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Abstract. This paper describes how to use Lee, Jones and Ben Amram’s size-change
principle to check correctness of arbitrary recursive definitions in an ML / Haskell like
programming language. The main point is that the size-change principle isn’t only used
to check termination, but also productivity for infinite objects. The main point is that
the resulting principle is sound even in the presence of arbitrary nestings of inductive and
coinductive types. A small prototype has been implemented and gives a practical argument
in favor of this principle.

This work relies on a characterization of least and greatest fixed points as sets of winning
strategies for parity games that was developed by L. Santocanale in his work on circular
proofs.

Half of the paper is devoted to the proof of correctness of the criterion, which relies
on an untyped extension of the language’s denotational semantics to a domain of values
extended with non-deterministic sums. We can recast all the syntactical constructions in
this domain and check they are semantically sound.
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Introduction

Inductive types (also called algebraic datatypes) have been a cornerstone for typed func-
tional programming: Haskell and Caml both rely heavily on those. One mismatch between
the two languages is that Haskell is lazy while Caml is strict. A definition1 like

val nats : nat -> nat

| nats n = n::(nats (n+1))

is useless (but valid) in Caml because the evaluation mechanism will try to evaluate it
completely (call-by-value evaluation). In Haskell, because evaluation is lazy (call-by-need),
such a definition can be used productively. Naively, it seems that types in Caml correspond
to “least fixed points” while they correspond to “greatest fixed points” in Haskell.

The aim of this paper is to introduce a language, called chariot,2 where the distinction
between least and greatest fixed points makes sense and where one can define datatypes with
an arbitrary nesting of polarities. To allow a familiar programming experience, definitions
are not restricted: any (well-typed) recursive definition is allowed. In particular, it is
possible to write badly behaved definitions like

val f : nat -> nat

| f 0 = 1

| f (n+1) = f(f n)

To guarantee that a definition is correct, two-steps are necessary:

(1) Hindley-Milner type-checking [Mil78] to guarantee that evaluation doesn’t provoke run-
time errors,

(2) a totality test to check that the defined function respects the fixed points polarities
involved in its type.

1The examples in the paper are all given using the syntax of chariot which is briefly described in
sections 1.2 and 1.5.

2A prototype implementation in Caml is available from https://github.com/phyver/chariot.

https://github.com/phyver/chariot
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The second point generalizes a previous termination checker [Hyv14]: when no coinductive
type is involved, totality amount to termination. It is important to keep in mind that any
definition that passes this test is guaranteed to be correct but there are correct definitions
that are rejected.3 In a programming context, the result of this second step can be ignored
when the programmer (thinks he) knows better. In a proof-assistant context however, it
cannot be ignored: non total definitions can lead to inconsistencies. The most obvious
example is the definition

val undefined = undefined

which is non-terminating but belongs to all types, even the empty one! There are subtler
examples of definitions that normalize to values but still lead to inconsistencies [AD12] (c.f.
example on page 12).

In Coq [The04], the productivity condition for coinductive definitions is ensured by a
very strict syntactic condition (guardedness [Coq93]) similar to the condition that inductive
definitions need to have one structurally decreasing argument. In Agda [Nor08], the user
can write arbitrary recursive definitions and the productivity condition is ensured by the
termination checker. The implemented checker extends a published version [AA02] to deal
with coinductive types, but while this is sound for simple types like streams, it is known to
be unsound for nested coinductive and inductive types [AD12]. This paper provides a first
step toward a solution for this problem.

Related Works.

Circular proofs. The primary inspiration for this work comes from the ideas developed by
L. Santocanale in his work on circular proofs [San02c, San02a, San02b]. Circular proofs are
defined for a linear proof system and are interpreted in categories with products, coproducts
and enough initial algebras / terminal coalgebras. In order to get a functional language,
we need to add rules and interpret them in cartesian closed categories with coproducts and
enough initial algebras / terminal coalgebras (like the category of sets and functions, or the
category of domains).

What is described in this paper seems to amount to using a strong combinatorial prin-
ciple (the size-change principle) to check a sanity condition on a circular “preproof”. This
condition implies that the corresponding cut free preproof (an infinite object) can be inter-
preted in a sufficiently well behaved category. This condition is strictly stronger than the
one L. Santocanale and G. Fortier used in their work, which corresponded to the syntactical
structurally decreasing / guardedness condition on recursive definitions.

Note however that while circular proofs were a primary inspiration, this work cannot
be reduced to a circular proof system. The main problem is that all such proof systems
are linear and do not enjoy a simple cut-elimination procedure. Cuts and exponentials are
needed to interpret the full chariot language and while cuts can added to the original
system of circular proofs [FS14, For14], adding exponentials looks extremely difficult and
hasn’t been done.

Note also that more recent works in circular proof theory replace L. Santocanale’s cri-
terion by a much stronger combinatorial condition. Without going into the details, it is

3The halting problem is, after all, undecidable [Tur36] .
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equivalent to some infinite word being recognized by a parity automata (which is decid-
able) [Dou17b, Dou17a]. The presence of parity automata points to a relation between this
work and the present paper, but the different contexts make it all but obvious.

Size-change principle. The main tool used for checking totality is the size-change principle
(SCP) from C. S. Lee, N. D. Jones and A. M. Ben-Amram [LJBA01]. The problem of
totality is however subtler than termination of programs. While the principle used to
check termination of ML-like recursive definitions [Hyv14] was inherently untyped, totality
checking needs to be somewhat type aware. For example, in chariot, records are lazy and
are used to define coinductive types. The following definition

val inf = Node { Left = inf; Right = inf }

yields an infinite, lazy binary tree. Depending on the types of Node, Fst and Snd, the
definition may be correct or incorrect (refer to page 12 for more details)!

Charity. The closest ancestor to chariot is the language charity4 [CF92, Coc96], devel-
oped by R. Cockett and T. Fukushima, allows the user to define types with arbitrary nesting
of induction and coinduction. Values in these types are defined using categorical principles.

• Inductive types are initial algebras: defining a function from an inductive type amounts
to defining an algebra for the corresponding operator.

• Coinductive types are terminal coalgebras: defining a function to an inductive type
amount to defining a coalgebra for the corresponding operator.

Concretely, it means the user can only define recursive functions that are “trivially” struc-
turally decreasing on one argument, or “trivially” guarded. In particular, all functions
terminate and the language is not Turing complete.

This is very different from the way one can write, for example, the Ackermann function
with pattern matching:

val ack 0 n = n+1

| ack (m+1) 0 = ack m 1

| ack (m+1) (n+1) = ack m (ack (m+1) n)

Guarded recursion. Another approach to checking correctness of recursive definitions is
based on “guarded recursion”, initiated by H. Nakano [Nak00] and later extended in several
directions [CBGB16, Gua18]. In this approach, a new modality “later” (usually written “⊲”)
is introduced in the type theory. The new type ⊲T gives a syntactical way to talk about terms
that “will later (after some computation) have type T”. This work is rather successful and
has been extended to very expressive type systems. The drawbacks are that this requires a
non-standard type theory with a not quite standard denotational semantics (topos of trees).
Moreover, it makes programming more difficult as it introduces new constructs in types and
terms. Finally, these works only consider greatest fixed points (as in Haskel) and are thus
of limited interest for systems such as Agda or Coq.

4By the way, the name chariot was chosen as a reminder of this genealogy.
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Sized-types. This approach also extends type theory with a notion of “size” for types. It
has been successful and is implemented in Agda [Abe10, Abe12]. This makes it possible,
for example, to specify that the map function on list has type ∀n, listn(T ) → listn(T ),
where listn(T ) is the type of lists with n elements of type T . These extra parameters allow
to gather information about recursive functions and make it easier to check termination. A
drawback is that functions on sized-types must take extra size parameters. This complexity
is balanced by the fact that most of them can be inferred automatically and are thus mostly
invisible to the casual user.5 Note however that this approach still needs to have a way to
check that definition respect the sizes.

Fixed points in game semantics. An important tool for checking totality of definitions in
this paper is the notion of parity game. P. Clairambault [Cla13] explored a notion of game
(from a categorical, games semantics point of view) enriched with winning conditions for
infinite plays. The way the winning condition is defined for least and greatest fixed points
is reminiscent of L. Santocanale’s work on circular proofs and the corresponding category
is cartesian closed.

Because this work is done in a more complex setting (categories of games) and aims for
generality, it seems difficult to extract a practical test for totality from it. The present paper
aims for specificity and practicality by devising a totality test for the “intended” semantics
(i.e. in plain sets and functions) of recursion.

SubML. C. Raffalli and R. Lepigre also used the size-change principle in order to check
correctness of recursive definitions in the language SubML [LR18]. Their approach uses a
powerful but non-standard type theory with many features: subtyping, polymorphism, sized-
types, control operators, some kind of dependent types, etc. On the downside, it makes
their type theory more difficult to compare with other approaches. Note that like in Agda
or chariot, they do allow arbitrary definitions that are checked by an incomplete totality
checker. The similarity of the approach isn’t surprising considering previous collaborations
between the authors. One interesting point of their work is that the size-change termination
is only used to check that some object (a proof tree) is well-founded: even coinductive types
are justified with well-founded proofs.

Nax. Another programming language with nested inductive / coinductive types is the Nax
language [Ahn14], based on so called “Mendler style recursion” [Men91]. One key difference
is that the Nax language is very permissive on the definitions of types (it is for example
possible to define fixed points for non positive type operators) and rather restrictive on the
definition of values: they are defined using various combinators similar (but stronger than)
to the way values are defined in charity. From the point of view of a Haskell / Caml
programmer, the restriction on the way programs are written is difficult to accept.6

5The libraries’ implementors still needs to give the appropriate type to map though.
6No implementation of Nax language is available, it is thus difficult to experiment with it.
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Plan of the Paper. We start by introducing the language chariot and its denotational
semantics in section 1, together with the notion of totality for functions. Briefly, totality
generalizes termination in a way that accounts for inductive and coinductive types. An
interesting point is that this notion is semantical rather than syntactical. We then describe,
in section 2, a combinatorial approach to totality that comes from L. Santocanale’s work on
circular proofs. This reduces checking totality of a definition to checking that the definitions
gives a winning strategy in a parity game associated to the type of the definition. Section 3
describes how the size-change principle can be applied to this problem: a recursive definition
gives a call-graph, and the size-change principle can be used to check a totality condition on
all infinite path in this call-graph. This section is written from the implementor’s point of
view, and most proofs are omitted: they are given in the following section. The last section
is the longest and gives the proof of correctness. This works by showing that the call-graph
and the operations defined on it have a sound semantics in domains.

1. The Language and its Semantics

1.1. Values. We are interested in a condition on the semantics of recursive definitions.
What is interesting is that this doesn’t mention the reduction strategy: everything takes
place in the realm of values.

Definition 1.1. The set of values with leaves in X1,. . . , Xn, written V(X1, . . . ,Xn) is
defined coinductively7 by the grammar

v ::= ⊥ | x | C v | {D1 = v1; . . . ; Dk = vk}

where

• each x is in one of the Xi,
• each C belongs to a finite set of constructors,
• each Di belongs to a finite set of destructors,
• the order of fields inside records is irrelevant,
• k can be 0.

Locally, only a finite number of constructors / destructors will be necessary: those
appearing in the type definitions involved in the definitions we are checking. There is a
natural ordering on finite values, which can be extended to infinite ones (c.f. remark about
ideal completion on page 26).

Definition 1.2. If the Xi are ordered sets, the order ≤ on V(X1, . . . ,Xn) is generated by

(1) ⊥ ≤ u for all values v,
(2) if x ≤ x′ in Xi, then x ≤ x′ in V(X1, . . . ,Xn),
(3) if u ≤ v then C[u] ≤ C[v] for any context C[ ].

7It is natural to give an infinite semantics for coinductive types, and infinite values are thus allowed.
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1.2. Type Definitions. The approach described in this paper is entirely first-order. We are
only interested in the way values in datatypes are constructed and destructed. Higher order
parameters are allowed in the implementation but they are ignored by the totality checker.
The examples in the paper will use such higher order parameters but for simplicity’s sake,
they are not formalized. Note that it is not possible to just ignore higher order parameters
as they can hide some recursive calls:

val app f x = f x -- non recursive
val g x = app g x

In order to deal with that, the implementation first checks that all recursive functions are
fully applied. If that is not the case, the checker aborts and gives a negative answer.

Just like in charity, types in chariot come in two flavors: those corresponding to sum
types (i.e. colimits) and those corresponding to product types (i.e. limits). The syntax is
itself similar to that of charity:

• a data comes with a list of constructors whose codomain is the type being defined,
• a codata comes with a list of destructors whose domain is the type being defined.

The syntax is

data new type where
| C1 : T1 -> new type
...

| Ck : Tk -> new type

codata new type where
| D1 : new type -> T1

...

| Dk : new type -> Tk

Each Ti is built from earlier types, parameters and new type . Types parameters are written
with a quote as in Caml but the parameters of new type cannot change in the definition.
Mutually recursive types are possible, but they need to be of the same polarity (all data
or all codata). We can always suppose that all the mutually defined types have the same
parameters as otherwise, the definition could be split in several, non mutual definitions.
Here are some examples:

codata unit where -- no destructor

codata prod(’x,’y) where Fst : prod(’x,’y) -> ’x

| Snd : prod(’x,’y) -> ’y

data nat where Zero : unit -> nat

| Succ : nat -> nat

data list(’x) where Nil : unit -> list(’x)

| Cons : prod(’x, list(’x)) -> list(’x)

codata stream(’x) where Head : stream(’x) -> ’x

| Tail : stream(’x) -> stream(’x)

The examples given in the paper (and the implementation) do not adhere strictly to this syn-
tax: n-ary constructors are allowed, and Zero will have type nat (instead of unit -> nat)
while Cons will be uncurried and have type ’x -> list(’x) -> list(’x) (instead of
prod(’x, list(’x)) -> list(’x)).

Because destructors act as projections, it is useful to think about elements of a co-
datatype as records. This is reflected in the syntax of terms, and the following defines the
stream with infinitely many 0s.
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val zeros : stream(nat)

| zeros = { Head = Zero ; Tail = zeros }

As the examples show, codata are going to be interpreted as coinductive types, while data
are going to be inductive. The denotational semantics will reflect that, and in order to have
an operational semantics that is sound, codata need to be lazy. The simplest is to stop
evaluation on records: evaluating “zeros” will give “{Head = ???; Tail = ???}” where
the “???” are not evaluated. Surprisingly, the details are irrelevant to rest of paper.

We will use the following conventions:

• outside of actual type definitions (given using chariot’s syntax), type parameters will be
written without quote: x, x1, . . .

• an unknown datatype will be called θµ(x1, . . . , xn) and an unknown codatatype will be
called θν(x1, . . . , xn),

• an unknown type of unspecified polarity will be called θ(x1, . . . , xn).

1.3. Semantics in Domains. Our notion of domain is the historical one: a domain is a

• consistently complete (finite bounded sets have a least upper bound)
• algebraic (with a basis of compact elements)
• directed-complete partial order (DCPO: every directed set has a least upper bound).

While helpful in section 4, intimate knowledge of domain theory is not necessary to follow
the description of the totality checker.

There is a natural interpretation of types in the category Dom of domains, where
morphisms are continuous functions. (Note that morphisms are not required to preserve
the least element.) The category theory aspect is not important because all the types are in
fact subdomains of V. The following can be proved directly but is also a direct consequence
of a general fact about orders and their “ideal completion”.

Lemma 1.3. If the Xis are domains, then
(
V(X1, . . . ,Xn),≤

)
is a domain.

Type expressions with parameters are generated by the grammar

T ::= X | x | θµ(T1, . . . , Tn) | θν(T1, . . . , Tn)

where X is any domain (or set, depending on the context) called a parameter, and θµ is
the name of a datatype of arity n and θν is the name of a codatatype of arity n. A type is
closed if it doesn’t contain variables. (It may contains parameters, that is, subdomains of
the domain of values.)

Definition 1.4. The interpretation of a closed type T
(
X
)
with domain parameters is

defined coinductively as the set of (possibly infinite) values well typed according to:

(1)
⊥ : T

for any type T ,

(2)
u ∈ X

u : X
for any parameter X,

(3)
u : T [σ]

Cu : θµ(σ)
where C : T → θµ(σ) is a constructor of θµ,
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(4)
u1 : T1[σ] . . . uk : Tk[σ]

{D1 = u1; . . . ; Dk = uk} : θν(σ)
where Di : θν(σ) → Ti, i = 1, . . . , k are all the

destructors for type θν.

In the third and fourth rules, σ denotes a substitution [x1 := T1, . . . , xn := Tn] and T [σ]
denotes the type T where each variable xi has been replaced by Ti.

If T is a type with free variables x1, . . . , xn, we write JT K
(
X
)
for the interpretation

of T [σ] where σ is the substitution [x1 := X1, . . . , xn := Xn].

All the ⊥ coming from the parameters are identified. There are thus several ways to prove
that ⊥ belongs to the interpretation of a type: either with rule (1) or rules (2). The following
is proved by induction on the type expression T .

Proposition 1.5. Let X1,. . . , Xn be domains, if T is a type then

• with the order inherited from the Xis, JT K (X1, . . . ,Xn) is a domain,
• X1, . . . ,Xn 7→ JT K (X1, . . . ,Xn) gives rise to a functor from Dom

n to Dom.
• if T = θµ(x1, . . . , xn) is a datatype with constructors Ci : Ti → T , we have

JT K
(
X
)

=
{

Ciui | i = 1, . . . , n and ui ∈ JTiK
}

∪ {⊥}

∼=
(

JT1K
(
X
)
+ · · ·+ JTkK

(
X
))

⊥

• if T = θν(x1, . . . , xn) is a codatatype with destructors Di : Ti → T , we have

JT K
(
X
)

=
{

{ . . . ; Di = ui; . . . } | i = 1, . . . , n and ui ∈ JTiK
}

∪ {⊥}

∼=
(

JT1K
(
X
)
× · · · × JTkK

(
X
))

⊥

The operations + and × are the set theoretic operations (disjoint union and cartesian
product), and S⊥ is the usual notation for S ∪{⊥}. This shows that the semantics of types
are fixed points of natural operators. For example, JnatK is the domain of “lazy natural
numbers”:

⊥

Succ ⊥

Succ(Succ ⊥)

...
Succ(Succ Zero)

Succ Zero

Zero

and the following are different elements of Jstream(nat)K:
• ⊥,
• {Head = Succ⊥; Tail = ⊥}
• {Head = Zero; Tail = {Head = Zero; Tail = {Head = Zero; . . . }}}

1.4. Semantics in Domains with Totality. At this stage, there is no distinction be-
tween greatest and least fixed point: the functors defined by types are algebraically com-
pact [Bar92], i.e. their initial algebras and terminal coalgebras are isomorphic. For example,
Succ(Succ(Succ(. . . ))) is an element of JnatK as the limit of the chain ⊥ ≤ Succ⊥ ≤
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Succ(Succ⊥) ≤ · · · . In order to distinguish between inductive and coinductive types, we
add a notion of totality8 to the domains.

Definition 1.6.

(1) A domain with totality (D, |D|) is a domain D together with a subset |D| ⊆ D.
(2) An element of D is total when it belongs to |D|.
(3) A function f from (D, |D|) to (E, |E|) is a function from D to E. It is total if f(|D|) ⊆

|E|, i.e. if it sends total elements to total elements.
(4) The category Tot has domains with totality as objects and total continuous functions

as morphisms.

To interpret (co)datatypes inside the category Tot, it is enough to describe the associ-
ated totality predicate. The following definition corresponds to the “natural” interpretation
of inductive / coinductive types in the category of sets.

Definition 1.7. If T is a type whose parameters are domains with totality, we define |T |
by induction

• if T = X then |T | = |X|
• if T = θµ(T1, . . . , Tn) is a datatype, then |T | = µX.θµ(X, |T1|, . . . , |Tn|),
• if T = θν(T1, . . . , Tn) is a codatatype, then |T | = νX.θν(X, |T1|, . . . , |Tn|),

where

(1) if T = θµ(x1, . . . , xn) is a datatype with constructors Ci : Ti → T , θµ is the operator

X,X1, . . . ,Xn 7→
⋃

i=1,...,k

{

Ciu
∣
∣
∣ u ∈

∣
∣Ti[σ]

∣
∣

}

(2) if T = θν(x1, . . . , xn) is a codatatype with destructors Di : T → Ti, θν is the operator

X,X1, . . . ,Xn 7→
{

{D1 = u1; . . . ; Dk = uk}
∣
∣
∣ each ui ∈

∣
∣Ti[σ]

∣
∣

}

In both cases, σ is the substitution [T := X, x1 := X1, . . . , xn := Xn].

The least and greatest fixed points exist by Knaster-Tarski theorem: the corresponding
operators act on subsets of the set of all values. It is not difficult to see that each element
of |T | is in JT K and doesn’t contain ⊥, i.e. is a maximal element of the domain JT K:
Lemma 1.8. If T is a type with domain parameters,

(
JT K , |T |

)
is a domain with totality.

Moreover, each t ∈ |T | is maximal in JT K.

1.5. Recursive Definitions. Like in Haskell, recursive definitions are given by lists of
clauses. The Ackermann function was given on page 4 and here is the map function on
streams:9

val map : (’a -> ’b) -> stream(’a) -> stream(’b)

| map f { Head = x ; Tail = s } = { Head = f x ; Tail = map f s }

Formally, a (recursive) definition is introduced by the keyword val and consists of several
clauses of the form

f p1 ... pn = u

8Intrinsic notions of totality exist [Ber93] but are seemingly unrelated to what is considered below.
9This definition isn’t strictly speaking first order as it take a function as argument. We will ignore such

arguments and they can be seen as free parameters.
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where

• f is a function name,
• each pi is a finite pattern

p ::= xi | C p | {D1 = p1; . . . ; Dk = pk}

where each xi is a variable name,
• and u is a finite term

u ::= xi | f | C u | {D1 = u1; . . . ; Dk = uk} | u1 u2

where each xi is a variable name and each f is a function name (possibly one of the
functions being defined).

Note that it is not possible to directly project a record on one of its field in the syntax
of terms. This makes the theory somewhat simpler and doesn’t change expressivity of the
language. It is always possible to

• remove a projection on a variable by extending the pattern on the left,
• replace a projection on the result of a recursively defined function by several mutually
recursive functions for each of the fields,

• replace a projection on a previously defined function by another previously defined func-
tion.

Of course, the implementation doesn’t enforce this restriction and the theory can be ex-
tended accordingly.

There can be many clauses and many different functions defined mutually. The system

(1) checks some syntactical constraints (linearity of pattern variables, . . . ),
(2) performs Hindley-Milner type checking (or type inference if no type annotation was

given),
(3) performs an exhaustivity check ensuring that the patterns cover all the possibilities and

that records have all their fields.

Those steps are well-known [PJ87] and not described here. Hindley-Milner type checking
guarantees that each list of clauses for functions f1 : T1, . . . , fn : Tn (each Ti is an arrow
type) gives rise to an operator

θf1,...,fn : JT1K × · · · × JTnK → JT1K × · · · × JTnK
where the semantics of types is extended with JT → T ′K =

[
JT K → JT ′K

]
. The semantics

of f1, . . . , fn is then defined as the fixed point of the operator θf1,...,fn which exists by Kleene
theorem.

Typing ensures that the definition is well behaved from an operational point of view:
the “⊥” that appear in the result correspond only to non-termination, not to failure of
the evaluation mechanism (projecting on a non-existing field or similar problems). For the
definition to be correct from a denotational point of view, we need to check more: that it
is total with respect to its type. For example, the definition

val all_nats : nat -> list(nat)

| all_nats n = Cons n (all_nats (Succ n))

is well typed and sends elements of the domain JnatK to the domain Jlist(nat)K but its
result on Zero contains all the natural numbers. This definition is not total because totality
for list(nat) contains only the finite lists (it is an inductive type). Similarly, the definition
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val last_stream : stream(nat) -> nat

| last_stream {Head=_; Tail=s} = last_stream s

sends any stream to ⊥, which is non total.

A subtle example. Here is a surprising example due to T. Altenkirch and N. A. Daniels-
son [AD12]: we define the inductive type

data stree where Node : stream(stree) -> stree

where the type of stream was defined on page 7. This type is similar to the usual type of
“Rose trees”, but with streams instead of lists. Because streams cannot be empty, there is
no way to build such a tree inductively: this type has no total value. Consider however the
following definitions:

val s : stream(stree)

| s = { Head = Node s ; Tail = s }

val t : stree

| t = Node s

This is well typed, but because evaluation is lazy, evaluation of t or any of its subterms
terminates: the semantics of t doesn’t contain ⊥. Unfolding the definition, we obtain

Node

{Head=_; Tail=_}

Node

{Head=_; Tail=_}

Node

. . .

{Head=_; Tail=_}

. . . . . .

{Head=_; Tail=_}

Node

{Head=_; Tail=_}

. . . . . .

{Head=_; Tail=_}

Node

. . .

{Head=_; Tail=_}

. . . . . .

Such a term leads to inconsistencies and shows that a simple termination checker isn’t
enough.

The rest of the paper describes a partial totality test on recursive definitions: some
definitions are tagged “total” while some other are tagged “unsafe” either because they are
indeed not total, or because the argument for totality is too complex.

2. Combinatorial Description of Totality

The set of total values for a given type can be rather complex when datatypes and co-
datatypes are interleaved. Consider the definition

val inf = Node { Left = inf; Right = inf }

It is not total with respect to the type definitions

codata pair(’x,’y) where Left : pair(’x,’y) -> ’x

| Snd : pair(’x,’y) -> ’y

data tree where Node : pair(tree, tree) -> tree

but it is total with respect to the type definitions
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data box(’x) where Node : ’x -> box(’x)

codata tree2 where Left : tree2 -> box(tree2)

| Right : tree2 -> box(tree2)

In this case, the value inf is of type box(tree2). Analysing totality requires a combinatorial
understanding of the least and greatest fixed points involved. Fortunately, there is a close
relationship between set theoretic least and greatest fixed points and winning strategies for
parity games.

2.1. Parity Games. Parity games are a two players games played on a finite transition
system where each node is labeled by a priority (a natural number). The height of such a
game is the maximum priority of its nodes. By extension, the priority of a transition is the
priority of its target node. When the node has odd priority, Marie (or “player”) is required
to play. When the node is even, Nicole (or “opponent”) is required to play. A move is
simply a choice of a transition from the current node and the game continues from the new
node. When Nicole (or Marie) cannot move because there is no outgoing transition from
the current node, she looses. In case of infinite play, the winning condition is

(1) if the maximal node visited infinitely often is even, Marie wins,
(2) if the maximal node visited infinitely often is odd, Nicole wins.

Equivalently, the condition could be stated using the priorities of the transitions taken
during the infinite play. We will call a priority principal if “it is maximal among the
priorities appearing infinitely often”. The winning condition can thus be rephrased as
“Marie wins an infinite play if and only if the principal priority of the play is even”.

In order to analyse types with parameters, we add special nodes called parameters.
Those nodes have no outgoing transition, have priority ∞10 and each of them has an associ-
ated set X. On reaching them, Marie is required to choose11 an element of X to finish the
game. She wins if she can do it and looses if she cannot (when the set is empty). Here are
three examples of such parity games:

2

1

0 l1

l2

l3

l4

2

1 1

0 l3

l2

l5

l1

l6

l4

2 2X∞

1

0

l l4
l5

l3l2

l1

Each position p in a parity game G with parameters X1, . . . , Xn defines a set ||Gp|| de-
pending on X1,. . . ,Xn [San02c]. This set valued function p 7→ ||Gp|| is defined by induction
on the height of G and the number of positions having maximum priority:

• if all the positions are parameters, each position is interpreted by the corresponding
parameter ||GX || = X;

• otherwise, take p to be one of the positions of maximal priority and construct G/p with
parameters Y , X1, . . . , Xn as follows: it is identical to G, except that position p is replaced

10Those parameter nodes do not count when defining the depth of a parity game.
11because ∞ is obviously odd
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by parameter Y and all its outgoing transitions are removed.12 Compute recursively the
interpretations (G/p)q, depending on Y , X1, . . .Xn and:
– if p had an odd priority, define

{

||Gp|| = µY.
(
(G/p)q1 + · · ·+ (G/p)qk

)

||Gq|| = (G/p)q
[
Y := ||Gp||

]
when q 6= p

where p → q1, . . . p → qk are all the transitions out of p.
– if p had an even priority, define

{

||Gp|| = νY.
(
(G/p)q1 × · · · × (G/p)qk

)

||Gq|| = (G/p)q
[
Y := ||Gp||

]
when q 6= p

where p → q1, . . . p → qk are all the transitions out of p.

An important result is:

Proposition 2.1 (L. Santocanale [San02c]).

• For each position p of G, the operation X1, . . . ,Xn 7→ ||G(X1, . . . ,Xn)p|| is a functor
from Set

n to Set,
• there is a natural isomorphism ||Gp|| ∼= W(G)p where W(G)p is the set of winning strate-
gies for Marie in game G from position p.

In order to analyse totality, we now construct a parity game G from a type expression T
in such a way that |T | ∼= ||GT ||, for some distinguished position T in G.

2.2. Parity Games from Types.

Definition 2.2. If T is a type expression (possibly with parameters), the graph of T is
defined as the subgraph reachable from T in the following (infinite) transition system:

• nodes are type expressions (possibly with parameters),

• transitions are labeled by constructors and destructors: a transitions T1
t
−→ T2 is either a

destructor t of type T1 → T2 or a constructor t of type T2 → T1 (note the reversal).

Here is for example the graph of list(nat)

unit

list(nat) nat

prod(nat,list(nat))

Fst

Snd

Nil

Cons

Zero

Succ

The orientation of transitions means that

• on data nodes, a transition is a choice of constructor for the origin type,
• on codata nodes, a transition is a choice of field for a record for the origin type.

Because of that, a value of type T can be seen as a strategy for a game on the graph
of T where Marie (the player) chooses constructors and Nicole (the opponent) chooses
destructors.

12This game is called the predecessor of G [San02c].
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Lemma 2.3. The graph of T is finite.

Proof of Lemma 2.3. We write T1 ⊑ T2 if T1 appears in T2. More precisely:

• T ⊑ X iff T = X,
• T ⊑ θ(T1, . . . , Tn) if and only if T = θ(T1, . . . , Tn) or t ⊑ T1 or . . . or t ⊑ Tn.

To each datatype / codatatype definition, we associate its “definition order”, an integer
giving its index in the list of all the type definitions. A (co)datatype may only use parameters
and “earlier” type names in its definition and two types of the same order are part of the
same mutual definition. The order of a type is the order of its head type constructor.

Suppose that the graph of some type T is infinite, and that T is minimal in the sense
that it is of order κ and graphs for types of order less than κ are finite. Since the graph of T
has bounded out-degree, by König’s lemma, it contains an infinite simple (without repeated
vertex) path ρ = T → T1 → T2 → · · · . For any n, there is some l > n such that Tl is of
order κ. Otherwise, the path Tn+1 → Tn+2 → · · · is infinite and contradicts the minimality
of T .

All transitions in the graph of T are of the form θ(T ) → β where β is built using the
types in T and possibly the θ′(T ) with the same order as θ. There are three cases:

(1) In transitions θ(T ) → Ti, i.e., transitions to a parameter, the target is a subexpression
of the origin. It is the only way the order a type may strictly increase along a transition.
This is the case of Head : stream(nat)→ nat.

(2) In transitions θ(T ) → θ′(T ), i.e. transitions to a type in the same mutual definition,
the order remains constant. An example in Succ : nat→ nat.

(3) In all other cases, the transition is of the form θ(T ) → β, where β is strictly earlier
than θ. In this case however, because of the way β is built, the subexpressions of β with
order greater than that of θ are necessarily subexpressions of θ(T ). This is for example
the case of Cons : list(nat)→ prod(nat, list(nat)) (recall that the transition goes
in the opposite direction).

The only types of order κ reachable from T (of order κ) are thus:

• subexpressions of T (obtained with transitions of the form (1) and (3)),
• or variants of the above where some types θ(T ) of order κ have been replaced by θ′(T )
of same order (obtained with transitions of the form (2)).

Since there are only finitely many of those, the infinite path ρ necessarily contains a cycle!
This is a contradiction.

Definition 2.4. If T is a type expression (possibly with parameters), a parity game for T
is a parity game GT on the graph of T satisfying

(1) each parameter of T is a parameter of GT ,
(2) if T0 is a datatype in the graph of T , its priority is odd,
(3) if T0 is a codatatype in the graph of T , its priority is even,
(4) if T1 ⊑ T2 then the priority of T1 is greater than the priority of T2.

Lemma 2.5. Each type has a parity game.

Proof. The relation ⊏ is a strict order and doesn’t contain cycles. Its restriction to the
graph of T can be linearized. This gives the relative priorities of the nodes and ensures
condition (4) from the definition. Starting from the least priorities (i.e. the larger types),
we can now choose a priority odd / even compatible with this linearization. (Note that we
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don’t actually need to linearize the graph and can instead chose a normalized parity game,
i.e. one that minimizes gaps in priorities.)

Here are the first two parity games from page 13, seen as parity games for stream(nat)
and list(nat) (the priorities are written as an exponent).

unit2

nat1

stream(nat)0

Head

Tail

Zero

Succ

unit2

list(nat)1 nat1

prod(nat,list(nat))0
Fst

Snd

Nil

Cons

Zero

Succ

The last example from page 13 corresponds to a coinductive version of Rose trees:

codata rtree(’x) where

| Root : rtree(’x) -> ’x

| Subtrees : rtree(’x) -> list(rtree(’x))

with parity game

rtree(X)2 unit2X∞

list(rtree(X))1

prod(rtree(X),list(rtree(X)))0

Root
Subtrees

Nil

ConsSnd

Fst

As those examples show, the priority of T can be anything from minimal to maximal in its
parity graph.

Lemma 2.6. For any type T , if G is a parity game for T and if T0 is a node of G, we have
a natural isomorphism ||GT0

|| ∼= |T0|.

Proof. The proof follows from the following simple fact by a simple induction:

Fact 2.7. If G is a parity game for T and T0 one of its maximal nodes, then the predecessor
game G/T0(Y ) is a parity game for T [T0 = Y ].

Corollary 2.8. If T is a type and G a parity game for T , we have W(G)T ∼= |T |. In
particular, v ∈ JT K is total iff every branch of v has even principal priority.13

13Since any v ∈ JT K gives a strategy in the game of T , priorities can be looked up in the game of T .
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2.3. Forgetting Types. A consequence of the previous section is that checking totality
doesn’t really need types: it needs priorities. We thus annotate each occurrence of construc-
tor / destructor in a definition with its priority (taken from the type’s parity game). The
refined notion of value is given by

v ::= ⊥ | x | Cp v | {D1 = v1; . . . ; Dk = vk}
p

where

• each x is in one of the Xi,
• each priority p belong to a finite set of natural numbers,
• each C belongs to a finite set of constructors, and their priority is odd,
• each Di belongs to a finite set of destructors, and their priority is even,
• k can be 0.

The whole domain of values V now has a notion of totality.

Definition 2.9. Totality for V is defined as v ∈ |V| iff and only if every branch of v has
even principal priority.

Priorities are an artefact used for checking totality. They play no role in definitions or
evaluation and are inferred internally:

(1) each instance of a constructor / destructor is annotated by its type during type checking,
(2) all the types appearing in the definitions are gathered (and completed) to a parity

games,
(3) each constructor / destructor is then associated with the priority of its type (and the

type itself can be dropped).

Because none of this has any impact on evaluation, checking if a definition is total amounts
to checking that the annotated definition is total, which can be done without types.

3. Call-Graph and Totality

3.1. Introduction. A function f between domains with totality is total if it sends total
elements to total elements. Equivalently, it is total if whenever f(v) = w, either v is non
total, or w is total. As a result, checking that a recursive definition of f is total requires
looking at the the arguments that f “consumes” and at the result that f “constructs”. The
two are not independent as shown by the following function:

val sums : stream(list(nat)) -> stream(nat)

| sums { Head = [] ; Tail = s } = { Head = 0 ; Tail = sums s }

| sums { Head = [n] ; Tail = s } = { Head = n ; Tail = sums s }

| sums { Head = n::m::l ; Tail = s }

= sums { Head = (add n m)::l ; Tail = s }

where we use the following abbreviations:

• [] for Nil,
• [a] for Cons { Fst = a ; Snd = Nil },
• a::l for Cons { Fst = a ; Snd = l }.

This function maps a stream of lists of natural numbers into a stream of natural numbers
by computing the sums of all the lists. It does so by accumulating the partial sums of a
given list in its first element. This function is productive (it constructs something) because
the third clause cannot occur infinitely many times consecutively (it consumes something).
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As we saw in the previous section, a total value in type t is a winning strategy for a
parity game of t. The totality checker thus needs to check something like:

for all pairs (v,w) in the graph of the recursive function,
• either all the infinite branches of w have an even principal priority,
• or v contains an infinite branch whose principal priority is odd.

The analysis is local: it only looks at one mutually recursive definition. The previously
defined functions are assumed to be total, but nothing more is known about them. For that
reason, we only look for infinite branches that come from the current definition.

The first step of the analysis is to extract some information from the clauses of the
definition. The resulting structure is called the call-graph (section 3.3). The analysis then
looks at infinite path in the call-graph. In order to use the size-change principle [LJBA01,
Hyv14], care must be taken to restrict the information kept along calls to a finite set.
This is done by introducing a notion of approximation and by collapsing calls to bounded
information.

Formalizing and proving that this condition is correct will be done in the last section
(starting on page 26). We will for the moment only give a high level description of how one
can implement the test, using both the concepts developed in the previous section and the
size-change principle.

Simplifying assumptions. In order to reduce the notation overhead, we assume all the func-
tions have a single argument. As far as expressivity is concerned, this is not a real restriction:
we can introduce ad-hoc codata (product types) to uncurry all functions. This restriction
is of course not enforced in the implementation. Dealing with multiple arguments would
require using substitutions instead of terms [Hyv14].

3.2. Interpreting Calls. A single clause may contain several recursive calls. For example,
the hypothetic rule

| f (C1 { D1 = x; D2 = C2 y }) = C3 (f (C2 (f (C1 y)))

contains two recursive calls (underlined). It is clear that the final result starts with C3,
constructed above the leftmost recursive call. It is also clear that the rightmost recursive
call uses part of the initial argument. It is however unclear if the rightmost call contributes
anything to the final result or if the leftmost call uses part of the initial argument. For each
recursive call in a recursive definition, we keep some information about

• the output branch above this recursive call,
• the way the argument of the call is constructed from the initial argument.

The information about the argument of the recursive call uses the same technology that was
used when checking termination [Hyv14]. The information about the output is simpler: we
only record the number of constructors above the recursive call. A recursive call is guarded
simply when it occurs under at least one constructor / record.14 Each call will thus be
interpreted by a rule of the form:

f x 7→ 〈W 〉 f v

where W is a weight and v is a generalized pattern with free variable x. For example, the
interpretation of the previous clause will consist of two calls:

14Refer to page 45 for an idea about what could be done without this simplification.
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• f x 7→ 〈−1〉 f (C2 Ω) for the leftmost call:
– 〈−1〉: this call is guarded by one constructor (C3)
– C2 Ω: the argument starts with constructor C2

• f x 7→ Ω f (C1 C
-
2 .D2 C

-
1 x) for the rightmost call:

– Ω: we don’t know what this call contributes to the result
– (C1 C

-
2 .D2 C

-
1 x): the argument starts with C1 and “C-2 .D2 C

-
1 x” represents the y from the

definition: it is obtained from the argument x by: removing C1 (written C-1), projecting
on field D2 (written .D2) and removing C2 (written C-2).

Since we want to to check totality using parity games, counting the constructors is not
enough: we also need to remember their priority. The weights are thus more complex than
plain integers.

Definition 3.1. Define

(1) Z∞ = Z ∪ {∞} with the obvious addition and order,
(2) W, the set of weights is generated by

W ::= Ω | 〈〉 | 〈w〉p | W +W

where w ∈ Z∞ and each p comes from a finite set P of natural numbers called priorities.
This set is quotiented by
• associativity and commutativity of +,
• Ω+W = Ω,
• 〈w〉p + 〈w′〉p = 〈w + w′〉p,
• equivalence generated from the order given below.

(3) Order ≤ on weights is generated from
• Ω ≤ W ,
• 〈0〉p ≤ 〈〉,
• 〈w1〉

p ≤ 〈w2〉
p whenever w1 ≥ w2 in Z∞,

• W +W ′ ≤ W . (In particular, W +Ω = Ω.)

“κp” is a synonym for 〈1〉p and we usually write 〈W 〉 for an arbitrary weight and 〈0〉 for
∑

0≤i≤p 〈0〉
i (where p is the maximal priority involved locally). The symbols 〈 and 〉 are

loosely used as grouping for weights...

The intuition is that κp represents anything that adds at most one constructor of priority p.
Similarly, −κp represents anything that removes at least one constructor of priority p. Note
that 〈0〉p is different from 〈〉: the former could add one constructor of priority p and re-
move another, while the later does nothing. The weight Ω is not very different from the
weight

∑

p 〈∞〉p and can be identified with it in the implementation.

Definition 3.2. Generalized patterns are given by the following grammar

t ::= Cp t | {D1 = t1; . . . ; Dn = tn}
p |

〈W1〉t1 ∗ · · · ∗ 〈Wn〉tn |

Cp
-t | .Dpt | x | 0 | f t

where n ≥ 0, x is a formal parameter, each f belongs to a finite set of function names
and each 〈W 〉 is a weight. As previously, C and D come from a finite set of constructor
and destructor names, and their priorities come from a finite set of natural numbers. They
are respectively odd and even. The product is implicitly commutative, idempotent and
associative.
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Here are some points worth remembering.

• x is the parameter (unique in our case) of the definition.
• Priorities are associated to instances of constructors: the list constructor may appear in
the parity game with different priority!15 We write Cp to give a name to the corresponding
priority, and just C when the priority is not important.

• In ML style, the term C-u is similar to the partial “match u with C v -> v” with a
single pattern. This is used to deconstruct a value.

• 0 represents runtime errors which we can ignore in our analysis because typing forbids
them. It propagates through values.

• The product is used to approximate records: {Fst=Succ- x; Snd=Succ x} can for exam-
ple be approximated by 〈1〉Succ- x ∗ 〈2〉x. All the branches of an element approximated
by 〈W1〉t1 ∗ · · · ∗ 〈Wn〉tn must be approximated by a 〈Wi〉ti.

Definition 3.3. A call from g to f is of the form “g 7→ 〈W 〉 f v” where 〈W 〉 ∈ W and v
is a generalized pattern.

For symmetry reasons, output weights are counted negatively: adding one constructor on
the output will be represented as 〈−1〉. Just like removing some constructor in a recursive
argument is “good” (think structural recursion), adding a constructor on the result is “good”
(think guardedness). The two are thus counted similarly.

The next few pages recall, without proofs, the notions and results that are useful for
implementing the totality criterion. The proofs will be given in the next section.

Definition 3.4. We define a reduction relation on generalized patterns:

(0) C0 , C-0 , .D0 → 0

(0) { . . . ; D = 0; . . . } → 0

(0) 〈W 〉0 ∗ P → P
(0) 〈W 〉0 → 0 only for unary product

(1) C-Ct → t
(1) .Dj{ . . . ; Dj = tj; . . . } → tj if no ti →

∗ 0

(2) C-C′t → 0 if C 6= C′

(2) .D{ . . . } → 0 if the record has no field D
(2) C-{ . . . } → 0

(2) .DCt → 0

(3) 〈W 〉Cpt → 〈W + κp〉t
(3) 〈W 〉{D1 = t1; . . . }

p → 〈W + κp〉t1 ∗ · · · if the record is not empty
(3) Cp-

∏

i 〈Wi〉ti →
∏

i 〈Wi − κp〉ti
(3) .Dp

∏

i 〈Wi〉ti →
∏

i 〈Wi − κp〉ti
(3)

(
〈W 〉p

∏

i 〈Wi〉ti
)
∗ P →

(∏

i 〈W +Wi − κp〉ti
)
∗ P

Group (1) of reductions corresponds to the operational semantics of the language, group
(3) deals with approximations in a way that is compatible with group (1), and groups (0)
and (2) deal with errors. In particular, in group (2)

• the first 3 reductions are forbidden by type checking (we cannot project a constructor, or
pattern match on a record),

• the last reduction is forbidden by the operational semantics (if the argument starts with
a C′, the reduction doesn’t take the C clause).

15for example when dealing with lists of streams of lists
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Looking at groups (3) of reductions, is is clear that weights absorb all constructors on their
right and all destructors on their left. As a result, non-0 normal forms have a very specific
shape:

• a tree of constructors (akin to a value),
• followed by (linear) branches of destructors.

〈W1〉*〈W2〉

x

x

〈〉

x

Ω

x

constructors: { . . . ; D = _; . . . } or C

destructors: .D or C -

Lemma 3.5.

(1) This reduction is confluent and strongly normalizing. We write nf(t) for the normal
form of t.

(2) The normal forms are either 0, or generated by the grammar

p ::= Cp | { . . . ; Di = pi; . . . } | 〈W1〉λ1 ∗ · · · ∗ 〈Wn〉λn

λ ::= {} | δ x

δ ::= δ C- | δ .D

There is a notion of approximation: for example, S-S-S-S-x can be approximated by
S-S-〈−2〉x where 〈−2〉 means that “at least 2 constructors were removed”.

Definition 3.6. The relation “u ≤ v” (read “u approximates v”) is defined with

• ≤ is contextual: if u ≤ v then t[x := u] ≤ t[x := v],
• ≤ is compatible with reduction: if u → v then v ≤ u, and in particular, nf(u) ≤ u,
• 0 is a greatest element,
• for every weights 〈V 〉 ≤ 〈W 〉, we have 〈V 〉t ≤ 〈W 〉t,
• 〈0〉t ≤ t

This order is extended to calls with

f x 7→ 〈W 〉 f u ≤ f x 7→ 〈W ′〉 f u′

iff
〈W 〉 ≤ 〈W ′〉 and u ≤ u′

3.3. Call-Graph and Composition. The next definition is very verbose, but the example
following it should make it clearer.

Definition 3.7. From a recursive definition, we construct its (oriented) call-graph with

• vertices are the names of the functions mutually defined
• arcs from f to g are given by all the “f x 7→ 〈W 〉 g v[σp]” where “〈W 〉 g v” ∈ calls(u)
for some clause f p = u and σp and calls(u) are defined with:
(1) Given a pattern p, define the substitution σp as follows:

– σy = [y := x]



22 PIERRE HYVERNAT

– σCp = C
- ◦ σp,

– σ{...;Di=pi;...} =
⋃

i(.Di ◦ σpi).
where ◦ represents composition of substitutions.

(2) From each right-hand side u of a clause f p1 . . . pk = u, we define calls(u):

calls
(
Cp u

)
= 〈κp〉.calls

(
u
)

(i)

calls
(
{ . . . ; Di = ui; . . . }

p
)

=
⋃

i

〈κp〉.calls
(
ui
)

calls
(
f u1 . . . ul

)
=

{
〈0〉 f uΩ1 . . . uΩk

}
∪
⋃

i

Ω.calls(ui) (ii)

calls
(
g u1 . . . ul

)
=

⋃

i

Ω.calls
(
ui
)

(iii)

calls
(
x
)

= ∅

where
(i) 〈κp〉.S is a notation for {〈κp〉u | u ∈ S},
(ii) if f is one of the functions recursively defined and where uΩ is obtained from u

by replacing each function application gu1 . . . ul (recursive or otherwise) by Ω.
(iii) the name g could also be a parameter xj coming from the left pattern.

An example is probably more informative. Consider the definition from page 17 with
explicit priorities:

val sums : stream0(list1(nat1)) -> stream0(nat1)

| sums { Head0 = []1 ; Tail0 = s } = { Head0 = 0 ; Tail0 = sums s }

| sums { Head0 = [n]1 ; Tail0 = s } = { Head0 = n ; Tail0 = sums s }

| sums { Head0 = n::1m::1l ; Tail0 = s }

= sums { Head0 = (add n1 m1)::1l ; Tail0 = s }

The three associated calls will be sums x 7→ 〈−1〉0 sums (.Tail0 x) (twice) and

sums x -> 〈〉 sums { Head0 = Ω::1(.Head0 .Tail0-.Snd1 .Tail0-.Snd1 x) ;
Tail0 = .Tail0 x }

(Recall the “a::l” is an abbreviation for “Cons{Fst=a; Snd=l}”.)

A call gives some information about one recursive call: depth of the recursive call, and
part of the shape of the original argument. We can compose them:

val length : list(x) -> nat

| length Nil = Zero

| length (Cons{Fst=x; Snd=l}) = Succ (length l)

has a single call: “length l 7→ 〈−1〉 length (.Snd Cons- l)”. Composing this call with
itself will give length l 7→ 〈−2〉 length (.Snd Cons-.Snd Cons- l).

Definition 3.8. The composition β ◦ α of the calls α = f x 7→ 〈W 〉 g p and β =
g x 7→ 〈W ′〉 h q is defined as

β ◦ α = f x 7→ 〈W +W ′〉 h q[x := p]

Some compositions are automatically ignored: “fx 7→ 〈〉 f C2 C
-
1 x”, arising from

val f (C1 x) = f (C2 x)

| ...
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gives 0 when composed with itself. This is because “C2 x ” doesn’t match “C1 y”.

Totality can sometimes be checked on the call-graph. Since we haven’t yet formalized
infinite compositions, this condition is for the moment expressed in a very informal way.

Definition 3.9 (Informal Totality Condition). A call-graph is total if, along all infinite
path,

(1) either its output weight obviously has an even principal priority,
(2) or one of the branches in its argument obviously has an odd principal priority.

Two such examples are the call-graphs with a single arc:

(1) fx 7→ 〈〈−1〉2 + 〈−2〉1〉 f x: the prefixes of the only infinite path give the compositions
• fx 7→ 〈〈−2〉2 + 〈−4〉1〉 f x
• fx 7→ 〈〈−3〉2 + 〈−6〉1〉 f x
• ...
The recursive calls are guarded by an increasing number of constructors of priority 2
(coinductive). Some inductive constructors are also added,16 but those have smaller
priority. The limit will construct a term with infinitely many constructors of priority 2
and infinitely many constructors of priority 1: this is a total value.

(2) fx 7→ Ω f Succ1- x: prefixes of the only infinite path in this graph give
• fx 7→ Ω f Succ1- Succ1- x
• fx 7→ Ω f Succ1- Succ1- Succ1- x
• ...
Such terms only apply to arguments having enough Succ constructors (of priority 1)
and no other constructors. The limit thus only applies to arguments having infinitely
many constructors of priority 1 (and no other): that is not possible of total values!

Theorem 3.10 (informal). If a call-graph is total, then the original recursive definition
defines total functions.

3.4. Collapsing. The totality condition on call-graphs involves infinite path. It is natural
to try using the size-change principle to get a decidable approximation of this condition.
For that, we need a finite call-graph that is closed under composition (its transitive closure).
This is impossible: the example of length l can be composed with itself many times to get

length l 7→ 〈−n〉 length (.Snd Cons- ... .Snd Cons- l)

Both the output weight and the recursive argument of the call can grow arbitrarily. To
prevent that, we collapse the calls to bound their depth and weights [Hyv14].

Definition 3.11. Given a strictly positive bound B, the weight collapsing function ⌈ ⌉
B

acts on terms by replacing each weight 〈w〉p by 〈⌈w⌉
B
〉p where

⌈w⌉
B
=







−B if w < −B

w if −B ≤ w < B

∞ if B ≤ w

16Recall that constructors are counted negatively for the output.
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Ensuring a bounded depth is more complex: we introduce some “〈0〉” below D construc-
tors and above D destructors. Because of the reduction, those new weights will absorb the
constructors with depth greater than D and the destructors with “inverse depth” greater
than D. For example, collapsing C1C2C3〈W 〉.D4C

-
3C
-
2.D1x at depth 2 gives

C1C2〈0〉C3〈W 〉C-5.D4C
-
3〈0〉C

-
2.D1x →∗ C1C2〈1 +W − 3〉C-2.D1x

Definition 3.12. Given a positive bound D, the height collapsing function _↾D acts on
terms by integrating constructors below D and destructors above D into weights:

(
C t
)

↾i

def
= C

(
t↾i−1

)
if i > 0

{ . . . ; Dk = tk; . . . }↾i
def
= { . . . ; Dk = tk↾i−1

; . . . } if i > 0
(
Wβ

)

↾i

def
= W

(
β⇂D
)

if i > 0

β↾i
def
= β⇂D

t↾0
def
= nf

(
〈0〉t

)

⇂D
(∗)

and
(
〈W1〉t1 ∗ · · · ∗ 〈Wn〉tn

)

⇂i

def
= (〈W1〉t1)⇂i ∗ · · · ∗ (〈Wn〉tn)⇂i (∗∗)

(
〈W 〉{}

)

⇂i

def
= 〈W 〉{} (∗∗)

(
〈W 〉βx

)

⇂i

def
= 〈W 〉β⇂ix (∗∗)

(
βCp

)

⇂i

def
= β⇂i−1

Cp

(
β.Dp

)

⇂i

def
= β⇂i−1

.Dp

β⇂0
def
= β〈0〉

• The clauses are not disjoint and only the first appropriate one is used.
• We compute a normal form in clause (∗) to ensure that the clauses (∗∗) cover all cases
(since weights absorb constructors on their right, 〈0〉t doesn’t contain constructors),

We can extend collapsing to calls.

Definition 3.13. If α is a call f x 7→ 〈W 〉 g u, we put

• ⌈α⌉
B
= f x 7→ ⌈W ⌉

B
g ⌈u⌉

B

• α↾D = f x 7→ 〈W 〉 g u↾D

Lemma 3.14 ([Hyv14]). For any call α, we have

• ⌈α⌉
B
≤ α,

• α↾D ≤ α.

Definition 3.15. Given some bounds B and D, collapsed composition is defined by

β ⋄B,D α := nf

(⌈(
β ◦ α

)

↾D

⌉

B

)

Since the bounds are fixed, we usually write β ⋄ α.

Unfortunately, this composition is not associative.17 For example, with bound B = 2 if
α = f x 7→ 〈1〉 f x and β = f x 7→ 〈−1〉 f x we have β ⋄(α⋄α) = f x 7→ 〈∞〉 f x but
(β ⋄α)⋄α = f x 7→ 〈1〉 f x. The next property can be seen as a kind of weak associativity.

17except when B = 1 and D = 0
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Lemma 3.16. If σn ◦ · · · ◦σ1 6= 0, and if τ1 and τ2 are the results of computing σn ⋄ · · · ⋄σ1
in two different ways, then τ1 and τ2 are compatible, written τ1 ¨ τ2. This means that
there is some τ 6= 0 such that τ1 ≤ τ and τ2 ≤ τ .

Proof. Take τ = σn ◦ · · · ◦ σ1.

3.5. Size-Change Principle. The initial call-graph G of a definition is finite, and collapsed
composition ensures that there exists a finite transitive closure of this initial call-graph:
starting with G0 = G, we define the new edges of Gn+1 with:

if α and β are edges from f to g and from g to h in Gn, then β ⋄α is a new
edge from f to h in Gn+1.

Finiteness of the set of bounded terms guarantees that this sequence stabilizes on some
graph, written G∗.

To simplify the statement of the size-change totality principle, we first define the p-
norm a finite branch inside a generalized pattern: it counts constructors and destructors of
priority p.

Definition 3.17. Given p ∈ P and a branch β in a generalized pattern, the p-norm of β,
written |β|p is defined with:

• |Cpβ|p = |β|p + 1 and |Cqβ|p = |β|p if p 6= q,
• |{D = β}p|p = |β|p + 1 and |{D = β}q|p = |β|p if p 6= q,
• |Cp-β|p = |β|p − 1 and |Cq-β|p = |β|p if p 6= q,
• |.Dp-β|p = |β|p − 1 and |.Dq-β|p = |β|p if p 6= q,
• |Ωβ|p = ∞,
• |〈〉β|p = |β|p,
• |〈w〉pβ|p = w and |〈w〉qβ|p = |β|p if p 6= q,
• |〈W1 + · · ·+Wn〉β|p =

∑

i |〈Wi〉β|p.

Theorem 3.18 (size-change principle). Suppose every loop γ = f x 7→ 〈W 〉 f u in G∗

that satisfies γ ¨ γ ⋄ γ also satisfies one of the following two conditions:

• either the maximal priority appearing in 〈W 〉 is even, with negative weight,
• or there is a subterm β

∏
〈Wi〉λi of v where the maximal priority p of each β〈Wi〉λi is

odd, with negative weight (i.e. |β〈Wi〉λi|p < 0)

then the definition is total.

Here is an informal sketch of the proof. The combinatorial lemma18 at the heart of
the size-change principle implies that every infinite path can be decomposed (up to a finite
prefix) into an infinite sequence of the same idempotent loop (γ ¨ γ ⋄ γ). The condition
of totality on G0 involves such infinite path, i.e., infinite sequences of identical idempotent
loops in G∗.

• If such a loop satisfies the first condition, composing it infinitely many times will surely
add19 an infinite number of constructors of even priority, while not involving constructors
of higher priority. Hence the infinite path satisfies the first totality condition from page 23.

18given in a slightly simplified form in section 4.37, or in greater generality in [Hyv14]
19recall that on the output, negative weight means adding constructors
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• If such a loop satisfies the second condition, composing it infinitely many times will
explore, in the original argument, a branch β〈Wi0〉λi0β〈Wi1〉λi1 . . . containing an infinite
number of constructors of odd priority, and no constructor of higher priority. Thus, there
is a branch of the initial argument with odd principal priority (second condition from
page 23).

3.6. The Algorithm. All this makes it possible to actually implement a correct (but in-
complete) totality test for some mutual recursive definition of f1, . . . fn.

(1) Compute the call-graph G0 of the definition. This step is purely syntactical and linear
in the size of the definition.

(2) Compute the transitive closure G∗ of G0 by iterating collapsed composition. G∗ is
potentially exponentially bigger than G0, but this doesn’t happen in practice.

(3) Check all idempotent loops against the conditions of theorem 3.18. Since there are only
finitely many branches, finding β can be done by exploring the argument.

This is what is implemented, with minor variations, in the chariot prototype. More details
about the actual implementation, including the definition of the order or compatibility
relations by induction on terms can be found in [Hyv14].

4. Semantics and Correctness of the Call-Graph

We can now define the semantics of the call-graph from the previous section, and prove
correctness of the size change principle. It roughly proceeds as follows:

• we extend the domain of values with non-deterministic sums,
• we define (generalizing definition 3.2) a domain of syntactical operators,
• totality of such an operator implies totality of the corresponding definition,
• the call-graph is another operator and its totality implies that of the previous one.

Several notions from domain theory will be used in this section but the prerequisites
are kept to a minimum. They can be found in any of the several introductions to domain
theory [Plo83, SHGL94, AJ94]. One particular result that is worth knowing is that any
partial order can be completed to an algebraic DCPO whose compact elements are exactly
the elements of the original partial order. This ideal completion formally adds limits of all
directed sets. Moreover, if the original order is a sup-semi-lattice,20 its ideal completion is
a domain. This is one way to easily prove that values (definition 1.1) form a domain.

4.1. Smyth power domain. We first extend the grammar of values with formal sums:

v ::= ⊥ | Cp v | {D1 = v1; . . . ; Dk = vk}
p | v1 + v2

together with the order generated from:

• the order on V (definition 1.2),
• commutativity, associativity and idempotence (v + v = v) of “+”,
• (multi)linearity of C and {D=_; . . . },
• u+ v ≤ u.

20A sup-semi-lattice is a partial order where every finite bounded set as a least upper bound.



THE SIZE-CHANGE PRINCIPLE FOR MIXED INDUCTIVE AND COINDUCTIVE TYPES 27

This gives rise to a preorder instead of a partial order which we implicitly quotient by
the corresponding equivalence. This construction is well known: it is the “Smyth power
domain” [Smy78]. The ideal completion of the finite terms generated by this grammar
introduces some infinite sums: the Smyth power domain contains all “finitely generated”
sums.21 The following gives a concrete description of the corresponding order [Smy83, AJ94].

Proposition 4.1. The Smyth power domain on V satisfies

(1) Compact elements are finite sets of compact elements of V,
(2) Elements are finitely generated subsets V ⊆ V,
(3) U ≤ V iff V ↑ ⊆ U↑, (where V ↑ =

⋃

v∈V v↑ and v↑ = {u | v ≤ u})
(4) directed least upper bounds are given by intersections,
(5) binary greatest lower bounds exist and are given by unions.

The resulting structure is a preorder rather than a partial order, but it is possible to
take V ↑ as a representative for the equivalence class of V (if V is finitely generated, so is V ↑)
in which case the order is reverse inclusion. When working with concrete examples, it is
easier to take Min(V ), the set of minimal elements of V , as a representative of V , which will
often be finite. This can serve as a representative of V ↑ since V ↑ = Min(V )↑ for any subset
of V. Note that this gives a way to check that an infinite sum is finitely generated: we need
to check that it is the limit of a directed set (or chain) of finite sums of compact elements.

We also need a special term 0, greater than all other elements, to denote errors.

Lemma 4.2. For any domain D, D ∪ {⊤} is a domain.22

Applied to a Smyth power domain, adding a greatest element amounts to allowing the
empty set, which is explicitly forbidden in the definition of finitely generated set. We write
this new empty sum 0.

Definition 4.3. The domain A of values with approximations is obtained from V by the
Smyth power domain construction, allowing the empty sum.

Definition 4.4. An element of A (a sum of elements of V) is total when all its summands
are total. In particular, 0 is total.

The following follows directly from lemma 1.8 and proposition 4.1. It implies in partic-
ular that totality is compatible with equivalence: if T1 ≈ T2 and T1 is total, so is T2.

Lemma 4.5. If T1 ≤ T2 in A and if T1 is total, then so is T2.

Here is a summary of the properties of A.

Corollary 4.6. The compact elements of A are inductively generated by

v ::= ⊥ | Cp v | {D1 = v1; . . . ; Dk = vk}
p | v1 + v2 | 0

The order satisfies

• if u ≤ v in V then u ≤ v in A,
• + is commutative, associative and idempotent, with neutral element 0,
• u+ v is the greatest lower bound of u and v and 0 is the greatest element,
• constructors and records are (multi) linear:

21The sets of limits of the infinite branches of a finitely branching tree of elements of the domain.
22Domains with a top element are in fact complete lattices and thus, algebraic lattices.
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– C
(∑

i vi
)
=
∑

i Cvi
– { . . . ; D =

∑

i ti; . . . } =
∑

i { . . . ; D = ti; . . . }.

4.2. Preliminaries: Recursion and Fixed Points.

Simplifying assumption. In order to simplify notation, we will restrict the rest of this section
to the case where the recursive definition we are interested in contains a single function (no
mutually recursive functions) with a single argument.

A formula for fixed points. Whenever ϕ : D → D is a continuous function on a domain
and b ∈ D such that b ≤ ϕ(b), it has a least fixed point greater than b (Kleene theorem)
defined with

fix(f, b) =
⊔

↑

n≥0

fn(b)

In our case, we are interested in the fixed point of an operator from [A → A] to itself.
Moreover, we require that the functions satisfy f(0) = 0, i.e. that errors propagate. There
is a least such function, written Ω:

v 7→ Ω(v) =

{

0 if v = 0

⊥ otherwise

The fixed points we are computing are thus of the form

fix(ϕ,Ω) =
⊔

↑

n≥0

ϕn(Ω)

From now on, every fixed point is going to be of this form, and we will simply write fix(ϕ).

A recursive definition for f : A → B gives rise to an operator Θf on [JAK → JBK] whose
fixed point is called the semantics of f. It is written JfK : JAK → JBK. The operator Θf is
defined as follows: if f : JAK → JBK and v ∈ JAK, the value of Θf(f)

(
v
)
is obtained by:

(1) taking the first clause “f p = u” in the definition of f where p matches v,
(2) returning Ju[σ]Kρ,f:=f where σ is the most general unifier of u and p.

The unifier matching a pattern p to a value v can be described as [p := v], computed
inductively:

• [Cp := Cv] = [p := v],
• [{D1 = p1; . . . ; Dn = pn} := {D1 = v1; . . . ; Dn = vn}] = [p1 := v1] ∪ · · · ∪ [pn := vn],
• [Cp := C′v] (when C 6= C′), [{ . . . } := { . . . }] (when the records have different sets of fields),
[Cp := { . . . }] and [{ . . . } := Cv] are undefined: the patterns don’t match the values.

The fact that definitions are well-typed guarantees that there is always a matching clause.
It is possible for patterns to overlap, and in that case, the first matching clause is used.
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Setup. Our aim is to define a domain that extends the language of the call-graph (defini-
tion 3.2). Every element of this domain will represent an operator and the call-graph will
be a particular one satisfying the condition “if its fixed point is total, then so is the fixed
point of the recursive definition”.

A definition of f naturally gives rise to an “untyped” φf : [A → A] → [A → A]:

• φf(f)
(∑

v
)
=
∑

φf(f)(v)

• for φf(f)
(
v
)
, with v ∈ V, take the first clause “f p = u” where p matches v, and

return Ju[σ]K where σ is the most general unifier of u and p,
• if no clause matches v, φA(f)(v) = 0.

In order for this to make sense, the functions from the environment need to be lifted to
accept arbitrary values: if g is a previously defined function of type T1 → T2, its semantics
is extended by giving 0 for any value outside of JT1K.23

Lemma 4.7.

(0) Ω ≤ φ(Ω).
(1) fix(φf) restricted to JAK is equal to fix(Θf).
(2) If fix(φf) is total (on A), then fix(Θf) is total (on JAK).
Proof. The first point follows from the definitions. The second follows from the fact that
if f satisfies f(a) ∈ JBK for every a ∈ JAK, then φf(f)↾JAK = Θf(f↾JAK). This follows from the

definition of Θf and φf. This implies that φn
f (Ω)↾JAK = Θn

f (Ω). Since fix(F ) =
⊔

↑

n F
n(Ω),

we get fix(Θf) = fix(φf)↾JAK. The last point is immediate as b ∈ JBK is total iff {b} ∈ A is
total.

The following lemma shows how approximations relate to totality.

Lemma 4.8.

(1) Suppose θ ≤ φ in [A → A] → [A → A], then fix(θ) ≤ fix(φ) in A → A.
(2) If f ≤ g in A → A and f is total, then so is g.

Proof. The first point follows from the fact that fix(φ) =
⊔

↑ φn(Ω) and that θ ≤ φ implies
that θn ≤ φn for any n. The second point follows from the fact that if U ≤ V (in A) and U
is total, then V is also total (lemma 4.5).

4.3. A Language for Operators.

4.3.1. Terms.

Definition 4.9. F0 is the set of terms inductively generated from

t ::= Cpt | {D1 = t1; . . . ; Dn = tn}
p |

Cp
-t | .Dpt | x |

Ω θ | f t |

0

where x is a formal parameter, each f belongs to a finite set of function names and each
θ = {t1, . . . , tn} is a finite set (possibly empty) of terms. As previously, C and D come from

23This is monotonic because types are downward closed sets of values.
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a finite set of constructor and destructor names, and their priorities come from a finite set
of natural numbers. They are respectively odd and even. We usually write “Ω” for Ω{}
and “Ω t” for Ω{t}.

We impose the following (in)equalities:

(∗)







(0) C0 = 0

(0) C-0 = 0

(0) .D0 = 0

(0) {D = 0; . . . } = 0

(0) Ω{0, θ} = 0

(0) f 0 = 0

(1) C-Ct = t
(1) .Di0{ . . . ; Di = ti; . . . } ≥ ti0 if no ti = 0

(2) C-C′t = 0 if C 6= C′

(2) .D{ . . . } = 0 if the record has no field D
(2) C-{ . . . } = 0

(2) .DCt = 0

(3) Ω{Ct, θ} = Ω{t, θ}
(3) Ω

{
{D1 = t1; . . . ; Dk = tk}, θ

}
= Ω{t1, . . . , tk, θ}

(3) C-Ωθ = Ωθ
(3) .DΩθ = Ωθ
(3) Ω

{
Ω{t1; . . . ; tk}, θ

}
= Ω{t1, . . . , tk, θ}

The order ≤ on F0 is furthermore generated from

• t ≤ 0,
• Ω{t1} ≤ Ω{t1, t2} and Ω{} ≤ t,
• contextuality (if C[ ] is a context, then t1 ≤ t2 =⇒ C[t1] ≤ C[t2]),
• if C[ ] is a context, then Ω{t} ≤ C[t], and in particular, Ω{t} ≤ t,

We call simple term any element of F0 different from 0.

The whole group of inequalities (∗) naturally gives rise to a notion of reduction (writ-
ten →) when oriented from left to right.

Lemma 4.10. The reduction → is strongly normalizing and confluent. We write nf(t) for
the normal form of a term. Non zero normal forms are given by the grammar

t ::= Cpt | {D1 = t1; . . . ; Dn = tn}
p | β

β ::= Ω{δ1, . . . , δn} | δ

δ ::= Cp
-δ | .Dpδ | x | f t

Sketch of proof. Reduction is strongly normalizing because the size of the term decreases.

Because of the side condition “no ti = 0” in the rule .Di0{ . . . ; Di = ti; . . . } → ti0
reduction is not strictly speaking a rewriting system and we cannot use Newman’s lemma
as usual. Because we don’t know (yet) that reduction is confluent, we write t →∗ t′ for
“there exists a reduction from t to t′.” First, we prove

Fact 4.11. We have t = 0 iff t ≥ 0 iff t →∗ 0.

The first equivalence follows from the fact that 0 is the greatest element, and the right
to left implication of the second equivalence follows from fact that t → t′ implies t ≥ t′.
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For the left to right implication, it is enough to prove that for all the inequalities t1 ≤ t2
(or t1 = t2) generating the order, we have “t1 →∗ 0 implies t2 →∗ 0”. This is obvious for
most of the generating inequalities except:

• the inequalities involving Ω,
• C-C t ≤ t,
• contextuality,
• Ω{t} ≤ C[t].

In order to deal with those inequalities, we prove

(1) Ct →∗ 0 iff t →∗ 0,
(2) { . . . ; Di = ti; . . . }→

∗ 0 iff ti →
∗ 0 for some i,

(3) Ω{. . . ; ti; . . . } →∗ 0 iff ti →∗ 0 for some i, (this point requires the previous two).

Point (3) takes care of all inequalities of the form Ωθ ≥ 0 and of Ω{t} ≤ C[t], point (1)
takes care of C-C t ≤ t. For contextuality, we need one additional fact.

Fact 4.12. If Ct1 ≤ t2, then either t2 →∗ 0 or t2 →∗ Ct′2 with t1 ≤ t′2; and similarly,
if { . . . ; Di = t1,i; . . . } ≤ t2, then either t2 →∗ 0 or t2 →∗ { . . . ; Di = t2,i; . . . } with t1,i ≤ t2,i
for all i = 1, . . . , n.

To prove confluence, we need to prove that each t has a single normal form. We
distinguish 2 cases:

• t 6= 0. Because of fact 4.11, none of the reductions from t can involve 0. Those reduction
form a confluent rewriting system (the side condition “no ti = 0” is always true) which
is strongly normalizing. The only critical pairs are

C-Ω{C′t, θ} C-Ω{{D1 = t1, . . . }, θ} C-Ω{Ω{θ′}, θ}
.DΩ{C′t, θ} .DΩ{{D1 = t1, . . . }, θ} .DΩ{Ω{θ′}, θ}

Ω{Ω{C′t, θ}, θ′} Ω{Ω{{D1 = t1, . . . }, θ}, θ
′} Ω{Ω{Ω{θ′}, θ}, θ′}

and inspection readily shows that the system is locally confluent. By Newman’s lemma,
it is confluent, and each t 6= 0 has a unique normal form.

• t = 0. In that case, t has one reduction to 0 (by the previous lemma) and one reduction
to a non 0 term. The only reduction that allows to decrease (for the order ≤) a term
is .Di0{ . . . ; Di = ti; . . . } → ti0 . But in this case, the left side of the rule is equal to 0,
which implies that one of the ti is also equal to 0 by fact 4.12. This is forbidden by the
side condition.

Reduction removes all destructors (C- and .D) that are directly above constructors (C
and { . . . }). It also remove any constructor directly below Ω and destructors directly
above Ω. This is exactly what the given grammar does.

Because of the property t = 0 iff t →∗ 0, the easiest to way to compute the normal form
of a term is to reduce “bottom-up”, i.e. reduce all the ti before reducing .Di0{ . . . ;Di = ti; . . . }.

Unfortunately, F0 isn’t a sup semi-lattice, or, since 0 is a greatest element, a sup-lattice.
We thus need to formally add least upper-bounds before taking the ideal completion.

Definition 4.13. F is obtained as the Smyth power construction (without empty sums) of
the ideal completion of the free sup-lattice generated by F0.

The free sup-lattice F (O) generated from an order (O,≤) is obtained as the set of non-empty
subsets of the form U↓ ordered by inclusion. The fact that this is a free construction means
that defining a (sup preserving) function from F (F0) to another sup-lattice L is equivalent
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to defining an increasing function from F0 to L. In particular, by proposition 4.1, to define a
linear continuous function from F to another domain D, it is enough to define an increasing
function from F0 to D (as is done in definitions 4.14, 4.17 and 4.30).

Since 0 is a top element, it can implicitly be added to all sums without changing their
meaning. Because of that, 0 can, a posteriori, be identified with the empty sum and we
don’t need to add it explicitly as we did when defining A.

The ideal completion introduces infinite elements like “CCCC · · · =
⊔

↑{Ω, CΩ, CCΩ, . . . }”
but also like “· · · .D.D.D.D x =

⊔
↑{Ω,Ω.D x,Ω.D.D x, . . . }. Notice however that there

is no real infinite element of the form “.D.D.D · · · =
⊔

↑{Ω, .DΩ, .D.DΩ, . . . }” because
each .D · · ·.DΩ is equal to Ω. Note also that, just like V, F contains some infinite sums.

The constructions “.D” and “C-” have natural interpretations as continuous functions:

v 7→ .D(v) =







⊥ if v = ⊥

u if v is of the form { . . . ; D = u; . . . }

0 otherwise

and

v 7→ C-(v) =







⊥ if v = ⊥

u if v is of the form Cu

0 otherwise

Definition 4.14. Given an environment ρ associating functions to names, and t 6= 0 an
element of F0, we define {|t|}ρ : A → A with

• {|Ct|}ρ (v) = C ◦ {|t|}ρ,
• {|{ . . . ; Di = ti; . . . }|}ρ = v 7→ { . . . ; Di = {|ti|}ρ (v); . . . },

• {|Ω{. . . , ti, . . . }|}ρ = maxi
(
Ω ◦ {|ti|}

)
, or more concretely

– {|Ω|}ρ = Ω,

– {|Ω{. . . , ti, . . . }|}ρ (v) = 0 if one of {|ti|}ρ (v) = 0, and ⊥ otherwise,

• {|C-t|}ρ = C- ◦ {|t|}ρ,

• {|.Dt|}ρ = .D ◦ {|t|}ρ,
• {|x|}ρ = u 7→ u,

• {|0|}ρ = u 7→ 0,

• {|ft|}ρ = ρ(f) ◦ {|t|}ρ,

We extend {|_|}ρ to the whole of F with

• {|
∨

t|}ρ =
∨

{|t|}ρ (pointwise),24

• {|
∑

t|}ρ =
∑

{|t|}ρ (pointwise), and in particular, {|0|}ρ (u) = 0,

•
{∣
∣
⊔

↑ T
∣
∣
}

ρ
(u) =

⊔
↑
{
{|t|}ρ (u) | t ∈ T

}
(pointwise).

Lemma 4.15.

(1) If t1 ≤ t2, then {|t1|}ρ ≤ {|t2|}ρ.
(2) If ρ(f) is continuous for any f, then {|t|}ρ is also continuous.

(3) T 7→ {|T |} is continuous as a function from F to [A → A].
(4) If ρ(f) ≥ Ω (in [A → A]) for all function names, then {|T |}ρ ≥ Ω.

(5) For all terms t1, t2 ∈ F0 and environment ρ, we have
{∣
∣t1[x := t2]

∣
∣
}

ρ
= {|t1|}ρ ◦ {|t2|}ρ.

24recall that we used the ideal completion of the free sup-lattice generated by F0
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Sketch of proof. Checking the first points amounts to checking that all inequations from
definition 4.9 hold semantically in [A → A]. This is immediate. The functions C -, .D and Ω
are easily shown continuous, JtKρ is continuous as a composition of continuous functions.

Continuity of J_K follows from the definition of
q⊔

↑ . . .
y
. The only thing that really needs

checking is that J_K is monotonic. This is an easy induction. Points (4) and (5) are proved
by immediate induction.

Definition 4.16. We identify a special function name “f” for the recursive function being
defined and we assume given an environment ρ for all the other names. Then each T ∈ A
gives rise to an operator JT K from [A → A] to itself:

JT Kρ : f 7→ JT Kρ (f) = {|T |}ρ,f:=f

All other functions will be called g, h etc.. The typical environment ρ is given inductively,
it will be omitted in the rest of the paper. A consequence of point (4) from lemma 4.15 is
that if ρ(g) ≥ Ω for all function names, then JT K (Ω) ≥ Ω, and we can thus use the formula
for the least fixed point of JT Kρ greater than Ω.

4.3.2. Composition. Given two terms t1 and t2, we want to find a term representing the
composition Jt1K◦Jt2K. The idea is to replace each “f u” inside t1 by “t2 u”, i.e. by t2[x := u].

Definition 4.17. If t1 6= 0 ∈ F0 and T2 ∈ F , we define t1 ◦ T2 by induction on t1 where

• (Ct1) ◦ T2 = C(t1 ◦ T2),
• { . . . ; Di = ti; . . . } ◦ T2 = { . . . ; Di = ti ◦ T2; . . . },
•
(
Ω{. . . , ti, . . . }

)
◦ T2 = Ω{ti ◦ T2)},

• (C-t1) ◦ T2 = C
-(t1 ◦ T2),

• (.D t1) ◦ T2 = .D(t1 ◦ T2),
• x ◦ T2 = x,
• (f t1) ◦ T2 = T2[x := t1 ◦ T2].

This is extended to T1 ∈ F by commutation with
∨
,
∑

and
⊔

↑.

Only the last case is interesting, and because of it, we sometimes use the less formal nota-
tion T1 ◦ T2 = T1

[
f t := T2[x := t]

]
, or even T1[f := T2]. This definition of ◦ generalizes

definition 3.8 on page 22. Note that because the definition is by induction on t1, composition
is automatically linear in its left argument but not necessarily on its right argument.

Lemma 4.18. For any t1, t2, t3 ∈ F0, t1 ◦ (t2 ◦ t3) = (t1 ◦ t2) ◦ t3.

Proof. We first prove that t[x := t1] ◦ t2 = (t ◦ t2)[x := t1 ◦ t2] by induction on t:

• if t = x, this is immediate,
• if t starts with a constructor, record, destructor or Ω, the result follows by induction,
• if t = f t′, we have

(f t′)[x := t1] ◦ t2 = (f t′[x := t1]) ◦ t2
= t2[x := t′[x := t1] ◦ t2] definition of ◦

= t2[x := (t′ ◦ t2)[x := t1 ◦ t2]] induction

= t2[x := t′ ◦ t2][x := t1 ◦ t2] substitution lemma

= (f t′ ◦ t2)[x := t1 ◦ t2] definition of ◦

We can now prove that t1 ◦ (t2 ◦ t3) = (t1 ◦ t2) ◦ t3 by induction on t1:
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• if t1 = x, this is immediate,
• if t1 starts with a constructor, record, destructor or Ω, it follows by induction,
• if t1 = f t′1, we need to show that t2[x := t1 ◦ t2] ◦ t3 = (t2 ◦ t3)[x := t1 ◦ (t2 ◦ t3)]. By
induction, it is enough to show that t2[x := t1 ◦ t2] ◦ t3 = (t2 ◦ t3)[x := (t1 ◦ t2) ◦ t3)]. This
follows from the previous lemma, with t = t2, t2 = t1 ◦ t2, and t2 = t3.

Lemma 4.19. For any T1, T2 ∈ F , JT1 ◦ T2K = JT1K ◦ JT2K. When T2 doesn’t contain f, we
also have {|T1 ◦ T2|} = JT1K

(
{|T2|}

)
. In particular,

{∣
∣T ◦ · · · ◦ T
︸ ︷︷ ︸

n

◦Ω
∣
∣
}

= JT Kn (Ω)

Proof. The first point is proved by induction. The crucial case is (f t1) ◦ t2 = t2[x := t1 ◦ t2]:
q
(f t1) ◦ t2

y
ρ

= f 7→
{∣
∣(f t1) ◦ t2

∣
∣
}

ρ,f=f
definition of J_K

= f 7→
{∣
∣t2[x := t1 ◦ t2]

∣
∣
}

ρ,f=f
definition of ◦

= f 7→ {|t2|}ρ,f=f ◦ {|t1 ◦ t2|}ρ,f=f point (5) of lemma 4.15

= f 7→ {|t2|}ρ,f=f ◦ {|t1|}ρ,f={|t2|}ρ,f=f
induction

= f 7→ {|f t1|}ρ,f={|t2|}ρ,f=f
definition of {|_|}

= Jf t1Kρ ◦ Jt2Kρ definition of J_K

4.4. Interpreting recursive definitions. We can now replace the operator φf (obtained
from a recursive definition) by the interpretation of an element of F . Consider a single
clause “f p = u” of the recursive definition of f. The pattern p allows to “extract” some
parts of the argument of f to be used in u. We can mimics that in F :

Definition 4.20. Given a pattern p, define the substitution σp (a function from variables
to terms) as follows: (also in definition 3.7 on page 21)

• σy = [y := x],
• σCp = C

- ◦ σp,
• σ{...;Di=pi;...} =

⋃

i(.Di ◦ σpi) (note that because patterns are linear, the union is disjoint).

where ◦ represents composition functions. For example, C- ◦ σp = [. . . , y := C-σp(y), . . . ].

Lemma 4.21. If v ∈ V matches p, then σp(y)[x := v] 6= 0 for all variables y in p. In that
case, σp ◦ [x = v] is the unifier for p and v.

Proof. The proof is a simple induction on the pair pattern / value. (Refer to definition of
the matching unifier on page 28).

An example should make that clearer. Consider the pattern Cons{Fst=n; Snd=l} (simply
“n::l” in Caml), we get the substitution

[

n := .Fst Cons- x, l := .Snd Cons- x
]

which precisely describes how to get n and l from a value (x).
A part of a pattern that doesn’t contain variables isn’t recorded in σp. For example,

the pattern Cons{Fst=Zero; Snd=l} would only give the subsitution [l := .Snd Cons- x]
and would thus match any non-empty list.
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Definition 4.22. Given a recursive definition of f, define Tf with

Tf =
∑

f p = u

u[σp]

where the sum ranges over all clauses defining f.

Each summand of this sum is a simple term (a non 0 element of F0) and we interpret in
this way any recursive definition as a compact element of F . The previous lemma makes it
easy to show

Corollary 4.23. If Tf is defined as above for a definition of f, we have JTfKρ ≤ φf, where

the environment ρ associates to each previously defined function, its interpretation (lifted
to A → A).

One reason Tf is generally smaller than φf is that patterns may overlap. In that case, φf
only uses the first matching clause while Tf sums over all matching clauses. The other reason
is that we forget about the patterns without variables (like Zero above). By lemma 4.8,
totality of fix(JTfK) implies totality of fix(φf). Note that nothing in this corollary requires ρ
to be the interpretation of previously defined functions, we only need to interpret each g by
a total function! Because of lemma 4.19, we have

Lemma 4.24. To check that fix(φf) is total, is is enough to check that

⊔
↑

n

u
vTf ◦ . . . Tf
︸ ︷︷ ︸

n

◦ Ω

}
~

is total.

From now on, we will omit the semantics brackets and write Tf for JTfKρ. We will also

write T n
f (Ω) for Tf ◦ · · · ◦ Tf ◦ Ω and the notation “fix(Tn)” will refer to

⊔
↑

n Tf ◦ . . . Tf ◦ Ω.

4.5. Removing finite path. During evaluation, or when using the formula for fix(T ), some
computations are finite. Since the size-change principle only deals with infinite path, such
finite computations are ignored. In simple cases, this is justified by the following.

Lemma 4.25. Suppose Tf doesn’t contain Ω and is of the form T1+T0, where all summands
of T1 contains a single occurrence of f, and all summands of T0 contain no occurrence of f.25

Then fix(T1 + T0) is total iff fix(T1) is total.

Sketch of proof. We have T1 + T0 ≤ T1, which proves the left to right implication. For the
other direction, note that T1(t+ t′) = T1 ◦ (t+ t′) by lemma 4.19. Since each summand of T1

contains a single occurrence of f, its semantics is linear: we have T1 ◦(t+ t′) = T1(t)+T1(t
′).

This implies that (T1 + T0)
2(t) = T 2

1 (t) + T1(T0) + T0, and more generally:

(T1 + T0)
n(t) =

n−1∑

i=0

T i
1(T0) + T n

1 (t)

25Many everyday recursive function are of this form. The first real counter example that comes to mind
is the Ackermann function.
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We now have

fix(T1 + T0) =
⊔

↑

n≥0

(T1 + T0)
n(Ω)

=
⊔

↑

n≥0

(
n−1∑

i=0

T i
1(T0) + T n

1 (Ω)

)

=
∑

n>0

T n
1 (T0) +

⊔
↑

n≥0

T n
1 (Ω) (*)

=
∑

n>0

T n
1 (T0) + fix(T1) (1)

where (∗) follows from basic properties of unions (+) and intersections (⊔↑). Each T n
1 (T0) is

a finite composition of total functionals and is thus total. Since fix(T1) is total by hypothesis,
we can conclude.

When T1 contains nested calls, the previous lemma is false! The following ad-hoc
definition provides a counter example:

val f : prod(nat, nat) -> nat

| f {Fst=0; Snd=s} = s

| f {Fst=n+1; Snd=s} = f {Fst=n; Snd=f {Fst=n+1; Snd=s}}

This definition yields a non total Tf: it is undefined whenever the first projection of its
input is strictly greater than 0. However, removing the base case, or replacing it with

| f {Snd=0; Snd=s} = 3

yields a total function, at least in call-by-name.26 To derive a general formula analogous
to (1), we start by indexing the occurrences of f in T : if T is ffx, we write f1f2x. Substi-
tuting f by g+ h gives ggx+ ghx+ hgx+ hhx, i.e. each occurrence of f is substituted either
by g or h. Since substituting a single occurrence of f is linear, substituting all of them is
multilinear.

Lemma 4.26. We have

T ◦ (t1 + · · ·+ tn) =
∑

σ : occ(f,T )→{t1,...,tn}

T [σ]

where occ(f, T ) represents the set of occurrences of f in T , and the substitution occurs at
the given occurrences. More precisely, T [σ] = T

[
fi t := σ(fi)[x := t]

]
as in definition 4.17.

In particular, if T =
∑

i ti is a sum of simple terms, then T n is a sum of simple terms
obtained in the following way:

• start with a simple term ti0 ,
• replace each occurrence of f by one of the ti,
• repeat n− 2 times.

We now extend this to infinite compositions.

Definition 4.27. Given T = t1 + · · · + tn a sum of simple terms, a path for T is a se-
quence (sk, σk)k≥0 such that:

26Our semantics corresponds to call-by-name, but the fact that this definition is total can also be checked
using the formula for fix(Tf), i.e. without referring to the operational semantics of the language.
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• s0 = f x,
• sk+1 = sk[σk] where σk replaces occurrences of f inside sk by t1, . . . , or tn.

If some sk doesn’t contain any occurrence of f, then all latter sk+i are equal to sk. We call
such a path finite.

We usually don’t write the substitution and talk about the path (sk). Note that s1
is just one of the summands of T . We can now state and prove a general version of the
formula (1).

Lemma 4.28. Suppose T = t1 + · · ·+ tn is a sum of simple terms, then

fix(T ) =
∑

s path of T

⊔
↑

i≥0

si(Ω)

Proof. Let s be a simple term in fix(T ) =
⊔

↑ T n(Ω). We want to show that s is greater than
some

⊔
↑

i≥0 si(Ω). For each i, T i(Ω) is a finite sum of elements of F0. Define the following
forest:

• nodes of depth i are those summands t in T i satisfying t(Ω) ≤ s,
• a node s at depth i is related to a node s′ at depth i+ 1 if s′ = s[σ], where σ substitute
all occurrences of f in s by one of t1, . . . , tn.

This forest is finitely branching (there are only finitely many possible substitutions from a
given node) and infinite (because T n(Ω) ≤ fix(T ) ≤ s, each T n(Ω) contains some term t
such that t(Ω) ≤ s). It thus contains an infinite branch (König’s lemma) s0, s1, . . . . This
sequence satisfies all the properties of definition 4.27 and its limit is less than s (because
all si(Ω) are less than s by construction). We thus have

⊔
↑ T n(Ω) ≥

∑

s path of T

⊔
↑

i≥0

si(Ω)

For the converse, it is enough to show that for each path (sk) and natural number n, the
limit of sk(Ω) is greater than T n(Ω). This is immediate because each sk(Ω) is a summand
of T k(Ω).

Corollary 4.29. If T doesn’t contain Ω and fix(T ) is non-total, then there is an infinite
path (sk) for T such that

⊔
↑ si(Ω) is non total.

Proof. If fix(T ) is non total, then by the previous lemma, there is a path of T that is
non total. Since every finite path is total as a finite composition of total operators, there
necessarily exists a non total infinite path.

4.6. The Call-Graph. In an infinite non total path (sk), each sk must contain at least one
occurrence of f that leads to non totality. The call-graph allows to keep that occurrence
alive. All other occurrences are either removed or replaced by Ω.

Definition 4.30. Let T = t1 + · · · + tn be a sum of simple terms that do not contain Ω.
Define G(T ) =

∑

βf t∈T βΩf uΩ where

• β is a branch (i.e. a term where records have a single field),
• β f t ∈ T means that T contains the subterm ft at position β,
• βΩ is equal to β where all function names (f, g, h, etc.) have been replaced by Ω, and
similarly for tΩ.
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A more pedestrian inductive definition is

(1) G(f t) = f t if f doesn’t occur in t,
(2) G(f t) = f

(
tΩ
)
+ΩG(t) if f occurs in t, (note that there is no recursive call to G in the

left summand)

(3) G(g t) = ΩG(t),
(4) G(x) = x,

(5) G(C t) = CG(t),
(6) G

(
{ . . . ; Di = ti; . . . }

)
=
∑

i {Di = G(ti)},
(7) G(C-t) = C-G(t),
(8) G(.D t) = .DG(t),

extended by commutation with
∨
,
∑

and
⊔

↑.

In particular, G(t) = 0 whenever t doesn’t depend on f. In general, T and G(T ) are not
comparable. However, we have

Proposition 4.31. If fix(G(T )) is total then so is fix(T ).

Proof. Suppose fix(T ) is non-total. By corollary 4.29, it implies there is a path (sk) and an
element u ∈ V with

⊔
↑ si(Ω)(u) ∈ V non-total, i.e. contains a non total branch (either a

finite branch ending with ⊥, or an infinite branch with odd principal priority). In particular,
no si(Ω)(u) is equal to 0. Denote this branch with β.

We index occurrences of f in Tf by a natural number and extend that indexing to
occurrences of f in (sk). The occurrences of f in sk are indexed by lists of length k:

(1) the only occurrence of f in s0 = f x is indexed by the empty list
(2) occurrences of f in s1 are indexed using the list with a single number corresponding to

the index of this occurrence in Tf.
(3) given k > 1, suppose the original substitution σk replaces occurrence fi in sk by some

summand t of Tf. The new substitution replaces occurrence fL,i by the same t, but
where each fj is instead indexed by fL,i,j.

An example should make this clearer: suppose f3,5 t occurs in s2, corresponding initially
to f5 t in s2. If this occurrence was originally replaced by σ2(f5) = f4Cf7x, we now replace it
with σ2(f3,5) = f3,5,4Cf3,5,7x. The new s3 will thus contain f3,5,4Cf3,5,7 u. These lists record
a kind of genealogy of each occurrence of f by keeping track of which previous occurrences
introduced it.

An occurrence fL ∈ sk is called non-total if the path

s′0 = fLx, s
′
1 = σk(fL), s

′
2 = s′1[σk+1], . . .

is non-total. In other words, an occurrence is non-total if it “converges to a non-total term”.

We now construct a path (s′k) of G(T ): suppose we have constructed σ′
0, . . .σ

′
k−1 so

that each s′i is of the form β↾i γ
Ω
i fL tΩi where

• β↾i γi fL ti is a subterm of si, with fL being non-total,
• β↾i is a prefix of β (it contains only C and {D = _}),
• γi is either empty or starts with a function name (f or some g) and only contains unary
records.

Since s′k contains a single occurrence of f, the substitution σ′
k only need to act on fL.

Suppose fL was replaced (by σk) by the summand t of T . Since fL was chosen non-total, t
necessarily contains non-total occurrences fL,i.
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• If γk was non empty, we replace fL by any γ′ΩfL,it
′Ω where γ′fL,it

′ corresponds to a
non-total occurrence of f in t. This is indeed a summand of G(T ), and s′k+1 is equal to

(
β↾k γΩk fL tΩk

)[
f := γ′ΩfL,it

′Ω
]

= β↾k γΩk γ′Ω fL,i t
′Ω[x := tΩk ]

= β↾k (γkγ
′)Ω fL,i (t

′[x := tk])
Ω

• If γk was empty, the summand t starts with part of the branch β: there is a sub-
term β↾k,k+1γ

′fL,it
′ of t such that

– β↾kβ↾k,k+1 is a prefix of β,
– γ′ is either empty or starts with a function name,
– fL,i is a non-total occurrence.

In that case, we replace fL by β↾k,k+1γ
Ω
k+1ft

Ω
k+1, which is indeed a summand in G(T ).

The term s′k+1 is then equal to
(
β↾kfL tΩk

)[
f := β↾k,k+1γ

′ΩfL,it
′Ω
]

= β↾k β↾k,k+1 γ′Ω fL,i t
′Ω[x := tΩk ]

= β↾k β↾k,k+1 γ′Ω fL,i (t
′[x := tk])

Ω

In both cases, the resulting s′k+1 as a shape compatible with the invariant given above.

Fact 4.32. This path (s′k) of G(T ) is non-total.

We started by supposing that
⊔

↑ si(Ω)(u) is a non-total element of V containing the
non-total branch β. In particular, it implied that no si(Ω)(u) was equal to 0. The
limit

⊔
↑ s′k(Ω)(u) is thus a limit of the form

⊔
↑ βk γkΩt(u) where t(u) is never equal to 0.

This means that Ωt(u) = ⊥. Since γ starts with a Ω (or is empty), the limit is of the form
⊔

↑ βk⊥. Because β is non-total, this limit is also non-total.

Note that this is only a soundness result and doesn’t say anything about the strength of
reducing totality for T to totality for G(T ). (The same holds trivially of G′(T ) = Ω, which
is never total!) The only argument presented in this paper about that is of a practical
nature: experimenting with chariot shows that G(T ) is quite powerful. General results
like “all structurally recursive definitions are total” or “all syntactically guarded definitions
are total” are certainly provable, but they are left as an exercise to the reader.

Note that since summands in G(Tf) contain exactly one occurrence of f, an infinite path
for G(t), usually given by a sequence of substitutions (σn) is simply given by a sequence (tn)
of summands of G(Tf). Such a path is total if

⊔
↑(t1 ◦ · · · ◦ tn)(Ω) is total.

4.7. Weights. Before proving correctness of the size-change principle for recursive defini-
tions, we need to define the terms 〈W1〉t1 ∗ · · · ∗ 〈Wn〉tn that were used for collapsing in
section 3.4.

Definition 4.33. We write ∆ for an element of F inductively built from

∆ ::= Cp∆ | {D1 = ∆1; . . . ; Dk = ∆k; . . . }
p | δ | Ω δ

δ ::= xi | Cp-δ | .Dpδ
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where k > 0. Given a branch leading to one xi, its weight is an element of W defined
inductively:

|Cpβ| = 〈κp〉+ |β|

|{D = β}p| = 〈κp〉+ |β|

|xi| = 〈〉

|Ωβ| = Ω

|Cp-β| = 〈−κp〉+ |β|

|.Dpβ| = 〈−κp〉+ |β|

Given some Wi ∈ W, we put 〈W1〉
↓x1 ∗ · · · ∗ 〈Wn〉

↓xn =
∑

∆ where for each ∆, the branches
leading to xi have weight less than 〈Wi〉. Given t1, . . . , tn in F , we write 〈W1〉

↓t1 ∗ · · · ∗
〈Wn〉

↓tn for the corresponding
∑

∆[x1 := t1, . . . ].

A summand of 〈W1〉
↓x1 ∗ · · · ∗ 〈Wn〉

↓xn looks like:

Ω

x2
x1

β

|β| ≤ 〈W1〉, etc.

Ω

x2

Lemma 4.34. The infinite sum from the previous definitions is finitely generated.

Sketch of proof. This relies on the fact that there only are finitely many constructor and
destructor names: given some weights Wj ∈ W, write Ξ for 〈W1〉

↓x1 ∗ · · · ∗ 〈Wn〉
↓xn. We

want to show that Ξ can be obtained as the limit of a chain of finite sums of elements of F0.
Given d ∈ N, define Ξ↾d ⊂ F0 as the set of all those ∆ obtained as collapses of elements of Ξ
of “syntactical depth” d. Collapsing an element ∆ is done by introducing some Ω inside ∆
and normalizing. For example,Succ Succ Succ Succ- x has several collapses at depth 3:

• Succ Succ Ω x,
• Succ Ω Succ- x.

Because there are only finitely many different constructors and destructors, each one of the
set Ξ↾d is finite. Moreover, Ξ is the limit of the chain

Ξ↾1 ≤ Ξ↾2 ≤ · · ·

Indeed, each element of Ξ↾d+1 is either in Ξ↾d (when its syntactical depth is less than d), or

greater than an element of
(
〈W1〉

↓x1 ∗ · · · ∗ 〈Wn〉
↓xn
)

i
(when its syntactical depth is strictly

greater than d). This shows that 〈W1〉
↓x1 ∗ · · · ∗ 〈Wn〉

↓xn is a limit of compact elements
of F .

Those new terms are “compatible” with the reduction of generalized patterns containing
approximations (c.f. definition 3.4 in the previous section).

Lemma 4.35. We have, where each P denotes a product 〈W1〉
↓s1 ∗ · · · ∗ 〈Wn〉

↓sn:

(1) distribution: 〈W 〉↓(t1 + t2) ∗ P = (〈W 〉↓t1 ∗ P ) + (〈W 〉↓t2 ∗ P ),
(2) 〈W 〉↓0 ∗ P = P ,
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(3) 〈W 〉↓0 = 0 for a unary product,
(4) 〈W 〉↓Cpt ∗ P = 〈W + κp〉

↓t ∗ P ,

(5) 〈W 〉↓{ . . . ; Di = ti; . . . }
p ∗ P =

∏

i 〈Wi + κp〉
↓ti ∗ P if the record is not empty,

(6) Cp-
∏

i 〈Wi〉
↓ti =

∏

i 〈W − κp〉
↓ti,

(7) .Dp
∏

i 〈Wi〉
↓ti =

∏

i 〈W − κp〉
↓ti,

(8)
(
〈V 〉↓(

∏

i 〈Wi〉
↓ti)
)
∗ P =

(∏

i 〈V +Wi〉
↓ti
)
∗ P .

We also have:

• 〈0〉↓(t) ≤ t,
• if W ≤ W ′ in W, then 〈W ′〉↓t ≤ u〈W 〉↓t.

Proof. We only look at one case, the other being treated similarly.

(4) Suppose ∆[x := Cpt0, . . . ] is a summand in 〈W 〉↓Cpt0 ∗P . We construct ∆′ by replacing
each occurrence of x0 in ∆ by Cpx0. We have that ∆′[x0 := t0, . . . ] = ∆[x := Cpt0, . . . ]
is a summand in 〈W + κp〉

↓t0 ∗ P . This shows that 〈W 〉↓Cpt0 ∗ P ≥ 〈W + κp〉
↓t0 ∗ P .

For the converse, let ∆[x := t0, . . . ] be a summand in 〈W + κp〉
↓t0 ∗ P . We con-

struct ∆′ by replacing each x0 by Cp-x0. The term ∆′[x0 := Cpt0, . . . ] ≥ ∆[x := t0, . . . ]
is then a summand in 〈W 〉↓Cpt0 ∗ P .

Formally speaking, we also need to introduce terms 〈W1〉
↑t1 ∗ · · · ∗ 〈Wn〉

↑tn to approx-
imate the output. This is done in exactly the same way, except we start from Z ∪ {−∞}
and the order on weights (definition 3.1 on page 19) satisfies

• 〈w1〉
p↑ ≤ 〈w2〉

p↑ whenever w1 ≤ w2 in Z∞

In other words, while 〈1〉↓ removes at least one constructor (good one an argument), 〈1〉↑

adds at least one constructor (good on top of a recursive call). We then have the same
properties (lemma 4.35).

4.8. The Size-Change Principle. Putting everything together (proposition 4.31, corol-
lary 4.29 and lemma 4.24), we get

Corollary 4.36. If all infinite path in G(Tf) are total, then JfKρ is total for every total
environment ρ.

This is where the size-change principle comes into play. We first prove a variant of
combinatorial lemma at the heart of the size-change principle.

Lemma 4.37. Suppose (O,≤) is a partial order, and F ⊆ O is a finite subset. Suppose
moreover that ◦ is a binary, associative and monotonic operation on O×O and that ⋄ is a
binary, monotonic operation on F × F satisfying

∀o1, o2 ∈ F, (o1 ⋄ o2) ≤ (o1 ◦ o2)

then every infinite sequence o1, o2, . . . of elements of F can be subdivided into

o1, . . . , on0−1,
︸ ︷︷ ︸

initial prefix

on0
, . . . , on1−1,

︸ ︷︷ ︸

r

on1
, . . . , on2−1,

︸ ︷︷ ︸

r

. . .

where:

• all the (. . . (onk
⋄ onk+1) ⋄ · · · ) ⋄ onk+1−1 are equal to the same r ∈ F ,

• r is coherent: there is some o ∈ O such that r, (r ⋄ r) ≤ o.
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In particular,
(

on0
◦ · · · ◦ on1−1 ◦ on1

◦ · · · ◦ on2−1 ◦ · · · ◦ onk−1
◦ · · · ◦ onk−1

)

≥ o ◦ o ◦ · · · ◦ o
︸ ︷︷ ︸

k times

Proof. This is a consequence of the infinite Ramsey theorem. Let (on)n≥0 be an infinite
sequence of elements of F . We associate a “color” c(m,n) to each pair (m,n) of natural
numbers where m < n:

c(m,n)
def
= (...(om ⋄ om+1) ⋄ · · · ) ⋄ on−1

Since F is finite, the number of possible colors is finite. By the infinite Ramsey theorem,
there is an infinite set I ⊆ N such all the (i, j) for i < j ∈ I have the same color o ∈ F .
Write I = {n0 < n1 < · · · < nk < · · · }. If i < j < k ∈ I, we have:

o = (...(oi ⋄ oi+1) ⋄ · · · ) ⋄ oj−1

= (...(oj ⋄ oj+1) ⋄ · · · ) ⋄ ok−1

= (...((...(oi ⋄ oi+1) ⋄ · · · ) ⋄ oj) ⋄ · · · ) ⋄ ok−1

The first two equalities imply that

o ⋄ o =
(
(...(oi ⋄ oi+1) ⋄ · · · ) ⋄ oj−1

)
⋄
(
(...(oj ⋄ oj+1) ⋄ · · · ) ⋄ ok−1

)

If ⋄ is associative, this implies that o ⋄ o = o. If not, we only get that both o and o ⋄ o are
smaller than

oi ◦ · · · ◦ oj−1 ◦ oj ◦ · · · ◦ ok−1

We can now mimic what was done in section 3:

(1) terms with weights are elements of F (definition 4.33) and combine just like in section 3
(lemma 4.35)

(2) collapsing decreases information, almost by definition (collapsing weights decreases the
weight, and collapsing depth inserts 〈0〉 at some strategic places)

There is one subtlety when collapsing the output: terms inG(Tf) are of the form βf t where f
doesn’t appear in u. We want to have a lower bound on the number of constructors in β,
and an upper bound on the number of constructors in u (or equivalently, a lower bound
on the number of destructors). For that reason, collapsing on the u part is done (as in
section 3) by introducing 〈W 〉↓, while collapsing on the β part is done by introducing 〈W 〉↑.
The implementation used 〈−W 〉↓ instead, which behaves similarly.

With all that, we can define the transitive closure G∗ of G as in the previous section.27

By construction, it satisfies:

Lemma 4.38. For every finite sequence s0, s1=s0[f:=t0], . . . , sk=sk−1[f:=tk−1] in G, we
have t ≤ t0 ◦ · · · tk−1 for some simple term t in G∗.

We can now state and prove correctness of the size-change principle here in the case of
a single function. (The definition of p-norm for a branch is given on page 25.)

Theorem 4.39 (size-change principle). Suppose every simple term t = βfu in G∗ that
satisfies t ¨ t ⋄ t also satisfies one of the following two conditions:

• either the maximal priority p appearing in β is even and positive (|β|p > 0)

27Note that G∗ is not an element of F0 as it may contain weights, which are not compact in F .
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• or there is a subterm β
∏

〈Wi〉
↓λi of v where the maximal priority p of each β〈Wi〉

↓λi is
odd, with negative weight (i.e. |β〈Wi〉

↓λi|p < 0)

then fix(G) is total.

The proof is nothing more than a rephrasing of the intuition given on page 25.

Proof. By lemma 4.28, we only need to check that infinite paths are total. Let (sk) be an
infinite path of G. By the lemma 4.37, we know that such a path can be decomposed into

s0 . . . sn0
= s0[t0 ◦ · · · ◦ tn0−1] . . . sn1

= sn0
[tn0

◦ · · · ◦ tn1−1] . . . sn2
. . .

where:

• all the tnk+1−1 ⋄ . . . ⋄ tnk
are equal to the same t,

• t is coherent : t ⋄ t ¨ t.

Suppose that t satisfies the first condition. If we write init for t0 ◦ · · · ◦ tn0−1, we have
⊔

↑

k

sk(Ω) =
⊔

↑

k

t0 ◦ t1 ◦ · · · ◦ tk(Ω)

≥
⊔

↑

j

t0 ◦ · · · ◦ tn0−1 ◦ t
j(Ω)

=
⊔

↑

j

init ◦βjfu(Ω)

≥ init ◦
⊔

↑

j

βjΩ

Now, for any simple value v, βkΩ(v) is either 0 or has at least k constructors of priority p =
2q coming from βk above any constructor coming from v. At the limit, there will be
infinitely many constructors of priority p = 2q, all coming from β. Because β doesn’t
involve constructors of priority greater than p = 2q, the limit will be total.

Similarly, if t satisfies the second condition. We have
⊔

↑

k

sk(Ω) =
⊔

↑

k

t0 ◦ t1 ◦ · · · ◦ tk(Ω)

≥
⊔

↑

j

init ◦tj(Ω)

≥ init ◦
⊔

↑

j

Ωuj

By hypothesis, uk = u[x := uk−1] contains a subterm β
∏

〈Wi〉
↓λi with |β〈Wi〉

↓λi|p < 0 for

all i, p being the maximal priority appearing in β
∏

〈Wi〉
↓λi. Since u contains approxima-

tions, it is in fact an infinite sum of elements of F0. By definition of approximations, each
summand of uk necessarily has a branch of the form

ββi1λi1ββi2λi2 . . . ββikλik

where, by hypothesis, each |ββijλij |p < 0. Such a branch globally removes at least k
constructors of priority p = 2q+1 and doesn’t involve greater priorities. If v is a total value,
then each uk(v) can only be non-0 if v contains at least k constructors of priority p = 2q+1
and no constructors of greater priority. At the limit, the only values such that

⊔
↑

k u
k(v)

are non-0 are values that contain a branch with an infinite number of constructors of
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priority p = 2q + 1 and no constructor of priority greater than p. This is impossible for
total values!

4.9. Back to the Previous Section. We can now recast all of section 3:

• generalized patterns (definition 3.2) are just elements of F incorporating weights (defini-
tion 4.33),

• generalized patterns decrease along reduction (definition 3.4) because it consists of reduc-
tions in F and equalities in F (lemma 4.35),

• the call-graph of section 3.3 is a smaller than G(Tf) of section 4.6: comparing the defini-
tions, we see that the call graph can be obtained from G(Tf) by
– replacing the output branch β by its weight, for example by taking 〈0〉β〈0〉, which is

smaller than β,
– in the arguments, replacing each Ωu by Ω, which is smaller than Ωu.
None of these simplifications is really necessary in the implementation.

• Composition of calls (definition 3.8) is an instance of composition on F (definition 4.17).
• Collapsing and the rest of the criterion is then copied verbatim from sections 3.4 and 3.5
to section 4.8.

Concluding Remarks

Complexity. Since this totality test extends the termination test described in [Hyv14] and
thus the usual size-change termination principle, its complexity is at least as bad: P-space
hard. The extensions presented here do not make it any harder. As a result, the complexity
of this totality test is P-space complete. However, it seems to work really well in practice.
Letting the user choose the bounds B and D (with sane default values28) allows to limit
the combinatorial explosion to the definitions that really need it. Several other implemen-
tation tricks described in previous works [Hyv14] also contribute to a more than reasonable
practical complexity.

Rewrite rules vs pattern matching. The choice of presenting the language in Haskell style
with rewriting rules rather than using a “match” construction as in ML isn’t very important.
The approach taken here is mixed:

• the language itself uses rewriting rules,
• the semantics (the domain F) uses C- and .D which are closer to (partial) match expres-
sions.

The reason is that the prototype was developed with clauses, but the theory is simpler
with pattern matching: the semantics of C- and .D is very simple, while the semantics of
rewriting rules would require introducing formally unification on sums of values and make
for an even more verbose definition of F .

The advantage pattern matching is that it allows direct analysis of definitions like

val f x = ...

... match f v with
C y -> u

28B = 2 and D = 2 is a good choice
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by producing a term u[y := C-fv]. With this approach, the function

val f x = Succ (match f x with

Zero -> Zero

| Succ n -> Succ Zero)

could be seen as total. For such a definition, rewriting rules would hide the match with
an external function doing the pattern matching, and by doing so, would loose all the
information about this external function:

val m Zero = Zero

| m (Succ _) = Succ Zero

val f x = Succ (m (f x))

(Recall that the analysis is local and that nothing is assumed of previously defined functions
but their totality).

Such definitions are rare since their results depend on the evaluation mechanism: the
Caml version doesn’t terminate, but the corresponding Haskell version does, with the (ex-
pected) value Succ (Succ Zero).29

On the other hand, keeping rewriting rules allows the test to see that

val f Zero = Succ Zero

| f (Succ n) = f Zero

is total. In this paper, this definition is interpreted by f Zero + Succ Zero which will be
tagged “non-total”. The reason is that the recursive call f Zero doesn’t use the n variable
and the interpretation thus forgets about the corresponding left pattern.

Those two examples are rather ad-hoc and seldom appear in practice. The choice is
thus mostly a matter of taste.

Copatterns. A. Abel has advocated the use of “copatterns” while writing coinductive defi-
nitions. This syntactical “trick” amounts to replacing the definition

val all_nats : nat -> stream(nat)

| all_nats n = { Head=n; Tail=all_nats (Succ n)}

by30

val all_nats : nat -> stream(nat)

| (all_nats n).Head = n

| (all_nats n).Tail = all_nats (Succ n)

This doesn’t change the semantics of the program in any way and has the nice side effect
that as rewriting rules the definition is terminating. The drawback is that writing functions
such as sums (page 17) involves additional functions and is very tedious.

Operational Semantics. We have voluntarily refrained from giving the operational seman-
tics of the language. The idea is that totality is a semantical property that is checked
syntactically. The operational semantics has to guarantee that evaluating a total function
on a total value is well defined, in particular that it should terminate. For example, head
reduction that stops on records guarantees that a total value has a normal form: it cannot
contain ⊥ and cannot start with infinitely many inductive constructors (their priority is
odd). Evaluation must reach a record (coinductive) at some point.

29Simpler definitions where, for example, the matched call has a decreasing argument would still be
accepted in their rewriting rules form.

30This syntax is in fact supported by the chariot prototype.
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Of course, a real programming language could introduce two kinds of records: coinduc-
tive ones and finite ones. The later could be evaluated during head reduction. Even better,
destructors themselves could be coinductive (like Tail for streams) or finite (like Head for
streams.)

In a similar vein, the language could have coinductive constructors to deal with coin-
ductive types like finite or infinite lists. At the moment, the only way to introduce this type
is with

data list_aux(’a, ’b) where

Nil : unit -> list_aux(’a, ’b)

| Cons : prod(’a, ’b) -> list_aux(’a, ’b)

codata inf_list(’a) where

unfold : inf_list(’a) -> list_aux(’a, inf_list(’a))

Needless to say, using this quickly gets tiring.

Call-by-Value. Our semantics is “lazy” in the sense that values containing ⊥ are not nec-
essarily equal to ⊥ themselves. The fact that value constructors are lazy is crucial when
applying the size-change principle. This is what guarantees that a Cp corresponds exactly
to one constructor of priority p. With the strict version, a Cp corresponds either to one
constructor (when its argument is different from ⊥), to 0 (which is total), or nothing (when
its argument is ⊥).

However, because the call-graph contains all the recursive calls appearing in the defini-
tion, it seems like it cannot see the difference between call-by-name and call-by-value. For
example, examples like

val f {Fst=0; Snd=s} = 3

| f {Fst=n+1; Snd=s} = f {Fst=n; Snd=f {Fst=n+1; Snd=s}}

from page 36 are always rejected as the call-graph contains the call

f {Fst=n+1; Snd=s} → Ω f {Fst=n+1; Snd=s}

The way the call-graph is constructed is reminiscent of the concept of dependency pairs [AG00]
from term rewriting, where we replace a rule f l1 . . . lk → r by the f l1 . . . lk → gu1 . . . ul
where gu1 . . . ul are subterms of r. This new rewriting system is terminating if and only if
the original one is terminating. Note that “terminating” for a rewriting system is indepen-
dent of the reduction strategy.

If the analogy holds, it would make the criterion as described a criterion that would
work unchanged for call-by-value.

Higher order types. The theory should extend to account for some higher order datatypes.
Defining T -branching trees as (coinductive)

codata tree(’b, ’n) where

child : tree(’b, ’n) -> (’b -> tree(’b, ’n))

or (inductive)

data tree(’b, ’n) where

root : unit -> tree(’b, ’n)

| fork : (’b -> tree(’b, ’n)) -> tree(’b, ’n)

should for example make the corresponding map function pass the totality test.
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Dependent Types. Dealing with dependent types is easy: tag dependent functions as “non-
total”. While this sounds like a joke, it illustrates the fact that even without any theory
for dependent types, this totality checker can be used for dependently typed languages. Of
course, the idea would be to extend it to actually do something interesting on dependent
types.

Many useful dependent types like “lists of size n” can in fact be embedded in bigger
non dependent datatypes like (“lists” in this case). The totality checker can, at least in
principle, be used for those types. That, and the extension to some higher order as described
above would go a long way to provide a theoretically sound totality checker for dependent
languages like Agda or Coq.

Sized types. Just like in Agda, it seems using sized-types for termination and totality is
mostly orthogonal to this totality checker. Considering the type of sizes to be a datatype is
probably enough to make the totality checker “size aware”. Adding sized types would help
dealing with examples that the current totality test ignores, like

val nats = {Head = 0; Tail = map_stream Succ nats}

We could have the information that Succ as type natα → natα+1. Even purely inductive
functions like

val sum_list : list(nat) -> nat

| sum_list [] = 0

| sum_list n::l = n + sum_list(l)

data rose_tree(’a) where

Node : list(rose_tree(’a)) -> rose_tree(’a)

val sum_rose_tree : rose_tree(nat) -> nat

| sum_rose_tree (Node(l)) = sum_list (map_list sum_rose_tree l)

would benefit from sized types.
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