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Abstract. This paper shows how to use Lee, Jones and Ben Amram’s size-change princi-
ple to check correctness of arbitrary recursive definitions in an ML / Haskell like program-
ming language with inductive and coinductive types. The size-change principle is used
to check both termination and productivity, and the resulting principle is sound even if
inductive and coinductive types are arbitrarily nested. A prototype has been implemented
and gives a practical argument in favor of this principle.

This work relies on a characterization of least and greatest fixed points as sets of winning
strategies for parity games that was developed by L. Santocanale in his early work on
circular proofs. The proof of correctness of the criterion relies on an extension of the
language’s denotational semantics to a domain of untyped values with non-deterministic
sums.
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Introduction

Inductive types (also called algebraic datatypes) are a cornerstone of typed functional pro-
gramming: Haskell and Caml both rely heavily on them. One mismatch between the two
languages is that Haskell is lazy while Caml is strict. A definition1 like

val nats : nat -> nat

| nats n = n::(nats (n+1))

is valid but useless in Caml because the evaluation mechanism will loop trying to evaluate it
completely (call-by-value evaluation). In Haskell, because evaluation is lazy (call-by-need),
such a definition isn’t unfolded until strictly necessary and asking for its third element will
only unfold the definition three times. Naively, it seems that types in Caml correspond to
“least fixed points” while they correspond to “greatest fixed points” in Haskell.

The aim of this paper is to introduce a language, called chariot,2 which distinguishes
between least and greatest fixed points and where the user can nest them arbitrarily to define
new datatypes. To offer a familiar programming experience, definitions are not restricted
and any well-typed recursive definition is allowed. In particular, it is possible to write badly
behaved definitions like

val f : nat -> nat

| f 0 = 1

| f (n+1) = f(f n) -- f(1) => f(f(0)) => f(1) => ...

To guarantee that a definition is correct, two independent steps are necessary:

(1) Hindley-Milner type-checking [Mil78] to guarantee that evaluation doesn’t provoke run-
time errors,

(2) a totality test to check that the definition respects the fixed points polarities involved
in its type.

When no coinductive type is involved, totality amount to termination and this works is
a generalization of the termination checker previously developed by the author [Hyv14].
It is important to keep in mind that any definition that passes this test is guaranteed to
be correct but that some correct definitions are rejected.3 In a programming context, the
result of this second step can be ignored when the programmer (thinks she) knows better.
In a proof-assistant context however, it cannot be ignored as non total definitions lead to
inconsistencies, the most obvious example being

val magic_proof = magic_proof

1The examples are given using the syntax of chariot which is briefly described in sections 1.2 and 1.5.
They should nevertheless be readable by anyone with a modicum of experience in functional programming.

2A prototype implementation in Caml is available from https://github.com/phyver/chariot.
3The halting problem is, after all, undecidable [Tur36]!

https://github.com/phyver/chariot
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which is non-terminating but belongs to all types. There are subtler examples of definitions
that normalize to values but still lead to inconsistencies (c.f. example on page 13).

In Coq [The04], the productivity condition for coinductive definitions is ensured by a
strict syntactic condition (guardedness [Coq93]) similar to the condition that inductive def-
initions need to have one structurally decreasing argument. In Agda [Nor08], the user can
write arbitrary recursive definitions and the productivity condition is ensured by the termina-
tion checker. Agda’s checker extends the termination checker developed by A. Abel [AA02]
to deal with coinductive types, but while this is sound for simple types like streams, it is
known to be unsound for nested coinductive and inductive types [AD12]. Currently, Agda’s
checker is patched to deal with known counter examples like the one described in Section 1.5,
but no proof of correctness is available. This paper provides a first step toward a provably
correct totality checker.

Related Works.

Circular proofs. The main inspiration for this work comes from ideas developed by L. Santo-
canale in his work on circular proofs [San02c, San02a, San02b]. Circular proofs are defined
for a linear proof system and are interpreted in categories with products, coproducts and
enough initial algebras / terminal coalgebras.

The criterion developed in this paper uses a strong combinatorial principle (the size-
change principle) to check a sanity condition on a circular proof. This is strictly stronger
than the criterion L. Santocanale and G. Fortier used in their work, which corresponds to
the syntactical structurally decreasing / guardedness condition on recursive definitions.

While circular proofs were a primary inspiration, this work cannot be reduced to a
circular proof system. The main problem is that all existing circular proof systems are
linear and do not have a simple cut-elimination procedure, i.e. an evaluation mechanism.
Cuts and exponentials would be needed to interpret the full chariot language and while
cuts can be added [FS14, For14], adding exponentials looks difficult and hasn’t been done.

More recent works in circular proof theory replace L. Santocanale’s criterion by a much
stronger combinatorial condition [Dou17b, Dou17a]. It involves checking that some infinite
words are recognized by a parity automata, which is a decidable problem. The presence
of parity automata points to a relation between this work and the present paper, but the
different contexts make it all but obvious.

Size-change principle. The main tool used for checking totality is the size-change principle
(SCP) from C. S. Lee, N. D. Jones and A. M. Ben-Amram [LJBA01]. The problem of totality
is however subtler than simple termination. While the principle used to check termination
of ML-like recursive definitions [Hyv14] was inherently untyped, totality checking needs to
be somewhat type aware. For example, in chariot, records are lazy and are used to define
coinductive types. The definition

val inf = Node { Left = inf; Right = inf } -- infinite binary tree

yields an infinite binary tree and depending on the types of Node, Fst and Snd, the definition
may be correct or incorrect (page 13)!
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Charity. The closest ancestor to chariot is the language charity4 [CF92, Coc96], devel-
oped by R. Cockett and T. Fukushima. It lets the programmer define types with arbitrary
nesting of induction and coinduction. Values in these types are defined using categorical
principles.

• Inductive types are initial algebras: defining a function from an inductive type amounts
to defining an algebra for the corresponding operator.

• Coinductive types are terminal coalgebras: defining a function to an inductive type
amount to defining a coalgebra for the corresponding operator.

It means that recursive functions can only be defined via eliminators. By construction, they
are either “trivially” structurally decreasing on their argument, or “trivially” guarded. The
advantage is that all functions are total by construction and the disadvantage is that the
language is not Turing complete.

Guarded recursion. Another approach to checking correctness of recursive definitions is
based on “guarded recursion”, initiated by H. Nakano [Nak00] and later extended in several
directions [CBGB16, Gua18]. In this approach, a new modality “later”, written “⊲”, is
introduced. The type “⊲T” gives a syntactical way to talk about terms that “will later, after
some computation, have type T”. This work is rather successful and has been extended to
very expressive type systems. The drawbacks are that this requires a non-standard type
theory with a not quite standard denotational semantics (topos of trees). Moreover, it
makes programming more difficult as it introduces new constructors for types and terms.
Finally, these works only consider greatest fixed points (as in Haskell) and are thus of limited
interest for systems like Agda or Coq.

Sized types. This approach extends type theory with a notion of “size” that annotate types.
It has been successful and is implemented in Agda [Abe10, Abe12]. It is possible to specify
that the map function on list has type ∀n, listn(T ) → listn(T ), where listn(T ) is the
type of lists with n elements of type T . These extra parameters give information about
recursive functions and make it easier to check termination. A drawback is that functions
on sized-types must take extra size parameters. This complexity is balanced by the fact that
most of them can be inferred automatically and are thus mostly the libraries’ implementors
job: in many cases, sizes are invisible to the casual user. Note however that sizes only
help showing termination and productivity. Developing a totality checker is orthogonal to
designing an appropriate notion of size, and the totality checker described in this paper can
probably work hand in hand with standard size notions.

Fixed points in game semantics. An important tool in this paper is the notion of parity game.
P. Clairambault [Cla13] explored a category of games enriched with winning conditions for
infinite plays. The way the winning condition is defined for least and greatest fixed points
is reminiscent of L. Santocanale’s work on circular proofs and the corresponding category
is cartesian closed. Because this work is done in a more complex setting and aims for
generality, it seems difficult to extract a practical test for totality from it. The present
paper aims for specificity and practicality by devising a totality test for the usual semantics
of recursion.

4By the way, the name chariot was chosen as a reminder of this genealogy.
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SubML. C. Raffalli and R. Lepigre used the size-change principle to check correctness of
recursive definitions in the language SubML [LR18]. Their approach uses a powerful but non-
standard type theory with many features: subtyping, polymorphism, sized-types, control
operators, some kind of dependent types, etc. On the downside, it makes their type theory
more difficult to compare with other approaches. Note that like in Agda or chariot, they
do allow arbitrary definitions that are checked by an incomplete totality checker. The
similarity of the approach isn’t surprising considering previous collaborations between the
authors. One interesting point of their work is that the size-change termination is only used
to check that some object (a proof tree) is well-founded: even coinductive types are justified
with well-founded proofs.

Nax. Another programming language with nested inductive / coinductive types is the Nax
language [Ahn14], based on so called “Mendler style recursion” [Men91]. One key difference
is that the Nax language is very permissive on the definitions of types (it is for example
possible to define fixed points for non positive type operators) and rather restrictive on the
definition of values: they are defined using various combinators similar (but stronger than)
to the way values are defined in charity, and usual recursive definitions are not allowed.
Since no implementation of Nax is available, it is however difficult to experiment with it.

Plan of the Paper. We start by introducing the language chariot and its denotational
semantics in Section 1. We assume the reader is familiar with functional programming,
recursive definitions and their semantics, Hindley-Milner type checking, algebraic datatypes,
pattern matching, etc. The notion of totality is also given there. Briefly, it generalizes
termination in a way that accounts for inductive and coinductive types. We then describe,
in Section 2, a combinatorial approach to totality that comes from L. Santocanale’s work on
circular proofs. This reduces checking totality of a definition to checking that the definitions
gives a winning strategy in a parity game associated to the type of the definition. Section 3
gives an interpretation of recursive definitions that is mathematically better behaved and
easier to work with than the lists of clauses used in chariot. Section 4 introduces the
notion of call-graph of a recursive definition and shows it reflects totality. The notion of
approximations, necessary for the size-change principle is also defined there. Finally, this
section applies the size-change principle to totality checking and briefly describes how to
implement it.

1. The Language and its Semantics

1.1. Values. Given a recursive definition, we are interested in the “healthiness” of its se-
mantics. Such considerations take place in the realm of semantics values, and while every
reader will have her favorite programming language and reduction strategy, those are mostly
irrelevant to the rest of the paper.

Any finite list of recursive definitions only involves a finite number of types, with a
finite number of constructors and destructors. We thus fix, once and for all, a finite set of
constructor and destructor names. Because we deal with semantically infinite values, the
next definition is coinductive.
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Definition 1.1. The set of values with leaves in X1,. . . , Xn, written V(X1, . . . ,Xn) is
defined coinductively by the grammar

v ::= ⊥ | x | C v | {D1 = v1; . . . ; Dk = vk}

where

• each x is in one of the Xi,
• each C belongs to a finite set of constructors,
• each Di belongs to a finite set of destructors,
• the order of fields inside records is unimportant,
• k can be 0.

To make the theory slightly less verbose, constructors always have a single argument.
Expressivity doesn’t suffer because we can always use a tuple {Fst = t1; Snd = t2} as argu-
ment. Of course, the implementation of chariot allows constructors of arbitrary arity.

Definition 1.2. If the Xi are ordered sets, the order on V(X1, . . . ,Xn) is generated by

(1) ⊥ ≤ v for all values v,
(2) if x ≤ x′ in Xi, then x ≤ x′ in V(X1, . . . ,Xn),
(3) “≤” is contextual: if u ≤ v then C[x := u] ≤ C[x := v] for any value C, where

substitution is defined in the obvious way.

1.2. Type Definitions. The approach described in this paper is first-order: we are only
interested in the way values in datatypes are constructed and destructed. Higher order
parameters are allowed in the implementation but they are ignored by the totality checker.
The examples in the paper will use such higher order parameters but for simplicity’s sake,
they are not formalized.5

Just like in charity, types in chariot come in two flavors: those corresponding to sum
types (i.e. colimits) and those corresponding to product types (i.e. limits). The syntax is
itself similar to that of charity:

• a data comes with a list of constructors whose codomain is the type being defined,
• a codata comes with a list of destructors whose domain is the type being defined.

Definition 1.3. Datatypes are introduced by the keywords “data” or “codata” and may
have parameters. Types parameters are written with a quote as in Caml. The syntax is:

data new type(’x, ...) where
| C1 : T1 -> new type(’x, ...)
...

| Ck : Tk -> new type(’x, ...)

codata new type(’x, ...) where
| D1 : new type(’x, ...) -> T1

...

| Dk : new type(’x, ...) -> Tk

5Note that can’t formally ignore higher order parameters as they can hide some recursive calls:

val app f x = f x --non recursive
val g x = app g x --non terminating

The implementation first checks that all recursive functions are fully applied. If that is not the case, the
checker aborts and gives a negative answer.
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where each Ti is built from earlier types, parameters and new type(’x, ...). Note that
type definitions are uniform in that the parameters of new type are the same everywhere
in the definition.

Mutually recursive types are possible, but they need to be of the same polarity (all data
or all codata) and all of them needs to have exactly the same parameters “(’x, ...)”.

Here are some examples:

codata unit where -- unit type: no destructor

codata prod(’x,’y) where Fst : prod(’x,’y) -> ’x -- pairs
| Snd : prod(’x,’y) -> ’y

data nat where Zero : unit -> nat -- unary natural numbers
| Succ : nat -> nat

data list(’x) where Nil : unit -> list(’x) -- finite lists
| Cons : prod(’x, list(’x)) -> list(’x)

codata stream(’x) where Head : stream(’x) -> ’x -- infinite streams
| Tail : stream(’x) -> stream(’x)

The examples given in the paper extend this syntax by allowing n-ary constructors. For
example, Zero will have type nat (instead of unit -> nat) and Cons will be uncurried and
have type ’x -> list(’x) -> list(’x) (instead of prod(’x, list(’x)) -> list(’x)).

Because destructors act as projections, it is useful to think about elements of a co-
datatype as records. This is reflected in the syntax of terms, and the following defines the
stream with infinitely many 0s.

val zeros : stream(nat)

| zeros = { Head = Zero ; Tail = zeros }

Codata are going to be interpreted as coinductive types, while data are going to be inductive.
The denotational semantics will reflect that, and in order to have a sound operational
semantics, codata should not be fully evaluated. The easiest way to ensure that is to stop
evaluation on records: evaluating “zeros” will give “{Head = ???; Tail = ???}” where
the “???” are not evaluated. The copattern view [APTS13] is natural here. The definition
of zeros using copatterns (allowed in chariot) looks like

val zeros : stream(nat)

| zeros.Head = Zero

| zeros.Tail = zeros

We can interpret the clauses as a terminating rewriting system. In particular, the term
zeros doesn’t reduce by itself. Because this paper is only interested in the denotational
semantics of definitions, the details of the evaluation mechanism are fortunately irrelevant.

We will use the following conventions:

• outside of actual type definitions (given using chariot’s syntax), type parameters will be
written without quote: x, x1, . . .

• an unknown datatype will be called θµ(x1, . . . , xk) and an unknown codatatype will be
called θν(x1, . . . , xk),

• an unknown type of unspecified polarity will be called θ(x1, . . . , xk).
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1.3. Semantics in Domains. Values are naturally interpreted in Scott domains, but our
main construction isn’t quite a Scott domain. We will thus use the weaker notion of algebraic
DCPO. It is an order with the following properties:

• every directed set has a least upper bound (DCPO),
• it has a basis of compact elements (algebraic).

What is missing to have a Scott domain is that the order is bounded complete, i.e. that
finite bounded subsets have a least upper bound. Scott domains have the advantage of
forming a cartesian closed category, which is not the case of algebraic DCPOs. We use the
notation [D → E ] for the Scott domain of continuous functions from D to E .

There is a natural interpretation of types in the category of Scott-domains / where
morphisms are continuous functions that are not required to preserve the least element.
The category theory aspect is not relevant because all the types are subdomains of V. The
following can be proved directly but is also a direct consequence of a general fact about
orders and their ideal completion.

Lemma 1.4. If the Xis are Scott-domains, then
(
V(X1, . . . ,Xn),≤

)
is a Scott-domain.

Type expressions with parameters are generated by the grammar

T ::= X | x | θµ(T1, . . . , Tk) | θν(T1, . . . , Tk)

where X is any domain (or set, depending on the context) called a parameter, and θµ is
the name of a datatype of arity k and θν is the name of a codatatype of arity k. A type is
closed if it doesn’t contain variables. It may contains parameters though.

Definition 1.5. The interpretation of a closed type T
(
X

)
with domain parameters is

defined coinductively from the following typing rules:

(1)
⊥ : T

for any type T ,

(2)
u ∈ X

u : X
for any parameter X,

(3)
u : T [σ]

Cu : θµ(σ)
where C : T → θµ(σ) is a constructor of θµ,

(4)
u1 : T1[σ] . . . uk : Tk[σ]

{D1 = u1; . . . ; Dk = uk} : θν(σ)
where Di : θν(σ) → Ti, i = 1, . . . , k are all the

destructors for type θν.

In the third and fourth rules, σ denotes a substitution [x1 := T1, . . . , xn := Tn] and T [σ]
denotes the type T where each variable xi has been replaced by Ti.

If T is a type with free variables x1, . . . , xn, we write JT K
(
X

)
for the interpretation

of T [σ] where σ is the substitution [x1 := X1, . . . , xn := Xn].

All the ⊥ coming from the parameters are identified. There are thus several ways to prove
that ⊥ belongs to the interpretation of a type: either with rule (1) or rules (2). The following
is easily proved by induction on the type expression T .

Proposition 1.6. Let X1,. . . , Xn be domains, if T is a type then
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(1) with the order inherited from the Xis (Definition 1.2), JT K (X1, . . . ,Xn) is a domain,
(2) X1, . . . ,Xn 7→ JT K (X1, . . . ,Xn) is functorial.
(3) if T = θµ(x1, . . . , xn) is a datatype with constructors Ci : Ti → T , we have

JT K
(
X

)
=

{
Ciui | i = 1, . . . , n and ui ∈ JTiK

}
∪ {⊥}

∼=
(

JT1K
(
X

)
+ · · ·+ JTkK

(
X

))
⊥

(4) if T = θν(x1, . . . , xn) is a codatatype with destructors Di : Ti → T , we have

JT K
(
X

)
=

{
{ . . . ; Di = ui; . . . } | i = 1, . . . , n and ui ∈ JTiK

}
∪ {⊥}

∼=
(

JT1K
(
X

)
× · · · × JTkK

(
X

))
⊥

The operations + and × are the set theoretic operations (disjoint union and cartesian
product), and S⊥ is the usual notation for S ∪{⊥}. This shows that the semantics of types
are fixed points of standard operators. For example, JnatK is the domain of “lazy natural
numbers”:

⊥

Succ ⊥

Succ(Succ ⊥)

.

..
Succ(Succ Zero)

Succ Zero

Zero

and the following are different elements of Jstream(nat)K:
• ⊥,
• {Head = Succ⊥; Tail = ⊥}
• {Head = Zero; Tail = {Head = Zero; Tail = {Head = Zero; . . . }}}

1.4. Semantics in Domains with Totality. At this stage, there is no distinction be-
tween greatest and least fixed point: the functors defined by types are algebraically com-
pact [Bar92], i.e. their initial algebras and terminal coalgebras are isomorphic. For example,
Succ(Succ(Succ(. . . ))) is an element of JnatK as the limit of the chain ⊥ ≤ Succ⊥ ≤
Succ(Succ⊥) ≤ · · · . In order to distinguish between inductive and coinductive types, we
add a notion of totality6 to the domains.

Definition 1.7.

(1) A domain with totality (D, |D|) is a domain D together with a subset |D| ⊆ D.
(2) An element of D is total when it belongs to |D|.
(3) A function f from (D, |D|) to (E, |E|) is a function from D to E. It is total if f(|D|) ⊆

|E|, i.e. if it sends total elements to total elements.
(4) The category Tot has domains with totality as objects and total continuous functions

as morphisms.

To interpret (co)datatypes inside the category Tot, it is enough to describe the associ-
ated totality predicate. The following definition corresponds to the “natural” interpretation
of inductive / coinductive types in the category of sets.

6Intrinsic notions of totality exist [Ber93] but are seemingly unrelated to what is considered below.
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Definition 1.8. If T is a type whose parameters are domains with totality, we define |T |
by induction

• if T = X then |T | = |X|

• if T = θµ(T1, . . . , Tn) is a datatype, then |T | = µX.θ̂µ(X, |T1|, . . . , |Tn|) (least fixed point),

• if T = θν(T1, . . . , Tn) is a codatatype, then |T | = νX.θ̂ν(X, |T1|, . . . , |Tn|) (greatest fixed
point),

where

(1) if T = θµ(x1, . . . , xn) is a datatype with constructors Ci : Ti → T , θ̂µ is the operator

X,X1, . . . ,Xn 7→
⋃

i=1,...,k

{
Ciu

∣∣∣ u ∈
∣∣Ti[σ]

∣∣
}

(2) if T = θν(x1, . . . , xn) is a codatatype with destructors Di : T → Ti, θ̂ν is the operator

X,X1, . . . ,Xn 7→
{
{D1 = u1; . . . ; Dk = uk}

∣∣∣ each ui ∈
∣∣Ti[σ]

∣∣
}

In both cases, σ is the substitution [T := X, x1 := X1, . . . , xn := Xn].

Because these operators act on subsets of the set of all values and are monotonic, the
least and greatest fixed points exist by the Knaster-Tarski theorem. It is not difficult to see
that each element of |T | is in JT K and since no element of |T | contains ⊥, |T | contains only
maximal element of JT K:
Lemma 1.9. If T is a type with domain parameters,

(
JT K , |T |

)
is a domain with totality.

Moreover, if T is closed, each t ∈ |T | is maximal in JT K.

1.5. Recursive Definitions. Like in Haskell, recursive definitions are given by lists of
clauses. Here are two examples: the Ackermann function (using some syntactic sugar for
the constructors Zero and Succ)

val ack 0 n = n+1

| ack (m+1) 0 = ack m 1

| ack (m+1) (n+1) = ack m (ack (m+1) n)

and the map function on streams:7

val map : (’a -> ’b) -> stream(’a) -> stream(’b)

| map f { Head = x ; Tail = s } = { Head = f x ; Tail = map f s }

Definition 1.10. A recursive definition is introduced by the keyword val and consists of
a finite list of clauses of the form

| f p1 ... pn = u

where

• f is one of the function names being mutually defined,
• each pi is a finite pattern

p ::= xi | C p | {D1 = p1; . . . ; Dk = pk}

where each xi is a variable name,

7This definition isn’t strictly speaking first order as it take a function as argument. We will ignore such
arguments and they can be seen as free parameters.
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• and u is a finite term

u ::= xi | C u | {D1 = u1; . . . ; Dk = uk} | f u1 . . . uk

where k can be equal to 0, each xi is a variable name, and each f is function name
(recursive or otherwise).

Moreover, for any clause, the patterns p1, . . . , pk are linear : variables can only appear at
most once in the pis,

We assume the definitions are validated using standard Hindley-Milner type inference
/ type checking . This includes in particular checking that clauses of the definition cover all
values of the appropriate type, and that no record is missing any field. Those steps are not
described here [PJ87].

Standard semantics of a recursive definition. Hindley-Milner type checking guarantees that
each list of clauses for functions f1 : T1, . . . , fn : Tn (each Ti is a function type) gives rise
to an operator

Θstd
f1,...,fn

: JT1K × · · · × JTnK → JT1K × · · · × JTnK
where the semantics of types is extended with JT → T ′K =

[
JT K → JT ′K

]
. The semantics

of f1, . . . , fn is then defined as the fixed point of the operator Θstd
f1,...,fn

which exists by
Kleene theorem.

Because this will be central to the paper, let’s describe more precisely the standard
semantics of the definition in the simple case of a single recursive function f taking a single
argument. Given an environment ρ for functions other than f, the recursive definition
for f : A → B gives rise to an operator Θstd

ρ,f on [JAK → JBK] whose fixed point is the

semantics of f, written JfKρ : JAK → JBK. The operator Θstd
ρ,f is defined as follows.

Definition 1.11.

(1) Given a linear pattern p and a value p, the unifier [p := v] is the substitution defined
inductively with
• [y := v] = [y := v] where the RHS is the usual substitution of y by v,
• [Cp := Cv] = [p := v],
• [{D1 = p1; . . . ; Dn = pn} := {D1 = v1; . . . ; Dn = vn}] = [p1 := v1] ∪ · · · ∪ [pn := vn]
(note that because patterns are linear, the unifiers don’t overlap),

• in all other cases, the unifier is undefined. Those cases are:
– [Cp := C′v] with C 6= C′,
– [{ . . . } := { . . . }] when the 2 records have different sets of fields,
– [Cp := { . . . }] and [{ . . . } := Cv].

When the unifier [p := v] is defined, we say that the value v matches the pattern p.
(2) Given f : JAK → JBK and v ∈ JAK, Θstd

ρ,f(f)
(
v
)
can now be defined by:

• taking the first clause “f p = u” in the definition of f where p matches v,
• returning Ju[p := v]Kρ,f:=f .

An important property of Hindley-Milner type checking is that it ensures a definition
has a well defined semantics: there always is a matching clause. Because of that, the value
“⊥” corresponds only to non-termination, not to failure of the evaluation mechanism, like
projecting on a non-existing field. However, it doesn’t mean the definition is correct from
a denotational point of view. For that, we need to that it is total with respect to its type.
For example, the definition
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val all_nats : nat -> list(nat)

| all_nats n = Cons n (all_nats (n+1))

is well typed and sends elements of the domain JnatK to the domain Jlist(nat)K but the im-
age of Zero contains all the natural numbers. This is not total because totality for list(nat)
contains only the finite lists. Similarly, the definition

val last_stream : stream(nat) -> nat

| last_stream {Head=_; Tail=s} = last_stream s

sends any stream to ⊥, which is non total. The aim of this paper is to implement a test
that will detect such problems.

A note on projections. The syntax of definitions given in Definition 1.10 doesn’t allow
projecting a record on one of its field. This makes the theory somewhat simpler and doesn’t
change expressivity of the language because it is always possible to rewrite a projection
using one of the following ways:

• remove a projection on a previously defined function by introducing another function, as
in

| f x = ... (g u).Fst ...

being replaced by

| f x = ... projectFst (g u) ...

where projectFst is defined with

val projectFst { Fst = x; Snd = y } = x

• remove a projection on a variable by extending the pattern on the left, as in

| f x = ... x.Head ...

being replaced by

| f { Head = h; Tail = t } = ... h ...

• remove a projection on the result of a recursively defined function by splitting the function
into several mutually recursive functions, as in

| f : prod(A, B) -> prod(A, B)
| f p = ... (f u).Fst ...

being replaced by

| f1 : prod(A, B) -> A
| f1 x = ... (f1 u1) ...

| f2 : prod(A, B) -> B
...

The first point is the simplest and most general but shouldn’t be used to remove projections
on variables or recursive functions. The checker sees each external function as a black box
about which nothing is known. Introducing external functions in a recursive definition hides
information and makes totality checking much less powerful.

Of course, the implementation of chariot doesn’t enforce this restriction and the theory
can be modified accordingly.
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A subtle example. Here is a surprising example due to T. Altenkirch and N. A. Daniels-
son [AD12]: we define the inductive type

data stree where Node : stream(stree) -> stree

where the type of stream was defined on page 7. This type is similar to the usual type of
“Rose trees”, but with streams instead of lists. Because streams cannot be empty, there is
no way to build such a tree inductively: this type has no total value. Consider however the
following definitions:

val bad_s : stream(stree)

| bad_s = { Head = Node bad_s ; Tail = bad_s }

val bad_t : stree

| bad_t = Node bad_s

This is well typed and if evaluation is lazy, evaluation of bad t or any of its subterms
terminates. The semantics of bad t doesn’t contain ⊥ and unfolding the definition gives

Node

{Head=_; Tail=_}

Node

{Head=_; Tail=_}

Node

. . .

{Head=_; Tail=_}

. . . . . .

{Head=_; Tail=_}

Node

{Head=_; Tail=_}

. . . . . .

{Head=_; Tail=_}

Node

. . .

{Head=_; Tail=_}

. . . . . .

Such a term clearly leads to inconsistencies. For example, the following structurally decreas-
ing function doesn’t terminate when applied to bad t:

val lower_left : stree -> empty

| lower_left (Node { Head = t; Tail = s }) = f t

It is important to understand that lower left is a total function and that non termination
of lower left bad t is a result of bad t being non total.

2. Combinatorial Description of Totality

The set of total values for a given type can be rather complex when datatypes and co-
datatypes are interleaved. Consider the definition

val inf = Node { Left = inf; Right = inf }

It is not total with respect to the type definitions

codata pair(’x,’y) where Left : pair(’x,’y) -> ’x

| Right : pair(’x,’y) -> ’y

data tree where Node : pair(tree, tree) -> tree -- well-founded binary trees
| Leaf : unit -> tree

but it is total with respect to the type definitions

data box(’x) where Node : ’x -> box(’x)

| Leaf : unit -> tree

codata tree where Left : tree -> box(tree) -- non-well founded binary trees
| Right : tree -> box(tree)
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In this case, the value inf is of type box(tree). Fortunately, there is a close relationship
between set theoretic least and greatest fixed points and winning strategies for parity games.

2.1. Parity Games. Parity games are a two players games played on a finite transition
system where each node is labeled by a natural number called its priority. When the node
has odd priority, Marie (or “µ”, or “player”) is required to play. When the node is even,8

Nicole (or “ν”, or “opponent”) is required to play. A move is simply a choice of a transition
from the current node and the game continues from the new node. When Nicole (or Marie)
cannot move because there is no outgoing transition from the current node, she looses. In
case of infinite play, the winning condition is

(1) if the maximal node visited infinitely often is even, Marie wins,
(2) if the maximal node visited infinitely often is odd, Nicole wins.

We will call a priority principal if “it is maximal among the priorities appearing infinitely
often”. The winning condition can thus be rephrased as “Marie wins an infinite play if and
only if the principal priority of the play is even”.

In order to analyse types with parameters, we add special nodes called parameters to
the games. Those nodes have no outgoing transition, have priority ∞ and each of them
has an associated set X. On reaching them, Marie is required to choose an element of X
to finish the game. She wins if she can do it and looses if the set is empty. Here are three
examples of parity games:

2

1

0 l1

l2

l3

l4

2

1 1

0 l3

l2

l5

l1

l6

l4

2 2X∞

1

0

l l4
l5

l3l2

l1

Definition 2.1. Each position p in a parity game G with parameters X1, . . . , Xn defines a
set ||Gp|| depending on X1,. . . ,Xn [San02c]. This set valued function p 7→ ||Gp|| is defined
by induction on the maximal finite priority of G and the number of positions with this
priority:

• if all the positions are parameters, each position is interpreted by the corresponding
parameter ||GX || = X;

• otherwise, take p to be one of the positions of maximal priority and construct G/p with
parameters Y , X1, . . . , Xn as follows: it is identical to G, except that position p is replaced
by parameter Y and all its outgoing transitions are removed.9 Compute recursively the
interpretations (G/p)q, depending on Y , X1, . . .Xn and:
– if p had an odd priority, define{

||Gp|| = µY.
(
(G/p)q1 + · · ·+ (G/p)qk

)

||Gq|| = (G/p)q
[
Y := ||Gp||

]
when q 6= p

where p → q1, . . . p → qk are all the transitions out of p.

8Assigning odd to one player and even to the other is just a convention.
9This game is called the predecessor of G [San02c].
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– if p had an even priority, define{
||Gp|| = νY.

(
(G/p)q1 × · · · × (G/p)qk

)

||Gq|| = (G/p)q
[
Y := ||Gp||

]
when q 6= p

where p → q1, . . . p → qk are all the transitions out of p.

An important result is:

Proposition 2.2 (L. Santocanale [San02c]).

(1) For each position p of G, the operation X1, . . . ,Xn 7→ ||G(X1, . . . ,Xn)p|| is a functor
from Set

n to Set,
(2) there is a natural isomorphism ||Gp|| ∼= W(G)p where W(G)p is the set of winning

strategies for Marie in game G from position p.

2.2. Parity Games from Types. We can construct a parity game G from any type T in
such a way that |T | ∼= ||GT ||, for some distinguished position T in G.

Definition 2.3. If T is a type expression, possibly with parameters, the graph of T is
defined as the subgraph reachable from T in the following (infinite) transition system:

• nodes are type expressions, possibly with parameters,

• transitions are labeled by constructors and destructors: a transitions T1
t
−→ T2 is either a

destructor t of type T1 → T2 or a constructor t of type T2 → T1 (note the reversal).

Here is for example the graph of list(nat)

unit

list(nat) nat

prod(nat,list(nat))

Fst

Snd

Nil

Cons

Zero

Succ

The orientation of transitions means that

• on data nodes, a transition is a choice of constructor for the origin type,
• on codata nodes, a transition is a choice of field for a record for the origin type.

Because of that, Hindley-Milner type checking guarantees that a value of type T gives a
strategy for a game on the graph of T where Marie (the player) chooses constructors and
Nicole (the opponent) chooses destructors.

Lemma 2.4. The graph of T is finite.

This relies on the fact that recursive types are uniform: their parameters are constant in
their definition. It becomes false if we were to allow more general types like

data t(’x) where

| Empty : unit -> t(’x)

| Cons : prod(’x, t(t('x))) -> t(’x) -- !!! not uniform
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The graph of t(nat) would contain the following infinite chain:

t(nat) prod(nat,t(t(nat))) t(t(nat)) prod(t(nat),t(t(t(nat)))) ...

Cons Snd Cons Snd

Definition 2.5. We write T1 ⊑ T2 if T1 appears in T2. More precisely:

• T ⊑ X iff T = X ,
• T ⊑ θ(T1, . . . , Tn) if and only if T = θ(T1, . . . , Tn) or t ⊑ T1 or . . . or t ⊑ Tn.

Proof of Lemma 2.4. To each datatype / codatatype definition, we associate its “definition order”,
an integer giving its index in the list of all the type definitions. A (co)datatype may only use
parameters and “earlier” type names in its definition. Moreover, two types of the same order are
part of the same mutual definition. The order of a type is the order of its head type constructor.

Suppose that the graph of type T is infinite of minimal order. Since the graph of T has bounded
out-degree, König’s lemma implies it contains an infinite path ρ = T → T1 → T2 → · · · without
repeated vertex. For any n, there is some l > n such that Tl is of order at least κ. Otherwise, the
path Tn+1 → Tn+2 → · · · is infinite and contradicts the minimality of T .

By definition, all transitions in the graph of T are of the form θ(T ) → ∇ where ∇ is built using
the type parameters in T , the recursive types θ′(T ) from the current (co)inductive type definition,
and earlier types. There are thus three kinds of transitions.

(1) Transitions to a parameter θ(T ) → Ti. In this case, the target is a subexpression of the origin.
This is the case of Head : stream(nat)→ nat.

(2) Transitions θ(T ) → θ′(T ), i.e. transitions to a type in the same mutual definition, with the
same parameters. This kind of transitions can only be used a finite number of times because ρ
doesn’t contain repeated vertices. An example is Succ : nat→ nat.

(3) In all other cases, the transition is of the form θ(T ) → ∇, where ∇ is strictly earlier than θ.
This is for example the case of Cons : list(nat) → prod(nat, list(nat)) (recall that the
transition goes in the opposite direction).

The order can only strictly increase in case (1). In cases (3), the target may contain types with
order κ, but those may only come from within the parameter T . The only types of order κ reachable
from T (of order κ) are thus: subexpressions of some Tis. Since there are only finitely many of those,
the infinite path ρ necessarily contains a cycle! This is a contradiction.

Definition 2.6. If T is a type expression, possibly with parameters, a parity game for T is a parity
game GT on the graph of T satisfying

(1) each parameter of T is a parameter of GT ,
(2) if T0 is a datatype in the graph of T , its priority is odd,
(3) if T0 is a codatatype in the graph of T , its priority is even,
(4) if T1 ⊑ T2 then the priority of T1 is greater than the priority of T2.

Lemma 2.7. Each type has a parity game.

Proof. The relation ⊏ is a strict order and doesn’t contain cycles. Its restriction to the graph of T
can be linearized. This gives the relative priorities of the nodes and ensures condition (4) from the
definition. Starting from the least priorities (i.e. the larger types), we can now choose a priority odd
/ even compatible with this linearization.

We don’t actually need to linearize the graph and can instead chose a normalized parity game,
i.e. one that minimizes gaps in priorities. Here are the first two parity games from page 14, seen as
parity games for stream(nat) and list(nat). The priorities are written as an exponent and the
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parity can be seen in the shape (square or round) of nodes.

unit2

nat1

stream(nat)0

Head

Tail

Zero

Succ

unit2

list(nat)1 nat1

prod(nat,list(nat))0
Fst

Snd

Nil

Cons

Zero

Succ

The last example from page 14 corresponds to a coinductive version of Rose trees:

codata rtree(’x) where

| Root : rtree(’x) -> ’x

| Subtrees : rtree(’x) -> list(rtree(’x))

with parity game

rtree(X)2 unit2X∞

list(rtree(X))1

prod(rtree(X),list(rtree(X)))0

Root
Subtrees

Nil

ConsSnd

Fst

As the examples show, the priority of a type can be minimal (stream(nat)0), maximal (rtree(X)2)
or somewhere in between (list(nat)1) in its parity game.

Proposition 2.8. For any type T , if G is a parity game for T and if T0 is a node of G, we have a
natural isomorphism ||GT0

|| ∼= |T0|.

Proof. The proof follows from the following simple lemma by induction.

Lemma 2.9. If G is a parity game for type T , with parameters X ; and if T0 one of its maximal
nodes, then the predecessor game G/T0 is a parity game for type T where T0 as been replaced by its
semantics and is a new parameter.

This is a straightforward consequence of Definitions 1.8 and 2.1.
For example, the predecessor for the above parity game is

|rtree(X)|∞ unit2X∞

list(rtree(X))1

prod(rtree(X),list(rtree(X)))0

Nil

ConsSnd

Fst

Putting together Proposition 2.8 and Proposition 2.2, we get
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Corollary 2.10. If T is a type and G a parity game for T , we have W(G)T ∼= |T |. In particular,
v ∈ JT K is total iff every branch of v has even principal priority.10

2.3. Forgetting Types. A consequence of the previous section is that checking totality doesn’t
really need types: it only needs priorities. We can annotate each occurrence of constructor / de-
structor in a definition with its priority (taken from the type’s parity game). We thus refine the
notion of value from the previous section by adding priorities on constructor and destructors.

Definition 2.11. The set of values with leaves in X1,. . . , Xn, written V(X1, . . . , Xn) is defined
coinductively by the grammar

v ::= ⊥ | x | Cp v | {D1 = v1; . . . ; Dk = vk}
p

where

• each x is in one of the Xi,
• each priority p belong to a finite set of natural numbers,
• each C belongs to a finite set of constructors, and their priority is odd,
• each Di belongs to a finite set of destructors, and their priority is even,
• k can be 0.

Corollary 2.10 gives an intrinsic notion of totality on V .

Definition 2.12. Totality for V is defined as v ∈ |V| iff and only if every branch of v has even
principal priority.

Priorities are only used while checking totality. They are never shown to the user and are
inferred automatically during Hindley-Milner type checking:

• each instance of a constructor / destructor is annotated by its type during type checking,
• all the types appearing in the definitions are gathered (and completed) to a parity game,
• each constructor / destructor is then associated with the priority of its type,
• the type can be forgotten, and only its priority remains.

3. Non-Deterministic Semantics for Definitions

Several steps will be necessary before get a totality test that is computationaly interesting.

(1) We first extend the domain of values with non-deterministic sums.
(2) This makes it possible to give a “uniform” domain interpretation of recursive definitions. This

interpretation both generalizes the standard semantics because it allows untyped definitions
with run-time errors, and simplifies it because the order of recursive clauses becomes irrelevant.
Simply put, a recursive definition is interpreted by the non-deterministic sum of its clauses.

(3) This interpretation is modified into a “syntactical” domain, replacing clauses by special terms
representing functions.

Up until then, one can argue that the interpretation is faithful to the original recursive definition.
The next step, called the call-graph of the definition, profoundly alters the semantics of the definition
but reflects totality. Thus, showing totality of the simplified interpretation using the size-change
principle will imply totality of the original definition. This will be described in the next section.

10Since any v ∈ JT K gives a strategy in the game of T , priorities for constructors can be looked up in the
game of T .
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3.1. Smyth Power Domain. Several notions from domain theory will be used but the prerequisites
are kept to a minimum. They can be found in any introductory text on domain theory [Plo83,
SHGL94, AJ94]. One particular result that is worth recalling is that any partial order can be
completed to an algebraic DCPO whose compact elements are exactly the elements of the original
partial order. This ideal completion formally adds limits of all directed sets. Moreover, if the starting
partial order is a sup semi-lattice, the resulting algebraic DCPO is a Scott-domain. Without the
prefix “Scott”, the term “domain” will be used as a synomym for “algebraic DCPO”.

We will extend the grammar of values with non-deterministic sums

v ::= ⊥ | Cp v | {D1 = v1; . . . ; Dk = vk}
p | v1 + v2

together with the order generated from:

• the order on V (Definition 1.2),
• commutativity, associativity and idempotence (v + v = v) of “+”,
• (multi)linearity of C and {D=_; . . . },
• u+ v ≤ u.

This gives rise to a preorder which we implicitly quotient by the corresponding equivalence. This
construction is known as the “Smyth power domain” [Smy78]. The ideal completion of the finite
terms generated by above grammar introduces all values of infinite depth (as in Definition 1.1) and
some infinite sums. Only sums that can be obtained as limits of finite sums of compact elements
are allowed. The following gives a concrete description of the corresponding order [Smy83, AJ94].

Proposition 3.1. The elements of the Smyth power domain on V are subsets of V. They are written
additively and satisfy

(1) Compact elements are finite sets of compact elements of V,
(2) Elements are finitely generated subsets V ⊆ V,
(3) U ≤ V iff V ↑ ⊆ U↑, (where V ↑ =

⋃
v∈V v↑ and v↑ = {u | v ≤ u})

(4) binary greatest lower bounds exist and are given by unions.

The resulting structure is a preorder rather than a partial order, but it is possible to take V ↑

as a representative for the equivalence class of V (if V is finitely generated, so is V ↑) in which case
the order is simply reverse inclusion. We can always add a greatest element to a domain. In our
case, it will be used to denote errors.

Lemma 3.2.

(1) For any domain D, D ∪ {⊤}, with ∀x, x ≤ ⊤, is a domain.
(2) If D is a Smyth power domain, the domain D ∪ {⊤} satisfies V + ⊤ = V for any element e.

Because of that, ⊤ can be identified a posteriori with the empty sum. In that case, we denote
the top element by 0.

Sketch of proof.

(1) Every directed subset of D ∪ {⊤} either contains ⊤, in which case its limit is ⊤, or it doesn’t
contain ⊤, in which case it has a limit in D. Proving bounded completeness is similar. It is also
easy to prove that ⊤ is a compact element and that the order is algebraic.

(2) It follows from point (3) of Proposition 3.1: we have
(
V ∪ {⊤}

)↑
= V ↑.

Definition 3.3.

(1) The domain of non deterministic values A is obtained from V by the Smyth power domain
construction and the addition of a greatest element 0.

(2) We extend the sum operation by allowing it to appear under constructors and quotienting by
(multi) linearity:
• C

(∑
i vi

)
=

∑
i Cvi

• { . . . ; D =
∑

i ti; . . .} =
∑

i { . . . ; D = ti; . . .}.
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(3) An element of A (a sum of elements of V) is total when all its summands are total (cf. Defini-
tion 2.12 and Lemma 1.9). In particular, 0, the empty sum, is total.

The following follows directly from Lemma 1.9 and Proposition 3.1. It implies in particular that
totality is compatible with equivalence: if T1 ≈ T2 and T1 is total, so is T2.

Lemma 3.4. If T1 ≤ T2 in A and if T1 is total, then so is T2.

Here is a summary of the important properties of A. They are a direct consequence of Propo-
sition 3.1.

Corollary 3.5. The compact elements of A are inductively generated by

v ::= ⊥ | Cp v | {D1 = v1; . . . ; Dk = vk}
p | 0 | v1 + v2

The order satisfies

(1) if u ≤ v in V then u ≤ v in A,
(2)

∑
i ui ≤

∑
j vj iff ∀j, ∃i, ui ≤ vj,

(3) + is commutative, associative and idempotent, with neutral element 0,
(4) u+ v is the greatest lower bound of u and v and 0 is the greatest element,
(5) constructors are (multi) linear.

3.2. Recursion and Fixed Points.

Simplifying assumption. In order to simplify notation, we will restrict the rest of the paper to the
case where the recursive definition contains a single function (no mutually recursive functions) with
a single argument.

A formula for fixed points. Whenever ϕ : D → D is a continuous function on a domain and b ∈ D
such that b ≤ ϕ(b), it has a least fixed point greater than b equal to (Kleene theorem)

fix(ϕ, b) =
⊔

↑

n≥0

ϕn(b)

In our case, we are interested in the fixed point of an operator from [A → A] to itself. Moreover, we
require that the functions satisfy f(0) = 0, i.e. that errors propagate. There is a least such function,
written Ω:

v 7→ Ω(v) =

{
0 if v = 0

⊥ otherwise

The fixed points we are computing are thus of the form

fix(ϕ,Ω) =
⊔

↑

n≥0

ϕn(Ω)

From now on, every fixed point is going to be of this form, and will simply be denoted by fix(ϕ).

We start by interpreting recursive definitions as the untyped sum of their clauses. When clauses
are disjoint, this is exactly the same as the standard interpretation but since overlapping clauses are
common, this usually introduces non-determinism. A notion of error appears naturally: it is used
when trying to apply a clause to a non-matching value.

Definition 3.6. Given a recursive definition for f and an environment ρ for all other functions,
define the non-deterministic semantics Θndt

ρ,f : [A → A] → [A → A] as follows. Suppose f : A → A,

• Θndt
ρ,f (f)

(∑
v
)
=

∑
Θndt

ρ,f (f)(v).
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• For v ∈ V , i.e. a value without sum, define (the unifier [p := v] was defined on page 11)

Θndt
ρ,f (f)(v) =

∑

f p = u

Ju[p := v]Kρ,f:=f

where the sum ranges over all clauses of the definition. Because v can be any value, u[p := v]
is extended to give 0 when [p := v] is undefined. In particular, if no clause matches v, we
have Θndt

ρ,f (f)(v) = 0.

To compare the standard semantics Θstd
ρ,f with the untyped, non deterministic semantics Θndt

ρ,f ,
we need to lift typed functions from an environment to untyped ones. This is done by making typed
functions:

• linear with respect to non-deterministic sums,
• return 0 when applied outside of their domain.

Lemma 3.7. For a definition of f of type A → B, and an environment ρ, let Θ̂std
ρ,f be the lifting of

the usual semantics of f.

(1) if ρ is a typed environment and f : JAK → JBK, we have Θstd
ρ,f(f) = Θ̂std

ρ̂,f
(f̂) ↾ JAK,

(2) if ρ is a typed environment, we have fix(Θstd
ρ,f) = fix

(
Θ̂std

ρ̂,f

)
↾ JAK,

(3) if ρ is a typed environment and if fix
(
Θ̂std

ρ̂,f

)
is total, then so is fix(Θstd

ρ,f).

Proof. The first point is straightforward as the lifting of a function gives the same (typed) result as
the unlifted function on typed values. The second point follows from Kleene’s formula for computing

the fixed point: each Θstd
ρ,f

n
(Ω) is equal to Θ̂std

ρ̂,f

n

(Ω) ↾ A, and their limits are thus equal. The third

point follows from the fact that outside their types, lifting take the value 0, which is total.
To compare the two semantics, we need an auxiliary lemma.

Lemma 3.8.

(1) if Ω ≤ θ(Ω) and θ ≤ φ in [A → A] → [A → A], then fix(θ) ≤ fix(φ) in A → A;
(2) if f ≤ g in A → A and f is total, then so is g.

Proof. The first point follows from Kleene’s formula for the fixed point, and the second point follows
from Lemma 3.4.

Lemma 3.9. Given a recursive definition for f and environment ρ satisfying ρ(g) ≥ Ω for all
function names g, we have

(1) Ω ≤ Θndt
ρ,f (Ω),

(2) Θndt
ρ,f (f) ≤ Θ̂std

ρ,f(f) for any function f : A → A,

(3) If fix(Θndt
ρ,f ) is total on [A → A] then fix

(
Θ̂std

ρ,f

)
is total on [A → A].

Proof. The first point is straightforward and the third point is a direct consequence of Lemma 3.8.

For the second point, the only places where Θ̂std
ρ,f and Θndt

ρ,f differ are

• for values of the appropriate type, Θ̂std
ρ,f only takes uses the first matching clause while Θndt

ρ,f takes
the sum over all clauses,

• for values outside the appropriate type, Θ̂std
ρ,f returns 0.

In both cases, Θ̂std
ρ,f is greater than Θndt

ρ,f .
As a corollary of the previous lemmas, we can forget about typing and the order of clauses in

a definition and simply try to show totality of Θndt
ρ,f .

Corollary 3.10. If fix(Θndt
ρ,f ) is total, then so is fix(Θstd

ρ,f).
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3.3. Operators.

3.3.1. Terms. The operators Θndt just defined belong to the big Scott-domain [A → A] → [A → A].
This section introduces a simple inductively generated language containing all the Θndt

ρ,f from the
previous section. The idea is to enrich the language of non-deterministic terms with projections “.D”
and partial match “C -”.

Definition 3.11. F0 is the set of terms inductively generated from

t ::= Cpt | {D1 = t1; . . . ; Dn = tn}
p |

Cp
-t | .Dpt |

Ω{t1, . . . tn} |

0 | x |

f t

where {t1, . . . , tn} is a finite set of terms, each x is a parameter name and each f belongs to a finite
set of function names. As previously, C and D come from a finite set of constructor and destructor
names, and their priorities come from a finite set of natural numbers. They are respectively odd
and even. We usually write Ω for Ω{}, Ωt for Ω{t} and Ω{T } for arbitrary finite sets.

Because of the interaction projections, partial matches, constructors and records, the order
on F0 is far from trivial.

Definition 3.12. The order ≤ on F0 is generated from

• contextuality: if C ∈ F0 is a context, then t1 ≤ t2 =⇒ C[y := t1] ≤ C[y := t2],
• 0 is the greatest element: ∀t ∈ F0, t ≤ 0,
• Ωt ≤ t,
• Ω{S} ≤ Ω{T } if S ⊆ T ,

together with the following inequalities (“u ≈ v” means “u ≤ v and v ≤ u”):

(∗)





(0) C0 ≈ 0

(0) C-0 ≈ 0

(0) .D0 ≈ 0

(0) { . . . ; D ≈ 0; . . .} ≈ 0

(0) f 0 ≈ 0

(1) C-Ct ≈ t
(1) .Di0{ . . . ; Di = ti; . . . } ≥ ti0
(2) C-{ . . . } ≈ 0

(2) .DCt ≈ 0

(2) .D{ . . . } ≈ 0 if the record has no field D
(2) C-C′t ≈ 0 if C 6= C′

(3) C-Ω{T } ≈ Ω{T }
(3) .DΩ{T } ≈ Ω{T }
(3) Ω{Ct, T } ≈ Ω{t, T }
(3) Ω{{D1 = t1; . . . ; Dk = tk}, T } ≈ Ω{t1, . . . , tk, T }
(3) Ω{0, T } ≈ 0

(3) Ω{x, T } ≈ Ω{T }
(3) Ω{Ω{S}, T } ≈ Ω{S, T }

Any t ∈ F0 different from 0 is called a simple term.

Group (0) of inequalities deals with propagation of errors and groups (1) and (2) correspond to
the intended operational semantics of the language. Even in the case of typed language like chariot,
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errors introduced in group (2) are necessary as splitting a definition into the sum of its clauses makes
it necessary to deal with applying a clause to a non-matching value. Group (3) is more complex
and will ultimately by justified by Definition 3.18 and Lemma 3.19. To understand those, it helps
to keep in mind the following.

• A term t is a value depending on
– the variable x,
– the recursive function f being defined,
– some other functions g, h that should be given by the environment.
Such a term will be interpreted (Definition 3.22) by an operator from [A → A] to itself.

• Constructors Ct and {D1 = t1; . . . ; Dk = tk} construct values directly.
• Destructors C-t and .Dt destruct values by:
– doing a partial match “match t with C u => u” that may fail,
– projecting a structure on a field.

• 0 represents an error.
• Ω{T } is equal to 0 whenever some t ∈ T is equal to 0, or if x itself is equal to 0.

Before showing that this doesn’t collapse to a trivial pre-order, here are some simple consequences.

Lemma 3.13. We have:

• Ω{T } ≤ t iff Ω{T } ≤ Ωt,
• Ω is the smallest element,
• Ω{C-t, T } ≥ Ω{t, T },
• Ω{.Dt, T } ≥ Ω{t, T },

Proof.

• Suppose Ω{T } ≤ t, we have ΩΩ{T } ≤ Ωt by contextuality, and since ΩΩ{T } ≈ Ω{T }, we
have Ω{T } ≤ Ωt. The converse is a consequence of transitivity and the fact that Ωt ≤ t.

• By the previous point, proving that Ω ≤ t is equivalent to proving that Ω ≤ Ωt, which follows
from the fact that {} ⊆ {t}.

• Ω{C-t, T } ≥ Ω{C-Ωt, T } by contextuality, and since C-Ωt ≈ Ωt, we have Ω{C-t, T } ≥ Ω{Ωt, T }.
• The last point is proved similarly.

The (in)equalities (∗) give rise to a notion of reduction, written →, when oriented from left to right.

Lemma 3.14.

(1) The reduction → is strongly normalizing.
(2) Normal forms different from 0 are given by the grammar

t ::= Cpt | {D1 = t1; . . . ; Dn = tn}
p | Ω{δ1, . . . , δn} | δ

δ ::= Cp
-δ | .Dpδ | x | f t

A normal form thus looks like, where each t, t1, . . . , tn is itself in normal form

x f t

Ω{. . . , . . . }

x
f t

constructors: { . . . ; D = _; . . . } or C

destructors: .D or C -

Proof of Lemma 3.14. Reduction is strongly normalizing because the size of the term decreases. For
the second point, all terms generated by the grammar are obviously in normal form. It is also
straightforward to check that all non-0 normal forms are generated by the grammar because:
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• they cannot contain 0,
• there cannot be a destructor (C - or .D) directly above a constructor (C or {. . .}),
• there cannot be a destructor (C - or .D) directly above Ω, nor a constructor (C or {. . . }) directly
below Ω.

This reduction isn’t confluent because of the critical pairs of the form “.D1{D1 = t; D2 = 0; . . .}” that
reduces both to 0 and to t. It is however “almost” confluent in that a term can have at most one
non-0 normal form. The “innermost” reduction strategy will always pick the 0 normal form if it
exists, and thus gives the greatest normal form of a term.

Definition 3.15. We write nf(t) for the normal form of a term according to the “innermost /
leftmost” reduction strategy.

Lemma 3.16.

(1) t ≈ 0 iff t ≥ 0 iff there is a reduction t →∗ 0.
(2) Reduction is confluent on terms different (using 6≈) from 0.
(3) If t ≈ 0, innermost reduction will give 0.

Proof sketch. The first equivalence follows from the fact that 0 is the greatest element, and the right
to left implication of the second equivalence follows from fact that t → t′ implies t ≥ t′. For the left
to right implication, it is enough to check that for all the inequalities t1 ≤ t2 (or t1 ≈ t2) generating
the order, we have “t1 = 0 implies t2 →∗ 0”. This is obvious for all the generating (in)equalities
except contextuality. Suppose t1 ≤ t2 with t = C[x := t2] ≥ 0 = C[x := t1]. The only possible
context giving C[x := t2] = 0 is is C = 0, which implies that t = 0.

Because of the first point, terms different from 0 are closed under reduction. Reduction on
those terms has the following critical pairs:

C-Ω{C′t, T } C-Ω{{D1 = t1; . . .}, T } C-Ω{Ω{T }, T ′}
.DΩ{Ct, T } .DΩ{{D1 = t1; . . . }, T } .DΩ{Ω{T }, T ′}

Ω{Ω{Ct, T }, T ′} Ω{Ω{{D1 = t1; . . . }, T }, T ′} Ω{Ω{Ω{T1}, T2}, T3}

and inspection readily shows that the system is locally confluent. By Newman’s lemma, it is conflu-
ent, and each t 6≈ 0 has a unique normal form.

The third point isn’t used in the paper, so the proof is skipped.

The following lemma characterizes the order on normal forms.

Lemma 3.17. Given s in normal form, we have s ≤ t < 0 =⇒ s ≤ nf(t). More precisely:

(1) If s = f s′, then nf(t) = f t′ with s′ ≤ t′.
(2) If s = C s′, then nf(t) = C t′ with s′ ≤ t′.
(3) If s = {D1 = s1; . . .}, then nf(t) = {D1 = t1; . . . } with ∀i, si ≤ ti.
(4) If s = .D s′ (resp. s = C-s′), then nf(t) = .D t′ (resp. t = C-t′) with s′ ≤ t′.
(5) If s = x, then nf(t) = x.
(6) If s = Ω{S}, then nf(Ω t) = Ω{T } with for all s ∈ S, there is a sequence of destructors δ

s.t. s ≤ t for some δ t ∈ T .

Proof. The proof is by induction on the term s and the proof that s ≤ t. The order is generated
from reflexivity, transitivity and the inequalities given in Definition 3.12. Reflexivity can be ignored:
if s = t, then everything holds trivially. Inequalities from group (*) can be ignored as well because
if s is in normal form, they can only generate inequalities of the form s ≤ t with t → s. If means
that nf(t) = s and everything holds trivially. Because we suppose s ≤ t < 0, inequality t ≤ 0

can be ignored as well. The proof thus only needs to look at transitivity, contextuality, Ω t ≤ t
and Ω{S} ≤ Ω{T } if S ⊆ T .

(1) If s = f s′, we inspect the proof that f s′ ≤ t.
• If f s′ ≤ t comes from transitivity, we have some u s.t. f s′ ≤ u and u ≤ t. Since u ≈ 0

implies that t ≈ 0, we can suppose that u 6≈ 0. We can thus apply the induction hypothesis
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on f s′ ≤ u. We thus have that nf(u) = f u′ with s′ ≤ u′. Since f u′ = nf(u) ≤ u, we also have
that f u′ ≤ t, and we can apply the induction hypothesis: nf(t) is of the form f t′ with u′ ≤ t′.
By transitivity, s′ ≤ t′.

• If f s′ ≤ t was proved by contextuality, there is a context fC and some terms s′′ ≤ t′′

s.t. f s′ = fC[y := s′′] and t = fC[y := t′′]. We have s′ = C[y := s′′] ≤ C[y := t′′].
Writing t′ = C[y := t′′], we get that s′ ≤ nf(t′) by induction. Because nf(f t′) = f nf(t′), we
conclude that nf(t) = f t′ with s′ ≤ t′.

(2) The case s = C s′ is treated in exactly the same way.
(3) The case of s = {D1 = s1; . . . } is treated in exactly the same way.
(4) The case of s = .D s′ is very similar. The only difference is that when dealing with contextuality,

we need to prove that nf(.D t′) = .D nf(t′). (This is false in general.) Since s was in normal
form, s′ can only start with f, a destructor or a variable. By induction, it implies that t′ can
only start with f, a destructor or a variable. In those cases, we do have nf(.D t′) = .D nf(t′).

(5) The case s = x is straightforward.
(6) If s = Ω{S} ≤ t:

• If Ω{S} ≤ t comes from transitivity Ω{S} ≤ u ≤ t. We can apply the induction hypothesis
to Ω{S} ≤ u: nf(Ωu) is of the form Ω{U} as in the lemma. Because Ω{U} ≤ Ωu ≤ u ≤ t, we
can apply the induction hypothesis: nf(Ω t) is of the form Ω{T } as in the lemma and we can
conclude by transitivity of ≤.

• If Ω{S} ≤ t comes from contextuality, the context is the form Ω{Sy} and there are s′′ ≤ t′′

s.t. s = Ω{Sy}[y := s′′] and t = Ω{Sy}[y := t′′]. For each s′ ∈ Sy, s
′[y := s′′] ≤ s′[y := t′′].

Because s is in normal form and because s′[y := s′′] is a subterm of s, it is also in normal
form and can only start with a destructor, a function or a variable. By induction hypothesis,
we thus have s′[y := s′′] ≤ nf(s′[y := t′′]) and nf(s′[y := t′′]) can only start with a destructor,
a function or a variable. We’ve just shown that each s′ ∈ S is less than some t′ ∈ T .

• When s ≤ t comes from Ω s ≤ s, because s is in normal form, the result is obvious.
• If Ω{S} ≤ t comes Ω t ≤ t or Ω{S} ≤ Ω{T } with S ⊆ T , we can conclude directly.

When both s and t are in normal form, all implications (1)–(6) are in fact equivalences and this
gives a simple recursive way to check that s ≤ t, which is important when implementing the totality
checker. The only case that might not be obvious is how to check that Ω{S} ≤ t but this follows
from Lemma 3.13.

The constructions “.D” and “C-” have natural interpretations as continuous functions:

v 7→ .D(v) =





⊥ if v = ⊥

u if v is of the form { . . . ; D = u; . . .}

0 otherwise

and

v 7→ C-(v) =





⊥ if v = ⊥

u if v is of the form Cu

0 otherwise

This makes it easy to define the semantics of any element of F0 as a function depending on x.

Definition 3.18. Given an environment ρ associating functions to names, and t 6= 0 an element
of F0, we define {|t|}ρ : A → A with

(1) {|Ct|}ρ (v) = C
(
{|t|}ρ (v)

)
,

(2) {|{ . . . ; Di = ti; . . .}|}ρ (v) =

{
0 if v = 0, or if {|t|}ρ = 0 for some t ∈ T

{ . . . ; Di = {|ti|}ρ (v); . . . } otherwise,
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(3) {|Ω{T }|}ρ (v) = Ω(v)

{
0 if v = 0, or if {|t|}ρ = 0 for some t ∈ T

⊥ otherwise,

(4) {|C-t|}ρ (v) = C
-({|t|}ρ (v)),

(5) {|.Dt|}ρ (v) = .D
(
{|t|}ρ (v)

)
,

(6) {|x|}ρ (v) = v,

(7) {|0|}ρ (v) = 0,

(8) {|g t|}ρ (v) = ρ(g)
(
{|t|}ρ (v)

)
.

The interpretation of t ∈ F0 needs to be bigger than Ω (Section 3.2). Because of that, we need
to make sure it returns 0 on 0, even when x doesn’t appear in t. This explains why clauses (2) and (3)
are defined the way they are.

The order on F0 is compatible with the pointwise order on A → A.

Lemma 3.19.

(1) If t1 ≤ t2, then {|t1|}ρ ≤ {|t2|}ρ, and {| |} is compatible with ≈.

(2) If ρ(f) is continuous for any f, then {|t|}ρ is also continuous.

(3) If ρ(f) ≥ Ω (in [A → A]) for all function names, then {|T |}ρ ≥ Ω.

(4) For all terms t1, t2 ∈ F0 and environment ρ, we have
{∣∣t1[x := t2]

∣∣}
ρ
= {|t1|}ρ ◦ {|t2|}ρ.

Sketch of proof. Checking the first points amounts to checking that all inequations from Defini-
tion 3.11 hold semantically in [A → A]. This is immediate. The functions C -, .D and Ω are easily
shown continuous, JtKρ is continuous as a composition of continuous functions. Points (3) and (4)

are proved by immediate induction.

Definition 3.20.

(1) We quotient F0 by ≈,
(2) F is defined as the Smyth power domain on the ideal completion of F0.

Like in A, the term 0 ends up being a greatest element in F , and like in Lemma 3.2, it can
be identified a posteriori with the empty sum. The ideal completion of F0 introduces infinite
elements like CCCC · · · =

⊔
↑{Ω, CΩ, CCΩ, . . . } but infinite branches of destructors like .D.D.D · · · =⊔

↑{Ω, .DΩ, .D.DΩ, . . . } are really finite values equal to Ω.
We can now extend the semantics of F0 to the whole F .

Definition 3.21. The semantics {|_|} is extended to F by continuity and linearity.

From now on, we identify a special function name “f” for the recursive function being defined
and we assume given an environment ρ for all the other functions, which will be called g, h etc..

Definition 3.22. Each T ∈ A gives rise to an operator JT K from [A → A] to itself:

JT Kρ : f 7→ JT Kρ (f) = {|T |}ρ,f:=f

The typical environment ρ is constructed inductively from previous recursive definitions and will be
omitted in the rest of the paper. A consequence of point (3) from Lemma 3.19 is that if ρ(g) ≥ Ω
for all function names, then JT K (Ω) ≥ Ω, and we can thus use the formula for the least fixed point
of JT Kρ greater than Ω.

3.3.2. Composition. Given T1 and T2, we can find a term representing the composition JT1K ◦ JT2K.
This is done by replacing each “f u” inside T1 by “T2[x := u]”.

Definition 3.23. If T1, T2 ∈ F , we define T1 ◦ T2 by induction on T1 where

• (CT1) ◦ T2 = C(T1 ◦ T2),
• {D1 = t1; . . . ; Dk = tk} ◦ T2 = {D1 = t1 ◦ T2; . . . ; Dk = tk ◦ T2},
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• (C-T1) ◦ T2 = C-(T1 ◦ T2),
• (.DT1) ◦ T2 = .D(T1 ◦ T2),
• Ω{θ1} ◦ T2 = Ω{t ◦ T2 | t ∈ θ1},
• x ◦ T2 = x,
• (gT1) ◦ T2 = g(T1 ◦ T2),
• (f T1) ◦ T2 = T2[x := T1 ◦ T2].

This is extended by linearity and continuity (only on the left):

•
(∑

ti
)
◦ T2 =

∑
(ti ◦ T2),

•
(⊔

↑

i ti) ◦ T2 =
⊔

↑

i (ti ◦ T2).

Only the “f” case is interesting, and because of it, we sometimes use the less formal notation T1◦T2 =
T1

[
f t := T2[x := t]

]
, or even T1[f := T2].

Lemma 3.24. For any t1, t2, t3 ∈ F0, t1 ◦ (t2 ◦ t3) = (t1 ◦ t2) ◦ t3.

Proof. We first prove that t[x := t1] ◦ t2 = (t ◦ t2)[x := t1 ◦ t2] by induction on t:

• if t = 0 or t = x, this is immediate,
• if t starts with a constructor, record, destructor, non-recursive function g, or Ω, the result follows
by induction,

• if t = f t′, we have

(f t′)[x := t1] ◦ t2 = (f t′[x := t1]) ◦ t2

= t2[x := t′[x := t1] ◦ t2] definition of ◦

= t2[x := (t′ ◦ t2)[x := t1 ◦ t2]] induction

= t2[x := t′ ◦ t2][x := t1 ◦ t2] substitution lemma

= (f t′ ◦ t2)[x := t1 ◦ t2] definition of ◦

We can now prove that t1 ◦ (t2 ◦ t3) = (t1 ◦ t2) ◦ t3 by induction on t1:

• if t = 0 or t = x, this is immediate,
• if t1 starts with Ω, a constructor, record or destructor, it follows by induction,
• if t1 = f t′1, we need to show that t2[x := t1 ◦ t2] ◦ t3 = (t2 ◦ t3)[x := t1 ◦ (t2 ◦ t3)]. By induction,
it is enough to show that t2[x := t1 ◦ t2] ◦ t3 = (t2 ◦ t3)[x := (t1 ◦ t2) ◦ t3)]. This follows from the
previous remark, with t = t2, t2 = t1 ◦ t2, and t2 = t3.

Lemma 3.25. For any T1, T2 ∈ F , JT1 ◦ T2K = JT1K ◦ JT2K. If moreover, T2 doesn’t contain f, we
have {|T1 ◦ T2|} = JT1K

(
{|T2|}

)
. In particular,

{∣∣T ◦ · · · ◦ T︸ ︷︷ ︸
n

◦ Ω
∣∣} = JT Kn (Ω)

Proof. The first point is proved by induction. The crucial case is (f t1) ◦ t2 = t2[x := t1 ◦ t2]:
q
(f t1) ◦ t2

y
ρ

= f 7→
{∣∣(f t1) ◦ t2

∣∣}
ρ,f=f

definition of J_K
= f 7→

{∣∣t2[x := t1 ◦ t2]
∣∣}
ρ,f=f

definition of ◦

= f 7→ {|t2|}ρ,f=f ◦ {|t1 ◦ t2|}ρ,f=f point (4) of Lemma 3.19

= f 7→ {|t2|}ρ,f=f ◦ {|t1|}ρ,f=f ◦ {|t2|}ρ,f=f induction

= f 7→ {|t2|}ρ,f=f ◦ {|t1|}ρ,f={|t2|}ρ,f=f
definition: replace f by {|t2|}ρ,f=f

= f 7→ {|f t1|}ρ,f={|t2|}ρ,f=f
definition of {|_|}

= Jf t1Kρ ◦ Jt2Kρ definition of J_K
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3.4. Interpreting Recursive Definitions. We can now replace the operator Θndt
f (defined on

page 20) by an element of F . Consider a single clause “f p = u” of the recursive definition of f. The
pattern p allows to “extract” some parts of the argument of f to be used in u. The clause

f {Fst = Node(n) ; Snd = Fork {Fst = t1 ; Snd = t2}} = ...

introduces 3 variables: n, t1 and t2. If we call the parameter of f “x”, the variable n can be obtained
as n = Node- .Fst x: we project x on field Fst and then remove the leading Node constructor. The
other variables are obtained in similar ways:

• t1 = .Fst- Fork- .Snd x,
• t2 = .Snd- Fork- .Snd x.

Definition 3.26. Given a pattern p, define the substitution [p := x] as follows:

• [y := x] = [y := x] where the substitution on the right is the usual substitution of variable y by
variable x,

• [Cp := x] = C- ◦ [p := x],
• [{ . . . ; Di = pi; . . . } := x] =

⋃
i(.Di ◦ [pi := x]) (note that because patterns are linear, the substitu-

tions don’t overlap).

where ◦ represents composition. For example, C- ◦ σp = [. . . , y := C-σp(y), . . . ].

Lemma 3.27. If v ∈ V matches p (Definition 1.11), then [p := x]◦ [x := v](y) 6= 0 for all variables y
in p. In that case, [p := x] ◦ [x := v] = [p := v], the unifier for p and v.

Proof. The proof is a simple induction on the pair pattern / value.
Any recursive definition can now be interpreted by an element of the domain F in the following

way.

Definition 3.28. Given a recursive definition of f, define Tf with

Tf =
∑

f p = u

u[p := x]

where the sum ranges over all clauses defining f.

Lemma 3.27 doesn’t say anything about the case when v doesn’t match the pattern p. The
reason is that any part of p that doesn’t contain variables isn’t recorded in [p := x]. For example, the
pattern p = Cons{Fst=Zero; Snd=y} gives the substitution [y := .Snd Cons- x], and while p doesn’t
match the value v = Cons{Fst=Succ Zero; Snd=y}, [p := x] ◦ [x := v] is the substitution [x := y]
which gives a non-0 result on any non-empty list. Because of that, JTfK is slightly different from the
non-deterministic semantics from Section 3.2.

Corollary 3.29. For any environment ρ, we have JTfKρ ≤ Θndt
ρ,f .

By Lemma 3.9, totality of fix(JTfK) implies totality of fix(Θndt
f ). Because of Lemma 3.25 and

Lemma 3.8, we have, using Kleene’s formula

Corollary 3.30. To check that fix(Θndt
f ) is total, is is enough to check that

⊔
↑

n

u
vTf ◦ . . . Tf︸ ︷︷ ︸

n

◦ Ω

}
~

is total.

From now on, we will omit the semantics brackets and write Tf for JTfKρ. We will also write T n
f (Ω)

for Tf ◦ · · · ◦ Tf ◦Ω and the notation “fix(Tn)” will refer to
⊔

↑

n Tf ◦ . . . Tf ◦ Ω.
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4. Call-Graphs and the Size-Change Principle

Except for a few minor differences, Tf can be thought of as a faithful representation of the original
recursive definition. We now want to take an element of F and split it into simpler components in
such a way that:

(1) Doing so reflects totality: showing totality of the simplification implies totality of Tf, and thus
of f.

(2) Inspecting
⊔

↑

n T
n
f (Ω) can be done in a computable way.

A lot of information about the function will be lost along the way, but since this isn’t used to
compute actual values of the function, this isn’t a problem.

4.1. Call-Graph.

4.1.1. Call Paths. We index all the occurrences of f in T : if T is ffx, we write f1f2x. Substituting f
by g+ h gives ggx+ ghx+ hgx+ hhx, i.e. each occurrence of f is substituted either by g or h. Since
substituting a single occurrence of f is linear, substituting all of them is multilinear.

Lemma 4.1. We have

T ◦ (t1 + · · ·+ tn) =
∑

σ : occ(f,T )→{t1,...,tn}

T [σ]

where occ(f, T ) represents the set of occurrences of f in T , and the substitution occurs at the given
occurrences. More precisely, T [σ] = T

[
fi t := σ(fi)[x := t]

]
as in Definition 3.23.

In particular, if T =
∑

i ti is a sum of simple terms, then T n is a sum of simple terms obtained
in the following way:

• start with a simple term ti0 ,
• replace each occurrence of f by one of the ti,
• repeat n− 2 times.

We extend this to infinite compositions.

Definition 4.2. Given T = t1+ · · ·+tn a sum of simple terms, a path for T is a sequence (sk, σk)k≥0

such that:

• s0 = f x,
• sk+1 = sk[σk] where σk replaces all occurrences of f inside sk by one of t1, . . . , tn.

If some sk doesn’t contain any occurrence of f, then all later sk+i are equal to sk.

We usually don’t write the substitution and talk about the path “(sk)”. Note that s1 is just
one of the summands of T .

Lemma 4.3. Suppose T = t1 + · · ·+ tn is a sum of simple terms, then

fix(T ) =
∑

s path of T

⊔
↑

i≥0

si(Ω)

Proof. We start by showing that the left-hand side is greater than the right-hand side, i.e. by
showing that any simple term in the LHS is greater than some simple term on the RHS.11 Let s be
a simple term in fix(T ) =

⊔
↑ T n(Ω). We want to show that s is greater than some

⊔
↑

i≥0 si(Ω). For

each i, T i(Ω) is a finite sum of elements of F0. Define the following forest:

• nodes of depth i are those summands t in T i satisfying t(Ω) ≤ s,
• a node s at depth i is related to a node s′ at depth i + 1 if s′ = s[σ], where σ substitutes all
occurrences of f in s by one of t1, . . . , tn.

11That’s point (3) of Corollary 3.5.
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As there are only finitely many possible substitutions from a given node, this forest is finitely
branching. Because T n(Ω) ≤ fix(T ) ≤ s, each T n(Ω) contains some term t such that t(Ω) ≤ s, this
forest is also infinite . By König’s lemma, it thus contains an infinite branch s0, s1, . . . . Because
all si(Ω) are less than s by construction, this sequence satisfies all the properties of Definition 4.2
and its limit is less than s. We thus have⊔

↑ T n(Ω) ≥
∑

s path of T

⊔
↑

i≥0

si(Ω)

For the converse, it is enough to show that for each path (sk) and natural number n, the limit
of sk(Ω) is greater than T n(Ω). This is immediate because each sk(Ω) is a summand of T k(Ω).

Corollary 4.4. If ρ is a total environment and fix(T ) is non-total, then there is a path (sk) for T
such that

⊔
↑
si(Ω) is non total.

Proof. If fix(T ) is non total, then by the previous lemma, there is a path of T that is non total.

4.1.2. Call-Graph. We will now make a drastic simplification of Tf by splitting each summand t of Tf
into the sum of its recursive calls. By definition, f is total is, whenever f(v) = w, either w is total,
or v isn’t total. For each recursive call, we keep information about what is constructed above the
call, and about the argument below the call. All other function calls, recursive or not, are replaced
by Ω. Each recursive call occurs from a recursive function to a recursive function. Calls are thus
labels inside a graph whose vertices are function names. As an illustration, consider the following
ad-hoc clause,

| f { D1 = y; D2 = z } = C (f (f y)

As described in the previous section, it is interpreted by

C
(
f
(
f .D1 x)

))

and contains 2 recursive calls (underlined).
It is clear that this clause adds a C constructor to the result, and that this occurs just above

the leftmost recursive call. It is also clear that the rightmost recursive call uses part of the initial
argument. The rightmost call isnt’ guarded and the argument to the leftmost call isn’t directly
constructed from parts of the original argument. This clause gives rise to 2 calls:

• f x 7→ C f (Ω .D1 x) for the leftmost call:
– this call is guarded by C,
– we know nothing on the arguments of f, except that it returns 0 when .D1, x is 0.

• f x 7→ C Ω f (.D1 x) for the rightmost call:
– besides a topmost C, nothing is known about the result above the call,
– the argument of f is built from part of the initial argument.

Definition 4.5. Let T ∈ F , the call-graph of T , G(T ), is defined inductively as follows:

(1) G
(∑

t
)
=

∑
G(t),

(2) G(f t) = f
(
tΩ
)
+ΩG(t) where tΩ is equal to t where all function calls have been replaced by Ω,

(3) G(x) = 0,
(4) G(g t) = ΩG(t),
(5) G(Cp t) = Cp G(t),
(6) G

(
{ . . . ; Di

p = ti; . . .}
)
=

∑
i {Di = G(ti)}

p,
(7) G(C-t) = C-G(t),
(8) G(.D t) = .DG(t).
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For example, for t = C{Fst=f (C- x); Snd = f (C (f x))}, we obtain

G(t) = C {Fst = f(C- x)} + C {Snd = f(CΩ x)} + C {Snd = Ω C f x)}

In general, T and G(T ) are not comparable but the construction reflects totality.

Proposition 4.6. If fix(G(T )) is total then so is fix(T ).

Proof. Suppose fix(T ) is non-total. By Corollary 4.4, it implies there is a path (sk) of T and a
total element u ∈ V with

⊔
↑
si(Ω)(u) ∈ V non-total, i.e. contains a non total branch (either a finite

branch ending with ⊥, or an infinite branch with odd principal priority). In particular, no si(Ω)(u)
is equal to 0. Call this branch β.

We index occurrences of f in Tf by natural numbers and extend that indexing to occurrences
of f in (sk). The occurrences of f in sk are indexed by lists of length k:

(1) the only occurrence of f in s0 = f x is indexed by the empty list
(2) occurrences of f in s1 are indexed using the list containing the index of this occurrence in Tf.
(3) given k > 1, we replace the substitution σk by σ̂k, defined with

σ̂k(fL,i) = σk(fi) ◦ [. . . , fj := fL,i,j , . . . ]

In other words, we replace each fL,i by σk(fi), while keeping L, i in front of all the occurrences
of f that are introduced.

As an example, let T = C1f1x+ C2f2x, and consider the path that alternates between those:

f x, C1f x, C1C2f x, C1C2C1f x, . . .

We obtain the path

f[] x, C1f[1] x, C1C2f[1,2] x, C1C2C1f[1,2,1] x, . . .

These lists record the “genealogy” of each occurrence of f by keeping track of which previous
occurrences introduced it.

An occurrence fL ∈ sk is called non-total if the path

s′0 = fLx, s
′
1 = σk(fL), s

′
2 = s′1[σk+1], . . .

is non-total. In other words, an occurrence is non-total if it “converges to a non-total term”.

We now construct a path (s′k) of G(T ): suppose we have constructed σ′
0, . . .σ

′
k−1 so that each s′i

is of the form βi γ
Ω
i fL tΩi where

• βi γi fL ti is a subterm of si, with fL being non-total,
• βi is a prefix of β (it contains only C and {D = _}),
• γi is either empty or starts with a function name (f or some g) and only contains unary records.

Since s′k contains a single occurrence of f, the substitution σ′
k only needs to act on fL. Suppose fL

was replaced (by σk) by the summand t of T . Since fL was chosen non-total, t necessarily contains
non-total occurrences fL,i.

• If γk was non empty, we replace fL by any γ′ΩfL,it
′Ω where γ′fL,it

′ corresponds to a non-total
occurrence of f in t. This is indeed a summand of G(T ), and s′k+1 is equal to

(
βk γΩ

k fL tΩk
)[
f := γ′ΩfL,it

′Ω
]

= βk γΩ
k γ′Ω fL,i t

′Ω[x := tΩk ]

= βk (γkγ
′)Ω fL,i (t

′[x := tk])
Ω

• If γk was empty, the summand t starts with part of the branch β: there is a subterm βk,k+1γ
′fL,it

′

of t such that
– βkβk,k+1 is a prefix of β,
– γ′ is either empty or starts with a function name,
– fL,i is a non-total occurrence.
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In that case, we replace fL by βk,k+1γ
Ω
k+1ft

Ω
k+1, which is indeed a summand in G(T ). The

term s′k+1 is then equal to
(
βkfL tΩk

)[
f := βk,k+1γ

′ΩfL,it
′Ω
]

= βk βk,k+1 γ′Ω fL,i t
′Ω[x := tΩk ]

= βk βk,k+1 γ′Ω fL,i (t
′[x := tk])

Ω

In both cases, the resulting s′k+1 as a shape compatible with the above invariant.

Lemma 4.7. This path (s′k) of G(T ) is non-total.

We started by supposing that
⊔

↑
si(Ω)(u) is a non-total element of V containing the non-total

branch β. In particular, it implied that no si(Ω)(u) was equal to 0. The limit
⊔

↑
s′k(Ω)(u) is thus a

limit of the form
⊔

↑
βk γkΩt(u) where t(u) is never equal to 0. By definition of the semantics of Ω,

this means that Ωt(u) = ⊥. Since γΩ starts with a Ω (or is empty), the limit is of the form
⊔

↑ βk⊥.
Because β is non-total, this limit is also non-total.

Note that this is a soundness result and doesn’t say anything about the strength of reducing
totality for T to totality for G(T ). The only argument in favor of G(T ) presented in this paper is
of a practical nature: experimenting with chariot shows that G(T ) is enough for many recursive
functions. General results like “all structurally recursive definitions are total” or “all syntactically
guarded definitions are total” are certainly provable, but are left open for now.

4.2. Weights and Approximations. In order to use the size-change principle, we need arbitrary
compositions of clauses to be bounded, which is not the case in general. In the following recursive
definition,

val length : list1(x) -> nat1

| length Nil1 = Zero1

| length (Cons1{Fst0=_; Snd0=l}) = Succ1 (length l)

the only recursive call is

length l 7→ Succ1 length (.Snd0 Cons1- l)

Composing it with itself n times gives

length l 7→ Succ1 ... Succ1︸ ︷︷ ︸
n repetitions

length (.Snd0 Cons1- ... .Snd0 Cons1-︸ ︷︷ ︸
n repetitions of .Snd0 Cons1-

l)

which grows arbitrarily large!
To deal with this problem, we introduce approximations : for large terms, we only count con-

structors (C, {...}, C - and .D); and we stop counting if there are too many of them. The totality
checker will be parametrized by two natural numbers defining what “large” and “too many” really
mean.

4.2.1. Weights. Simply counting constructors isn’t enough because we also need to keep track of
their priorities.

Definition 4.8 (Weights). Define the following

(1) Z∞ = Z∪{∞} with the usual order and addition extended with w ≤ ∞ and w+∞ = ∞+w = ∞
for all w.

(2) Weights are tuples of elements of Z∞: W = Z
P

∞ where P is the finite non-empty set of priorities.
This set is ordered pointwise with the reverse order of Z∞. Addition on W is defined pointwise.

We define the following abbreviations:

• 〈0〉 = (0, . . . , 0),
• 〈w〉p for the weight (wq)q∈P with wp = w and wq = 0 if q 6= p,
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We enclose weights with the symbols “〈” and “〉”, as in “〈W 〉” or “〈W1 +W2〉”.

The next lemma is straightforward.

Lemma 4.9. Weights have the following properties:

(1) addition is commutative and associative,
(2) 〈0〉 is neutral for addition,
(3) every 〈W 〉 ∈ W can be written (uniquely) as a sum

∑
p∈P 〈wp〉p where P ⊆ P and each wp ∈ Z∞,

(4) whenever w1 ≤ w2 in Z∞, then 〈w2〉p ≤ 〈w1〉p in W (note the reversal).

Weights will be used to count constructors and destructors (with negative elements of Z∞). The
special value ∞ will be a way to stop counting when those numbers become too big. It should not
be interpreted as saying there are infinitely many constructors.

4.2.2. Approximations.

Definition 4.10. Let ∆ ∈ F0 be a normal form (Lemma 3.14) which contains neither functions
names, empty structures, nor Ω,

(1) the set of branches of ∆ is defined inductively

branches(x) = {x}

branches
(
Cp∆

)
= Cp.branches(∆)

branches
(
.Dp∆

)
= .Dp.branches(∆)

branches
(
C-p∆

)
= C-p.branches(∆)

branches
(
{ . . . ; Di = ∆i; . . . }

p
)

=
⋃

i

{Di = _}.branches(∆i)

(2) If B is a branch of ∆, the weight of B, written |B| ∈ W is defined with:
• |x| = 〈0〉,
• |CpB| = 〈〈1〉p〉+ |B|,
• |.DpB| = 〈〈−1〉p〉+ |B|,
• |C-pB| = 〈〈−1〉p〉+ |B|,
• |{D = B}p| = 〈〈1〉p〉+ |B|.

Everything is now in place to define approximations.

Definition 4.11. (1) Given some Wi ∈ W, we put

〈W1〉y1 ∗ · · · ∗ 〈Wn〉yn =
∑{

∆

∣∣∣∣
all branches B of ∆ leading
to yi satisfy |B| ≤ 〈Wi〉

}

(2) Given t1, . . . , tn in F , we write 〈W1〉t1 ∗ · · · ∗ 〈Wn〉tn for the corresponding
∑

∆[y1 := t1, . . . ].

The typical summand of 〈W1〉y1 ∗ · · · ∗ 〈Wn〉yn looks like:

y1
y2

B

|B| ≤ 〈W2〉, etc.

y3
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The guiding intuition is that a product gives information about all possible branches of somes
elements of F . For example, both {Fst=y1;Snd=y2} and {Foo=y1;Bar=y2} are approximated
by 〈1〉y1 ∗ 〈1〉y2. Not all branches need to be present, and C y2 is also approximated by 〈1〉y1 ∗
〈1〉y2. Because they don’t keep field names, projecting a product does not remove branches: it only
decreases the weigts. As we’ll see with Lemma 4.13, .Fst(〈1〉y1 ∗ 〈1〉y2) = 〈0〉y1 ∗ 〈0〉y2. On the
other hand, a term containing y3 cannot be approximated by 〈1〉y1 ∗ 〈1〉y2.

Lemma 4.12. Each product 〈W1〉t1 ∗ · · · ∗ 〈Wn〉tn is finitely generated.

Proof. This relies on the fact that there only are finitely many constructor and destructor names:
given some weights Wj ∈ W, write Ξ for 〈W1〉y1 ∗ · · · ∗ 〈Wn〉yn. We want to show that Ξ can be
obtained as the limit of a chain of finite sums of elements of F0. Given d ∈ N, define Ξ↾d ⊂ F0 as
the set of all those ∆ obtained as truncations of elements of Ξ of “syntactical depth” d. Truncating
an element ∆ is done by replacing subterms of ∆ at syntactical depth d by Ω and normalizing. For
example,Succ Succ Succ- x at depth 2 gives Succ Succ Ω x.

Because there are only finitely many different constructors and destructors, each one of the
set Ξ↾d is finite. Moreover, Ξ is the limit of the chain

Ξ↾1 ≤ Ξ↾2 ≤ · · ·

Indeed, each element of Ξ↾d+1 is either in Ξ↾d (when its syntactical depth is less than d), or greater
than an element of

(
〈W1〉y1 ∗ · · · ∗ 〈Wn〉yn

)
i
(when its syntactical depth is strictly greater than d).

This shows that 〈W1〉y1 ∗ · · · ∗ 〈Wn〉yn is a limit of elements of F0.

Approximations interact with the order on F in a way that will make it possible to compute
directly with approximations. In fact, the totality checker will see approximations as syntactical
constructions and need to reduce them in way that extends reduction on F0.

Lemma 4.13.

• P ∗Q ≤ Q for all products P and Q,
• if W ≤ W ′ in W, then 〈W ′〉t ≤ u〈W 〉t,
• 〈0〉(t) ≤ t.

Moreover

(1) 〈W 〉0 = 0 for a unary product,
(2) 〈W 〉0 ∗ P = P ,
(3) 〈W 〉Cpt ∗ P = 〈W + 〈1〉p〉t ∗ P ,
(4) 〈W 〉{ . . . ; Di = ti; . . . }

p ∗ P =
∏

i 〈Wi + 〈1〉p〉ti ∗ P if the record is not empty,
(5) Cp-

∏
i 〈Wi〉ti =

∏
i 〈W + 〈−1〉p〉ti,

(6) .Dp
∏

i 〈Wi〉ti ≥
∏

i 〈W + 〈−1〉p〉ti,

(7) Ω
{∏

i 〈Wi〉ti, T
}
=

∑
iΩ{ti, T },

(8) 〈W 〉Ω{T } ∗ P ≥ Ω{T }+ P .
(9)

(
〈V 〉(

∏
i 〈Wi〉ti)

)
∗ P ≥

(∏
i 〈V +Wi〉ti

)
∗ P .

Proof.

TODO:

The first three points are immediate. For the rest, we have

(1) For a unary product, 〈W 〉y1 must contain a branch leading to y1, so that {〈W 〉0} contains a
branch leading to 0. Because 0 propagates everywhere, all summands in 〈W 〉0 are equal to 0,
and the sum is thus equal to 0.

(2) When the product contains several factor, any summand of 〈W 〉0 ∗ P that contains 0 is equal
to 0 and can be simplified from the sum. There remains the summands comming from the ∆
not containing x1, i.e. those corresponding to the product P .
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(3) Suppose ∆[y1 := Cpt1, . . . ] is a summand in 〈W 〉Cpt1 ∗ P . We put ∆′ = ∆[y1 := Cpy1] so that
we have ∆′[y1 := t1, . . . ] = ∆[y1 := Cpt1, . . . ] is a summand in 〈W + 〈1〉p〉t1 ∗ P . This shows
that 〈W 〉Cpt1 ∗ P ≥ 〈W + 〈1〉p〉t1 ∗ P . For the converse, suppose ∆[y1 := t1, . . . ] is a summand
in 〈W + 〈1〉p〉t1 ∗ P . We put ∆′ = ∆[y1 := Cp-y1] so that ∆′[y1 := Cpt1, . . . ] ≥ ∆[y1 := t1, . . . ]
is a summand in 〈W 〉Cpt1 ∗ P . This shows that 〈W 〉Cpt1 ∗ P ≤ 〈W + 〈1〉p〉t1 ∗ P .

(4) This is treated similarly.
(5) Let t = C-∆[y1 := t1, . . . ] be a summand in Cp-

∏
i 〈Wi〉ti.

• If C-p∆ reduces to 0, then C-p∆[y1 := t1, . . . ] ≈ 0 ≥
∏

i 〈W + 〈−1〉p〉ti.
• If not, the normal form of C-p∆ belongs to

∏
i 〈W + 〈−1〉p〉yi, and t is greater than a summand

of
∏

i 〈W + 〈−1〉p〉ti.
In both cases t ≥

∏
i 〈W + 〈−1〉p〉ti. For the converse, let t = ∆[y1 := t1, . . . ] be a summand

in
∏

i 〈W + 〈−1〉p〉ti. Take ∆′ = Cp∆: this is an element of
∏

i 〈Wi〉yi, so that C-pCp∆ ≈ ∆ is
an element of Cp-

∏
i 〈Wi〉yi. We can conclude that t is a summand of

∏
i 〈W + 〈−1〉p〉ti,

(6) This is treated similarly, except the second inequality cannot be proved as projecting on a record
makes a term smaller.12

(7) Let t be a summand in Ω
{∏

i 〈Wi〉ti, T
}
It is of the form Ω{∆[y1 := t1, . . . ], T }. Because Ω

absorbs constructors on its right, we can reduce ∆ so that t →∗ t′ = Ω{T ′, T }, where T ′ contains
elements of the form δx, where δ is a sequence of destructors. The destructors on the right of δ
come from the ti, the ones on the left come from ∆. Since Ω{C-t, T } ≥ Ω{C-Ωt, T } ≈ Ω{t, T },
and similarly for .D, we can remove the destructors coming from ∆ and obtain t′′ ≤ t′ of the
form Ω{T ′′, T } where T ′′ contains all the δx appearing in the tis appearing in ∆. There is at
least one such ti, to that t′′ ≥ Ω{ti, T }.

For the converse, any Ω{ti, T } is a summand in Ω
{∏

i 〈Wi〉ti, T
}
. This is because we can

always find a sequence of destructors γ so that

Ω{ti, T } ≈ Ω{Ω ti, T } ≈ Ω{γ Ω ti, T } ≤ Ω{γ ti, T } ∈ Ω
{∏

i

〈Wi〉ti, T
}

(8) Let t = ∆[y1 := Ω{T }, . . . ] be a summand in 〈W 〉Ω{T } ∗ P . If ∆ doesn’t contain y1, t is
a summand of P , and is thus greater than Ω{T } + P . If ∆ does contain y1, we will prove
that t ≥ Ω{T }. Since t ≥ Ω t, it is enough to prove that Ω t = Ω∆[y1 := Ω{T }] ≥ Ω{T }.
The topmost Ω will absorb constructors on top of ∆, and the Ω’s on the bottom will absorb
destructors on the bottom of ∆. We obtain Ω{ΩT, . . . } ≈ Ω{T, . . .} ≥ Ω{T }.

(9) This is immediate.

4.2.3. Dual approximations. Inductive and coinductive types are dual to each other. Formally, ap-
proximations should come in 2 dual flavors:

• one that guarantees that at least some constructors have been removed, used to detect that
inductive argument to a recursive function gets smaller,

• one that guarantees that at least some constructors have been added, used to detect that a recursive
function is productive.

The notion of approximation defined above corresponds to the first kind, and rather than duplicating
the definition, we will simply negate the weights to deal with the second kind.

12It would be possible to make projecting on a record with a single field equal to the value of that field,
but that adds yet another case to the definition of the order.
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4.3. Collapsing. Because the first step when using the size-change principle is constructing the
transitive closure of the call-graph, we need compositions of calls to be bounded. As shown on
page 32, this is not the case in general and we need to replace “large” compositions by smaller
approximations. This is parametrized by 2 natural numbers:

• D ≥ 0 giving the maximum depth of terms,
• B > 0 giving a bound for the number of constructors we keep. Any number more than this bound
will be replaced by ∞.

Both bounds can be chosen for each recursive definition. The larger they are, the more precise the
algorithm will be, but the slower it will be.

4.3.1. Calls. Summands in the call-graph (Section 4.1) contain exactly one recursive call and may
contain approximations. They can be described with the following syntax.

Definition 4.14. General calls are defined inductively by

t ::= Cp t | {D1 = t1; . . . ; Dn = tn}
p |

Cp
-t | .Dpt |

Ω{t1, · · · , tn} |{
〈W1〉t1, · · · , 〈Wn〉tn

}
| (a finite non-empty set)

0 | x

f t

where x is a formal parameter and each 〈W 〉 is a weight. As previously, C and D come from a finite set
of constructor and destructor names, and their priorities come from a finite set of natural numbers.
They are respectively odd and even.

Finite sets of weighted calls are written with a product notation as in “〈W1〉t1 ∗· · ·∗〈Wn〉tn”, or
simply “〈W 〉t” for the case of a unary product. This product is thus commutative and idempotent
by construction.

Definition 4.15. The order on general calls is defined inductively using the same rules as the order
on F0 (Definition 3.12) together with some additional rules:

• P ∗Q ≤ P ,
• if W ≤ W ′ in W, then 〈W ′〉t ≤ 〈W 〉t,
• 〈0〉t ≤ t.

and

(∗)





(4) 〈W 〉0 ≈ 0 for a unary product
(4) 〈W 〉0 ∗ P ≈ P
(4) 〈W 〉Cpt ∗ P ≈ 〈W + 〈1〉p〉t ∗ P
(4) 〈W 〉{ . . . ; Di = ti; . . .}

p ∗ P ≈
∏

i 〈Wi + 〈1〉p〉ti ∗ P if the record is not empty
(4) 〈W 〉{}p ∗ P ≥ Ω
(4) Cp-

∏
i 〈Wi〉ti ≈

∏
i 〈W + 〈−1〉p〉ti

(4) .Dp
∏

i 〈Wi〉ti ≥
∏

i 〈W + 〈−1〉p〉ti

(4) Ω
{∏

i 〈Wi〉ti, T
}

=
∑

iΩ{ti, T }

(4) 〈W 〉Ω{T } ∗ P ≥ Ω{T }+ P
(4)

(
〈V 〉(

∏
i 〈Wi〉ti)

)
∗ P ≥

(∏
i 〈V +Wi〉ti

)
∗ P

Because of Lemma 4.13, the order on general call implies the order on their semantics in F . We
can extend the reduction relation → to general calls.

Definition 4.16. Reduction on general calls extends reduction on F0 by adding rules, oriented from
left to right, for all inequalities in group (4).
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Lemma 4.17.

(1) If t → t′ then t ≥ t′.
(2) Reduction on general calls is strongly normalizing.
(3) Normal forms are generated by the following grammar

t ::= Cpt | {D1 = t1; . . . ; Dn = tn}
p |

Ω{δ1, . . . , δn} | 〈W1〉ε1 ∗ · · · ∗ 〈Wn〉εn} | δ

ε ::= δ | {}

δ ::= Cp
-δ | .Dpδ | x | f t

(4) Given s in normal form, we have s ≤ t < 0 =⇒ s ≤ nf(t). More precisely:
(a) If s = f s′, then nf(t) = f t′ with s′ ≤ t′.
(b) If s = C s′, then nf(t) = C t′ with s′ ≤ t′.
(c) If s = {D1 = s1; . . . }, then nf(t) = {D1 = t1; . . .} with ∀i, si ≤ ti.
(d) If s = .D s′ (resp. s = C-s′), then nf(t) = .D t1 (resp. t = C-t′) with s′ ≤ t′.
(e) If s = x, then nf(t) = x.
(f) If s = Ω{S}, then nf(Ω t) = Ω{T } with for all s ∈ S, there is a sequence of destructors δ

s.t. s ≤ t for some δ t ∈ T .
(g) If s =

∏
i 〈Vi〉εi is a product, then nf(〈0〉 t) =

∏
j 〈Wj〉γj where for all j, there is some i

and a sequence of destructors δ s.t.
• γj is of the form δ.γ,
• nf(〈Wj〉δ〈0〉γ) = 〈W 〉γ with 〈Vi〉 ≥ 〈W 〉 in W,
• and εi ≤ γ.

Point (g) deserves some explanation. It can be decomposed in two part: for an arbitrary
product P , it says that P ≤ t implies nf(t) = Q where each term in Q, seen as a unary product is
greater than a term in P . For unary products in normal forms, we have 〈V 〉ε ≤ 〈W 〉γ if we can find
a sequence of destructors δ s.t.

• γ = δ.γ′,
• ε ≤ γ′,
• 〈V 〉 ≥ |δ|+ 〈W 〉.

A generic example would be 〈0〉 fΩ ≤ 〈1〉 C-f x.

Proof of Lemma 4.17.

TODO:

The first three points are straightforward. For the fourth, the proof extends that of Lemma 3.17
(page 24): for points (a)–(f), the proof is exactly the same as points (1)–(6). For point (g):

• If
∏

i 〈Vi〉εi ≤ u ≤ t comes from transitivity. By induction, nf(〈0〉u) is a product
∏

k 〈Uk〉ξk
satisfying for all k, there is some i and a sequence of destructors δ s.t.
– ξk is of the form δ.ξ,
– nf(〈Uk〉δ〈0〉ξ) = 〈W 〉ξ with 〈Vi〉 ≥ 〈W 〉 in W,
– and εi ≤ ξ.
Because nf(u) ≤ u, we can also use induction on nf(u) ≤ t to get that nf(〈0〉t) is a product of the
form

∏
j 〈Wj〉γj for all j, there is some k and a sequence of destructors δ s.t.

– γj is of the form δ.γ,
– nf(〈Wj〉δ〈0〉γ) = 〈W 〉γ with 〈Uk〉 ≥ 〈W 〉 in W,
– and ξ≤γ.
Combining the two, it is easy to check that the property of the lemma is satisfied as well.

• If s =
∏

i 〈Vi〉εi ≤ t comes from contextuality for some context C, s′ ≤ t′. The context C is
necessarily of the form

∏
i 〈Vi〉εi,y where each εi = εi,y[y := t′]. Because s is in normal form,



38 PIERRE HYVERNAT

each εi,y can only start with a destructor, function, variable or the empty record. By induction
hypothesis, each εi,y[y := s′] ≤ nf(εi,y[y := t′]), and each nf(εi,y[y := t′]) can only start with a
destructor, function, variable or the empty record. Because of that nf(C[y := t′]) = C[y := nf(t′)].
To summarize, s =

∏
i 〈Vi〉εi,y[y := s′] and nf(t) =

∏
i 〈Vi〉εi,y[y := nf(t′)] with s′ ≤ nf(t′). In that

case, nf(〈0〉t) = nf(t) and this implies the condition from point (g).
• If s = P ∗Q ≤ P , we can conclude directly.
• If s = 〈V 〉ε ≤ t = 〈W 〉ε with W ≤ V in W, we can conclude directly.
• If s = 〈0〉ε ≤ ε, we can conclude directly.

Definition 4.18. A call is defined as a 3-tuple consisting of

• a calling function name,
• a called function name,
• a general call in normal form of the following shape:

g

x

Ω{. . . , . . . }

x
x

〈1〉 ∗ 〈∞〉

x
{}

b

t

destructors: .D or C -

nothing, or Ω, or 〈V 〉

destructors: .D or C -

constructors: { . . . ; D = _; . . . } or C

destructors: .D or C -

In particular, the general call contains exactly one occurence of g and no other function name. We
write “f x 7→ b f t” to separate the branch b above the call and the argument t below the call.

4.3.2. Collapsing.

Definition 4.19. Given B > 0 ∈ N, the weight collapsing function ⌈ ⌉
B
acts on terms by replacing

each weight of the form
∑

p 〈wp〉p (as in point (3) of Lemma 4.9) by
∑

p 〈⌈wp⌉B
〉p where

⌈w⌉
B
=





−B if w < −B

w if −B ≤ w < B

∞ if B ≤ w

To bound the depth, we introduce “〈0〉” below D constructors and above D destructors in
the calls. Because of the reduction, those weights will absorb the constructors below D and the
destructors above D. For example, collapsing C1C2C3〈W 〉C-4C

-
5C
-
6C
-
7x at depth 2 gives

C1 C2︸ ︷︷ ︸
D=2

〈0〉 C3 〈W 〉 C-4 C
-
5 〈0〉 C-6 C

-
7︸ ︷︷ ︸

D=2

x →∗ C1 C2︸ ︷︷ ︸
D=2

〈1 +W − 2〉 C-6 C
-
7︸ ︷︷ ︸

D=2

x

where we assume all the constructors have the same priority.

Definition 4.20. Suppose a call t is in normal form (Lemma 4.17). Given a positive bound D ∈ N,
the depth collapsing function _↾D acts on t by integrating constructors below D and destructors
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above D into weights:
(
C t

)
↾i

def
= C

(
t↾i−1

)
if i > 0

{ . . . ; Dk = tk; . . .}↾i
def
= { . . . ; Dk = tk↾i−1

; . . . } if i > 0(∏
〈W 〉δ

)
↾i

def
=

∏
〈W 〉

(
δ⇂D

)
if i > 0

δ↾i
def
= δ⇂D

t↾0
def
= nf

(
〈0〉t

)
⇂D

(∗)

and the following are applied to all terms of a product termwise
(
〈W 〉{}

)
⇂i

def
= 〈W 〉{} (∗∗)(

〈W 〉δf t
)
⇂i

def
= 〈W 〉δ⇂if t↾D (+)(∗∗)(

〈W 〉δx
)
⇂i

def
= 〈W 〉δ⇂ix (∗∗)

(
δCp

)
⇂i

def
= δ⇂i−1

Cp(
δ.Dp

)
⇂i

def
= δ⇂i−1

.Dp

δ⇂0
def
= δ〈0〉

Note the following.

• The clauses are not disjoint and only the first applicable one is used.
• We compute a normal form in clause (∗) to ensure that the clauses (∗∗) cover all cases (since
weights absorb constructors on their right, 〈0〉t doesn’t contain constructors).

• Clause (+) allows to collapse both the branch above the call to f and the argument of f. Because
calls contain exactly one function name, this clause is used exactly once.

The following is obvious but depends on the fact that there are only finitely many constructors
/ destructors.

Lemma 4.21. GivenB > 0 and D ≥ 0, the image of nf
(⌈

(_)↾D

⌉
B

)
is finite.

4.3.3. Composing calls.

Definition 4.22. Collapsed composition is defined by

β ⋄B,D α := nf

(⌈(
β ◦ α

)
↾D

⌉
B

)

Since the bounds are fixed, we usually omit them and write β ⋄ α.

Lemma 4.23. For any call α, we have

• ⌈α⌉
B
≤ α,

• α↾D ≤ α,
• β ⋄ α ≤ β ◦ α.

Proof.

• for ⌈α⌉
B
, replacing 〈W 〉 by 〈⌈W ⌉

B
〉 results in a smaller term by contextuality and the fact

that ⌈W ⌉
B
≥ W in W.

• for α↾D , inserting some 〈0〉 results in a smaller term by contextuality and the fact that 〈0〉t ≤ t,
and normalizing makes this potentially smaller.

Unfortunately, unless B = 1 and D = 0, collapsed composition is not associative. For example,
using B = 2, the calls α = f x 7→ 〈1〉 f x and β = f x 7→ 〈−1〉 f x give

• β ⋄ (α ⋄ α) = f x 7→ 〈∞〉 f x
• (β ⋄ α) ⋄ α = f x 7→ 〈1〉 f x.
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The next property, a kind of weak associativity, will be sufficient for our needs.

Lemma 4.24. If σn ◦ · · · ◦ σ1 6= 0, and if τ1 and τ2 are the results of computing σn ⋄ · · · ⋄ σ1 in two
different ways, then τ1 and τ2 are compatible, written τ1 ¨ τ2. This means that there is some τ 6= 0

such that τ1 ≤ τ and τ2 ≤ τ .

Proof. Taking τ = σn ◦ · · · ◦ σ1 works, by repeated use of Lemma 4.23.

4.4. The Size-Change Principle. Putting Proposition 4.6, Corollary 4.4 and Lemma 3.30 to-
gether, we get

Corollary 4.25. If all infinite paths in G(Tf) are total, then JfKρ is total for every total environ-
ment ρ.

Since we are now interested in a property of all infinite paths in the call-graph, the size-change
principle comes to mind. However, because collapsed composition isn’t associative, we first need to
prove a variant of combinatorial lemma at the heart of the size-change principle.

Lemma 4.26. Suppose (O,≤) is a partial order, and F ⊆ O is a finite subset. Suppose moreover
that ◦ is a partial, binary, associative and monotonic operation on O × O and that ⋄ is a partial,
binary, monotonic operation on F × F satisfying

∀o1, o2 ∈ F, (o1 ⋄ o2) ≤ (o1 ◦ o2)

whenever o1 ⋄ o2 is defined. Then every infinite sequence o1, o2, . . . of elements of F where each
finite o1 ◦ · · · ◦ on is defined can be subdivided into

o1, . . . , on0−1,︸ ︷︷ ︸
initial prefix

on0
, . . . , on1−1,︸ ︷︷ ︸

r

on1
, . . . , on2−1,︸ ︷︷ ︸

r

. . .

where:

• all the (. . . (onk
⋄ onk+1) ⋄ · · · ) ⋄ onk+1−1 are equal to the same r ∈ F ,

• r is coherent: there is some o ∈ O such that r, (r ⋄ r) ≤ o.

In particular,(
on0

◦ · · · ◦ on1−1 ◦ on1
◦ · · · ◦ on2−1 ◦ · · · ◦ onk−1

◦ · · · ◦ onk−1

)
≥ o ◦ o ◦ · · · ◦ o︸ ︷︷ ︸

k times

Proof. This is a consequence of the infinite Ramsey theorem. Let (on)n≥0 be an infinite sequence of
elements of F . We associate a “color” c(m,n) to each pair (m,n) of natural numbers where m < n:

c(m,n)
def
= (...(om ⋄ om+1) ⋄ · · · ) ⋄ on−1

Since F is finite, the number of possible colors is finite. By the infinite Ramsey theorem, there is an
infinite set I ⊆ N such all the (i, j) for i < j ∈ I have the same color o ∈ F . Write I = {n0 < n1 <
· · · < nk < · · · }. If i < j < k ∈ I, we have:

o = (...(oi ⋄ oi+1) ⋄ · · · ) ⋄ oj−1

= (...(oj ⋄ oj+1) ⋄ · · · ) ⋄ ok−1

= (...((...(oi ⋄ oi+1) ⋄ · · · ) ⋄ oj) ⋄ · · · ) ⋄ ok−1

The first two equalities imply that

o ⋄ o =
(
(...(oi ⋄ oi+1) ⋄ · · · ) ⋄ oj−1

)
⋄
(
(...(oj ⋄ oj+1) ⋄ · · · ) ⋄ ok−1

)

If ⋄ is associative, this implies that o ⋄ o = o. If not, we only get that both o and o ⋄ o are smaller
than

oi ◦ · · · ◦ oj−1 ◦ oj ◦ · · · ◦ ok−1

We can now define the transitive closure of a call-graph.
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Definition 4.27. Let G be a call-graph. Start with G0 = G and define the edges of Gn+1 to be
those of Gn, together with:

if α and β are edges from f to g and from g to h in Gn, then β ⋄ α is a new edge
from f to h in Gn+1.

Finiteness of the set of bounded terms guarantees that this sequence stabilizes on some graph,
written G∗.

We can now state and prove correctness of the size-change principle here in the case of a single
function. We extend the notions of branch and weight (Definition 4.10) to deal with products:

branches(P ) = {P} for any product P

and

• |
∏

i 〈Wi〉δi| =

{
supi 〈Wi〉+ |δi| if no δi = {}

undefined otherwise

where the suppremum is taken in Z∞, i.e. corresponds to taking the least informative weight.

Theorem 4.28 (size-change principle). Suppose every loop α = f x 7→ b f u in G∗ that satisfies
α ¨ α ⋄ α also satisfies one of the following two conditions:

• either there is an even priority p with strictly negative |b|p such that |b|q ≥ 0 for all priorities q > p,
• or there is a branch B of u and an odd priority p with strictly negative |B|p such that |B|q ≥ 0
for all priorities q > p,

then fix(G) is total.

Before proving the theorem, let’s apply it to some simple recursive definitions. The following
generates the stream of natural numbers starting at some x:

val nats : nat -> stream(nat)

| nats x = { Head = n ; Tail = nats(x+1) }

If we replace “+1” by the Succ constructor and add explicit priorities, we get

val nats : nat -> stream(nat)

| nats x = { Head0 = n ; Tail0 = nats (Succ1 x) }

The call-graph contains a single call α = nats 7→ Tail0 nats Succ1 x. With bound D = B = 1,
two steps are necessary to build the transitive closure:

• for the first step, we have α◦α = nats 7→ Tail0 Tail0 nats (Succ1 Succ1 x) which collapses13

to β = α ⋄ α = nats 7→ Tail0 〈−1〉0 nats (Succ1 〈1〉1 x),
• the second step adds γ = α ⋄ β = β ⋄ α = β ⋄ β = nats 7→ Tail0 〈−1〉0 nats (Succ1 〈∞〉1 x).

Only γ is coherent, and it satisfies the first property of Theorem4.28. Infinite compositions of γ build
the infinite branch “Tail0Tail0. . . ”, which has even principal priority. The recusive definition is
total.

The length function from page 4.2 has a call-graph with a single call:

α = length x 7→ Succ1 length (.Snd0 Cons1- x)

with B = 1 and D = 0, the transitive closure is reached after one step. Besides α, it contains

β = α ⋄ α = length x 7→ 〈−1〉1 length (〈〈−1〉0 + 〈−1〉1〉 x)

The call β is coherent. It doesn’t satisfy the first property of Theorem 4.28, but the second. Infinite
compositions of β remove an infinite number of Succ1 from their argument. As a result, any argument
leading to infinite compositions cannot be total. The recusive definition is total.

13recall that collapsing the branch above the recursive call uses negative weights (refer to page 35 and 39)
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The definition of bad s from page 13 has priorities

val bad_s : stream(stree)

| bad_s = { Head0 = Node1 bad_s ; Tail0 = bad_s }

and its call-graph has calls α1 = bad s 7→ Head0 Node1 bad s and α2 = bad s 7→ Tail0 bad s.
For B = D = 1, the transitive closure stabilizes after one step, and it contains 3 calls besides α1

and α2:

• β1,1 = α1 ⋄ α1 = bad s 7→ Head0 〈〈−1〉0 + 〈−1〉1〉 bad s
• β2,2 = α2 ⋄ α2 = bad s 7→ Tail0 〈−1〉0 bad s
• β2,1 = α2 ⋄ α1 = bad s 7→ Tail0 〈〈−1〉0 + 〈−1〉1〉 bad s

The missing composition α1 ⋄α2 is equal to β1,1. Those 3 calls are coherent, but while β2,2 satisfies
the first property of Theorem 4.28 neither β1,1 nor β2,1 do because the maximal priority comes
from 〈−1〉1. Because there is no argument to bad s, they don’t satisfy the second property either.
The recursive definition is rejected by the totality checker, as it should.

Theorem 4.28 is strong enough to deal with mixed inductive and coinductive types. The follow-
ing function takes a stream of lists of natural numbers and returns the stream of their sums. It does
so by accumulating partial sums in its first argument.14

val sums : nat -> stream(list(nat)) -> stream(nat)

| sums acc { Head = [] ; Tail = s } = { Head = acc ; Tail = sums 0 s }

| sums acc { Head = n::l ; Tail = s } = sums (add acc n) { Head = l ; Tail = s }

Because of the second clause, this definition isn’t guarded. It is productive because this second
clause cannot occur infinitely many times consecutively.

Provided D > 0, this will be detected by the totality checker and this definition will thus
be accepted as total. With B = D = 1, the transitive closure of the call-graph will contains the
following coherent loops:

• β1, coming from compositions of the first call with itself:

sums x1 x2 7→ Tail0〈−10〉 sums (Zero1) (〈−1〉0.Tail0 x2)

where the 〈−1〉0 corresponds to the collapse of Tail0,
• β2, coming from compositions of the second call with itself:

sums x1 x2 7→ sums Ω{ . . . } { Head0=〈−1〉1.Head0 x2 ; Tail
0=.Tail0 x2 }

where 〈−1〉1 corresponds to the collapse of Cons1-Cons1-,
• β3, coming from compositions of the first and second call:

sum x1 x2 7→ Tail0〈−1〉0 sums Ω{ . . . } { Head0 = 〈〈−1〉0+〈−1〉1〉.Tail0 x2 ;

Tail0 = 〈−1〉0.Tail0 x2 }

where 〈〈−1〉0+〈−1〉1〉 comes from the collapse of Cons1
-
.Head0 and 〈−1〉0 from the collapse

of .Tail0.

Both β1 and β3 satisfy the first property of Theorem 4.28, while β2 satisfies the second property.
This definition is total.

14Note that because sums has 2 arguments, the following doesn’t fit exactly in what is detailed in the
paper.
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Proof of Theorem 4.28. By Lemma 4.3, we only need to check that infinite paths are total. Let (sk)
be an infinite path of G. If any prefix composes to 0, the corresponding path is total. If no prefix
composes to 0, we can use Lemma 4.26: such a path can be decomposed into

s0 . . . sn0
= s0[t0 ◦ · · · ◦ tn0−1] . . . sn1

= sn0
[tn0

◦ · · · ◦ tn1−1] . . . sn2
. . .

where:

• all the tnk+1−1 ⋄ . . . ⋄ tnk
are equal to the same t,

• t is coherent : t ⋄ t ¨ t.

Suppose that t satisfies the first condition. If we write init for t0 ◦ · · · ◦ tn0−1, we have
⊔

↑

k

sk(Ω) =
⊔

↑

k

t0 ◦ t1 ◦ · · · ◦ tk(Ω)

≥
⊔

↑

j

t0 ◦ · · · ◦ tn0−1 ◦ t
j(Ω)

=
⊔

↑

j

init ◦ bjf u(Ω)

≥ init ◦
⊔

↑

j

bjΩ

Now, for any simple value v, bkΩ(v) is either 0 or has at least k constructors of priority p = 2q
coming from bk above any constructor coming from v. At the limit, there will be infinitely many
constructors of priority p = 2q, all coming from b. Because b doesn’t add constructors of priority
greater than p = 2q, the limit will be total.

Similarly, if t satisfies the second condition. We have
⊔

↑

k

sk(Ω) =
⊔

↑

k

t0 ◦ t1 ◦ · · · ◦ tk(Ω)

≥
⊔

↑

j

init ◦tj(Ω)

≥ init◦
⊔

↑

j

Ωuj

By hypothesis, uk = u[x := uk−1] contains a branch β
∏

〈Wi〉δi and there is an odd p s.t.
|β〈Wi〉δi|p < 0 for all i. Since u contains approximations, it is in fact an infinite sum of elements
of F0. By definition of approximations, each summand of uk necessarily has a branch of the form

ββi1δi1ββi2δi2 . . . ββikδik

where, by hypothesis, each |ββij δij |p < 0. Such a branch globally removes at least k constructors
of priority p = 2q + 1 and doesn’t remove constructors of greater priority. If v is a total value,
then each uk(v) can only be non-0 if v contains at least k constructors of priority p = 2q + 1 and
no constructors of greater priority. At the limit, the only values such that

⊔
↑

k u
k(v) are non-0 are

values that contain a branch with an infinite number of constructors of priority p = 2q + 1 and no
constructor of priority greater than p. This is impossible for total values!

4.5. Implementing the Totality Checker. Implementing the totality checker based on Theo-
rem 4.28 for a first-order functional programming language like chariot is relatively straightforward.

(1) During type checking / type inference, annotate all constructors appearing in the recursive
definition with their type.

(2) Construct the parity game containing all these types:
- start with the types of constructors / destructors and add the transitions coming from the
types definitions until no transition can be added,

- add priorities as in the proof of Lemma 2.7.
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(3) Annotate all constructors and destructors appearing in the recursive definition with their prior-
ities. The types themselves can be forgotten at this point.

(4) Compute the call-graph of the definition. This is easy for a language like chariot because each
clause can be treated independently and each call will be in normal form by construction. The
type of call is a simple first-order inductive type.

(5) Define inductive functions on calls, namely composition, reduction and collapsing. That makes
it possible to compute the transitive closure of the call-graph.

(6) Loop over all loops of the transitive closure of the call-graph. If a loop is coherent, check that
it satisfies one of the properties of Theorem 4.28. If all of them do, the definition is total.

Because parallel arcs in the call-graph correspond to non-deterministic sums and because u+ v = u
whenever u ≤ v, not all calls need to be added to the call-graph. If a call is greater than some
existing call, it can be ignored. Doing so requires an inductive definition of the order ≤. Because
calls need to be kept in normal form for collapsing, Lemma 4.13 can be transformed into an inductive
definition of ≤.

The only part that hasn’t been described in the paper is checking for coherent loops. It is possible
to give an inductive characterization of coherence for normal forms, similar in spirit to Lemma 4.13,
but the characterization is quite lengthy. chariot simplifies this by replacing each Ω{U} in the
arguments of the recursive calls by Ω. Since Ω is the least element, this reflects totality. One can
then use the following to check for coherent loops.

Lemma 4.29. For generalized patterns in normal form where each Ω{U} has U = ∅, the reflexive
closure of the following relation characterizes coherence.

(1) Cu ¨ Cv iff u ¨ v,
(2) {D1 = u1; . . . ; Dk = uk} ¨ {D1 = v1; . . . ; Dk = vk} iff ∀i, ui ¨ vi,

(3) δ ¨ δ when δ is a sequence of destructors followed by a variable,

(4) Ω ¨ v,

(5) for a product P , P ¨ Cv iff P ¨ v,
(6) for a product P , when k > 0, P ¨ {D1 = v1; . . . ; Dk = vk} if ∀i, P ¨ vi,
(7) for a product P , and if v is of the form {} or δ, P ¨ v iff P ≤ v,

(8)
∏

i 〈Wi〉δi ¨
∏

j 〈W
′
j〉δ

′
j iff there are some i and j s.t. δi is a suffix of δ′j or δ′j is a suffix of δi.

Concluding Remarks

Complexity. Since this totality test extends the termination test described in [Hyv14] and thus the
usual size-change termination principle, it is at least P-space hard. The extensions presented here
do not make it any harder. As a result, the complexity of this totality test is P-space complete.
It seems to work well in all the examples we tried, but there are ad-hoc examples of very short
definitions that lead to exponential totality checking.

We think (hope) that such example do not arise naturally and letting the user choose the
bounds B and D (with sane default values) allows to limit the combinatorial explosion to the
definitions that really need it. It is nevertheless difficult to know how this will scale for very big
definitions. The situation is thus not too different from Agda, where the termination checker can
become very slow on big definitions.

This should be contrasted to Coq, where the design choice has always been to have a very simple
totality checker with linear complexity.
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Choosing the bounds. The totality test is parametrized by the bounds B > 0 and D ≥ 0. In many
simple cases, B = 1 and D = 0 are enough but increasing the bounds locally is interesting in the
following cases.

• Increasing B helps detect totality when some calls increase the size of their argument (or dually,
remove some output constructor). For example, the following ad-hoc example is accepted with B =
2 and D = 0 but rejected with B = 1 and D = 0:

val s1 = s2.Tail0

and s2 = { hd0 = Zero1; Tail0 = { hd0=11; Tail0=s1 }}

The call-graph has 2 vertices and 2 arcs: s1 7→ 〈1〉0 s2 and s2 7→ 〈−2〉0 s1. When projecting
with B = 2, the composition gives s1 7→ 〈−1〉0s1 (and similarly for s2), which passes the totality
test. When projecting with B = 1, the first arc gives s1 7→ 〈∞〉0s2 which gives compositions
of s1 7→ 〈∞〉0s1 (and similarly for s2), which doesn’t pass the totality test.

• Increasing D helps detecting “incompatible” calls. For example, the following ad-hoc example is
accepted with D = 1 but rejected with D = 0:

val f (C1 x) = 0

| f (C2 x) = f (C1 x)

The call-graph has a single vertex with a single call α = f 7→ f (C1 C2- x). With D = 0,
this call is collapsed to f 7→ f (〈0〉x) which doesn’t pass the totality test because this loop is
idempotent but doesn’t decrease. With D = 1, this call is unchanged but is not idempotent:
α ⋄ α = 0, and it passes the totality test.

Similarly, if some parts of the argument increase while other parts decrease, too small a D can
hide totality:

val f {Fst0=0 ; Snd0=x} = x

| f {Fst0=Succ1 x1 ; Snd0=x2} = f {Fst0=x1 ; Snd0=Succ1 x2}

requires D > 0 to pass the totality test. With B = D = 0, we get the coherent loop

f 7→ f
(
〈〈∞〉0 + 〈−1〉1〉 x * 〈〈∞〉0 + 〈∞〉1〉 x

)

which doesn’t satisfy the hypothesis of Theorem 4.28. With B = 0 and D = 1, we get

f 7→ f { Fst = 〈−1〉1 x ; Snd = 〈∞〉1 x }

which does satisfy the second property of Theorem 4.28.

In practice, we’ve found that B = 2 and D = 2 is enough for most cases. In the few situation where
increasing B or D is helpful, the programmer can change those bounds locally.

Clauses vs match expressions. The choice of presenting the language in Haskell style with rewriting
rules rather than using a “match” construction as in ML isn’t very important. The approach taken
here is mixed:

• chariot uses rewriting rules,
• its semantics (the domain F) uses C- which is closer to (partial) match expressions.

The totality checker for chariot was implemented internally with clauses but the theory of approxi-
mations is much simpler with partial match and projections. The advantage of partial match is that
it allows direct analysis of definitions like

val f x = ...

... match f v with
C y -> u

by producing a term u[y := C-fv]. On the other hand, keeping rewriting rules make the totality
checker detect that
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val f Zero = Succ Zero

| f (Succ n) = f Zero

is total. Using partial match expressions as done in this paper, this definition is interpreted
by f Zero+Succ Zero which will be tagged “non-total”. The reason is that the recursive call f Zero
doesn’t use the n variable and the interpretation thus forgets about the corresponding left pattern.

Those two examples are rather ad-hoc and the choice is thus mostly a matter of taste. Of course,
combining the 2 approaches is possible!

Operational Semantics. We have voluntarily refrained from giving the operational semantics of the
language. The idea is that totality is a semantic property. The operational semantics has be
compatible with the standard semantics of recursive definitions The operational semantics must also
guarantee that evaluating a total function on a total value is well defined, in particular that it should
terminate. For example, head reduction that stops on records guarantees that a total value has a
head normal form: it cannot contain ⊥ and cannot start with infinitely many inductive constructors
(their priority is odd). Evaluation must reach a record (coinductive) at some point.

Of course, a real programming language could introduce two kinds of records: coinductive ones
and finite ones. The later could be evaluated during head reduction. Even better, destructors
themselves could be coinductive (like Tail for streams) or finite (like Head for streams.)

In a similar vein, the language could have coinductive constructors to deal with coinductive
types like finite or infinite lists.15 At the moment, the only way to introduce this type is with

data list_aux(’a, ’b) where

Nil : unit -> list_aux(’a, ’b)

| Cons : prod(’a, ’b) -> list_aux(’a, ’b)

codata inf_list(’a) where

unfold : inf_list(’a) -> list_aux(’a, inf_list(’a))

Needless to say, using this quickly gets tiring.

Higher order types. The implementation of chariot does deal with some higher order datatypes.
With T -branching trees (coinductive) defined as

codata tree(’b, ’n) where

child : tree(’b, ’n) -> (’b -> tree(’b, ’n))

or (inductive)

data tree(’b, ’n) where

root : unit -> tree(’b, ’n)

| fork : (’b -> tree(’b, ’n)) -> tree(’b, ’n)

the corresponding map function passes the totality test. The theory should extend to account for
this kind of datatypes.

15The interaction between such coinductive constructors and dependent types is however very subtle as
they can break subject reduction! https://github.com/coq/coq/issues/6768.

https://github.com/coq/coq/issues/6768
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Dependent Types. Dealing with dependent types is easy: tag dependent functions as “non-total”.
While this sounds like a joke, it illustrates the fact that even without any theory for dependent
types, this totality checker can be used for dependently typed languages. Of course, the idea would
be to extend it to actually do something interesting on dependent types.

Many useful dependent types like “lists of size n” can be embedded in bigger non dependent
datatypes like (“lists” in this case). The totality checker can, at least in principle, be used for those
types. That, and the extension to some higher order as described above would go a long way to
provide a theoretically sound totality checker for dependent languages like Agda or Coq.
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