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ARTICLE

A growing bacterial colony in two dimensions
as an active nematic
D. Dell’Arciprete 1,2, M.L. Blow1, A.T. Brown1, F.D.C. Farrell1,3, J.S. Lintuvuori 4, A.F. McVey1,

D. Marenduzzo1 & W.C.K. Poon1

How a single bacterium becomes a colony of many thousand cells is important in biomedicine

and food safety. Much is known about the molecular and genetic bases of this process, but

less about the underlying physical mechanisms. Here we study the growth of single-layer

micro-colonies of rod-shaped Escherichia coli bacteria confined to just under the surface of

soft agarose by a glass slide. Analysing this system as a liquid crystal, we find that growth-

induced activity fragments the colony into microdomains of well-defined size, whilst the

associated flow orients it tangentially at the boundary. Topological defect pairs with charges

± 1
2 are produced at a constant rate, with the þ1

2 defects being propelled to the periphery.

Theoretical modelling suggests that these phenomena have different physical origins from

similar observations in other extensile active nematics, and a growing bacterial colony

belongs to a new universality class, with features reminiscent of the expanding universe.
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Active matter occurs at many length-scales: from bird
flocks1, through shaken grains2 and swimming bacteria3

and synthetic colloids4, to gels in which protein motors
‘walk’ on filamentous ‘rails’5. All contain agents consuming
energy to drive locomotion. The field attracts physicists (as a
‘grand challenge’ in non-equilibrium statistical mechanics), the-
oretical biologists (as a paradigm uniting phenomena across
disparate scales) and materials scientists (who see applications in,
e.g., self-assembly and artificial wound healing).

Active matter systems may show ‘polar’ (2π-periodic, like an
arrow) or ‘nematic’ (π-periodic, like a double arrow) orienta-
tional ordering. Within the part of the system under con-
sideration, momentum is either conserved or not. A bulk
system which conserves momentum is termed ‘wet’, while in a
‘dry’ system, such as a two-dimensional (2D) layer interacting
strongly with a substrate, momentum is not conserved. The
polar/nematic and wet/dry dichotomies make up the four
classical universality classes of active matter6. Recent devel-
opments show that ‘wet’ and ‘dry’ are the limiting cases of a
continuum of possible theories7, and that ‘scalar active matter’
exists with no orientational order8. In all these cases, the
number of active agents is conserved at all times. Studies of
biological morphogenesis as active matter have also, until
recently9,10, focussed on developmental phases with constant
average particle number by balancing cell birth and death. In
the following, we refer to these systems generically as ‘number-
conserving’ active matter.

Here we instead study a simple active matter system with non-
conserved particle number: a two-dimensional layer of dividing
Escherichia coli cells confined in agarose gel by a glass slide. It
represents the early stage of bacterial colonisation in many con-
texts, and constitutes perhaps the simplest example of biological
morphogenesis. Despite the absence of cell differentiation, a
growing bacterial colony is governed by similar physical con-
straints to those controlling eukaryotic morphogenesis, including
tumour growth11.

Cell-cell mechanical interactions constrain colony growth12–19.
An elongating E. coli pushing against its neighbours in a colony
has been modelled as an extensile dipole in a viscous liquid, i.e., a
wet active nematic, in which viscous drag between the cells and
bulk liquid controls colony morphology10. A dry continuum
model has also been proposed to describe the chaotic behaviour
of nematic domains in simulated colonies19. However, no theory
of growing active nematics has yet been tested against quantita-
tive experimental data.

We provide such data by analysing growing E. coli colonies
as ‘living anisotropic fluids’. We observe phenomena resem-
bling those seen in number-conserving active nematics,
including ‘active anchoring’ at the boundary20 and the pro-
liferation of topological defects21. However, the underlying
mechanisms differ. We propose a theoretical framework in
which our observations emerge from growth-driven Hubble-
like expansive flows22 and friction between cells and their
substrate17. Alluding to this qualitative broad analogy, hence-
forth we call this class of systems (dry) ‘Hubble active
nematics’. [Clearly, this suggestive analogy comes with lim-
itations. Most notably, within our quasi-2D colonies the
amount of matter grows over time, where in the expanding
universe it is the metric that changes in scale.]

Results
Morphology and growth rate. We begin by reporting results on
the morphology of our growing microcolonies (see Methods
for experimental details on growth conditions and image
processing). Confocal imaging (Supplementary Fig. 1) shows

that cells are embedded just underneath the agarose surface,
confined on one side by the cover slip. Figure 1 shows snap-
shots from a typical colony, which are representative of the
behaviour we observe under our experimental conditions (see
Methods). A number of qualitative changes occur as cells
lengthen and divide. At early times, the colony is elongated,
Fig. 1a, b, as cells grow longitudinally along a common axis.
Later, this 1D order breaks down, giving way to a pattern of
nematic domains bordered by defects, Fig. 1c. During this
stage, cells push outwards in all directions, and the colony
becomes more isotropic, Fig. 1 (inset, see also Supplementary
Note 1 and Supplementary Fig. 2). Under our conditions, the
middle of the colony turns phase dark after ~5 h when it
contains N ≲ 103 cells, Fig. 1d (dark spots), indicating buckling
of the 2D layer into the third dimension17, and we stop our
analysis. Typically, buckling occurs when the colony size 2R ≳
50 μm. All colonies show the same trend, although quantitative
details are subject to noise (Supplementary Fig. 2).

Cells in the middle of a large colony may grow slower due to
nutrient limitation. Measurement of cell lengths as a function of
time, Fig. 2a, shows that their growth rate is in fact spatially
uniform to within experimental uncertainties, so that nutrient
limitation is unimportant for our colonies (although the growth
rate is time dependent, Supplementary Note 2 and Supplemen-
tary Fig. 2b). The near-uniform growth rate is also the reason
why we do not observe fingering instabilities, which appear
when growth rate is limited by nutrient16 or depends on local
density23.

‘Hubble’ expansion. We found no coherent azimuthal move-
ment of cells, but there is a coherent radial movement, whose
speed increases linearly with distance from the centroid,
Fig. 2b, reminiscent of the Hubble expansion of the universe.
Consider the velocity field, v, of this growth-induced motion:
we now write an equation for this quantity based on our
experimental observations. Mass conservation requires that the
cell density, ρ, satisfies

∂tρþ ∇ � ðρvÞ ¼ Dtρþ ρ∇ � v ¼ Λρ; ð1Þ

where Λ is the growth rate, and Dt= ∂t+ v ·∇ is the material
derivative. Assuming incompressibility (we relax this
assumption below), i.e., Dtρ= 0, we find

∇ � v � ∂ivi ¼ Λ; ð2Þ

where hereafter repeated suffices are summed. Since Λ is
independent of space in our colonies, and there is no coherent
azimuthal movement, Eq. (2) predicts the radial component to
be vr= Λr/2 ≡Hr, as observed, Fig. 2b (the factor 1/2 arises as
the system is 2D).

A linear fit to the population-averaged data in Fig. 2b gives our
‘Hubble constant’ H= 0.007 min−1. Theoretically, H= 0.5Λ,
while individual values of (H, Λ) obtained from each of the 32
colonies, Fig. 2c, are consistent with a linear scaling of H with Λ
and are fitted by H= 0.4Λ (the correlation between H and Λ is r
~ 0.77, corresponding to a p-value p < 0.00001). The discrepancy
from the theoretical prediction H= 0.5Λ may arise either from
small systematic errors in the fitting (e.g., due to small drift close
to colony centroids) or from the approximations in the
theoretical argument, such as that of isotropic growth. The
scatter in the data in Fig. 2c gives an indication of the extent of
intrinsic noise in our population of colonies.

Note that the expansive ‘Hubble flow’ we observe is distinct
from the spontaneous shear flow exhibited by number-conserving
active nematics24,25.
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Active anchoring. A striking feature of the larger colonies is that
cells tend to be aligned tangentially at the periphery, Fig. 1d. We
fitted a Bézier curve through the centroids of the outermost cells,
and measured the angle ψ between the curve and each boundary
cell. For a typical colony just before it buckled, most peripheral
cells show ψ ≲ 30°, Fig. 3a. Such ‘active anchoring’ is also seen in
simulated number-conserving active nematics20, where it origi-
nates from the ingress of topological defects following the
buckling of the boundary between an active nematic and an
isotropic continuum. We will see later that the mechanism in our
case is different.

Continuum description. Turning to the bulk of our colonies, we
first construct a continuum structural description based on our
raw data, which consist of the position, length and orientation of
each cell as functions of time, {ri(t), Li(t), νi(t)}. We start this
coarse graining procedure by defining a function that ‘smears out’

individual rod-shaped bacteria of diameter W:

f iðrÞ ¼ 1
2 tanh

v:Δri þ 1
2L

i

σ

� �
� tanh

v:Δri � 1
2L

i

σ

� �� �
´ 1

2 tanh
v:Δri þ 1

2W

σ

� �
� tanh

v:Δri � 1
2W

σ

� �� �
;

ð3Þ

with Δri= r− ri, vi the unit vector perpendicular to νi and σ a
smoothing length. We use σ=W to probe ordering at the single-
cell level (σ→ 0 gives sharp Li ×W rectangles). The integrated cell
‘mass’ is preserved as σ varies. [Note that the functional form of fi

we use is required to account for the non-spherical, rod-like shape
of bacteria.] The (number) density field is then

ρðrÞ ¼
XN
i¼1

f iðrÞ: ð4Þ
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Fig. 1 Morphology of a growing bacterial colony. Snapshots of a growing colony, from a few cells (a; t= 125min, N= 15), through the early stages
of growth where the colony elongates (b; t= 171 min, N= 56), followed by later stages of growth in which the colony shape becomes less anisotropic (c;
t= 216min, N= 164), up to the time immediately prior to the colony invading the third dimension (d; t= 261 min, N= 475). Inset: The average ratio of
long and short axes of 32 colonies plotted against time. The axes are estimated as the square roots of the larger and smaller eigenvalue of the second
moment of area. Error bars are standard errors of the mean
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Fig. 2 ‘Hubble’ cellular flow. a Plot of azimuthally-averaged growth rate against distance from the colony centroid, averaged over 32 colonies 10 min prior to
buckling. The growth rate is approximately constant spatially. Error bars are standard errors of the mean. b Plot of the azimuthually-averaged radial velocity
of bacteria as a function of distance from the centroid of the colony, averaged over all colonies 10min prior to buckling (see Supplementary Note 3 for
details). Solid line: best fit. Error bars are standard errors of the mean. c Plot of the ‘Hubble constant’ for the individual colonies, plotted against the bacterial
growth rate. Dashed line: best fit; solid line: H= 0.5Λ
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To quantify orientational order, we assume that the two poles of a
cell are indistinguishable (i.e., ±νi are equivalent), and construct a
traceless and symmetric Q-tensor26 field

QαβðrÞ ¼
XN
i¼1

f iðrÞ 2νiαν
i
β � δαβ

� �
; ð5Þ

¼ SðrÞ 2nαðrÞnβðrÞ � δαβ

h i
; ð6Þ

where we have also defined the scalar order parameter

SðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

xxðrÞ þ Q2
xyðrÞ

q
; ð7Þ

and the director n(r), which is the unit eigenvector associated
with the positive eigenvalue of Qαβ(r). Supplementary Fig. 3 (see
Supplementary Note 4) shows Qαβ(r) of the snapshots in Fig. 1.

Global order. The global version of Eq. (7) quantifies the degree
of orientational order averaged over an N-cell colony:

SðNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qxxh i2 þ Qxy

D E2
r

¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i;j

cos 2 θi � θj
	 
� �s

; ð8Þ

where θi is the angle between the axis of cell i and the director
(i.e., νi × n= cosθi), and 〈…〉 denotes averaging over a colony.
This evaluates to unity when all cells are perfectly aligned, and to
1=

ffiffiffiffi
N

p
for total orientational disorder. The measured degree of

global order, S(N), varies significantly between colonies, Fig. 3b,
but the trend is clear. Global order is high for up to ≳3 genera-
tions (N≲ 10), and then decreases. Significantly, Sh i ¼ 1=

ffiffiffiffi
N

p
forms the lower envelope of the vast majority of our data. Thus,
while there is no sustained growth-induced global ordering14,
substantial residual order persists up to the buckling point, when
our observations stop.

Correlation lengths and domains. Underlying the persistence of
residual global order is a significant degree of local orientational
order in the form of domains of aligned cells: Fig. 1c, d. Such local
order can be quantified by calculating two-point correlation
functions of the Q-tensor, C||(r) and C⊥(r) (Supplementary
Note 5), which measure the azimuthally-averaged orientational
correlation at a distance r from a typical cell parallel and per-
pendicular to its axis, respectively. These functions for the colony
snapshots in Fig. 1 are shown in Supplementary Fig. 4. In the
earliest stage of growth (N= 15), C||(r) and C⊥(r) decay over ≈10
and 5 μm respectively, i.e., the whole colony is ordered (as is
obvious from Fig. 1a). At intermediate times, parallel correlations
grow faster than perpendicular correlations, before C||(r) and
C⊥(r) become more comparable at late times.

This trend is generic. We calculated C||(r) and C⊥(r) for 32
colonies, and obtained correlation lengths defined by

ljj;?c ¼ 1

Cjj;?ð0Þ
Z 1

0
Cjj;?ðrÞdr; ð9Þ

so that two cells each of length and width L≳ 2 μm andW≲ 1 μm
placed side by side and end-on give ljjc ¼ L=2 � 1 μm and
l?c ¼ W=2 � 0:5 μm respectively. At early times, ljjc =l

?
c grows

(Supplementary Fig. 5), with ljjc growing faster and peaking at ≲5
μm, compared to a maximum l?c ≲ 3 μm, corresponding to
domains of some tens of cells, Fig. 1b. Thereafter, both correlation
lengths decrease to ≳2 μm, corresponding to domains of ≲10
cells. Similarly-sized ‘micro-domains’ have been seen in recent
simulated 2D bacterial colonies at late times19.

To highlight the role of active growth in generating this pattern
of behaviour, we performed Monte Carlo simulations27–31

of passive (non-growing) sphero-cylinders32 with lengths
and widths taken from bacterial colonies (see Supplementary
Note 6 and Supplementary Fig. 6). In the passive case, ljjc =l

?
c � 1

throughout the entire history of the colony (Supplementary
Fig. 5).

Proliferation of topological defects. The existence of
domains implies topological defects, where the director field is ill-
defined. Defects control the elasticity and dynamics of
passive liquid crystals, and feature prominently in number-
conserving active nematics6, where they arise from the
self-sustaining shear flow arising from the stirring of the fluid by
active particles.

The topological charge, or winding number, of a defect, is the
accumulated change (in units of 2π) in the angle ϕ made by the
director field relative to an arbitrary direction on following a
closed loop, C, around the defect: m ¼ 1

2π

H
C dϕ. Defects are

identified via a topological charge density20:

q ¼ 1
2π

∂xQxx∂yQxy � ∂xQxy∂yQxx

� �
; ð10Þ

which can be computed directly from the Q-tensor field.
An example of spatial maps of q is shown in Supplementary

Fig. 7 (see also Supplementary Note 7). We identified individual
defects as local maxima and minima of q(r), and determined their

polarity from the unit vector p̂d;α ¼ �∂βQαβ= ∂βQαβ

  at the local
maximum. As in conventional active nematics, defects in our
colonies mostly have topological charge ± 1

2. As the colony grows,
we see the formation of multiple defect pairs in the colony
interior, Fig. 4a. While defects are created continuously, the total
signed topological charge

R
qd2r ¼ 0. However, the total number

of defects, which we compute as the total unsigned topological
charge,

R
qj jd2r scales near-linearly with N, Fig. 4b, suggesting

that defect generation and annihilation is a bulk, not boundary,
phenomenon, and that topological (unsigned) charge grows
exponentially in time. Linear scaling with N is expected on
general grounds if, as we observe, the colony fragments into
micro-domain of well-defined size (≲10 cells).

Defect dynamics. Tracking the topological defects through time,
Fig. 4a (see also Supplementary Fig. 7), shows that the orientation
of the three-fold symmetric �1

2 defects does not significantly
impact their dynamics21. Presumably, these are simply advected
by the expansion of the colony, perhaps aided by mutual elastic
interactions. In contrast, comet-like ‘head and tail’ þ1

2 defects
show marked directed motion—the speed just prior to buckling is
v+ ~ 0.05 μm s−1. [This value should be seen as an order-of-
magnitude estimate as the measurement requires unambiguous
tracking of defects which we could only do in few selected cases.]
The distribution of bpd � Δbrd�com, Fig. 4c, where Δbrd�com is the unit
vector pointing from a colony’s centre of mass to the defect,
shows that positive defects propel along the direction of bpd (i.e.,
tail to head), reminiscent of their behaviour in a non-growing
extensile active nematic21.

The spatial distribution of ± 1
2 defects, Fig. 4d, shows ‘charge

separation’. There is an excess of �1
2 defects near the colony

centre, while þ1
2 defects predominate at the periphery. Pre-

sumably, inwardly-directed þ1
2 defects have a high chance of

annihilating �1
2 defects advected by colony expansion, while

outward-directed þ1
2 defects rapidly propel to the colony edge,

where advected �1
2 defects have not yet reached. Moreover, once a

þ1
2 defect has propelled itself to the colony edge in a tail-to-head
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direction (Fig. 4c), the director field pattern near its ‘head’
matches the tangential anchoring, Fig. 3a, and is therefore
energetically favoured. Thus, we find that þ1

2 defects are rarely
ejected from the boundary into the colony. This contrasts with a
number-conserving active nematic surrounded by an isotropic
medium, where ejection of þ1

2 defects from a deeply-undulating
boundary into the interior is prominent20.

Intriguingly, the region in which we observe an excess of �1
2

defects, r≲ 0.2R (here R is the radius of the inscribed circle), is
precisely where we see the onset of buckling into the third
dimension. This is reminiscent of the physics of passive liquid
crystals, where the director field can avoid the formation of a
costly defect core by escaping into the third dimension. This
observation also suggests that defects may provide a means to
relax stress in the system, as proposed recently for eukaryotic
colonies33.

Theoretical description and length scales. Our observations and
analyses so far suggest that it should be fruitful to describe a
growing 2D colony of E. coli cells theoretically as an active
nematic, albeit in a different universality class than almost all
current theories of this kind because of particle number non-
conservation. Here, we first delineate a number of components
that must feature in such a theory and point out their
implications. We then perform numerical simulations of a set of

equations which assumes a particularly simple constitutive
relation for the active stress.

There are two important length scales in our system. The
first one, la, is related to the onset of the ‘generic instability’ in
active nematics.In wet systems, la is given by a balance
between active and elastic stresses34, as la �

ffiffiffiffiffiffiffiffiffi
K=a

p
, where K is

a Frank elastic constant and a is the active stress coefficient,
defined so that the growth-dependent active stress scales as
aQαβ. In a growing colony, K and a both depend on growth-
mediated cell deformations, and should scale as the cell wall
elastic modulus, G, so that a ~ G and K ~ GL2 for cells of
length L. They should also scale similarly with cell
density16,19, so that we may expect K/a to be a constant, and
la ~ L. In our dry system, the functional dependence of la on
parameters is more complicated (see below and35). However,
as la is generally lower for the dry than for the wet limit7, we
expect la ~ L should still hold for our colonies.

A growing cell pushes and deforms its neighbours, generating
stresses that scale as G. The resulting cell movements are opposed
by dissipative forces, which we take to be lubricated frictional
sliding between cells and agarose or glass controlled by a
frictional drag coefficient per unit length, γ, so that the drag force
on a cell of length L sliding at speed v is ~γLv. Force balance in
terms of the stress tensor σαβ then reads

∂βσαβ ¼ γLρð Þvα � γ̂vα; ð11Þ
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where ρ is the cell density. Our ‘dry’ description in Eq. (11) is
motivated by the fact that our colony is very close to the glass
coverslip (Supplementary Fig. 1); in general this equation will
hold above a hydrodynamic ‘screening length’ ls �

ffiffi
η
γ̂

q
, with η the

effective viscosity of the colony.
Growth stress propagates by diffusion; dimensional analysis

gives the diffusivity � G=γ̂16. [More rigorously, we can show that,
within our theory, when Λ= 0 both ρ and the stress evolve
according to a diffusion equation where the diffusion coefficient
is � G=γ̂, given the simple constitutive relation for the stress
considered below.] The extent of stress propagation during the
lifetime of a single cell (birth to division) defines a stress
propagation length

lσ ¼
ffiffiffiffiffiffiffi
G
γ̂

1
Λ

s
: ð12Þ

Previous measurements give G ~ 106 Pa, albeit with large
variations, while we estimate γ̂ � 1015 (Pa s)m−2 using pre-
vious experimental results36 (Supplementary Note 8). Thus lσ ~
mm. This is an upper bound for the size of a colony in which
internal growth stresses can relax into the agarose matrix. In
practice, buckling into the third dimension will occur when the
stress approaches the yield stress of 2% agarose,
� 3 ´ 103 Pa � G. With this revised stress estimate, lσ ~ 50 μm,
similar to experiments. Intriguingly, v+Λ−1 ~ 50 μm as well,
suggesting that defects may have a role in relaxing growth
stresses.

Growth-induced alignment. To see how growth should induce
orientational order, consider first a system of bacteria oriented
along y (Qyy= 1, Qxx=−1, Qxy=Qyx= 0), Fig. 5a, with a single
slightly-misaligned bacterium B (centroid at y0) whose angle θ
with the orthogonal (x) axis is <90°. The only velocity gradient
component is ∂yvy=Λ. The fraction of B at larger y moves with
higher vy, and so must experience a higher force than the lower
part; the net torque realigns this bacterium.

Quantitatively, the force giving rise to the velocity of a segment,
dl, of B located a distance l from the centroid must balance the
frictional drag with the substrate at this position, γvy(y)dl. The

total torque on B is then

τ ¼
Z L=2

�L=2
γv y0 þ l sinθð Þl cosθdl: ð13Þ

Setting τ= ζdθ/dt, where ζ is the rotational drag on a single cell
due to its neighbours, and expanding to first order gives

∂tθ ¼ γL3

24ζ
∂yvy

� �
sin 2θ; 1D½ � ; ð14Þ

where ∂yvy=Λ > 0, Eq. (14) has a stable equilibrium at θ= 90°,
i.e., growth drives alignment.

This quasi-1D analysis correctly predicts a high degree of
alignment in our early-stage colonies, Fig. 1a, b. This persists only
for a few generations, because the active instability length scale la
~ L. When the colony size 2R increases to the point when
2R=la 	 1, the extensile stresses due to growth create bend
distortions, as in number-conserving active nematics. The colony
now grows in two dimensions.

For simplicity, consider the simplest case of circularly
symmetric expansion in 2D, for which the cell velocity field is

v ¼ gðrÞr; ð15Þ

with g(r) a local growth rate. Substituting Eq. (15) into
nematohydrodynamic equations describing flow-orientation cou-
pling (see Supplementary Note 9) yields the analogue of Eq. (14)
for 2D:

∂tθ ¼ ξg′r
4S

sin 2ðθ � ϕÞ; 2D½ � ð16Þ

where ϕ denotes the azimuthal angle in polar coordinates and ξ >
0 is a flow-aligning parameter.

Equation (16) predicts that growth-induced alignment depends
on the sign of g′. For compressible flows, g′ > 0, there is a stable
steady state (∂tθ= 0) with θ= ϕ, giving a radially-ordered colony
with a central +1 vortex defect. This is the analogue of the
growth-induced alignment predicted by Eq. (14) for 1D.

We do not observe such alignment, because experimentally, we
find incompressibility, i.e., g≃Λ/2 and g′= 0, Fig. 2a. In this case,
the steady state of Eq. (16) does not require any particular
relation between θ and ϕ. The colony breaks into domains with a
length scale controlled by la. The number of defects scales as the
number of domains. There are ~10 ≈ 32 cells per defect, Fig. 4b,
consistent with la ~ L. Our colonies are effectively incompressible
because their sizes (2R≲ 50 μm) are always < lσ, so that growth-
induced stresses relax quickly.

At the edge of a colony, g≃Λ/2 (inside) transitions to g= 0
(outside), so that g′ < 0. Equation (16) predicts a stable steady
state with θ= ϕ+ π/2, i.e., tangential alignment, again as
observed. Qualitatively, the origins of this effect is easy to
understand. The presence and absence of growth-generated forces
inside and outside the colony respectively, Fig. 5b, means that a
cell not aligned tangentially will be rotated back into such
alignment, as previously suggested37.

Non-uniform active stress. In theories of number-conserving
active nematics, the active stress is taken to be

σ að Þ
αβ ¼ �aQαβ; ð17Þ

where a is a positive or negative constant for extensile or con-
tractile activity respectively6. It is tempting to model growing
bacterial colonies in the same way with a∝Λ.

To see why this does not work for a Hubble active nematic,
consider again a 1D colony in the y direction. Force balance, Eq.

v (y0 + 1L sin�)
2–

v (y0 – 1L sin�)
2–

v > 0

v = 0

a b

� �

Fig. 5 Growth-induced ordering. a Schematic illustration of a bacterium B in
the bulk of colony, with the surrounding bacteria orientated to the vertical
as exemplified by the dotted shapes. The growth-induced velocity gradients
in the surrounding bulk produce a torque on B, which rotates it into the
same orientation as its neighbours. b A bacterium at the boundary of the
colony experiences a steep velocity gradient of the opposite direction with
respect to the case in a: the associated cellular flow rotates B into a
tangential orientation to the boundary
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(11), and mass conservation, Eq. (1), give

∂yyσ
ðaÞ
yy ¼ γ̂Λ: 1D½ � ð18Þ

For a 1D colony occupying 0 < y < y0 with spatially-constant Λ
(cf. Fig. 2a), Eq. (18) solves to14,15

σyy ¼ �P0 � 1
2Λγ̂ y20 � y2

	 

; ð19Þ

where P0 is the pressure exerted by the agarose at the boundaries.
The active stress field is non-uniform, increasing from the
periphery to the centre by Δσ � γ̂ΛR2 for a colony of dimension
2R. Numerically, this inhomogeneity can be substantial (our
estimated parameters give Δσ ~ 3 × 103 Pa for 2R ~ lσ). Physically,
such non-uniformity necessarily arises because peripheral cells
have to push at fewer cells sliding frictionally against the substrate
as the colony expands17.

The coupling of mechanics and nematic order in 2D gives rise
to new complexity. Inspired by Eq. (19), we may expect

σαβ ¼ �pðrÞδαβ � aðrÞQαβ: 2D½ � ð20Þ

A simple constitutive relation consistent with a dry compressible
active nematic is p=G max[(ρ/ρ0− 1), 0], and a= a0ρ, where ρ0
is the close packed density of undeformed cells. The equations
resulting from substituting this or other constitutive relations into
the laws of nematohydrodynamics are only tractable by numerical
simulations (see below). Nevertheless, the same physics we
appealed to in the 1D case will still give rise to a stress field
increasing from periphery to centre.

In a sufficiently small colony, 2R � lσ , these non-uniform
growth-induced stresses relax rapidly through the periphery into
the agarose, so that the flow is effectively incompressible, Fig. 2b.
As 2R→ lσ, however, stress relaxation becomes progressively
more incomplete, eventually leading to the buckling when the
colony is not confined to 2 dimensions (as is the case in our
experiments).

Active field theory simulations. To complete our theoretical
description, we now report results from direct numerical simu-
lations of a full model comprising Eqs. (1) and (11), together with
the following evolution equation for the liquid crystal order

parameter,

∂Qαβ

∂t
þ vγ∂γQαβ ¼ K̂∂γ∂γQαβ þ αðρÞQαβ

�βQ2
γδQαβ þ ξ uαβ � uγγ

δαβ
2

� �
þωαγQγβ � Qαγωγβ:

ð21Þ

In Eq. (21), we denoted K̂ ¼ K=γ1, with γ1 the rotational
viscosity of the liquid crystalline colony, whereas uαβ= (∂βvα
+ ∂αvβ)/2 and ωαβ= (∂βvα− ∂αvβ)/2. We also introduced α(ρ)=
α0(ρ− ρc), with α0 > 0 and ρc≡ ρ0/2 to describe liquid crystalline
ordering à-la-Onsager for sufficiently large bacterial density—the
term proportional to β is a saturation term, and we choose β=
α0ρ0/2 which yields 2S2= 1 in the middle of the colony. The
active stress in Eq. (11) is given by Eq. (20), with p=Gmax[(ρ/ρ0
− 1), 0], and a= a0ρ. For other parameter values, see Fig. 6; for
more details, see Methods and Supplementary Figs. 8 and 9.

Our simulations confirm all qualitative predictions of our theory,
and also compares favourably with experiments, see Fig. 6 and
Supplementary Fig. 8. First, as expected the radial velocity increases
linearly with distance to the colony centre—interestingly, our
simulations also typically show a slighly smaller ‘Hubble constant’
than expected, as in experiments (H <Λ/2, Figs. 2b and 6a). Second,
simulations reproduce the tangential alignment at the colony
boundaries (Fig. 6b and Supplementary Fig. 8). Third, when the
active coefficient a0 is sufficiently large, the colony breaks up into
domains of well-defined lengthscale, la, separated by defects (Fig. 6b
and Supplementary Fig. 8). Fourth, the total topological charge
increases near-linearly with colony area (proportional to number of
bacteria, see Fig. 6c). Finally, the positive topological charges
(mainly associated with +1/2 defects) are more peripheral than the
negative ones (mainly associated with −1/2 defects, Fig. 6d).

An analysis of our data suggest that there is a substantial range

of a0 for which la � a�1=2
0 (Supplementary Fig. 9). This is in line

with simulations of turbulent-like dynamics in number-
conserving dry active nematics35. Comparison with the latter
study and with the results of19, together with dimensional
analysis, suggest that for large a0 a possible functional form for

the domain size may be la �
ffiffiffiffi
K̂ γ̂
a0

q ffiffiffiffî
K
α0

q
, which is modulated by the
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defect size
ffiffiffiffî
K
α0

q
. A more systematic study would be required to

confirm this however. As a0 decreases, the domain size increases
until for sufficiently small a0 the bending instability is no longer
active and the colony resembles a nematic tactoidal droplet with
tangential anchoring (Supplementary Fig. 8).

Discussion
We have described the structural evolution of a growing 2D
colony of rod-shaped E. coli until the point it buckles into the
third dimension using the language of liquid crystal physics. Our
system displays features that appear similar to those that are
familiar from number-conserving active extensile nematics, such
as tangential anchoring at the periphery, Fig. 3a, and a pro-
liferation of ± 1

2 defects, Fig. 4. However, the underlying physical
mechanisms differ. Thus, e.g., while invaginations from the
boundary is a dominant mechanism of defect generation in a
number-conserving active nematic embedded in an isotropic
medium, we find that defects proliferated from the bulk of our
colonies. The expansive growth of cells in these colonies drives
new physics; we have named this system a ‘Hubble’ active
nematic.

We have also proposed a continuum theory of such systems.
Within this framework, the physics is controlled by two length
scales: la associated with the generic bending instability in dry
active nematics, and lσ associated with the diffusive propagation
of growth stress. For a colony with size 2R � lσ , growth stress
relaxes rapidly, and the cell flow is effectively incompressible. The
colony breaks up into domains of size ~la. A colony with 2R→ lσ
will accumulate stress and eventually buckle at the centre, where
the accumulated stress is highest. In all cases, we expect tangential
alignment at the periphery. All these predictions are in agreement
with our experimental observations, and are confirmed by com-
puter simulations of this model. More quantitatively, such
simulations further reproduce our experimental finding that the
total number of defects increases approximately linearly with
colony area, and that positive charge defects are more peripheral
than negative charge ones.

To enable even more quantitative comparison between
experiments and simulations of our growing active nematic sys-
tem, progress needs to be made on a number of experimental
fronts. Perhaps most importantly, the nature of the friction
between growing cells and their substrate, i.e. the physics
underlying our parameter γ̂, needs to be elucidated. There is also
a need to understand the mechanics of bacterial growth into bulk
agarose. It is known that the elastic properties of the surroundings
have a complex effect on, e.g., the point at which a 2D colony
buckles into the third dimension17. The detailed mechanisms for
these effects are far from understood. The effect of bacterial
growth rate also needs to be elucidated. Finally, it will be fasci-
nating to develop methods for studying the growth of bacterial
colonies in 3D38, for which there are very few data at present39.
Arriving at a predictive understanding of bacterial colony growth
will constitute an advance not only in fundamental active matter
physics, but also in practical fields such as food safety40.

Methods
Experimental methods. Overnight cultures of E. coli K-12 strain MG1655 were
grown in M9 medium at 37 °C and shaken at 200 rpm, harvested in exponential
phase, and diluted 100-fold (to an optical density of ≈0.2–0.3 at 600 nm). A
number of 1.5–2 μL droplets were then inoculated onto a thin layer of 2% M9
agarose filling a polymeric frame (Thermo Scientific Gene Frame AB-0630,
≈0.25 mm thick) stuck onto a standard microscope slide, and a cover slip was
sealed on top. Growing colonies were observed at 37 °C in phase contrast mode
using a Nikon Eclipse E-800 microscope with a Nikon Plan Apo λ 100×/1.45 Ph3
Oil objective. Images were taken (Q-imaging Retiga 2000R camera) at regular
intervals (typically 1 min). Using a published protocol41 we obtained the time-
dependent centre of mass coordinates ri(t), length Li(t), and orientational unit

vector νi(t) of each cell i. The cell diameter, W ≈ 0.9 μm, varies little between cells
or during growth. The length varies from ~2 μm just after division to ~4 μm just
before. We report data from 32 colonies.

Image recording and processing. A schematic of the experimental set-up is
shown in Supplementary Fig. 1a. For observations under phase contrast illumi-
nation intensity was minimised and exposure time varied from 20 to 100 ms. In a
separate experiment, we performed confocal microscopy using fluorescent bacterial
cells and agarose. For this case, the dye used for agarose staining was rhodamine B
(0.02% w/v) (red channel); this was used to enhance contrast with the GFP-labelled
cells (green channel) and the glass that is the black area in the images. Rhodamine
B preferentially concentrates at the agarose surface. Sideways reconstruction of an
image stack, Supplementary Fig. 1b, shows that cells are embedded just within the
agarose beneath the glass side.

Analysis of phase contrast images was performed using ImageJ and Matlab.
Initially, frames were cropped to the actual area covered by the colonies at the
final stage (the field of view achievable is at least three times larger). The frames
were then adjusted in brightness and contrast, and corrected for inevitable drifts
(a few) in the agarose pad, especially toward the beginning of the imaging
period. The latter was due to the agarose taking ~10 min to cool to room
temperature, having been poured into the frame at its melting point. The shift
correction was performed using ImageJ (macro StackReg42). Finally, the frames
were segmented using the Matlab-based Schnitzcells software41 to extract the
positions, orientations and lengths of the individual cells. In order to extract
velocities, the trajectories were stitched together in MATLAB using the standard
Crocker and Grier code43.

Active field theory simulations. Numerical simulations of Eqs. (1), (11), and (21)
were performed by using finite difference methods to discretise Eqs. (1) and (21).
For reasons of numerical stability, we have set the growth rate Λ to 0 when the
density was locally larger than 2ρ0. Note also that in Eq. (21) we need v, rather than
ρv which is the natural variable in Eq. (11): to avoid problems arising from division
by a very small number we have set v= 0 when ρ was below a threshold (ρ0/2
worked well for our parameter set).

In wet active gels, the key control parameter to determine when active
turbulence sets in is aL2s

K , where a is the active stress parameter (in our case equal to
a0ρ), Ls is the system size, and K is the liquid crystalline elasticity6. Active
turbulence sets in when this control parameter exceeds a critical value: therefore an
infinite system always develops active turbulence. On the contrary, for dry active
fluids the turbulent regime sets in when a0ρ

γ̂K̂
exceeds a threshold35. This holds for

our growing system as well, and we find the threshold is ~2, as can be shown in
Supplementary Figs. 8, 9, where we plot the density of points with low orientational
order. This plot also shows that the density of low order regions, which we assume
should scale as l�2

a scales linearly with a0 close to the transition to active turbulence,
corresponding to a scaling of la ~ (a0+ C)−1/2 in this regime (this is consistent with
the behaviour found in the ref. 35). More data are required to firmly prove this
scaling, as the range of a0 we investigated is relatively narrow.

The fact that in our experiments there are microdomains within our colonies
suggests we are in the regime where nematic order is disrupted and defects arise
(active turbulence). Therefore a suitable regime to describe experiments within our
active field theory requires a0ρ

γ̂K̂

 2.

Code availability. The Matlab codes used for the analysis and in-house code
written for active field theory simulations are available from the corresponding
author upon request.

Data availability
Data on bacterial colony growth are available from the corresponding author upon
request. The tracked colony data used in this manuscript are also available at https://dx.
doi.org/10.7488/ds/2444.
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