercise 13 Let G = F2 = ⟨a, b⟩ the free group generated by a and b. Consider the Cayley
graph Γ(G,S) for S = {a, b, a−1, b−1}. Show that this Cayley graph can be covered by disjoints
biinfinite paths (in the sense of Theorems 43 and 44).

Exercise 14 Let G = PSL2(Z) =
〈
a, b|a2, b3

〉
Consider the Cayley graph Γ(G,S) for S =

{a, b, a−1, b−1} depicted below.

42

Show that this Cayley graph cannot be covered by disjoints biinfinite paths (in the sense of
Theorems 43 and 44). (This example shows that the choice of S is important for this theorem
to hold).

Exercise 15 Consider again G = PSL2(Z) =
〈
a, b|a2, b3

〉
. Show that XG,{a,b} is nonempty.

Exercise 16 Consider again G = PSL2(Z) =
〈
a, b|a2, b3

〉
. Draw the Cayley graph Γ(G,S)

for S = {a, ab, a−1, (ab)−1}. Show that this Cayley graph can be covered by disjoints biinfinite
paths (in the sense of Theorems 43 and 44).

Exercise 17 A weak valid pair for (G,S) is a pair (n, p) from G to S s.t. p(gs) = s−1 where
s = n(g). Give an example for G = F2 = ⟨a, b⟩ and S = {a, b} of a weak valid pair that is not
a valid pair.

Exercise 18 Show that if G is finite, any weak valid pair is a valid pair.

Exercise 19 Give the proofs of Propositions 45 and 46.

Exercise 20 Give an example of a Z-subshift which is effectively closed but with an undecid-
able language. Hint: Consider the set of forbidden words {10n1}n∈L for an appropriate set
L.

Exercise 21 Show that the class of effectively closed subshifts is closed under finite intersec-
tions. Prove that the same result does not hold for countable intersections.

Exercise 22 Show that for recursively presented groups the class of effectively closed subshifts
is closed under finite unions.

43

References

[1] Aubrun, N., Barbieri, S., Sablik, M.: A notion of effectiveness for subshifts on finitely
generated groups. Theoretical Computer Science 661, 35–55 (2017)

[2] Aubrun, N., Kari, J.: Tiling Problems on Baumslag-Solitar groups. In: MCU’13, pp.
35–46 (2013)

[3] Aubrun, N., Sablik, M.: Multidimensional effective s-adic systems are sofic. Uniform
Distribution Theory 9(2) (2014)

[4] Ballier, A., Jeandel, E.: Tilings and model theory. First Symposium on Cellular Au-
tomata Journées Automates Cellulaires. (2008)

[5] Ballier, A., Jeandel, E.: Computing (or not) quasi-periodicity functions of tilings. In:
Second Symposium on Cellular Automata ”Journées Automates Cellulaires”, JAC 2010,
Turku, Finland, December 15-17, 2010. Proceedings, pp. 54–64 (2010)

[6] Barbieri, S., Sablik, M.: A generalization of the simulation theorem for semidirect prod-
ucts. Ergodic Theory and Dynamical Systems (2017)

[7] Berger, R.: The Undecidability of the Domino Problem. Ph.D. thesis, Harvard University
(1964)

[8] Berger, R.: The Undecidability of the Domino Problem. No. 66 in Memoirs of the
American Mathematical Society. The American Mathematical Society (1966)

[9] Blondel, V.D., Bournez, O., Koiran, P., Papadimitriou, C., Tsitsiklis, J.N.: Deciding
stability and mortality of piecewise affine dynamical systems. Theoretical Computer
Science 255(1-2), 687–696 (2001)

[10] Büchi, J.R.: Turing-Machines and the Entscheidungsproblem. Math. Annalen 148(3),
201–213 (1962). DOI 10.1007/BF01470748

[11] Ceccherini-Silberstein, T., Coornaert, M.: Cellular Automata and Groups. Springer
Monographs in Mathematics. Springer-Verlag (2010)

[12] Cenzer, D., Dashti, S.A., King, J.L.F.: Computable symbolic dynamics. Mathematical
Logic Quarterly 54(5), 460–469 (2008)

[13] Cohen, D.B.: The large scale geometry of strongly aperiodic subshifts of finite type.
Advances in Mathematics 308, 599–626 (2017)

[14] Delvenne, J.C., Kůrka, P., Blondel, V.D.: Computational Universality in Symbolic Dy-
namical Systems, pp. 104–115. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

[15] Diestel, R.: A short proof of Halin’s grid theorem. Abh. Math. Sem. Univ. Hamburg 74,
237–242 (2004)

[16] Durand, B., Romashchenko, A., Shen, A.: Effective Closed Subshifts in 1D Can Be
Implemented in 2D, pp. 208–226. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

[17] Goodman-Strauss, C.: Matching Rules and Substitution Tilings. Annals of Mathematics
147(1), 181–223 (1998)

[18] Goodman-Strauss, C.: A hierarchical strongly aperiodic set of tiles in the hyperbolic
plane. Theoretical Computer Science 411(7), 1085 – 1093 (2010). DOI 10.1016/j.tcs.
2009.11.018

[19] Hadamard, J.: Théorème sur les séries entières. Acta Math. 22, 55–63 (1899)

[20] Hedlund, G., Morse, M.: Symbolic dynamics. American Journal of Mathematics 60(4),
815–866 (1938)

[21] Hochman, M.: On the dynamics and recursive properties of multidimensional symbolic
systems. Inventiones Mathematicae 176(1), 2009 (2009)

[22] Hooper, P.K.: The Undecidability of the Turing Machine Immortality Problem. Journal
of Symbolic Logic 31(2), 219–234 (1966)

[23] Jeandel, E.: Aperiodic subshifts on polycyclic groups. CoRR abs/1510.02360 (2015).
URL http://arxiv.org/abs/1510.02360

44

http://arxiv.org/abs/1510.02360

[24] Jeandel, E.: Translation-like actions and aperiodic subshifts on groups. CoRR
abs/1508.06419 (2015). URL http://arxiv.org/abs/1508.06419

[25] Jeandel, E.: Translation-like Actions and Aperiodic Subshifts on Groups (2016).
ArXiv:1508.06419

[26] Jeandel, E., Vanier, P.: Characterizations of periods of multi-dimensional shifts. Ergodic
Theory and Dynamical Systems 35(2), 431–460 (2015)

[27] Kahr, A., Moore, E.F., Wang, H.: Entscheidungsproblem reduced to the ∀∃∀ case. Pro-
ceedings of the National Academy of Sciences of the United States of America 48(3),
365–377 (1962)

[28] Kari, J.: The tiling problem revisited. In: J.O. Durand-Lose, M. Margenstern (eds.)
MCU, Lecture Notes in Computer Science, vol. 4664, pp. 72–79. Springer (2007)

[29] Kari, J.: On the undecidability of the tiling problem. In: Current Trends in Theory and
Practice of Computer Science (SOFSEM), pp. 74–82 (2008)

[30] Kari, J., Ollinger, N.: Periodicity and Immortality in Reversible Computing, pp. 419–
430. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

[31] Koiran, P., Cosnard, M., Garzon, M.: Computability with low-dimensional dynamical
systems. Theoretical Computer Science 132(1), 113 – 128 (1994)

[32] Kurka, P.: On topological dynamics of Turing machines. Theoretical Computer Science
174, 203–216 (1997). DOI 10.1016/S0304-3975(96)00025-4

[33] Kuske, D., Lohrey, M.: Logical aspects of cayley-graphs: the group case. Annals of Pure
and Applied Logic 131(1–3), 263 – 286 (2005). DOI http://dx.doi.org/10.1016/j.apal.
2004.06.002

[34] Lennox, J.C., Robinson, D.J.: The Theory of Infinite Soluble Groups. Oxford Mathe-
matical Monographs. Oxford Science Publications (2004)

[35] Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge
University Press (1995)

[36] Lind, D.A., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge
University Press (1995)

[37] Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory, 2nd revised edn.
Dover (1976)

[38] Markley, N.G., Paul, M.E.: Matrix subshifts for Zν Symbolic Dynamics. Proceedings of
the London Mathematical Society 3(43), 251–272 (1981)

[39] Mozes, S.: Tilings, substitutions systems and dynamical systems generated by them. J.
d’Analyse Math. 53, 139–186 (1989)

[40] Muchnik, R., Pak, I.: Percolation on Grigorchuk Groups. Communications in Algebra
29(2), 661–671 (2001)

[41] Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and second-order
logic. Theoretical Computer Science 37(0), 51 – 75 (1985). DOI http://dx.doi.org/10.
1016/0304-3975(85)90087-8

[42] Myers, D.: Non Recursive Tilings of the Plane II. Journal of Symbolic Logic 39(2),
286–294 (1974)

[43] Nasu, M.: Textile Systems for Endomorphisms and Automorphisms of the Shift, Memoirs
of the American Mathematical Society, vol. 114. American Mathematical Society (1995)

[44] Odifreddi, P.: Classical Recursion Theory, Studies in Logic and the Foundations of Math-
ematics, vol. 143. Elsevier (1999). DOI 10.1016/S0049-237X(99)80046-9

[45] Pavlov, R., Schraudner, M.: Classification of sofic projective subdynamics of multidi-
mensional shifts of finite type. Transactions of the American Mathematical Society 367,
3371–3421 (2015)

[46] Rips, E.: Subgroups of small cancellation groups. Bulletin of the London Mathematical
Society 14, 45–47 (1982). DOI 10.1112/blms/14.1.45

45

http://arxiv.org/abs/1508.06419

[47] Robertson, N., Seymour, P.: Graph minors. v. excluding a planar graph. Journal of
Combinatorial Theory, Series B 41(1), 92 – 114 (1986). DOI 10.1016/0095-8956(86)
90030-4

[48] Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Inventiones
Mathematicae 12, 177–209 (1971)

[49] Robinson, R.M.: Undecidable tiling problems in the hyperbolic plane. Inventiones Math-
ematicae 44, 159–264 (1978)

[50] Sablik, M., Fernique, T.: Local Rules for Computable Planar Tilings. In: Automata and
Journées Automates Cellulaires 2012. . Corse, France (2012)

[51] Segal, D.: Polycyclic groups. No. 82 in Cambridge Tracts in Mathematics. Cambridge
University Pres (1983)

[52] Selman, A.L.: Arithmetical reducibilities i. Mathematical Logic Quarterly 17(1), 335–
350 (1971). DOI 10.1002/malq.19710170139. URL http://dx.doi.org/10.1002/malq.

19710170139

[53] Seward, B.: Burnside’s Problem, Spanning Trees and Tilings. Geometry and Topology
18, 179–210 (2014). DOI 10.2140/gt.2014.18.179

[54] Sipser, M.: Introduction to the Theory of Computation, 1st edn. International Thomson
Publishing (1996)

[55] Tits, J.: Free subgroups in linear groups. Journal of Algebra 20(2), 250–270 (1972).
DOI 10.1016/0021-8693(72)90058-0

[56] Torma, I.: Quantifier extensions of multidimensional sofic shifts. Proc. Amer. Math. Soc.
143, 4775–4790 (2015)

[57] Turing, A.: On computable numbers, with an application to the entscheidungsproblem.
Proceedings of the London Mathematical Society 42(2), 230–265 (1936)

[58] Wang, H.: Proving theorems by pattern recognition ii. Bell System Technical Journal
40(1-3), 1–41 (1961)

[59] Whyte, K.: Amenability, Bilipschitz equivalence, and the Von Neumann Conjecture.
Duke Mathematical Journal 99(1), 93–112 (1999). DOI 10.1215/S0012-7094-99-09904-0

[60] Woess, W.: Graphs and groups with tree-like properties. Journal of Combinatorial
Theory, Series B 47(3), 361 – 371 (1989)

46

http://dx.doi.org/10.1002/malq.19710170139
http://dx.doi.org/10.1002/malq.19710170139

	Introduction
	Subshifts of finite type on Z2, Wang tiles and the domino problem
	Definitions
	Turing machines and the Halting problem
	Reductions
	Domino problem with constrained origin
	Domino problem

	Subshifts of finite type on finitely generated groups
	Definitions
	Group presentations and the word problem
	SFT on finitely generated groups

	Domino Problem
	Definitions
	Basic properties

	Inheritance properties
	Classes of groups
	Virtually free groups
	Polycyclic groups
	Baumslag-Solitar groups
	Groups G1G2

	Discussion
	Muller & Schupp theorem
	Hyperbolic groups
	Translation-like and quasi-isometric groups

	Towards a definition of effective subshifts on groups
	Link between Z and Z2
	Projective subdynamics: definition and example
	Effectively closed subshifts on Zd
	Simulation theorem

	Effectiveness on groups
	Definition and basic properties
	The case of non recursively presented groups
	The one-or-less subshift X1

	Two larger notions of effectiveness
	G-effectiveness
	Enumeration effectiveness
	Towards a simulation theorem

	Exercises

