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Involutive automorphisms of N
◦
◦ -groups of finite Morley rank

Adrien Deloro∗ and Éric Jaligot†

Ma Virgilio n’avea lasciati scemi
di sé, Virgilio dolcissimo patre,
Virgilio a cui per mia salute die’ mi.

Abstract. We classify a large class of small groups of finite Morley rank: N◦
◦ -groups

which are the infinite analogues of Thompson’s N -groups. More precisely, we constrain
the 2-structure of groups of finite Morley rank containing a definable, normal, non-
soluble, N◦

◦ -subgroup.
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1 Introduction

This is the final item in the series [8, 9, 10], a collaboration interrupted by the demise of Jaligot.
The present article has a sad story but at least it has the merit to exist: it was started in 2007
with hope and then never completed, started again in 2013 as a brave last sally and then lost, and
then started over again by the first endorser alone.

So for the last time let us deal with N◦
◦ -groups of finite Morley rank. And although we have just

used some phrases that our prospective reader may not know we hope our work to be of interest to
the experts in finite group theory as many ideas and methods will seem familiar to them. Efforts
were made in their direction and that of self-containedness.

1.1 The Context

Groups of finite Morley rank. Let us first say a few words of groups of finite Morley rank. We
shall remain deliberately vague as we only hope to catch the reader’s attention (possibly through
provocation). Should we succeed we can suggest three books. The first monograph dealing with
groups of finite Morley rank, among other groups, was [Poi87], translated as [Poi01]. An excellent
and thorough reference textbook is [BN94b] which has no pictures but many exercises instead.
The more recent [ABC08] quickly focuses on the specific topic of the classification of the infinite
simple groups of finite Morley rank of so-called even or mixed type, a technical assumption. For
the moment let us be quite unspecific.

Morley rank is a notion invented by model theorists for the purposes of pure mathematical
logic, and turned out to be an abstract form of the Zariski dimension in algebraic geometry. It
was then natural to investigate the relations between groups of finite Morley rank and algebraic
groups.

More precisely (we shall keep this facultative paragraph short and direct the brave to [Poi87]),
the rank introduced by Morley for his categoricity theorem was quickly understood to be a central
notion in mathematical logic, enabling a more algebraic treatment of model-theoretic phenomena,
and hopefully allowing closer interactions with classical mathematics. This was confirmed when
Zilber’s “ladder” analysis of uncountably categorical theories revealed towers of atomic pieces bound
to each other by some definable groups, similar to differential Galois groups in (Kolchin-)Picard-
Vessiot theory, and therefore of utmost relevance even as abstract groups. It is expected that
understanding the structure of such groups would shed further light on the nature of uncountably
categorical theories, which would please model theorists, and other mathematicians as well.

But because of their very nature, groups of finite Morley rank cannot be studied with the
techniques of algebraic geometry, and only elementary (in both the naive and model-theoretic
senses of the term) methods apply, which results in massive technological smugglering from finite
group theory to model theory.

To make a long story short: some abstract groups arose in one part of mathematics; it would
be good to classify the simple ones; logicians need finite group theorists.

Groups with a dimension. And now for the sake of the introduction we shall suggest a com-
pletely different, anachronistic, and self-contained motivation.

The classification of the simple Lie groups, the classification of the simple algebraic groups,
and the classification of the finite simple groups are facets of a single truth: in certain categories,
simple groups are matrix groups in the classical sense. The case of the finite simple groups reminds
us that we are at the level of an erroneous truth, but still there must be something common to Lie
groups, algebraic groups, and finite groups beyond the mere group structure that forces them to
fall into the same class.

In a sense, groups of finite Morley rank describe this phenomenon; Morley rank is a form
of common structural layer, or methodological least common denominator to the Lie-theoretic,
algebraic geometric, and finite group-theoretic worlds. Our groups are equipped with a dimension
function on subsets enabling the most basic computations; the expert in finite group theory will
be delighted to read that matching involutions against cosets, for instance, is possible. On the
other hand, no analysis, no geometry, and no number theory are available. But the existence of
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a rudimentary dimension function is a common though thin structural layer extending the pure
group structure.

It remains to say which sets are subject to having a dimension. These sets are called the
definable sets; the definable class is the model-theoretic analogue of the constructible class in
algebraic geometry. In a group G with no extra structure, one would consider the collection of
subsets of the various Gn obtained by allowing group equations, (finite) boolean combinations,
projections, and then by also allowing quotients by equivalence relations of the same form. This
setting is a little too tight in general and model theorists enlarge the basic case of group equations
by allowing other primary relations, that is, by working in an abstract structure extending the
group structure.

A group of finite Morley rank is such an extended group structure with an integer-valued
dimension function on its definable sets. As for the properties of the dimension function itself,
they are so natural they do not need to be described.

Although we have given no definition we hope to have motivated the Cherlin-Zilber conjecture,
which surmises that infinite simple groups of finite Morley rank are groups of points of algebraic
groups. The conjecture goes back to the seventies.

Relations with finite group theory. A consequence of the classification of the simple, periodic,
linear groups [Thomas, 1983] is the locally finite version of the Cherlin-Zilber conjecture: infinite
simple locally finite groups of finite Morley rank are algebraic. [Thomas, 1983] heavily relying
on the classification of the finite simple groups means that conventional group theory can help
elucidate problems in model theory.

A proof of the classification of the simple, periodic, linear groups in odd characteristic without
using the classification of the finite simple groups but some of its methods, such as component
analysis and signaliser functors, is in [Borovik, 1984]. Similar techniques carried to the model-
theoretic context provide the locally finite version of the Cherlin-Zilber conjecture under an as-
sumption standing for characteristic oddness [Bor95], still without using the classification of the
finite simple groups. Let us now forget about local finiteness. All this suggests to ask whether
conversely to the above, model theory may shed light on conventional group theory, and wether
finite group theorists can learn something from logicians.

[ABC08] gives a positive answer by proving the Cherlin-Zilber conjecture in even or mixed type,
viz. when there is an infinite subgroup of exponent 2, thus obtaining an ideal sketch of a decent
fragment of the classification of the finite simple groups. Apart from this case one should not
expect the conjecture to be proved in full generality. There is no evidence for a model-theoretic
analogue of the Feit-Thompson “odd order” Theorem. Simple groups of finite Morley rank with
no involutions cause major technical difficulties since most methods in the area heavily rely on
2-local analysis. Actually the experts do not regard the existence of the most dramatic (potential)
counterexamples to the conjecture called bad groups as entirely unlikely. But after all, not all finite
simple groups are groups of Lie type, so refuting the Cherlin-Zilber conjecture would certainly not
show that it is not interesting.

The present work deals with a certain class of small groups of finite Morley rank: N◦
◦ -groups,

defined in §2 by a condition borrowed from the classification of the finite simple groups. The
former were called ∗-locally◦

◦ soluble groups in [8, 9, 10]; we now change terminology to conform
more closely to the standards of finite group theory.

Two notions of smallness. So let us push the analogy with finite group theory further. The
classical N - property was introduced in [Thompson, 1968] where the full classification of the finite,
non-soluble N -groups was given, and then proved in a series of subsequent papers: an N -group is
a group G all of whose so-called local subgroups are soluble, which in the finite case amounts to
requiring that NG(A) be soluble for every abelian subgroup 1 6= A ≤ G. The decorations in N◦

◦

indicate that we shall focus on connected components, making our condition less restrictive than
proper N -ness. According to the Cherlin-Zilber conjecture, every connected, non-soluble N◦

◦ -group
should be isomorphic to PSL2(K) or SL2(K) with K an algebraically closed field. We cannot prove
this, and our results will look partial when compared to [Thompson, 1968].

Another, more restrictive notion of smallness in [Thompson, 1968] was minimal simplicity:
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a minimal simple group is a simple group all of whose proper subgroups are soluble. The full
classification of the finite, minimal simple groups is given in [Thompson, 1968] as a corollary to that
of the finite N -groups. The finite Morley rank analogue is named minimal connected simplicity and
defined naturally in §2. According again to the Cherlin-Zilber conjecture, every minimal connected
simple group should be isomorphic to PSL2(K) with K an algebraically closed field; even under
the assumption that the group contains involutions, this is an open question.

Minimal connected simple groups of finite Morley rank have already been studied at length
as recalled in §§1.2 and 1.3. These groups obviously are N◦

◦ -groups but it is not clear whether
one should hope for a converse statement. So transferring the partial, current knowledge from the
minimal connected simple to the N◦

◦ setting was a non-trivial task, undertaken in [8, 9, 10].
This extension will hopefully fit into a revised strategy for the classification of simple groups

of finite Morley rank with involutions. The last written account of a master plan was in Burdges’
thesis [Bur04b, Appendix A] and would need to be updated because of major advances in the
general structural theory of groups of finite Morley rank, notably through results on torsion briefly
touched upon in §2.2. But interestingly enough the theory of N◦

◦ -groups has already been used
and will be used again in another topic: permutation groups of finite Morley rank [Del09a, BD15].

The present work completes the transition from the minimal connected simple to the N◦
◦ setting,

and does more. We cannot provide a full classification of N◦
◦ -groups, but we delineate major cases

and give strong restrictions on their groups of automorphisms.

1.2 The Result and its Proof

The ideal goal would have been to show that PSL2(K) and SL2(K) are the only non-soluble N◦
◦ -

groups of finite Morley rank. Under the assumption that there is an infinite elementary abelian
2-subgroup, this is a straightforward corollary or subcase of [ABC08] (see [9, Theorem 4]). In
general the question is delicate and one should only hope to identify PSL2(K) and SL2(K) among
such groups. This we do, and more, by giving restrictive information on the structure of potential
counter-examples. In particular we show that such counter-examples would admit no infinite
dihedral groups of automorphisms, which is likely to be of use in a prospective inductive setting.

As a matter of fact, the focus on outer involutive automorphisms, as opposed to inner invol-
utions, became so prominent over the years (see §1.3) that we could take involutions out of the
configurations, viz. our extra assumptions are not on the structure of the “inner” Sylow 2-subgroup
of the N◦

◦ -group under consideration but on the structure of that of an acting group; incidently,
the inner 2-structure is fairly well understood. Taking involutions out is a pleasant advance, but
makes results slightly more complex to state.

Our Theorem below thus reads as follows: if a connected, non-soluble, N◦
◦ -groupG is a definable

subgroup of some larger group of finite Morley rank (possibly equal to G) with a few assumptions
on the action of outer involutions on G, then G is either algebraic or one of four mutually exclusive
configurations with common features; in any case the structure of the outer Sylow 2-subgroup is
well understood too. The existence of the four said configurations is a presumably difficult open
question. But we do not need involutions inside G to run the argument, and we are confident this
will allow some form of induction.

The notations used below are all explained in §2; a hasty expert curious about the proof will
find informal remarks on methods at the end of the current subsection and a few words on its
structure at the beginning of §4.

Theorem. Let Ĝ be a connected, U⊥
2 group of finite Morley rank and G E Ĝ be a definable,

connected, non-soluble, N◦
◦ -subgroup.

Then the Sylow 2-subgroup of G has one of the following structures: isomorphic to that of
PSL2(C), isomorphic to that of SL2(C), a 2-torus of Prüfer 2-rank at most 2.

Suppose in addition that for all involutions ι ∈ I(Ĝ), the group C◦
G(ι) is soluble.

Then m2(Ĝ) ≤ 2, one of G or Ĝ/G is 2⊥, and involutions are conjugate in Ĝ. Moreover one
of the following cases occurs:

• PSL2: G ≃ PSL2(K) in characteristic not 2; Ĝ/G is 2⊥;

• CiBo∅: G is 2⊥; m2(Ĝ) ≤ 1; for ι ∈ I(Ĝ), CG(ι) = C◦
G(ι) is a self-normalising Borel subgroup

of G;
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• CiBo1: m2(G) = m2(Ĝ) = 1; Ĝ/G is 2⊥; for i ∈ I(Ĝ) = I(G), CG(i) = C◦
G(i) is a self-

normalising Borel subgroup of G;

• CiBo2: Pr2(G) = 1 and m2(G) = m2(Ĝ) = 2; Ĝ/G is 2⊥; for i ∈ I(Ĝ) = I(G), C◦
G(i)

is an abelian Borel subgroup of G inverted by any involution in CG(i) \ {i} and satisfies
rkG = 3 rkC◦

G(i);

• CiBo3: Pr2(G) = m2(G) = m2(Ĝ) = 2; Ĝ/G is 2⊥; for i ∈ I(Ĝ) = I(G), CG(i) = C◦
G(i) is a

self-normalising Borel subgroup of G; if i 6= j are two involutions of G then CG(i) 6= CG(j).

There is at present no hope to kill any of the non-algebraic configurations of type CiBo (“Cent-
ralisers of Involutions are Borel subgroups”; unlike the cardinal of the same name, these configura-
tions are far from innocent). Three of these configurations were first and very precisely described in
[3] under much stronger assumptions of both a group-theoretic and a model-theoretic nature, and
the goal of [4, 5, 6, 7] merely was to carry the same analysis with no model-theoretic restrictions.
Despite progress in technology, nothing new could be added on the CiBo configurations since their
appearance in [3]. So it is likely these potential monstrosities will linger for a while; one may even
imagine that they ultimately might be proved consistent.

Beyond porting the description of non-algebraic configurations from the minimal connected
simple setting [5] to the broader N◦

◦ context, our theorem gives strong limitations on how these
potential counterexamples would embed into bigger groups. This line of thought goes back to
Delahan and Nesin proving that so-called simple bad groups have no involutive automorphisms
([DN93]; [BN94b, Proposition 13.4]). The question of involutive automorphisms of minimal con-
nected simple groups has already been addressed in [12] and [Fré10]; we insist that a significant
part of our results was not previously known in the minimal connected setting. This is the reason
why we believe that our theorem, however partial and technical it may look, will prove relevant to
the classification project.

The present result therefore replaces a number of earlier (pre)publications: [4, 5, 6, 7, 11, 12],
the contents of which are described in §1.3 hereafter. (We cannot dismiss Frécon’s analysis [Fré10,
Theorem 3.1] as it heavily uses the solubility of centralisers of p-elements, a property which might
fail in the N◦

◦ case.)

And now we wish to say a few words about the proof. One cannot adapt [Thompson, 1968]
and subsequent papers. The expert in finite group theory will appreciate here how little structure
there is on a group of finite Morley rank. A finite analogue of CiBo1, for instance, has a cyclic
Sylow 2-subgroup; for a variety of classical reasons it has a normal 2-complement; if an N -group,
it is soluble. We would be delighted to see quick arguments removing finite analogues of CiBo2

and CiBo3. In any case, however elementary they may seem, such methods are not available in
our context. Character theory, remarkably absent from [Thompson, 1968], cannot be used either.
Even Sylow theory (see §§2.1 and 2.2) is rudimentary. From finite group theory there remains of
course 2-local analysis, but we are dealing with small cases where one cannot apply the standard
machinery, otherwise well acclimatised to the finite Morley rank setting.

The main group-theoretic method is then matching involutions against cosets, in the spirit of
Bender as quoted in the beginning of §4.2. At times our arguments in this line are rather classical
and Proposition 3 for instance may have a known counterpart in finite group theory, at times
we suspect they are unorthodoxly convoluted like in Proposition 6. But this is our main method
mostly because we lack a better option. We also use a variant of local analysis [Bender, 1970]
developed by Burdges for groups of finite Morley rank (§§2.3 and 2.4). This will not surprise the
expert.

As for model-theoretic methods, we see two main lines. First, we tend to focus on generic
elements of groups, with the effect of smoothing phenomena. The general theory of genericity in
model-theoretic contexts owes much to Cherlin and Poizat so one could refer the reader to [Poi87],
but thanks to the rank function it is a rather obvious notion here. In the same vein we often resort
to connectedness arguments which from the point of view of algebraic group theory will always be
straightforward. Typical of connectedness methods is Zilber’s Indecomposibility Theorem [BN94b,
Theorem 5.26]. The use of fields is the second essential feature; although Zilber’s Field Theorem
[BN94b, Theorem 9.1] nominally appears only in the proofs of Propositions 3 and 5, it underlies
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our knowledge of soluble groups, in particular the unipotence theory of §2.3 which is fundamental
for the whole analysis.

The structure of the proof is briefly described in §4.

1.3 Version History

The current subsection will be of little interest to a reader not familiar with the community of
groups of finite Morley rank; we include it mostly because the present article marks the voyage’s
end.

The project of classifying N◦
◦ -groups with involutions started as early as 2007 under the sug-

gestion of Borovik and yet is only the last chapter of an older story: the identification of PSL2(K)
among small groups of odd type.

• We could go back to Cherlin’s seminal article on groups of small Morley rank [Che79] which
identified PSL2(K), considered bad groups, and formulated the algebraicity conjecture. Other
important results on PSL2(K) in the finite Morley rank context were found by Hrushovski
[Hru89], Nesin et Ali(i) [Nes90a, BDN94, DN95]. But we shall not go this far.

• Jaligot was the first to do something specifically in so-called odd type [1], adapting compu-
tations from [BDN94] (we say a bit more in §4.2 and 4.3).

• Another preprint by Jaligot [2], then at Rutgers University, deals with tame minimal con-
nected simple groups of Prüfer rank 1. (Tameness is a model-theoretic assumption on fields
arising in a group, already used for instance in [DN95].) In this context, either the group is
isomorphic to PSL2(K), or centralisers◦ of involutions are Borel subgroups.

Quite interestingly the tameness assumption, viz. “no bad fields”, appears there in small
capitals and bold font each time it is used; it seems clear that Jaligot already thought about
removing it.

• Jaligot’s time at Rutgers resulted in a monumental article with Cherlin [3] where tame min-
imal connected simple groups were thoroughly studied and potential non-algebraic configur-
ations carefully described. The very structure of our Theorem reflects the result of [3].

• A collaboration between Burdges, Cherlin, and Jaligot [4] was significant progress towards
removing tameness: minimal connected simple groups have Prüfer rank at most 2.

• Using major advances by Burdges (described in §§2.3 and 2.4), the author could entirely
remove the tameness assumption from [3] and reach essentially the same conclusions. This
was the subject of his dissertation under the supervision of Jaligot ([5], published as [6, 7]).

• A few months before the completion of the author’s PhD, the present project of classifying
N◦

◦ -groups of finite Morley rank was suggested by Borovik, a task the author and Jaligot
undertook with great enthusiasm and which over the years resulted in the series [8, 9, 10].

A 2008 preprint [11] was close to fully porting [5] to the N◦
◦ context. Involutions remained

confined inside the group. (This amounts to supposing Ĝ = G in the Theorem.)

• While a post-doc at Rutgers University the author in an unpublished joint work with Burdges
and Cherlin [12] went back to the minimal connected simple case but with outer involutory
automorphisms. (This amounts to supposing G minimal connected simple and 2⊥ in the
Theorem.)

• Delays and shifts in interests postponed both [11] and [12]. In the Spring of 2013 the author
tried to convince Jaligot that time had come to redo [11] in full generality, that is with outer
involutions. The present Theorem was an ideal statement we vaguely dreamt of but we never
discussed nor even mentioned to each other anything beyond as it looked distant enough.
In March and April of that year we were trying to fix earlier proofs with all possible repair
patches, and mixed success.

The author recalls how Jaligot would transcribe those meetings in a small red “Rutgers”
notebook when visiting Paris. He did not recover these notes after Jaligot’s untimely death.
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And this is how a project started with great enthusiasm was completed in grief and sorrow; yet
completed. The author feels he is now repaying his debt for the care he received as a student, for
an auspicious dissertation topic, and for all the friendly confidence his advisor trusted him with.

In short I hope that the present work is the kind of monument Éric’s shadow begs for. I dare
print that the article is much better than last envisioned in the Spring of 2013. Offended reader,
understand — that there precisely lies my tribute to him.

Such a reconstruction would never have been even imaginable without the hospitality of the
Mathematics Institute of NYU Shanghai during the Fall of 2013. The good climate and supportive
staff made it happen. At various later stages the comments of Gregory Cherlin proved unvaluable,
as always. Last but not least and despite the author’s lack of taste for mixing genres, Lola’s
immense patience is most thankfully acknowledged.

2 Prerequisites and Facts

We have tried to make the article as self-contained as possible, an uneasy task since the theory of
groups of finite Morley rank combines a variety of methods. Reading the prior articles in the series
[8, 9, 10] is not necessary to understand this one. In the introduction we already mentioned three
general references [Poi87, BN94b, ABC08]. Yet we highly recommend the preliminaries of a recent
research article, [ABF13, §2]; the reader may wish to first look there before picking a book from
the shelves.

We denote by d(X) the definable hull of X , i.e. the smallest definable group containing X . If
H is a definable group, we denote by H◦ its connected component. If H fails to be definable we
then set H◦ = H ∩ d◦(H). These constructions behave as expected.

One more word on general terminology: the author supports linguistic minorities.

Definition ([8, Definition 3.1(4)]). A group G of finite Morley rank is an N◦
◦ -group if N◦

G(A) is
soluble for every nontrivial, definable, abelian, connected subgroup A ≤ G.

Remarks.

• The property was named ∗-local◦◦ solubility in [8, 9, 10]; the ∗- prefix was a mere warning
to the eye in order to distinguish from local conditions in the usual sense, the lower ◦ was
supposed to stand for the connectedness assumption on A, and the upper ◦ symbolised the
conclusion only being on the connected component N◦

G(A).

We prefered to adapt Thompson’s N - terminology from [Thompson, 1968] by simply adding
connectedness symbols.

• We do require full N◦
◦ -ness in our proofs and can apparently not restrict to a certain class

of local subgroups. [Gorenstein and Lyons, 1976] for instance extends Thompson’s classific-
ation of the non-soluble, finite N -groups to the non-soluble, finite groups where only 2-local
subgroups are supposed to be soluble (i.e., when A above must in addition be a 2-group).

Such a generalisation looks impossible in our setting as will become obvious during the proof,
simply because we must take too many normalisers.

• Many results in the present work will be stated for N◦
◦ -groups of finite Morley rank. With

our definition this is redundant but as other contexts, model-theoretic in particular, give rise
to a notion of a connected component, this also is safer.

Remark (and Definition). An extreme case of an N◦
◦ -group G is when all definable, connected,

proper subgroups of G are soluble; G is then said to be minimal connected simple. As opposed to
past work (see §§1.2 and 1.3) the present article does not rely on minimal connected simplicity.

Like we said in the introduction, there is no hope to prove that N◦
◦ -groups are close to being

minimal connected simple. One could expect many more configurations [8, §3.3].

As one imagines, involutions will play a major role. We denote by I(G) the set of involutions
in G; i, j, k, ℓ will stand for some of them. We also use ι, κ, λ for involutions of the bigger, ambient
group Ĝ. When a group has no involutions, we call it 2⊥. We shall refer to the following as
“commutation principles”.
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Fact 1. Suppose that there exists some involutive automorphism ι of a semidirect product H ⋊K,
where K is 2-divisible, and that ι centralises or inverts H, and inverts K. Then [H,K] = 1.

2.1 Semisimplicity

In what follows, p stands for a prime number.

Fact 2 (torsion lifting, [BN94b, Exercise 11 p.98]). Let G be a group of finite Morley rank, H E G
be a normal, definable subgroup and x ∈ G be such that xH is a p-element in G/H. Then d(x)∩xH
contains a p-element of G.

Apart from the above principle, most of our knowledge of torsion relies either on the assumption
that p = 2, on some solubility assumption, or on a U⊥

p -ness assumption explained below.

• To emphasize the case where p = 2, recall that in groups of finite Morley rank maximal
2-subgroups, also known as Sylow 2-subgroups, are conjugate ([BN94b, Theorem 10.11],
originating in [Bor82]). As a matter of fact, their structure is known [BN94b, Corollary
6.22]. If S is a Sylow 2-subgroup then S◦ = T ∗U2 where T is a 2-torus and U2 a 2-unipotent
group. Let us explain the terminology:

– T is a sum of finitely many copies of the Prüfer 2-group, T ≃ Zd2∞ , and d is called the
Prüfer 2-rank of T , which we denote by Pr2(T ) = d. By conjugacy, Pr2(G) = Pr2(T ) is
well-defined. Interestingly enough, N◦

G(T ) = C◦
G(T ) [BN94b, Theorem 6.16, “rigidity of

tori”]; the latter actually holds for any prime.

– U2 in turn has bounded exponent. We shall mostly deal with groups having no infinite
such subgroups, and we call them U⊥

2 groups.

The 2-rank m2(G) is the maximal rank (in the finite group-theoretic sense) of an elementary
abelian 2-subgroup of G; again this is well-defined by conjugacy. A U⊥

2 assumption implies
finiteness of m2(G); one always has Pr2(G) ≤ m2(G); see [Del12] for some reverse inequality.

• Actually the same holds for any prime p provided the ambient group of finite Morley rank
is soluble ([BN94b, Theorem 6.19 and Corollary 6.20], originating in [BP90]). In case the
ambient group is also connected, then Sylow p-subgroups are connected [BN94b, Theorem
9.29]. We call this fact the structure of torsion in definable, connected, soluble groups.

• A group of finite Morley rank is said to be U⊥
p (also: of p⊥-type) if it contains no infinite,

elementary abelian p-group. A word on Sylow p-subgroups of U⊥
p groups is said in §2.2.

For the moment we give another example of how we often rely either on some specific assumption
on involutions, or on solubility.

Fact 3 (bigeneration, [BC08, special case of Theorem 2.1]). Let Ĝ be a U⊥
p group of finite Morley

rank. Suppose that Ĝ contains a non-trivial, definable, connected, normal subgroup G E Ĝ and
some elementary abelian p-group of p-rank 2, say V̂ ≤ Ĝ. If G is soluble, or if p = 2 and G has
no involutions, then G = 〈C◦

G(v) : v ∈ V̂ \ {1}〉.

We finish with a property of repeated use.

Fact 4 (Steinberg’s torsion theorem, [Del09b]). Let G be a connected, U⊥
p group of finite Morley

rank and ζ ∈ G be a p-element such that ζp
n ∈ Z(G). Then CG(ζ)/C◦

G(ζ) has exponent dividing
pn.

As the argument essentially relies on the connectedness of centralisers of inner tori obtained
by Altınel and Burdges [AB08, Theorem 1], one should not expect anything similar for outer
automorphisms of order p, not even for outer toral automorphisms.
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2.2 Sylow Theory

By definition, a Sylow p-subgroup of some group of finite Morley rank is a maximal, soluble p-
subgroup. It turns out that for a p-subgroup of a group of finite Morley rank, solubility is equi-
valent to local solubility (in the usual sense of finitely generated subgroups being soluble) [BN94b,
Theorem 6.19], so every soluble p-subgroup is contained in some Sylow p-subgroup all right. But
the solubility requirement is not for free: even if a group of finite Morley rank G is assumed to be
U⊥
p , it is not known whether every p-subgroup of G is soluble; as a matter of fact it is apparently

not known whether G can embed a Tarski monster. In short, a Sylow p-subgroup is not necessarily
a maximal p-subgroup, even in the U⊥

p case. We now focus on Sylow p-subgroups.
As suggested above, Sylow p-subgroups of a U⊥

p group of finite Morley rank are toral-by-finite
[BN94b, Corollary 6.20]. There is more.

Fact 5 ([BC09, Theorem 4]). Let G be a U⊥
p group of finite Morley rank. Then Sylow p-subgroups

of G are conjugate.

Remarks. Let Ĝ be a U⊥
p group of finite Morley rank and G E Ĝ be a definable, normal subgroup.

• The Sylow p-subgroups of G are exactly the traces of the Sylow p-subgroups of Ĝ.

A Sylow p-subgroup of G is obviously the trace of some Sylow p-subgroup of Ĝ. The converse
is immediate by conjugacy of the Sylow p-subgroups in the U⊥

p group Ĝ.

• The Sylow p-subgroups of Ĝ/G are exactly the images of the Sylow p-subgroups of Ĝ. The
following argument was suggested by Gregory Cherlin.

Let ϕ be the projection modulo G. Suppose that Ŝ is a Sylow p-subgroup of Ĝ but ϕ(Ŝ) is
not a Sylow p-subgroup of Ĝ/G. Then by the normaliser condition [BN94b, Corollary 6.20]
there is a p-element α ∈ NĜ/G(ϕ(Ŝ)) \ ϕ(Ŝ), which we lift to a p-element a ∈ Ĝ. Observe

that α ∈ NĜ/G(ϕ(Ŝ◦)), so ϕ([a, Ŝ◦G]) = [α, ϕ(Ŝ◦)] ≤ ϕ(Ŝ◦G) and a ∈ NĜ(Ŝ◦G).

NowN = NĜ(Ŝ◦G) is definable since it is the inverse image ofNĜ/G(ϕ(Ŝ◦)) which is definable
as the normaliser of a p-torus by the rigidity of tori. In particular, N conjugates its Sylow
p-subgroups, and a Frattini argument yields N ≤ Ŝ◦G · NĜ(Ŝ) ≤ GNĜ(Ŝ). Write a = gn

with g ∈ G and n ∈ NĜ(Ŝ); n is a p-element modulo G, so lifting torsion there is a p-element
m ∈ d(n) ∩ nG. Then m ∈ NĜ(Ŝ) and therefore m ∈ Ŝ. Hence a = gn ∈ nG = mG ⊆ ŜG

and α = ϕ(a) ∈ ϕ(Ŝ), a contradiction.

As a consequence the image of any Sylow p-subgroup of Ĝ is a Sylow p-subgroup of Ĝ/G.
The converse is now immediate, conjugating in Ĝ/G.

• Without the U⊥
p assumption this remains quite obscure. The reader will find in [PW93,

PW00] a model-theoretic discussion.

We shall refer to the many consequences of the following fact as “torality principles”.

Fact 6 ([BC09, Corollary 3.1]). Let p be a set of primes. Let G be a connected group of finite
Morley rank with a p-element x such that C(x) is U⊥

p . Then x belongs to any maximal p-torus of
C(x).

And now for some unrelated remarks involving some notions from [Che05]. A decent torus
is a definable, divisible, abelian subgroup which equals the definable hull of its torsion subgroup.
Goodness is the hereditary version of decency: a good torus is a definable, connected subgroup all
definable, connected subgroups of which are decent tori.

Remarks.

• Let Ĝ be a connected, U⊥
p group of finite Morley rank and G E Ĝ be a definable, connected

subgroup. If T̂ ≤ Ĝ is a maximal p-torus of Ĝ, then T = T̂ ∩G is a maximal p-torus of G.

Let Ŝ ≥ T̂ be a Sylow p-subgroup of Ĝ. Then S = Ŝ ∩G is a Sylow p-subgroup of G. So T =
G∩ T̂ ≤ G∩ Ŝ◦ ≤ CS(S◦) = S◦ by torality principles. Hence T ≤ S◦ ≤ Ŝ◦ ∩G = T̂ ∩G = T .
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• This is not true for an arbitrary p-torus τ̂ ≤ Ĝ: take two copies T1, T2 of Z2∞ with respective
involutions i and j; now let Ĝ = (T1 × T2)/〈ij〉 and G be the image of T1. Then the
intersection of (the image of) T2 with G is 〈i〉.

• This is not true if Ĝ is not U⊥
p . Take for instance two Prüfer p-groups T ≃ T ′ ≃ Zp∞ , an

infinite elementary abelian p-group A, and a central product K = T ′ ∗A with T ′ ∩A = 〈a〉 6=
{1}. Set G = T ×A and Ĝ = T ×K. One will find T̂ = T × T ′, but T̂ ∩G = T × 〈a〉 is not
connected.

• Similarly, if Θ̂ is a good torus of Ĝ then (Θ̂∩G)◦ is one of G, but connectedness of Θ = Θ̂∩G
is not granted even when Θ̂ is maximal; of course connectedness holds if G is U⊥

p for every
prime number p.

• As for maximal decent tori, their connected intersections with subgroups need not be decent
tori; in the language of the next subsection, (0, 0)-groups need not be homogeneous.

All this begs for a notion of reductivity which is not our present goal.

2.3 Unipotence

Developing a suitable theory of unipotence in the context of abstract groups of finite Morley rank
took some time. One needs to describe a geometric phenomenon in group-theoretic terms. The
positive characteristic notion may look straightforward to the hasty reader: when p is a prime
number, a p-unipotent subgroup is a definable, connected, nilpotent p-group of bounded exponent.
Yet the definition is naive only in appearance. First, nilpotence is perhaps not for free, as indicated
in §2.2. Second, Baudisch has constructed a non-abelian p-unipotent group not interpreting a field
[Bau96]: as a consequence, the Baudisch group does not belong to algebraic geometry (for more on
field interpretation, see [GH93]). Despite these technical complications, the notion of unipotence
in positive characteristic remains rather intuitive.

Matters are considerably worse in characteristic zero as there is no intrinsic way to distinguish,
say, some torsion-free subgroup of C× from the additive group of some other field. Unpublished
work by Altseimer and Berkman dated 1998 on so-called “pseudounipotent” and “quasiunipotent”
subgroups, two notions which we shall not define, therefore required tameness assumptions on fields
arising in the structure (see §1.3).

Burdges found a satisfactory unipotence theory; the point (and also the difficulty) is that one
has a multiplicity of notions in characteristic zero. We do not wish to describe his construction.
For a complete exposition of Burdges’ unipotence theory, see Burdges’ PhD [Bur04b, Chapter 2],
its first formally published expositions [Bur04a, Bur06], or the first article in the present series [8].

A unipotence parameter is a pair of the form (p,∞) where p is a prime, or (0, d) where d is a
non-negative integer. The case (0, 0) describes decent tori. We shall denote unipotence parameters
by ρ, σ, τ . For every parameter ρ, there is a notion of a ρ-group, and of the ρ-generated subgroup
Uρ(G) of a group G. Bear in mind that by definition, a ρ-group is always definable, connected,
and nilpotent; the latter need not hold of the ρ-generated subgroup even if the ambient group is
soluble.

Notation. We order unipotence parameters as follows:

(2,∞) ≻ (3,∞) ≻ · · · ≻ (p,∞) ≻ · · · ≻ (0, rk(G)) ≻ · · · ≻ (0, 0)

Notation.

• For any group of finite Morley rank H , ρH will denote the greatest unipotence parameter it
admits, i.e. with UρH

(H) 6= 1; we simply call it the parameter of H .

(Any infinite group of finite Morley rank admits a parameter, possibly (0, 0): see [Bur04b,
Theorem 2.19], [Bur04a, Theorem 2.15], or [8, Lemma 2.6].)

Be careful that the parameter of a group equal to its ρ-generated subgroup can be greater
than ρ: take a decent torus which is not good and ρ = (0, 0). (More generally a definable,
connected, soluble group H has parameter (0, 0) iff a good torus, but H = U(0,0)(H) iff H is
generated by its decent tori.)

10



• For ι a definable involutive automorphism of some group of finite Morley rank, let ρι = ρC◦(ι).

With these notations at hand let us review a few classical properties. The reader should be
familiar with the following before venturing further.

Fact 7.

(i) If N is a connected, nilpotent group of finite Morley rank then N = ∗ρUρ(N) (central product)
where ρ ranges over all unipotent parameters (Burdges’ decomposition of nilpotent groups:
[Bur04b, Theorem 2.31], [Bur06, Corollary 3.6], [8, Fact 2.3]);

(ii) if H is a connected, soluble group of finite Morley rank, one has UρH
(H) ≤ F ◦(H) ([Bur04b,

Theorem 2.21], [Bur04a, Theorem 2.16], [8, Fact 2.8]); incidently, the connected component
of the Fitting subgroup F ◦(H) is defined and studied in [BN94b, §7.2]; one has H ′ ≤ F ◦(H)
[BN94b, Corollary 9.9];

(iii) if H is as above then UρH
(Z(F ◦(H))) 6= 1 ([Bur04b, Lemma 2.26], [Bur06, Lemma 2.3]);

(iv) if a σ-group Vσ normalises a ρ-group Vρ with ρ 4 σ then VρVσ is nilpotent ([Bur04b, Lemma
4.10], [Bur06, Proposition 4.1], [8, Fact 2.7]);

(v) the image and preimage of a ρ-group under a definable homomorphism are ρ-groups (push-
forward and pull-back: [Bur04b, Lemma 2.12], [Bur04a, Lemma 2.11]);

(vi) if G is a soluble group of finite Morley rank, S ⊆ G is any subset, and H E G is a ρ-subgroup,
then [H,S] is a ρ-group ([Bur04b, Lemma 2.32], [Bur06, Corollary 3.7]);

(vii) generalising the latter Frécon obtained a remarkable homogeneity result we shall not use:

if G is a connected group of finite Morley rank acting definably on a ρ-group then
[G,H ] is a homogeneous ρ-group, i.e. all its definable, connected subgroups are
ρ-groups ([Fré06, Theorem 4.11], [8, Fact 2.1]).

The last phenomenon was deemed essential in all earlier versions of the present work, but to
our great surprise one actually does not need it. Frécon has developed in [Fré06] even subtler
notions of unipotence with respect to isomorphism types instead of unipotence parameters.

By definition, a Sylow ρ-subgroup is a maximal ρ-subgroup. Recall from Burdges’ decidedly
inspiring thesis ([Bur04b, §4.3], oddly published only in [FJ08, §3.2]) that if π denotes a set
of unipotence parameters, then a Carter π-subgroup of some ambient group G is a definable,
connected, nilpotent subgroup L which is Uπ-self-normalising, i.e. with Uπ(N◦

G(L)) = L (the π-
generated subgroup is defined naturally and always definable and connected). Carter subgroups,
i.e. definable, connected, nilpotent, almost-self-normalising subgroups are examples of the latter
where π is the set of all unipotence parameters. All this is very well-understood in a soluble context
[Wag94, Fré00a].

2.4 Borel Subgroups and Intersections

Definition. A Borel subgroup of a group of finite Morley rank is a definable, connected, soluble
subgroup which is maximal as such.

We shall refer to the following as “uniqueness principles”.

Fact 8 ([8, from Corollary 4.3]). Let G be an N◦
◦ -group of finite Morley rank and B be a Borel

subgroup of G. Let U ≤ B be a ρB-subgroup of B with ρC◦

G
(U) 4 ρB. Then UρB

(B) is the only Sylow
ρB-subgroup of G containing U . Furthermore B is the only Borel subgroup of G with parameter
ρB containing U .

Remarks.

11



• Because of our ordering on unipotence parameters and our definition of ρB, the result does
hold when ρB = (0, 0), i.e. for B a good torus (cf. [8, Remark (3) after Theorem 4.1]).

It would actually suffice to preorder parameters by (0, k+ 1) ≻ (0, k), and (p,∞) ≻ (0, 0) for
any prime number p.

• In particular, if G E Ĝ where Ĝ is another (not necessarily N◦
◦ -) group of finite Morley rank,

then NĜ(U) ≤ NĜ(B).

• If 1 < U E B is a non-trivial, normal ρB-subgroup of B the result applies; we shall often use
this with U = UρB

(Z(F ◦(B))) (see Fact 7 (iii)).

For reference we list below the facts from Burdges’ monumental rewriting [Bur04b, §9], [Bur07]
of Bender’s Method [Bender, 1970] that we shall use. The method was devised to study intersections
of Borel subgroups; it is quite technical. It will play an important role throughout the proof of our
main Maximality Proposition 6. As a matter of fact it does not appear elsewhere in the present
article apart from Step 2 of Proposition 3.

It must be noted that the Bender method does not finish any job; it merely helps treat non-
abelian cases on the same footing as the abelian case. This will be clear during Step 7 of Proposi-
tion 6. So the reader who feels lost here must keep in mind the following:

• non-abelian intersections of Borel subgroups complicate the details but do not alter in the
least the skeleton of the proof of Proposition 6;

• the utter technicality is, in Burdges’ own words [Bur04b], “motivated by desperation”;

• such non-abelian intersections are not supposed to exist in the first place.

Since Burdges’ original work was in the context of minimal connected simple groups we need
to quote [8] which merely reproduced Burdges’ work in the N◦

◦ case.

Fact 9 ([8, 4.46(2)]). Let G be an N◦
◦ -group of finite Morley rank. Then any nilpotent, definable,

connected subgroup of G contained in two distinct Borel subgroups is abelian.

Yet past the nilpotent case it is not always possible to prove abelianity of intersections of
Borel subgroups. The purpose of the Bender method is then to extract as much information as
possible from non-abelian intersections. Unfortunately “as much as possible” means much more
than reasonable. This is the analysis of so-called maximal pairs [8, Definition 4.12], a terminology
we shall avoid.

Fact 10 (from [8, 4.50]). Let G be an N◦
◦ -group of finite Morley rank. Let B 6= C be two distinct

Borel subgroups of G. Suppose that H = (B ∩C)◦ is non-abelian.
Then the following are equivalent:

[8, 4.50(1)] B and C are the only Borel subgroups of G containing H;

[8, 4.50(2)] H is maximal among connected components of intersections of distinct Borel subgroups;

[8, 4.50(3)] H is maximal among intersections of the form (B∩D)◦ where D 6= B is another Borel
subgroup;

[8, 4.50(6)] ρB 6= ρC .

In the following, subscripts ℓ and h stand for light and heavy, respectively.

Fact 11 (from [8, 4.52]). Let G,Bℓ, Bh, H be as in the assumptions and conclusions of Fact 10.
For brevity let ρ′ = ρH′ , ρℓ = ρBℓ

, ρh = ρBh
; suppose ρℓ ≺ ρh.

Then the following hold:

[8, 4.52(2)] any Carter subgroup of H is a Carter subgroup of Bh;

[8, 4.38, 4.51(3) and 4.52(3)] Uρ′(F (Bh)) = (F (Bh) ∩ F (Bℓ))◦ is ρ′-homogeneous; ρ′ is the least
unipotence parameter in F (Bh);
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[8, 4.52(6)] Uρ′(H) ≤ F ◦(Bℓ) and N◦
G(Uρ′(H)) ≤ Bℓ;

[8, 4.52(7)] Uσ(F (Bℓ)) ≤ Z(H) for σ 6= ρ′;

[8, 4.52(8)] any Sylow ρ′-subgroup of G containing Uρ′(H) is contained in Bℓ.

And we finish with an addendum.

Lemma A. Let Ĝ be a connected group of finite Morley rank and G E Ĝ be a definable, connected,
non-soluble, N◦

◦ -subgroup. Let B1 6= B2 be two distinct Borel subgroups of G such that H =
(B1 ∩ B2)◦ is maximal among connected components of intersections of distinct Borel subgroups
and non-abelian. Let Q ≤ H be a Carter subgroup of H. Then:

• NĜ(H) = NĜ(B1) ∩NĜ(B2);

• NĜ(Q) ≤ NĜ(B1) ∪NĜ(B2).

Proof. By [8, 4.50 (1), (2) and (6)], B1 and B2 are the only Borel subgroups of G containing H ,
and they have distinct unipotence parameters. This proves the first item. Let ρ′ be the parameter
of H ′ and Qρ′ = Uρ′(Q). Then NĜ(Q) ≤ NĜ(Qρ′) ≤ NĜ(N◦

G(Qρ′)) and three cases can occur,
following [8, 4.51].

• In case (4a), NĜ(Q) ≤ NĜ(H) = NĜ(B1) ∩NĜ(B2); we are done.

• In case (4b), B1 is the only Borel subgroup of G containing N◦
G(Qρ′), so NĜ(Q) ≤ NĜ(B1).

• Case (4c) is similar to case (4b) and yields NĜ(Q) ≤ NĜ(B2).

3 Requisites (General Lemmas)

Our theorem requires extending some well-known facts, so let us revisit a few classics. All lemmas
below go beyond the N◦

◦ setting.

3.1 Normalisation Principles

The results in the present subsection are folklore; it turns out that none was formally published.
They originate either in [5, Chapitre 2] or in [Bur09]. We shall use them with no reference, merely
invoking “normalisation principles”.

Lemma B (cf. [5, Lemmes 2.1.1 and 2.1.2] and [6, §3.4]). Let Ĝ be a group of finite Morley rank,
G ≤ Ĝ be a definable subgroup, P ≤ G be a Sylow p-subgroup of G, and Ŝ ≤ NĜ(G) be a soluble

p-subgroup normalising G. If p 6= 2 suppose that Ĝ is U⊥
p . Then some G-conjugate of Ŝ normalises

P .

Proof. Since G is definable, d(Ŝ) ≤ NĜ(G), so we may assume Ĝ = G · d(Ŝ) and G E Ĝ. We may
assume that Ŝ is a Sylow p-subgroup of Ĝ. Recall that S = Ŝ ∩G is then a Sylow p-subgroup of G
(see for instance §2.2). Since G is definable and U⊥

p if p 6= 2, it conjugates its Sylow p-subgroups;
there is g ∈ G with P = Sg. Hence Ŝg normalises Ŝg ∩G = Sg = P .

Remarks. The argument is slightly subtler than it looks.

• The original version [5, Lemmes 2.1.1 and 2.1.2] made the unnecessary assumption that Ŝ,
there denoted K, be definable. Its proof used only conjugacy in Ĝ; but when K ĝ ≤ NĜ(P )
for some ĝ ∈ Ĝ, why should K ĝ be a G-conjugate of K? [5] then used definability of K to
continue: we may assume Ĝ = G · K ≤ G · NĜ(K), so K ĝ is actually a G-conjugate of K.
Alas it is false in general that d(Ŝ) ≤ NĜ(Ŝ) (consider the Sylow 2-subgroup of PSL2(C)).
So without definability of Ŝ one is forced to use conjugacy inside G like we do here.
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• In particular, if G is not supposed to be definable (and one then needs to assume G E Ĝ
to save the beginning of the proof), the statement is not clear at all since an arbitrary
subgroup of a U⊥

p group of finite Morley rank need not conjugate its Sylow p-subgroups, take
PSL2(Z[

√
3]) ≤ PSL2(C) for instance. But for a normal subgroup, we do not know. This

could even depend on the Cherlin-Zilber conjecture.

Recall in the following that if π consists of a single parameter ρ, then a Carter π-subgroup is
exactly a Sylow ρ-subgroup.

Lemma C ([5, Corollaires 2.1.5 and 2.1.6]). Let Ĝ be a group of finite Morley rank, H ≤ Ĝ be a
soluble, definable subgroup, π be a set of unipotence parameters, L ≤ H be a Carter π-subgroup of
H, and Ŝ ≤ NĜ(H) be a soluble p-subgroup normalising H. Suppose that H is U⊥

p . Then some

H-conjugate of Ŝ normalises L.

Proof. We first deal with the case where L = Q is a Carter subgroup of H ; the last paragraph will
handle the general case. We may suppose that H is connected; we may suppose that Ĝ = H · d(Ŝ)
is soluble and that H E Ĝ; we may suppose that Ŝ is a Sylow p-subgroup of Ĝ. Since H is soluble
it conjugates its Carter subgroups, so Ĝ = H ·NĜ(Q).

First assume that H is p⊥. Let R̂ ≤ NĜ(Q) be a Sylow p-subgroup of NĜ(Q) and R̂2 ≤ Ĝ be
a Sylow p-subgroup of Ĝ containing R̂. Now R̂H/H is a Sylow p-subgroup of NĜ(Q)H/H = Ĝ/H

and so is R̂2H/H ; therefore R̂H = R̂2H . But H is p⊥, hence R̂ = R̂2 is a Sylow p-subgroup of Ĝ,
and it normalises Q.

If we no longer assume that H is p⊥, then since H is U⊥
p the structure of torsion in definable,

connected, soluble groups implies that Sylow p-subgroups of H are tori. By Lemma B, Ŝ normalises
a Sylow p-subgroup P of H , so it normalises d(P ) as well. Up to conjugacy in H , Q contains P and
therefore centralises P and d(P ) as well. So we may work in NĜ(d(P )) and factor out d(P ), which
reduces to the first case. Then Ŝ normalises some Carter subgroup C of H/d(P ), and normalises
its preimage ϕ−1(C) ≤ H which is of the form C = Cd(P )/d(P ) for some Carter subgroup C of
H [Fré00a, Corollaire 5.20]. Hence Ŝ normalises C modulo d(P ) ≤ C, that is, Ŝ normalises C.

The reader has observed that for the moment, Ŝ normalises some Carter subgroup of H . But
by conjugacy of such groups in H , there is an H-conjugate of Ŝ normalising Q.

We now go back to the general case of a Carter π-subgroup L of H (see §2.3 for the definition).
By [FJ08, Corollary 5.9] there is a Carter subgroup Q of H with Uπ(Q) ≤ L ≤ Uπ(Q) · Uπ(H ′);
by what we just proved and up to conjugating over H we may suppose that Q is Ŝ-invariant.
So we consider the generalised centraliser E = EH(Uπ(Q)) [Fré00a, Définition 5.15], a definable,
connected, and Ŝ-invariant subgroup of H satisfying Uπ(Q) ≤ F ◦(E) [Fré00a, Corollaire 5.17]; by
construction of E and nilpotence, 〈L,Q〉 ≤ E. If E < H then noting that L is a Carter π-subgroup
of E we apply induction. So we may suppose E = H . But in this case Uπ(Q) ≤ F ◦(H) so actually
L ≤ Uπ(F ◦(H)) and equality holds as the former is a Carter π-subgroup of H . It is therefore
Ŝ-invariant.

The following Lemma is entirely due to Burdges who cleverly adapted the Frécon-Jaligot con-
struction of Carter subgroups [FJ05]. We reproduce it here with Burdges’ kind permission. The
lemma is not used anywhere in the present article but included for possible future reference.

Lemma D ([Bur09]). Let Ĝ be a U⊥
2 group of finite Morley rank, G ≤ Ĝ be a definable subgroup,

and Ŝ ≤ NĜ(G) be a 2-subgroup. Then G has an Ŝ-invariant Carter subgroup.

Proof. We may assume that every definable, Ŝ-invariant subquotient of G of smaller rank has an
Ŝ-invariant Carter subgroup; we may assume that CŜ(G) = 1; we may assume that G is connected.

We first find an infinite, definable, abelian, Ŝ-invariant subgroup. Let ι ∈ Z(Ŝ) be a central
involution; then C◦

G(ι) < G. If C◦
G(ι) = 1 then G is abelian and there is nothing to prove. So

we may suppose that C◦
G(ι) is infinite and find some Ŝ-invariant Carter subgroup of C◦

G(ι) by
induction; it contains an infinite, definable, abelian, Ŝ-invariant subgroup.

Let ρ be the minimal unipotence parameter such that there exists a non-trivial Ŝ-invariant
ρ-subgroup of G (possibly ρ = (0, 0)); this makes sense since there exists an infinite, definable,
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abelian, Ŝ-invariant subgroup. Let P ≤ G be a maximal Ŝ-invariant ρ-subgroup; P 6= 1. Let
N = N◦

G(P ).
If N < G then induction applies: N has an Ŝ-invariant Carter subgroup Q. So far PQ is

soluble; moreover for any parameter σ, Uσ(Q) is Ŝ-invariant as well. So by definition of ρ and [8,
Fact 2.7], PQ is actually nilpotent, hence PQ = Q, P ≤ Q, and P ≤ Uρ(Q). By maximality of P ,
P = Uρ(Q) is characteristic in Q so N◦

G(Q) ≤ N◦
N (Q) = Q and Q is a Carter subgroup of G.

Now suppose that N = G, that is, P is normal in G. By induction, G = G/P has an Ŝ-invariant
Carter subgroup C. Let H be the preimage of C in G; H is soluble. By Lemma C, H has an
Ŝ-invariant Carter subgroup Q. Here again PQ is soluble and even nilpotent, so P ≤ Q. Since H
is soluble, Q/P = PQ/P is a Carter subgroup of H/P = C [Fré00a, Corollaire 5.20], so Q/P = C
and Q = H . Finally N◦

G(Q)/P ≤ N◦
G

(C) = C = Q/P , so N◦
G(Q) = Q and Q is a Carter subgroup

of G.

Remarks.

• Burdges left the highly necessary assumption that Ĝ be U⊥
2 implicit from the title of his

prepublication and the original statement must therefore be taken with care: the Sylow
2-subgroup of (F2)+ ⋊ (F2)× certainly does not normalise any Carter subgroup.

• The assumption that p = 2 is used only to find an infinite, definable, abelian Ŝ-invariant
subgroup. It is not known whether all connected groups of finite Morley rank having a
definable automorphism of order p 6= 2 with finitely may fixed points are soluble, a classical
property of algebraic groups though.

3.2 Involutive Automorphisms

The need for the present subsection is the following. [9, Section 5] collected various well-known
facts in order to provide a decomposition for a connected, soluble group of odd type under an
inner involutive automorphism. But in the present article we shall consider the case of outer
automorphisms, more precisely the action of abstract 2-tori on our groups. So the basic discussion
of [9] must take place in a broader setting; this is what we do here.

Notation. If α is an involutive automorphism of some group G, we let G+ = CG(α) = {g ∈ G :
gα = g} and G− = {g ∈ G : gα = g−1}. We also let {G,α} = {[g, α] : g ∈ G} (in context there is
no risk of confusion with the usual notation for unordered pairs).

If G and α are definable, so are G+, G−, and {G,α}; in general only the first need be a group.
{G,α} is nevertheless stable under inversion, since [gα, α] = [g, α]−1. Observe that {G,α} ⊆ G−

but equality may fail to hold: for instance if α centralises G and G contains an involution i, then
i ∈ G+ ∩ G− but i /∈ {G,α} = {1}. Notice further that G = G+ · G− iff {G,α} ⊆ (G−)∧2 and
G = G+ · {G,α} iff {G,α} ⊆ {G,α}∧2, where X∧2 denotes the set of squares of X . Finally remark
that deg{G,α} = degαGα = degαG ≤ degG.

Lemma E (cf. [9, Theorem 19]). Let G be a group of finite Morley rank with Sylow 2-subgroup
a (possibly trivial) central 2-torus S, and α be a definable involutive automorphism of G. Then
G = G+·{G,α} where the fibers of the associated product map are in bijection with I({G,α})∪{1} =
Ω2([S, α]). Furthermore one has G = (G+)◦ · {G,α} whenever G is connected.

Proof. The proof follows that of [9, Theorem 19] closely and for some parts a minor adjustement
would suffice. We prefer to give a complete proof and discard [9]. Bear in mind that if ab = a−1

for two elements of our present group G, then a has order at most 2 (this is [9, Lemma 20], an easy
consequence of torsion lifting). Also remember from [9, Lemma 18] that G is 2-divisible: essentially
because 2-torsion is divisible and central.

1 – Step. S ∩ {G,α} = [S, α].

Proof of Step 1. This is the argument from [9, Theorem 19, Step 1] with one more remark. One
inclusion is trivial. Now let ζ ∈ S∩{G,α}, and write ζ = [g, α]. Since G is 2-divisible we let h ∈ H
satisfy h2 = g. Let n = 2k be the order of ζ. Then [h2, α] = [h, α]h[h, α] = ζ ∈ Z(G) so [h, α] and
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[h, α]h commute. Hence 1 = ζn = [h, α]n[h, α]nh. It follows that h inverts [h, α]n which must have
order at most 2: so ξ = [h, α]−1 is a 2-element inverted by α, and since it is central it commutes
with h. Finally [ξ, α] = ξ−2 = [h, α]2 = [h2, α] = ζ. ♦

It follows that I({G,α}) ∪ {1} = Ω2([S, α]), the group generated by involutions of [S, α].

2 – Step. {G,α} is 2-divisible and G = G+ · {G,α}.

Proof of Step 2. Here again this is the argument from [9, Theorem 19, Step 2]; 2-divisibility of
{G,α} was announced but not explicitly proved.

Let x = [g, α] ∈ {G,α}. Like in [9, Theorem 19, Step 2], write the definable hull of x as
d(x) = δ ⊕ 〈γ〉 where δ is connected and γ has finite order; rewrite γ = εζ where ε has odd order
and ζ is a 2-element; let ∆ = δ⊕〈ε〉, so that d(x) = ∆⊕〈ζ〉 where ∆ is 2-divisible and inverted by α.
Now let y ∈ ∆ satisfy y4 = xζ−1. Then [gy2, α] = [g, α]y

2

[y2, α] = xy−4 = ζ ∈ S ∩ {G,α} = [S, α]
by Step 1, so there is ξ ∈ S with [ξ2, α] = ζ. Now [y−1ξ, α] = [y−1, α]ξ[ξ, α] = y2[ξ, α] squares
to y4[ξ, α]2 = xζ−1[ξ2, α] = x. The set {G,α} is therefore 2-divisible; as observed this implies
G = G+ · {G,α}. ♦

3 – Step. Fibers in Step 2 are in bijection with Ω2([S, α]).

Proof of Step 3. Let k = [s, α] have order at most 2, where s ∈ S. Fix any decomposition γ =
a · [g, α] with a ∈ G+ and g ∈ G. Since α inverts (hence centralises) k, one has ka ∈ G+. Moreover
[sg, α] = [s, α]g [g, α] = kg[g, α] = k[g, α] ∈ {G,α}. So a[g, α] = (ka) · (k[g, α]) is yet another
decomposition for γ.

Conversely work as in [9, Theorem 19, Step 3]: suppose that ax = by are two decompositions,
with a, b ∈ G+ and x = [g, α], y = [h, α] ∈ {G,α}. Then (a−1b)y = (xy−1)y = y−1x = (yx−1)α =
(b−1a)α = b−1a = (a−1b)−1 so a−1b has order at most 2, say k = a−1b. More precisely, k = xy−1 =
[g, α][h, α]−1 = [g, α]h−αh is central, so k = h[g, α]h−α = [gh−1, α] ∈ {G,α}; it follows from Step 1
that k ∈ Ω2([S, α]). ♦

4 – Step. Left G+-translates of the set (G+)◦ · {G,α} are disjoint or equal.

Proof of Step 4. Like in [9, Theorem 19, Step 4]: suppose that for a, b ∈ G+, the sets a(G+)◦·{G,α}
and b(G+)◦ · {G,α} meet, in say ag+[g, α] = bh+[h, α] with natural notations. By the proof of
Step 3, k = (ag+)−1(bh+) is in Ω2([S, α]), therefore central in G and inverted (hence centralised)
by α. So k = (bh+)(ag+)−1 = (ag+)(bh+)−1. Hence for any bγ+[γ, α] ∈ b(G+)◦ · {G,α} one finds:

bγ+[γ, α] = k2bγ+[γ, α] = a(g+h
−1
+ γ+)([γ, α]k)

Since k ∈ Ω2([S, α]), there is s ∈ S with k = [s, α]. So [γs, α] = [γ, α]s[s, α] = [γ, α]k ∈ {G,α}:
hence bγ+[γ, α] ∈ a(G+)◦ · {G,α}. This shows b(G+)◦{G,α} ⊆ a(G+)◦{G,α} and the converse
inclusion holds too. ♦

5 – Step. At most degG left G+-translates of (G+)◦ · {G,α} cover G. In particular, if G is
connected, then G = (G+)◦ · {G,α}.

Proof of Step 5. We consider such left translates. They all have rank rkG by Step 3. As they are
disjoint or equal by Step 4, at most degG of them suffice to cover G. ♦

This completes the proof of Lemma E.

Remarks.

• Notice the flaw in [9, Theorem 19, Step 5], where “at most” is erroneously replaced by
“exactly”. The reason is that the degree of αG need not be 1 in general, all one knows is
degαG ≤ degG. For instance, let α invert Z/3Z. Then degG = 3 but (G+)◦ ·G− = G.

• If G is a connected group of finite Morley rank of odd type whose Sylow 2-subgroup S is
central, then S is a 2-torus as S = CS(S◦) = S◦ by torality principles.

• The Lemma fails if S is not 2-divisible, even at the abelian level: let α invert Z/4Z.
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As a consequence we deduce another useful decomposition which will be used repeatedly.

Lemma F (cf. [9, Lemma 24]). Let H be a U⊥
2 , connected, soluble group of finite Morley rank,

and α be a definable involutive automorphism of H. Suppose that {H,α} ⊆ F ◦(H). Then H =
(H+)◦ · {H,α} with finite fibers.

Proof. By normalisation principles, H admits an α-invariant Carter subgroup Q; by the theory
of Carter subgroups of soluble groups, H = Q · F ◦(H) [Fré00a, Corollaire 5.20]. Now both Q
and F ◦(H) are definable, connected, nilpotent, and U⊥

2 : so Lemma E applies to them. Hence
Q = (Q+)◦ · {Q,α} ⊆ (H+)◦ · F ◦(H), and:

H = Q · F ◦(H) ⊆ (H+)◦ · F ◦(H) ⊆ (H+)◦ · (F ◦(H)+)◦ · {F ◦(H), α} ⊆ (H+)◦ · {H,α}

The fibers are finite: this works as in [9, Lemma 24] since if c1b1 = c2b2 with ci ∈ H+, bi ∈
{H,α}, then c−1

2 c1 = b2b
−1
1 ∈ H+ so b2b

−1
1 = b−1

2 b1 and b2
1 = b2

2, but by assumption bi ∈ {H,α} ⊆
F ◦(H) so b1 and b2 differ by an element of Ω2(F ◦(H)) (in case of hyperbolic doubt read the next
remark). Unlike in Lemma E we cannot be too precise about the cardinality of the fiber.

Remarks.

• We can show {H,α} ⊆ Ω2(F ◦(H))·{F ◦(H), α}. For let h ∈ H ; then [h, α] ∈ {H,α} ⊆ F ◦(H).
Applying Lemma E in F ◦(H), we write [h, α] = f+[f, α] with f+ ∈ F ◦(H)+ and f ∈ F ◦(H).
Taking the commutator with α we find [h, α]2 = [f, α]2. But in F ◦(H), the equation x2 = y2

results in x−1 · x−1y · x = y−1x = (x−1y)−1 and by the first observation in the proof of
Lemma E, x−1y has order at most 2. Hence [h, α] = k[f, α] for some k ∈ Ω2(F ◦(H)).

• Without the crucial assumption that {H,α} ⊆ F ◦(H) one still hasH = {H,α}·(H+)◦·{H,α}
and therefore H = H− ·H+ ·H−, but one can hardly say more.

Consider two copies A1 = {a1 : a ∈ C}, A2 = {a2 : a ∈ C} of C+ and let Q = {t : t ∈ C×} ≃
C× act on A1 by at1 = (t2a)1 and on A2 by at2 = (t−2a)2. Form the group H = (A1 ⊕A2)⋊Q.
Let α be the definable, involutive automorphism of H given by:

(a1b2t)α = b1a2t
−1

that is, “α swaps the ±2 weight spaces while inverting the torus”. The reader may check that
α is an automorphism of H , and perform the following computations:

– [a1b2t, α] = (t2b− t2a)1(t−2a− t−2b)2t
−2 (so {H,α} 6⊆ F ◦(H));

– H+ = {a1a2 · ±1 : a ∈ C+} (incidently (H+)◦ ≤ F ◦(H));

– H− = {a1(−t2a)2t : a ∈ C+, t ∈ C×} (incidently H− = {H,α});

– H+ ·H− = {(a+ b)1(a− t2b)2 · ±t : a, b ∈ C+, t ∈ C×} does not contain 01a2 · i for a 6= 0
(here i is a complex root of −1).

• Rewriting [9, Theorem 19] is necessary for the argument; one cannot simply use the idea of
Lemma F together with the original decomposition.

Let Q = C× act on A = C+ by at = (t2 · a) and form H = A⋊Q. Consider α the involutive
automorphism doing (at)α = (−a)t (α inverts the Fitting subgroup while centralising the
Carter subgroup). The reader will check that H+ = Q, H− = A · ±1, {H,α} = A, and of
course H = H+ ·H−.

Running the argument in Lemma F using the (naive) G = G+ · G− decomposition of [9,
Theorem 19], one finds Q = (Q+)◦ · Q−, but Q− ≃ Z/2Z is not in F ◦(H). One could then
wish to apply the decomposition to F (H) instead, but the Sylow 2-subgroup of the latter is
not a 2-torus.

Extending [9, Theorem 19] into Lemma E was therefore needed for Lemma F.
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3.3 U
⊥
p Actions and Centralisers

The need for the present subsection is Lemma J below but we shall digress a bit for completeness
and future reference. Let p denote a set of prime numbers. The class of U⊥

p groups is defined
naturally. [ABC08, §I.9.5] deals with two dual settings:

• soluble, p⊥ groups acting on definable, connected, soluble, Up groups;

• p-groups acting on definable, connected, soluble, p⊥ groups.

We slightly refine the analysis.

Notation. If A and B are two subgroups of some ambient abelian group, we write A(+)B to denote
the quasi-direct sum, i.e. in order to mean that A ∩B is finite.

Lemma G. In a universe of finite Morley rank, let A be a definable, abelian group and R be a
group acting on A by definable automorphisms. Let A0 ≤ A be a definable, R-invariant subgroup.
Suppose one of the following:

(i) A is a p⊥ group and R is a finite, soluble p-group;

(ii) A is a connected, p⊥ group, A0 is connected, and R is a soluble p-group;

(iii) A is a connected, U⊥
p group, A0 is connected, and R is a soluble p-group;

(iv) A is a Up-group and R is a definable, soluble, p⊥ group;

(v) A is a connected Up-group and R ≤ S where S is a definable, soluble, p⊥ group acting on A.

Then CR(A) = CR(A0, A/A0). In cases (i), (ii), (iv) and (v): A = [A,R] ⊕ CA(R), [A,R] ∩A0 =
[A0, R], and CA(R) covers CA/A0

(R). In case (iii), then the properties hold provided connected
components are added (where not redundant), and ⊕ is replaced by (+). In case (ii), then CA(R)
and CA/A0

(R) are connected.

Proof.

(i) This is an extension of [ABC08, Corollary I.9.14] taking A0 into account.

We prove that A = [A,R] + CA(R) by induction on the order of R. By solubility, there
exist a proper subgroup S ⊳ R and an element r ∈ R with R = 〈S, r〉. By induction,
A = [A,S] + CA(S). But r normalises C = CA(S) which is a definable, p⊥-group. Consider
the definable homomorphisms adr : C → C and Trr : C → C respectively given by:

adr(a) = [a, r], Trr(a) =
∑

ri∈〈r〉

ar
i

Since adr ◦ Trr = Trr ◦ adr = 0, one has im adr ≤ ker Trr and im Trr ≤ ker adr. But since
ker Trr ∩ ker adr consists of elements of order dividing |r|, it is trivial by assumption. In
particular im adr ∩ ker adr = 0 so C = im adr + ker adr = [C, r] + CC(r) ≤ [A,R] + CA(R).

Let us show that [A,R]∩CA(R) is trivial. Consider the definable homomorphism TrR : A → A
given by:

TrR(a) =
∑

r∈R

ar

Since TrR vanishes on any subgroup of the form [A, r], it vanishes on [A,R]; notice that it
coincides with multiplication by |R| on CA(R). It follows that [A,R] ∩ CA(R) consists of
elements of order dividing |R|, so by assumption it is trivial.

We shall say a bit more: ker TrR = [A,R] and im TrR = CA(R). Indeed A = [A,R] +
CA(R) and [A,R] ≤ ker TrR, so ker TrR ≤ [A,R] + Cker TrR

(R). But Cker TrR
(R) consists of

elements of order dividing |R|, therefore it is trivial. It follows that ker TrR = [A,R]. Again
im TrR ∩ ker TrR ≤ Cker TrR

(R) = 0, so as above A = im TrR + ker TrR, proving CA(R) ≤
im TrR +Cker TrR

(R) = im TrR.
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We turn our attention to the definable, R-invariant subgroup A0 ≤ A. One sees that:

[A,R] ∩A0 = ker TrR ∩A0 = ker(TrR)|A0
= [A0, R]

and letting ϕ stand for projection modulo A0:

ϕ(CA(R)) = ϕ ◦ TrR(A) = TrR ◦ϕ(A) = TrR(A/A0) = CA/A0
(R)

Finally let S = CR(A0, A/A0). We apply our results to the action of S on A and find
A ≤ [A,S] + CA(S) ≤ CA(S) so S = CR(A).

(ii) We reduce to case (i) with the following claim.

In a universe of finite Morley rank, if G is a definable, connected group and R is a locally
finite group acting on G, then there is a finite subgroup R0 ≤ R with CG(R0) = CG(R) and
[G,R0] = [G,R].

The first is by the descending chain condition on centralisers: there is a finite subset X ⊆ R
with CG(X) = CG(R). Now by connectedness of G and Zilber’s indecomposibility theorem,
[G, r] is definable and connected for any r ∈ R. By the ascending chain condition on definable,
connected subgroups, there is a finite subset Y ⊆ R such that [G, Y ] = [G,R]. Take R0 =
〈X ∪ Y 〉, a finite subgroup of R.

So taking both actions on A and on A0 into account we may suppose R to be finite; apply
case (i) and see that A = [A,R] ⊕ CA(R) implies connectedness of the latter.

(iii) Here again we may suppose R to be finite. Now read the proof of case (i) again, replacing
“trivial” by “finite” and adding connected components where necessary.

(iv) This is esentially [CD12, Facts 1.15 and 1.16]; also see [ABC08, Corollary I.9.11].

Let H = A⋊R, a definable, soluble group with A ≤ F (H). Then for q /∈ p, Uq(R) ≤ F (H) ≤
CH(A) and likewise, U(0,k)(R) ≤ CH(A) for k > 0. So R◦ acts as a good torus which we may
replace with a finite, normal subgroup of R; then we may suppose that R itself is finite.

Considering the complement of p in the set of primes, we may apply case (i).

(v) We reduce to case (iv) with the following claim.

In a universe of finite Morley rank, if G is a definable, connected group and S is a definable
group acting on G, then any subgroup R ≤ S satisfies CG(R) = CG(d(R)) and [G,R] =
[G, d(R)].

The first is by definability of centralisers. The second is as in [CD12, Lemma 1.14]: let
X = {s ∈ d(R) : [G, s] ≤ [G,R]}. Since [G,R] is definable by connectedness of G and Zilber’s
indecomposibility theorem, so is its normaliser in d(R). Hence d(R) normalises [G,R]; the
definable set X is actually a subgroup of d(R). So d(R) ≤ d(X) and [G, d(R)] = [G,R].

Remark. The Lemma does not hold for U⊥
p , non-connected A since it fails at the finite level: let

R = Z/2Z act by inversion on A = Z/4Z; one has CA(R) = 2A = [A,R].

After obtaining the following Lemma the author realised it was already proved by Burdges and
Cherlin using a different argument.

Lemma H (cf. [ABC08, Proposition I.9.12]; also [BC08, Lemma 2.5]). In a universe of finite
Morley rank, let G be a definable group, R be a soluble p-group acting on G by definable auto-
morphisms, and let H E G be a definable, connected, soluble, U⊥

p , R-invariant subgroup. Then
C◦
G/H(R) = C◦

G(R)H/H.

Proof. As in Lemma G, using chain conditions and local finiteness, we may assume that R is
finite. Let L = ϕ−1(C◦

G/H(R)), where ϕ denotes projection modulo H . Since ϕ is surjective,
ϕ(L) = C◦

G/H(R) which is connected and a finite extension of ϕ(L◦): so ϕ(L) = ϕ(L◦) and
L = L◦H = L◦ by connectedness of H . Hence L itself is connected. We now proceed by induction
on the solubility class of H .

First suppose that H is abelian; we proceed by induction on the solubility class of R.
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• First suppose that R = 〈r〉. Be careful that the definable map Trr : G → G given by:

Trr(g) =
|r|−1
∏

i=0

gr
i

is not a group homomorphism, but (Trr)|H is one.

Since [L, r] ≤ H ∩ Tr−1
r (0) = ker(Trr)|H , one has by connectedness and Zilber’s indecompos-

ibility theorem [L, r] ≤ ker◦(Trr)|H = [H, r] by the proof of Lemma G. Bear in mind that H
is abelian; it follows that L ≤ HCG(r), so by connectedness L ≤ HC◦

G(r), as desired.

• Now suppose R = 〈S, r〉 with S ⊳ R. By induction, L ≤ HC◦
G(S) and since H ≤ L, one

has L ≤ HC◦
L(S). Let GS = C◦

G(S) and HS = C◦
H(S); also let ϕS be the projection

GS → GS/HS , and LS = ϕ−1
S (C◦

GS/HS
(r)).

By the cyclic case, LS ≤ HSC
◦
GS

(r) ≤ HC◦
G(R). But [C◦

L(S), r] ≤ H ∩ C◦
G(S) so by

connectedness [C◦
L(S), r] ≤ C◦

H(S) = HS . It follows that C◦
L(S) ≤ LS ≤ HC◦

G(R) and
L ≤ HC◦

L(S) ≤ HC◦
G(R).

We now let K = H ′, which is a definable, connected, R-invariant subgroup normal in G. Let
ϕK : G → G/K and ψ : G/K → G/H be the standard projections, so that ϕ = ψϕK . By
induction, ϕK(C◦

G(R)) = C◦
ϕK(G)(R). But ϕK(H) E ϕK(G) and ϕK(H) is abelian, so by the

abelian case we just covered, ψ(C◦
ϕK (G)(R)) = C◦

ψϕK(G)(R). Therefore:

ϕ(C◦
G(R)) = ψ(ϕK(C◦

G(R)) = ψ(C◦
ϕK(G)(R)) = C◦

ψϕK(G)(R) = C◦
ϕ(G)(R)

The following inductive consequence will not be used in the present work.

Lemma I (cf. [ABC08, Proposition I.9.13]). In a universe of finite Morley rank, let H be a
definable, connected, soluble, U⊥

p group and R be a soluble p-group acting on H by definable auto-
morphisms. Then H = [H,R]C◦

H(R).

Now let ρ denote a unipotence parameter. We wish to generalise [Bur04a, Lemma 3.6] relaxing
the p⊥ assumption to U⊥

p . This will considerably simplify some arguments; in particular we shall
no longer care whether Burdges’ unipotent radicals of Borel subgroups contain involutions or not
when taking centralisers. This will spare us the contortions of [5, Lemmes 5.2.33, 5.2.39, 5.3.20,
5.3.23].

Lemma J (cf. [Bur04a, Lemma 3.6]). In a universe of finite Morley rank, let U be a definable,
U⊥
p , ρ-group and R be a soluble p-group acting on U by definable automorphisms. Then C◦

U (R) is
a ρ-group.

Proof. The proof is by induction on the nilpotence class of U . First suppose that U is abelian.
Then by Lemma G one has U = [U,R](+)C◦

U (R). Let K stand for the finite intersection. Then
C◦
U (R)/K ≃ U/[U,R] which by push-forward [Bur04a, Lemma 2.11] is a ρ-group. It follows that

C◦
U (R) itself is a ρ-group. (Since we could not locate a proof of this trivial fact in the literature,

here it goes: let V = C◦
U (R) and ϕ : V → V/K be the standard projection. By pull-back

[Bur04a, Lemma 2.11], ϕ(Uρ(V )) = V/K = ϕ(V ), and since kerϕ is finite, rkUρ(V ) = rkV . By
connectedness, V = Uρ(V ).)

Now let 1 < A ⊳ U be an abelian definable, connected, characteristic subgroup. By induction,
C◦
A(R) and C◦

U/A(R) are ρ-groups. Now by Lemma H,

C◦
U/A(R) ≃ C◦

U (R)A/A

≃ C◦
U (R)/(A ∩ C◦

U (R))

≃ (C◦
U (R)/C◦

A(R)) / ((A ∩ C◦
U (R))/C◦

A(R))

= (C◦
U (R)/C◦

A(R)) /L

where L = (A ∩ C◦
U (R))/C◦

A(R) is finite. Since C◦
U/A(R) is a ρ-group, so is C◦

U (R)/C◦
A(R). But

C◦
A(R) is a ρ-group, so by pull-back, so is C◦

U (R).
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One could of course do the same with a set of unipotence parameters instead of a single para-
meter ρ.

Remark. As opposed to the usual setting of p⊥ groups [Bur04a, Lemma 3.6], connectedness of
CU (R) is not granted in the U⊥

p case: think of an involutive automorphism inverting a ρ-group
which contains a non-trivial 2-torus.

As a consequence, if inside a group of odd type some involution i acts on a σ-group H with
ρC(i) ≺ σ, then i inverts H . We shall use this fact with no reference.

3.4 Carter π-Subgroups

The maybe not-so-familiar notion of a Carter π-subgroup was recalled in §2.3. Bear in mind that
by definition, π-groups are nilpotent.

Lemma K. Let H be a connected, soluble group of finite Morley rank, π be a set of parameters
such that Uπ(H ′) = 1, and L ≤ H be a maximal π-subgroup. Then there is a Carter subgroup
Q ≤ H of H with L = Uπ(Q).

Proof. It suffices to show that for any π-subgroup L ≤ H there is a Carter subgroup Q of H with
L ≤ Q.

If |π| = 1 then we are actually dealing with a single unipotence parameter ρ, and the result
follows from the theory of Sylow ρ-subgroups ([Bur04b, Lemma 4.19], [Bur06, Theorem 5.7]). If
|π| > 1, write Burdges’ decomposition of L = Lρ ∗ M , where ρ is any unipotence parameter
occurring in L, Lρ = Uρ(L), and M is a (π \ {ρ})-group. By induction there is a Carter subgroup
Q of H with Lρ ≤ Q.

Now consider the generalised centraliser (a tool we already used in the proof of Lemma C)
E = EH(Lρ) ≥ 〈Q,M〉. If E < H then by induction on the Morley rank L is contained in some
Carter subgroup of E. Since Q ≤ E, the former also is a Carter subgroup of H .

So we may assume E = H , and therefore Lρ ≤ F ◦(H) [Fré00a, Corollaire 5.17]. Actually
we may assume this for any parameter ρ, meaning L ≤ F ◦(H). Now Q acts on Uπ(F ◦(H)) so
[Q,Uπ(F ◦(H))] ≤ Uπ(H ′) = 1 and L ≤ Uπ(F ◦(H)) ≤ NH(Q) = Q.

3.5 W
⊥
p Groups

Weyl groups of minimal connected simple groups have been abundantly discussed [AB08, BC09,
BD10, Fré10]. We do not feel utterly interested now; as a consequence we shall not even define
Weyl groups. Instead we shall develop a more limited view which will suffice for our purposes.
This line is very much in the spirit of [BP90], the influence of which on later work should not be
concealed.

Notation. Let G be a U⊥
p group of finite Morley rank. Let Wp(G) = S/S◦ for any Sylow p-

subgroup S of G (these are conjugate by [BC09, Theorem 4], our Fact 5, so this is well-defined).

Lemma L. Let G be a U⊥
p group of finite Morley rank.

(i) If H ≤ G is a definable, connected subgroup, then Wp(H) →֒ Wp(G).

(ii) If H E G is a definable, normal subgroup, then Wp(G) ։Wp(G/H).

(iii) If H E G is a definable, connected, normal subgroup, then Wp(G/H) ≃ Wp(G)/Wp(H).

(iv) If G is connected and H ≤ Z(G) is a central subgroup, then Wp(G/H) ≃ Wp(G).

Proof.

(i) Let SH be a Sylow p-subgroup of H and extend it to a Sylow p-subgroup SG of G. To
w ∈ Wp(H) associate hS◦

G ∈ Wp(G) where h ∈ SH is such that hS◦
H = w. This is a

well-defined group homomorphism as S◦
H ≤ S◦

G. It is injective since if h ∈ SH ∩ S◦
G, then

h ∈ CSH
(S◦
H) = S◦

H by torality principles and connectedness of H .
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(ii) Let SH ≤ SG be as above and denote projection modulo H by ; we know that Σ = SG ≃
SG/SH is a Sylow p-subgroup of G/H . To w ∈ Wp(G) associate gΣ◦ ∈ Wp(G/H) where
g ∈ SG is such that gS◦

G = w. This is a well-defined group homomorphism as S◦
G = Σ◦. It is

clearly surjective.

(iii) Suppose in addition that H is connected. With notations as in the argument for Claim (ii),
if w is in the kernel then g ∈ S◦

GH , and we may suppose g ∈ H (the converse is obvious).
Hence the kernel coincides with the image of Wp(H) in Wp(G) given by Claim (i).

(iv) By Claim (ii) the map Wp(G) → Wp(G/H) is a surjective group homomorphism; now if
gS◦

G ∈ Wp(G) lies in the kernel, since H is central in G one finds g ∈ SG ∩ (HS◦
G) ≤

CSG
(S◦
G) = S◦

G by torality principles and connectedness of G. So the map is injective and
Wp(G) ≃ Wp(G/H).

Remarks.

• In Claims (i) and (iii), connectedness of H is necessary: consider Z/2Z inside Z2∞ , then
inside SL2(C).

• As a consequence, if G is connected and H E G is a definable, normal subgroup, then
Wp(G/H) ≃ Wp((G/H◦)/(H/H◦)) ≃ Wp(G/H◦) ≃ Wp(G)/Wp(H◦).

• Lemma L could be used as a qualifying test for tentative notions of the Weyl group.

We wish to suggest a bit of terminology.

Definition. A U⊥
p group of finite Morley rank is W⊥

p if its Sylow p-subgroups are connected.

As a consequence of Lemma L, when H E G where both are definable and connected, if H and
G/H are W⊥

p then so is G. We aim at saying a bit more about extending tori. The following result
is not used anywhere in the present article.

Lemma M. Let Ĝ be a connected, U⊥
p group of finite Morley rank and G E Ĝ be a definable,

connected subgroup. Suppose that Ĝ/G is W⊥
p . Let Ŝ ≤ Ĝ be a Sylow p-subgroup and S = Ŝ ∩ G.

Then there exist:

• a p-torus T̂ ≤ Ĝ with Ŝ = S ⋊ T̂ (semidirect product);

• a p-torus Θ̂ ≤ Ĝ with Ŝ = S(×)Θ̂ (central product over a finite intersection).

Proof. We know that S is a Sylow p-subgroup of G and that Ŝ/S ≃ ŜG/G is a Sylow p-subgroup of
Ĝ/G; as the latter is W⊥

p it is a p-torus. In particular Ŝ = Ŝ◦S. Note that S ∩ Ŝ◦ ≤ CS(S◦) = S◦

by torality principles and connectedness of G.
Bear in mind that p-tori are injective as Z-modules. Inside Ŝ◦ take a direct complement T̂ of

S◦, so that Ŝ◦ = S◦ ⊕ T̂ . Then Ŝ = SŜ◦ = ST̂ , but S ∩ T̂ ≤ S ∩ Ŝ◦ ∩ T̂ ≤ S◦ ∩ T̂ = 1. Hence
Ŝ = S ⋊ T̂ .

We now consider the action of Ŝ on Ŝ◦; observe that Ŝ as a pure group has finite Morley rank,
so Lemma G applies and yields Ŝ◦ = [Ŝ◦, Ŝ](+)C◦

Ŝ◦
(Ŝ). Since Ŝ/S is a p-torus, it is abelian, so

[Ŝ◦, Ŝ] ≤ Ŝ′ ≤ S, and by Zilber’s indecomposibility theorem [Ŝ◦, Ŝ] ≤ S◦. Inside C◦
Ŝ◦

(Ŝ) take a

direct complement Θ̂ of C◦
S◦(Ŝ), so that C◦

Ŝ◦
(Ŝ) = C◦

S◦ (Ŝ) ⊕ Θ̂. Then Ŝ = SŜ◦ = SC◦
Ŝ◦

(Ŝ) = SΘ̂,

and Θ̂ ≤ C◦
Ŝ◦

(Ŝ) commutes with S. Moreover (S ∩ Θ̂)◦ ≤ (CS(Ŝ) ∩ Θ̂)◦ ≤ C◦
S◦(Ŝ) ∩ Θ̂ = 1 by

construction, so Ŝ = S(×)Θ̂.

Remark. One may not demand that Ŝ = S× T̂ (direct product). Consider the two groups SL2(C)
with involution i and C

× with involution j. Let Ĝ = (SL2(C)×C
×)/〈ij〉 and ϕ : SL2(C)×C

× → Ĝ
be the standard projection. Let G = ϕ(SL2(C)) ≃ SL2(C) and Θ̂ = ϕ(C×) ≃ C×. Fix any Sylow
2-subgroup Ŝ of Ĝ. Then with S = Ŝ ∩G one has SΘ̂ = S(×)Θ̂ = Ŝ, and S ∩ Θ̂ = 〈ϕ(i)〉.

If one asks for a semidirect complement T̂ , the latter must contain its own involution, which
will be ϕ(ab) (or possibly ϕ(iab), a similar case), where a ∈ ϕ−1(S) ≤ SL2(C) satisfies a2 = i and
b2 = j in C×. Remember that inside a fixed Sylow 2-subgroup of SL2(C), every element of order
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four (be it toral inside the fixed Sylow 2-subgroup or not) is inverted by another element of order
four. So let ζ ∈ ϕ−1(S) invert a. Then:

ϕ(ζab) = ϕ(ζa) = ϕ(iζ) 6= ϕ(ζ)

so the action of T̂ on S is always non-trivial.
One may not demand Ŝ = S × T̂ , and in any case nothing can apparently prevent d(T̂ ) from

intersecting G non-trivially, so the question is rather pointless.

3.6 A Counting Lemma

The following quite elementary Lemma was devised in Cappadocia in 2007 as an explanation of [5,
Corollaire 5.1.7] (or [7, Corollaire 4.7]). It will be used only once.

Lemma N (Göreme). Let G be a connected, U⊥
2 , W⊥

2 group of finite Morley rank. Then the
number of conjugacy classes of involutions is odd (or zero).

Proof. By torality principles, every class is represented in a fixed Sylow 2-subgroup S = S◦. We
group involutions of S◦ by classes γk, and assume we find an even number of these: I(S◦) = ⊔2m

k=1γk.
Since the number of involutions in S◦ is however odd, some class, say γ, has an even number of
involutions. Now N = NG(S) acts on γ; by definition of a conjugacy class and by a classical fusion
control argument [BN94b, Lemma 10.22], N acts transitively on γ. Hence [N : CN (γ)] = |γ| is
even. Lifting torsion, there is a non-trivial 2-element ζ in N \ CN (γ). Since S E N , one has
ζ ∈ S = S◦ ≤ CN (γ), a contradiction.

The author hoped to be able to use this Lemma without any form of bound on the Prüfer
2-rank. He failed as one shall see in Step 8 of the Theorem. The general statement remains as a
relic of happier times past.

4 The Proof — Before the Maximality Proposition

Theorem. Let Ĝ be a connected, U⊥
2 group of finite Morley rank and G E Ĝ be a definable,

connected, non-soluble, N◦
◦ -subgroup.

Then the Sylow 2-subgroup of G has one of the following structures: isomorphic to that of
PSL2(C), isomorphic to that of SL2(C), a 2-torus of Prüfer 2-rank at most 2.

Suppose in addition that for all involutions ι ∈ I(Ĝ), the group C◦
G(ι) is soluble.

Then m2(Ĝ) ≤ 2, one of G or Ĝ/G is 2⊥, and involutions are conjugate in Ĝ. Moreover one
of the following cases occurs:

• PSL2: G ≃ PSL2(K) in characteristic not 2; Ĝ/G is 2⊥;

• CiBo∅: G is 2⊥; m2(Ĝ) ≤ 1; for ι ∈ I(Ĝ), CG(ι) = C◦
G(ι) is a self-normalising Borel subgroup

of G;

• CiBo1: m2(G) = m2(Ĝ) = 1; Ĝ/G is 2⊥; for i ∈ I(Ĝ) = I(G), CG(i) = C◦
G(i) is a self-

normalising Borel subgroup of G;

• CiBo2: Pr2(G) = 1 and m2(G) = m2(Ĝ) = 2; Ĝ/G is 2⊥; for i ∈ I(Ĝ) = I(G), C◦
G(i)

is an abelian Borel subgroup of G inverted by any involution in CG(i) \ {i} and satisfies
rkG = 3 rkC◦

G(i);

• CiBo3: Pr2(G) = m2(G) = m2(Ĝ) = 2; Ĝ/G is 2⊥; for i ∈ I(Ĝ) = I(G), CG(i) = C◦
G(i) is a

self-normalising Borel subgroup of G; if i 6= j are two involutions of G then CG(i) 6= CG(j).

The proof requires eight propositions all strongly relying on the N◦
◦ assumption, the deepest

of which will be the maximality Proposition 6. Let us briefly describe the global outline. More
detailed information will be found before each proposition.

In Proposition 1 (§4.1) we determine the 2-structure of N◦
◦ -groups by elementary methods.

Proposition 2 (§4.2) is a classical rank computation required both by the Algebraicity Proposition 3
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(§4.3) which identifies PSL2(K) through reconstruction of its BN-pair, and by the Maximality
Proposition 6 which shows that in non-algebraic configurations centralisers◦ of involutions are
Borel subgroups. The proof may be of interest to the expert in finite group theory; perhaps he will
find something unexpected there. Proposition 6 will take all of §5 but actually requires two more
technical preliminaries: Propositions 4 (§4.4) and 5 (§4.5), which deal with actions of involutions
and torsion, respectively. After Proposition 6 things go faster. We study the action of an infinite
dihedral group in Proposition 7 (§6.1) and a strong embedding configuration in Proposition 8
(§6.2). Both are rather classical, methodologically speaking; Proposition 7 is more involved than
Proposition 8; they can be read in any order but both rely on Maximality. The final assembling
takes place in §6.3 where all preliminary propositions 1, 2, 4 and 5 reappear as independent themes.

The resulting architecture surprised the author. In the original, minimal connected simple
setting one proceeded by first bounding the Prüfer 2-rank [4] and then studying the remaining
cases [6, 7]. There maximality propositions had to be proved three times in order to complete
the analysis. The reason for such a clumsy treatment, with one part of the proof being repeated
over and over again, was that torsion arguments were systematically based on some control on
involutions. Here we do the opposite. By providing careful torsion control in Proposition 5 and
relaxing our expectations on conjugacy classes of involutions we shall be able to run maximality
without prior knowledge of the Prüfer 2-rank. This seems to be the right level both of elegance
and generality. Bounding the Prüfer 2-rank then follows by adapting a small part of [4].

Before the curtain opens one should note that bounding the Prüfer 2-rank of Ĝ a priori is
possible if one assumes G to be 2⊥ as Burdges noted for [12]. We do not follow this line.

4.1 The 2-Structure Proposition

Proposition 1 hereafter comes directly from [5, Chapitre 4 and Addendum], published as [7, §2]. It
is the most elementary of our propositions, and together with the Strong Embedding Proposition 8
one of the two not requiring almost-solubility of centralisers of involutions.

Proposition 1 (2-Structure). Let G be a connected, U⊥
2 , N◦

◦ -group of finite Morley rank. Then
the Sylow 2-subgroup of G has the following form:

• connected, i.e. a possibly trivial 2-torus;

• isomorphic to that of PSL2(C);

• isomorphic to that of SL2(C), in which case C◦
G(i) is non-soluble for any involution i of G.

Proof. If the Prüfer rank is 0 this is a consequence of the analysis of degenerate type groups
[BBC07]. If it is 1, this is well-known, see for reference [9, Proposition 27]. Notice that if the
Sylow 2-subgroup is as in SL2(C) and i is any involution, then by torality principles all Sylow
2-subgroups of CG(i) are in C◦

G(i), but none is connected: this, and the structure of torsion in
connected, soluble groups of finite Morley rank prevents C◦

G(i) from being soluble.
So we suppose that the Prüfer 2-rank is at least 2 and show that a Sylow 2-subgroup S of G is

connected. Let G be a minimal counterexample to this statement. Then G is non-soluble. Since G
is an N◦

◦ -group, Z(G) is finite, but we actually may suppose that G is centreless. For if the result
holds of G/Z(G), then SZ(G)/Z(G) is a Sylow 2-subgroup of G/Z(G), and therefore connected,
so that S ≤ S◦Z(G) ∩ S ≤ CS(S◦) = S◦ by torality principles. So we may assume Z(G) = 1.

Still assuming that the Prüfer 2-rank is at least 2 we let ζ ∈ S \ S◦ have minimal order, so
that ζ2 ∈ S◦. Let Θ1 = C◦

S◦(ζ). If Θ1 6= 1 then 〈S◦, ζ〉 ≤ CG(Θ1) which is connected by [AB08,
Theorem 1] and soluble since G is an N◦

◦ -group. The structure of torsion in such groups yields
ζ ∈ S◦, a contradiction. So Θ1 = C◦

S◦(ζ) = 1 and ζ therefore inverts S◦. In particular ζ centralises
the group Ω = Ω2(S◦) generated by involutions of S◦, and Ω normalises C◦

G(ζ). By normalisation
principles Ω normalises a maximal 2-torus T of C◦

G(ζ); by torality principles, ζ ∈ T and T has
the same Prüfer 2-rank as S. Now |Ω| ≥ 4 so there is i ∈ Ω such that Θ2 = C◦

T (i) is non-trivial.
Then 〈T, i〉 ≤ CG(Θ2) which is soluble and connected as above, implying i ∈ T . This is not a
contradiction yet, but now ζ ∈ T ≤ C◦

G(i) and of course S◦ ≤ C◦
G(i). Hence C◦

G(i) < G is a smaller
counterexample, a contradiction. Connectedness is proved.
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Remark. One can show that if α ∈ G is a 2-element with α2 6= 1, then CG(α) is connected.
For let α ∈ G have order 2k with k > 1. By Steinberg’s torsion theorem (our Fact 4),

CG(α)/C◦
G(α) has exponent dividing 2k. Using torality principles, fix a maximal 2-torus T of

G containing α. If the Sylow 2-subgroup of G is connected, then T is a Sylow 2-subgroup of G
included in C◦

G(α): hence CG(α) = C◦
G(α). If the Sylow 2-subgroup of G is isomorphic to that of

PSL2(C) or to that of SL2(C), then any 2-element ζ ∈ CG(α) normalising T centralises α of order
at least 4, so it also centralises T . It follows from torality principles that ζ ∈ T ≤ C◦

G(α), and
CG(α) is connected again.

We shall not use this remark.

4.2 The Genericity Proposition

Considerations concerning the distribution of involutions in the cosets of a given sub-
group are often useful in the study of groups of even order.

So wrote Bender in the beginning of [Bender, 1974b]. The first instance of this method in the
finite Morley rank context seems to be [BDN94, after Lemma 7] which with [BN94a] aimed at
identifying SL2(K) in characteristic 2. Jaligot brought it to the odd type setting [1]. The present
subsection is the cornerstone of Propositions 3 and 6 and is used again when conjugating involutions
in Step 7 of the final argument. We introduce subsets of a group H describing the distribution of
involutions in the translates of H .

Notation. For κ an involutive automorphism and H a subgroup of some ambient group, we let
TH(κ) = {h ∈ H : hκ = h−1}. (This set is definable as soon as κ and H are.)

The following is completely classical; the proof will not surprise the experts and is included for
the sake of self-containedness. It will be applied only when H is a Borel subgroup of G.

Proposition 2 (Genericity). Let Ĝ be a connected, U⊥
2 group of finite Morley rank and G E Ĝ be

a definable, connected, non-soluble, N◦
◦ -subgroup.

Suppose that Ĝ = G · d(Ŝ◦) for some maximal 2-torus Ŝ◦ of Ĝ.
Let ι ∈ I(Ĝ) and H ≤ G be a definable, infinite, soluble subgroup of G. Then KH = {κ ∈

ιĜ \NĜ(H) : rk TH(κ) ≥ rkH − rkCG(ι)} is generic in ιĜ.

Proof. The statement is invariant under conjugating Ŝ◦ so by torality principles we may assume
ι ∈ Ŝ◦; in particular ιĜ = ιG. We shall first show that ιĜ \ NĜ(H) is generic in ιĜ. [8, Lemmas
2.16 and 3.33] were supposed to do this, but they only apply when ι ∈ G. Minor work must be
added.

Suppose that ιĜ \ NĜ(H) is not generic in ιĜ. Then by a degree argument, ιĜ ∩ NĜ(H) is
generic in ιĜ. Inside Ĝ apply [8, Lemma 2.16] with X = ιĜ and M = NĜ(H): X ∩ M contains
a definable, Ĝ-invariant subset X1 which is generic in X . Note that X is infinite as otherwise ι
inverts Ĝ, so X1 is infinite as well. We cannot directly apply [8, Lemma 3.33] as Ĝ itself need not
be N◦

◦ . So let X2 = {κλ : κ, λ ∈ X1}, which is an infinite, Ĝ-invariant subset of NĜ(H). Since
X1 ⊆ ιĜ = ιG ⊆ ιG = Gι, X2 is actually a subset of G. Hence X2 ⊆ NG(H). The latter need
not be soluble but is a finite extension of N◦

G(H), which is. Since X2 is infinite and has degree 1,
there is a generic subset X3 of X2 which is contained in some translate nN◦

G(H) of N◦
G(H), where

n ∈ NG(H). Then X3 ⊆ N◦
G(H) · 〈n〉 which is a definable, soluble group we denote by M2; X3

itself may fail to be G-invariant. But X2 is a G-invariant subset such that X3 ⊆ X2 ∩M2 is generic
in X2. By [8, Lemma 3.33] applied in G = G◦ to X2 and M2, G is soluble: a contradiction.

The end of the proof is rather worn-out. Consider the definable function ϕ : ιĜ \ NĜ(H) →
G · 〈ι〉/H which maps κ to κH . The domain has rank rk ιĜ = rk ιG = rkG− rkCG(ι). The image
set has rank at most rkG − rkH . So the generic fiber has rank at least rkH − rkCG(ι). But
if κ, λ lie in the same fiber, then κH = λH and κλ ∈ TH(κ). Hence for generic κ, rkTH(κ) ≥
rkϕ−1(ϕ(κ)) ≥ rkH − rkCG(ι).

As it turns out, the algebraic properties of TH(κ) are not always as good as one may wish, and
one then focuses on the following sets instead.
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Notation. For κ an involutive automorphism and H a subgroup of some ambient group, we let
TH(κ) = {h2 ∈ H : hκ = h−1} ⊆ TH(κ). (This set is definable as soon as κ and H are.)

There is no a priori estimate on rkTH(κ), and Proposition 5 will remedy this. The T sets were
denoted τ in [5]; interestingly enough, they were already used in [4, Notation 7.4].

4.3 The Algebraicity Proposition

We now return to the historical core of the subject.
Identifying SL2(K) is a classical topic in finite group theory. Proposition 3 may be seen as

a very weak form of the Brauer-Suzuki-Wall Theorem [Brauer et al., 1958] in odd characteristic.
However [Brauer et al., 1958] heavily relied on character theory, a tool not available in and per-
haps not compatible in spirit with the context of groups of finite Morley rank. (One may even
interpret the expected failure of the Feit-Thompson theorem in our context as evidence for this
thesis.) A character-free proof of outstanding elegance was found by Goldschmidt. Yet his article
[Goldschmidt, 1974] dealt only with the characteristic 2 case, and ended on the conclusive remark:

Finally, some analogues of Theorem 2 [Goldschmidt’s version of BSW] may hold for
odd primes but [. . . ] this problem seems to be very difficult.

Bender’s investigations in odd characteristic [Bender, 1974a] and [Bender, 1981] both require some
character theory. We do not know of a general yet elementary identification theorem for PSL(2, q)
with odd q, and hope that the present paper will help ask the question.

In the finite Morley rank context various results identifying PSL2(K) exist, starting with Cher-
lin’s very first article in the field [Che79] and Hrushovski’s generalisation [Hru89]. For groups of
even type [BDN94, BN94a] provide identification using heavy rank computations. In a different
spirit, the reworking of Zassenhaus’ classic [Zassenhaus, 1935] by Nesin [Nes90a] and its extension
[DN95] identify PSL2(K) among 3-transitive groups; the latter gives a very handy statement.

Most of the ideas in the proof below are in [6] and in many other articles before. Only two
points need be commented on.

• First, we shift from the tradition as in [3, 6] of invoking the results on permutation groups
Nesin had ported to the finite Morley rank context ([DN95], see above).

We decided to use final identification arguments based on the theory of Moufang sets instead.
At that point of the analysis the difference may seem essentially cosmetic but the Moufang
setting is in our opinion more appropriate as it focuses on the BN-pair. We now rely on
recent work by Wiscons [Wis11].

(Incidently, Nesin had started thinking about BN-pairs in jail [Nes90b] but was released
before reaching an identification theorem for PSL2(K) in this context; not returning to gaol
he apparently never returned to the topic.)

• Second, we refrained from using Frécon homogeneity. This makes the proof only marginally
longer in Step 6. The reasons for doing so were consistency with not using it in Proposition 6,
and the mere challenge as it was thought a few years ago to be unavoidable.

Proposition 3 (Algebraicity). Let Ĝ be a connected, U⊥
2 group of finite Morley rank and G E Ĝ

be a definable, connected, non-soluble, N◦
◦ -subgroup. Suppose that for all ι ∈ I(Ĝ), C◦

G(ι) is soluble.

Suppose that there exists ι ∈ I(Ĝ) such that C◦
G(ι) is contained in two distinct Borel subgroups.

Then G has the same Sylow 2-subgroup as PSL2(K). If in addition ι ∈ G, then G ≃ PSL2(K),
where K is an algebraically closed field of characteristic not 2.

Proof. Since Ĝ is connected, every involution ι is toral: say ι ∈ Ŝ◦ a 2-torus. We may therefore
assume that Ĝ = G ·d(Ŝ◦), so that the standard rank computations of the Genericity Proposition 2
apply. Moreover, Ĝ/G is connected and abelian, hence W⊥

2 .

1 – Notation.

• Let B ≥ C◦
G(ι) be a Borel subgroup of G maximising ρB; let ρ = ρB.
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• Let KB = {κ ∈ ιĜ \ NĜ(B) : rkTB(κ) ≥ rkB − rkC◦
G(ι)}; by the Genericity Proposition 2,

KB is generic in ιĜ.

• Let κ ∈ KB.

Note that it is not clear at this point whether ι normalises B.

2 – Step. Uρ(C◦
G(ι)) = 1. If U ≤ B is a non-trivial ρ-group, H ≤ G is a definable, connected

subgroup of G containing U , and λ ∈ ιĜ normalises H , then λ normalises B.

Proof of Step 2. For this proof letting YB = Uρ(Z(F ◦(B))) will spare a few parentheses; by Fact
7 (iii), YB 6= 1.

Suppose Uρ(C◦
G(ι)) 6= 1. Let D 6= B be a Borel subgroup of G containing C◦

G(ι) and maximising
H = (B ∩D)◦: such a Borel subgroup exists by assumption on C◦

G(ι). By construction ρD < ρι =
ρB < ρD, so all are equal. If H is not abelian then by [8, 4.50(3) and (6) (our Fact 10)] ρB 6= ρD,
a contradiction. Hence H is abelian, and in particular C◦

G(ι) ≤ H ≤ C◦
G(Uρ(H)) which is a soluble

group; by definition of B, the parameter of C◦
G(Uρ(H)) is ρ. It follows from uniqueness principles

(Fact 8) that Uρ(H) is contained in a unique Sylow ρ-subgroup of G. This must be Uρ(B) = Uρ(D),
so B = D: a contradiction.

We just proved ρι ≺ ρ. It follows that for any σ < ρ, any ι-invariant σ-group is inverted by ι.
Now let U , H , and λ be as in the statement. There is a Sylow ρ-subgroup V of H containing U .
By normalisation principles λ has an H-conjugate µ normalising V : so µ inverts V ≥ U .

Let C = C◦
G(U), a definable, connected, soluble group. Since U ≤ Uρ(B), one has YB ≤ C. So

there is a Sylow ρ-subgroupW of C containing YB. As µ inverts U it normalises C; by normalisation
principles µ has a C-conjugate ν normalising W : so ν inverts W ≥ YB. Now ν also inverts UρC

(C),
and commutation principles (our Fact 1) yield [UρC

(C), YB ] = 1, whence UρC
(C) ≤ C◦

G(YB) ≤ B.
At this point it is clear that ρC = ρ and Uρ(B) is the only Sylow ρ-subgroup of G containing U by
uniqueness principles.

On the other hand µ inverts UρH
(H) and U , so by commutation principles [UρH

(H), U ] = 1
and UρH

(H) ≤ C, meaning that ρH = ρ as well. Hence λ inverts UρH
(H) = Uρ(H) ≥ U . Since

Uρ(B) is the only Sylow ρ-subgroup of G containing U , λ normalises B. ♦

3 – Notation. Let Lκ = B ∩Bκ and Θκ = {ℓ ∈ Lκ : ℓℓκ ∈ L′
κ}.

4 – Step. Lκ and Θκ are infinite, definable, κ-invariant, abelian-by-finite groups. Moreover
Θ◦
κ ⊆ TB(κ) ⊆ Θκ.

Proof of Step 4. L′
κ is finite since we otherwise let H = C◦

G(L′
κ) ≥ Uρ(Z(F ◦(B))) which is defin-

able, connected, and soluble since G is an N◦
◦ -group: Step 2 shows that κ normalises B, contra-

dicting its choice in Notation 1. It follows that L◦
κ is abelian and Lκ is abelian-by-finite. Θκ is

clearly a definable, κ-invariant subgroup of Lκ, so it is abelian-by-finite as well. By construction
TB(κ) ⊆ Θκ, and Θκ is therefore infinite.

We now consider the action of κ on Θ◦
κ and find according to Lemma G a decomposition

Θ◦
κ = C◦

Θ◦

κ
(κ)(+)[Θ◦

κ, κ]. Now the definable function ϕ : C◦
Θ◦

κ
(κ) → L′

κ which maps t to ttκ = t2 is
a group homomorphism, so by connectedness and since L′

κ is finite, C◦
Θ◦

κ
(κ) has exponent 2: it is

trivial. So κ inverts Θ◦
κ, meaning Θ◦

κ ⊆ TB(κ). ♦

5 – Notation. Let U ≤ [Uρ(Z(F ◦(B))),Θ◦
κ] be a non-trivial, Θ◦

κ-invariant ρ-subgroup minimal
with these properties.

6 – Step. U does exist and C◦
U (ι) = 1; CΘ◦

κ
(U) is finite and there exists an algebraically closed

field structure K with U ≃ K+ and Θ◦
κ/CΘ◦

κ
(U) ≃ K

×. MoreoverG has the same Sylow 2-subgroup
as PSL2(K).

Proof of Step 6. Here again we let YB = Uρ(Z(F ◦(B))) 6= 1.
If Θ◦

κ centralises YB then the κ-invariant, definable, connected, soluble group C◦
G(Θ◦

κ) contains
YB and Step 2 forces κ to normalise B, against its choice in Notation 1. Hence [YB ,Θ◦

κ] 6= 1; it is
a ρ-group (Fact 7 (vi); no need for Frécon homogeneity here).
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We show that C◦
U (ι) = 1; be careful that ι need not normalise U nor even B. Yet if C◦

U (ι)
is infinite then Step 2 applied to C◦

G(C◦
U (ι)) ≥ YB forces ι to normalise B, and then ι inverts

Uρ(B) ≥ U ≥ C◦
U (ι): a contradiction.

Suppose that CΘ◦

κ
(U) is infinite; Step 2 applied to C◦

G(CΘ◦

κ
(U)) ≥ U forces κ to normalise B: a

contradiction. We now wish to apply Zilber’s Field Theorem. It may look like we fall short of Θ◦
κ-

minimality but fear not. Follow for instance the proof in [BN94b, Theorem 9.1]. It suffices to check
that any non-zero r in the subring of End(U) generated by Θ◦

κ is actually an automorphism. But
by push-forward [Bur04a, Lemma 2.11] im r ≃ U/ ker r is a non-trivial, Θ◦

κ-invariant ρ-subgroup.
By minimality of U as such, r is surjective. In particular ker r is finite. Suppose it is non-trivial and
form, like in [BN94b, Theorem 9.1], the chain (ker rn). Each term is Θ◦

κ-central by connectedness,
so C◦

U (Θ◦
κ) contains an infinite torsion subgroup A. If there is some torsion unipotence then A = U

by minimality as a ρ-group, and Θ◦
κ centralises U : a contradiction. So A contains a non-trivial

q-torus for some prime number q. This means that there is a q-torus in [YB ,Θ◦
κ] ≤ B′ which

contradicts, for instance, [Fré00b, Proposition 3.26]. Hence every r ∈ 〈Θ◦
κ〉End(U) is actually an

automorphism of U : field interpretation applies (it also follows, a posteriori, that U is Θ◦
κ-minimal

all right).
A priori Θ◦

κ/CΘ◦

κ
(U) simply embeds into K×. But one has by Step 4 and the definition of κ:

rk Θ◦
κ/CΘ◦

κ
(U) = rk Θ◦

κ = rkTB(κ) ≥ rkB − rkC◦
G(ι) = rkB − rkC◦

B(ι) = rk ιB

≥ rk ιU = rkU − rkCU (ι) = rkU = rkK+

It follows that Θ◦
κ/CΘ◦

κ
(U) ≃ K×. At this point Θ◦

κ contains a non-trivial 2-torus. By the 2-
structure Proposition 1 and in view of the assumption on centralisers of involutions, the Sylow
2-subgroup of G is either connected or isomorphic to that of PSL2(K). Suppose it is connected.
Then G is W⊥

2 ; since Ĝ/G is as well, so is Ĝ by Lemma L. This contradicts the fact that κ inverts
the 2-torus of Θ◦

κ. ♦

For the rest of the proof we now suppose that ι lies in G. So we may assume Ĝ = G. Bear in
mind that since the Prüfer 2-rank is 1 by Step 6, all involutions are conjugate.

7 – Notation.

• Let for consistency of notations i = ι ∈ G and k = κ ∈ G. (By torality principles, i ∈
C◦
G(i) ≤ B.)

• Let jk be the involution in Θ◦
k.

Since i, jk are in B they are B-conjugate. In particular C◦
G(jk) ≤ B.

8 – Step. Θ◦
k = C◦

G(jk). Moreover rkU = rkC◦
G(i) = rk Θk, rkB ≤ 2 rkU , and rkG ≤ rkB+rkU .

Proof of Step 8. One inclusion is clear by abelianity of Θ◦
k obtained in Step 4. Now let N =

N◦
G(C◦

G(k, jk)). Since L◦
k is abelian by Step 4, so are C◦

G(jk) ≤ L◦
k and its conjugate C◦

G(k). Hence
Θ◦
k ≤ C◦

G(jk) ≤ N and by torality k ∈ C◦
G(k) ≤ N . So N contains a non-trivial 2-torus and an

involution inverting it: by the structure of torsion in definable, connected, soluble groups, N is not
soluble. Since G is an N◦

◦ -group, one has C◦
G(k, jk) = 1, so k inverts C◦

G(jk). Hence C◦
G(jk) ≤ Θ◦

k.
We now compute ranks. By Steps 6 and 8, rkC◦

G(i) = rk Θ◦
k = rkK× = rkK+ = rkU . By

definition of k ∈ KB and Step 4, rk Θ◦
k = rkTB(k) ≥ rkB − rkCB(i), so rkB ≤ 2 rkU .

Now remember that k varies in a set KB generic in iG. Let f : KB → iB be the definable
function mapping k to jk. If jk = jℓ then ℓ ∈ CG(jk) and the latter has the same rank as CG(i) so
we control fibers. Hence:

rkG− rkCG(i) = rk iG = rkKB ≤ rk iB + rkCG(i) = rk iB + rkCB(i) = rkB

that is, rkG ≤ rkB + rkCG(i). ♦

For the end of the proof k will stay fixed; conjugating again in B we may therefore suppose
that jk = i.

9 – Notation. Let N = CG(i) and H = B ∩N .
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10 – Step. (B,N,U) forms a split BN-pair of rank 1 (see [Wis11] if necessary).

Proof of Step 10. We must check the following:

• G = 〈B,N〉;

• [N : H ] = 2;

• for any ω ∈ N \H , one has H = B ∩Bω, G = B ⊔BωB, and Bω 6= B;

• B = U ⋊H .

First, H = B ∩ N = CB(i) = C◦
B(i) by Steinberg’s torsion theorem and the structure of torsion

in B. By the structure of the Sylow 2-subgroup obtained in Step 6, H < N , so using Steinberg’s
torsion theorem again [N : H ] = 2. Hence for any ω ∈ N \ H = Hk one has Bω = Bk ≥ Hk = H
and H ≤ B ∩ Bk. Now by the structure of torsion in B, the intersection B ∩ Bk centralises the
2-torus in the abelian group (B ∩Bk)◦ = L◦

k so B ∩Bk ≤ CB(i) = H .
Recall that the action of H = C◦

G(i) = Θ◦
k on U induces a field structure; in particular H ∩U ≤

CU (Θ◦
k) = 1. So U ·H = U ⋊H has rank 2 rkU ≥ rkB by Step 8 and therefore B = U ⋊H .

It remains to obtain the Bruhat decomposition. But first note that if CNG(B)(i) > CB(i) then
CNG(B)(i) = N contains k, which contradicts k /∈ NG(B) from Notation 1. So CNG(B)(i) = CB(i)
and since B conjugates its involutions a Frattini argument yields NG(B) ⊆ B · CNG(B)(i) = B.

Finally let g ∈ G \ B; g does not normalise B. Let X = (U ∩ Bg)◦ and suppose X 6= 1. In
characteristic p this contradicts uniqueness principles. In characteristic 0, U ≃ K+ is minimal
[Poi87, Corollaire 3.3], so X = U ; at this point U = Uρ(Bg) = Ug, a contradiction again. In any
case X = 1. In particular UgB has rank rkU + rkB = rkG by Step 8 and UgB is generic in G.
This also holds of UkB so g ∈ BkB and G = B ⊔ BkB = B ⊔ BωB for any ω ∈ N \ H . This
certainly implies G = 〈B,N〉. ♦

We finish the proof with [Wis11, Theorem 1.2] or [DMT08, Theorem 2.1], depending on the
characteristic. If U has exponent p, then Up(H) = 1 as H ≃ K×, so [Wis11, Theorem 1.2]
applies. If not, then U is torsion-free: we use [DMT08, Theorem 2.1] instead. In any case,
G/∩g∈GB

g ≃ PSL2(K) for some field structure K which a priori need not be the same as in Step 6
but could easily be proved to. Since ∩g∈GB

g is a normal, soluble subgroup, it is finite as G is an
N◦

◦ -group, and therefore central by connectedness. But central extensions of finite Morley rank of
quasi-simple algebraic groups are known [AC99, Corollary 1], so G ≃ SL2(K) or PSL2(K), and the
first is impossible by assumption on the centralisers of involutions.

Remark. In order to prove non-connectedness of the Sylow 2-subgroup of G, one only needs
solubility of C◦

G(ι) regardless of how centralisers of involutions in other classes may behave. But
in order to continue one needs much more.

• One cannot work with jκ as all our rank computations rely on the equality rkCG(jκ) =
rkCG(ι), for which there is no better reason than conjugacy with ι. This certainly implies
ι ∈ G to start with.

• One cannot entirely drop ι and focus on jκ, since there is no reason why C◦
G(jκ) should be

soluble.

4.4 The Devil’s Ladder

Proposition 4 comes from [5, Proposition 5.4.9] and was realised (somewhere in Turkey, in 2007)
to be more general; the name was given after a Ligeti study. The first lucid uses were in [11] and
[12]. Both the statement and the proof have undergone considerable change since: in 2013 the
argument still took three pages.

We shall climb the ladder three times: in order to control torsion which is the very purpose of
Proposition 5, at a rather convoluted moment in Step 9 of Maximality Proposition 6, and in order
to conjugate involutions in the very end of the proof of our Theorem, Step 7. It may be viewed as
an extreme form of Proposition 3, Step 2; the effective contents of the argument are not perfectly
intuitive but for a contradiction proof it suffices to stand firm longer than the group.
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Proposition 4 (The Devil’s Ladder). Let Ĝ be a connected, U⊥
2 , W⊥

2 group of finite Morley rank
and G E Ĝ be a definable, connected, non-soluble, N◦

◦ -subgroup. Suppose that for all ι ∈ I(Ĝ),
C◦
G(ι) is soluble.

Let κ, λ ∈ I(Ĝ) be two involutions. Suppose that for all µ ∈ I(Ĝ) such that ρµ ≻ ρκ, C◦
G(µ) is

a Borel subgroup of G.
Let B ≥ C◦

G(κ) be a Borel subgroup of G and 1 6= X ≤ F ◦(B) be a definable, connected subgroup
which is centralised by κ and inverted by λ.

Then C◦
G(X) ≤ B and B is the only Borel subgroup of G of parameter ρB containing C◦

G(X);
in particular κ and λ normalise B.

Proof. First observe that κ ∈ CĜ(X) which is λ-invariant, so by normalisation principles λ has a
CĜ(X)-conjugate λ′ which normalises some Sylow 2-subgroup of CĜ(X) containing κ. By the W⊥

2

assumption the Sylow 2-subgroup of Ĝ is abelian, so [κ, λ′] = 1; also observe that λ′ inverts X .
Let C = C◦

G(X), a definable, connected, and soluble group since G is an N◦
◦ -group.

First suppose ρC ≻ ρκ. Then κ inverts UρC(C), which is therefore abelian. Since the four-group
〈κ, λ′〉 normalises UρC

(C), one of the two involutions λ′ or κλ′, call it µ, satisfies Y = C◦
UρC

(C)(µ) 6=
1. Note that Y is a ρC-group. Let D = C◦

G(Y ) ≥ UρC
(C); it is a definable, connected, soluble,

κ-invariant subgroup. Since ρD < ρC ≻ ρκ, κ inverts UρD
(D). On the other hand, Y ≤ C◦

G(µ) so
ρµ ≻ ρκ and by assumption, C◦

G(µ) is a Borel subgroup of G, say Bµ. Since κ and µ commute,
κ normalises Bµ and since ρµ ≻ ρκ, κ inverts Uρµ

(Bµ) E Bµ. It also inverts Y ≤ Bµ, so by
commutation principles [Uρµ

(Bµ), Y ] = 1 and Uρµ
(Bµ) ≤ C◦

G(Y ) = D.
We are still assuming ρC ≻ ρκ. The involution κ inverts UρD

(D) E D and Uρµ
(Bµ) ≤ D; so by

commutation principles [Uρµ
(Bµ), UρD

(D)] = 1 and UρD
(D) ≤ N◦

G(Uρµ
(Bµ)) = Bµ. At this stage

it is clear that ρD = ρµ and Uρµ
(Bµ) = UρD

(D). In particular D ≤ N◦
G(Uρµ

(Bµ)) = Bµ. As a
conclusion,

X ≤ C◦
G(UρC

(C)) ≤ C◦
G(Y ) = D ≤ Bµ = C◦

G(µ)

against the fact that µ inverts X .
This contradiction shows that ρC 4 ρκ. Now X ≤ F ◦(B), so UρB

(Z(F ◦(B))) ≤ C◦
G(X) = C;

hence ρB 4 ρC 4 ρκ 4 ρB and equality holds. Since by uniqueness principles UρB
(B) is the only

Sylow ρB-subgroup of G containing UρB
(Z(F ◦(B))), it also is unique as such containing UρC

(C).
Hence NĜ(C) ≤ NĜ(UρC

(C)) ≤ NĜ(B). Therefore κ and λ normalise B.

4.5 Inductive Torsion Control

It will be necessary to control torsion in the TB(κ)-sets. In [5] this was redone for each conjugacy
class of involutions by ad hoc arguments which could, in high Prüfer rank, get involved (the
“Birthday Lemmas” [5, Lemmes 5.3.9 and 5.3.10] published as [7, Lemmes 6.9 and 6.10]). We
proceed more uniformly although some juggling is required. Like in [7] the argument will be applied
twice: to start the proof of the Maximality Proposition 6, and later to conjugate involutions in
Step 7 of the final argument. This accounts for the disjunction in the statement.

There was nothing equally technical in [12] as controlling involutions there was trivial. An
inner version of the argument was found in Yanartaş in the Spring of 2007 and added to [11].
Externalising involutions is no major issue.

Proposition 5 (Inductive Torsion Control). Let Ĝ be a connected, U⊥
2 , W⊥

2 group of finite Morley
rank and G E Ĝ be a definable, connected, non-soluble, N◦

◦ -subgroup. Suppose that for all ι ∈ I(Ĝ),
C◦
G(ι) is soluble.

Let ι ∈ I(Ĝ) and B ≥ C◦
G(ι) be a Borel subgroup. Suppose that for all µ ∈ I(Ĝ) such that

ρµ ≻ ρι, C
◦
G(µ) is a Borel subgroup of G. Let κ ∈ I(Ĝ) \NĜ(B) be such that TB(κ) is infinite.

Suppose either that B = C◦
G(ι) or that ι and κ are Ĝ-conjugate. Then TB(κ) has the same rank

as TB(κ), and contains no torsion elements.

Proof. First remember that since Ĝ is W⊥
2 , if some involution ω ∈ I(Ĝ) inverts a toral element

t ∈ Ĝ, then t2 = 1. One may indeed take a maximal decent torus T̂ of Ĝ containing t; then ω
normalises C◦

Ĝ
(t) which contains T̂ and its 2-torus T̂2, so by normalisation principles ω has a C◦

Ĝ
(t)-

conjugate ω′ normalising T̂2. By the W⊥
2 assumption, the latter already is a Sylow 2-subgroup of
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Ĝ, whence ω′ ∈ T̂2 ≤ C◦
Ĝ

(t). It follows that ω centralises t; it also inverts it by assumption, so
t2 = 1.

The proof starts here.
We first show that B has no torsion unipotence. The argument is a refinement of Step 4 of

Proposition 3. Suppose that there is a prime number p with Up(B) 6= 1. Let Lκ = B∩Bκ (be careful
that we do not consider the connected component). Since C◦

G(L′
κ) contains both Up(Z(F ◦(B)) and

Up(Z(F ◦(Bκ), uniqueness principles imply that L′
κ is finite. Unfortunately Lκ need not be abelian

so let us introduce:
Θκ = {ℓ ∈ Lκ : ℓℓκ ∈ L′

κ}
which is a definable, κ-invariant subgroup of B containing TB(κ); in particular it is infinite. Also
note that Θ◦

κ is abelian. Now let A ≤ Up(B) be a Θ◦
κ-minimal subgroup. Θ◦

κ cannot centralise A
since otherwise C◦

G(Θ◦
κ) ≥ 〈A,Aκ〉, against uniqueness principles. So by Zilber’s field theorem the

action induces an algebraically closed field of characteristic p structure. By Wagner’s theorem on
fields [Wag01, consequence of Corollary 9] Θ◦

κ contains a q-torus Tq for some q 6= p. Up to taking
the maximal q-torus of Θ◦

κ we may assume that κ normalises Tq. Write if necessary Tq as the sum
of a κ-centralised and a κ-inverted subgroup; by the first paragraph of the proof, κ centralises Tq.
So for any t ∈ Tq one has ttκ = t2 ∈ L′

κ, therefore Tq ≤ L′
κ against finiteness of the latter.

We have disposed of torsion unipotence inside B, and every element of prime order in B is
toral by the structure of torsion in definable, connected, soluble groups. By the first paragraph of
the proof, no element of finite order 6= 2 of B is inverted by any involution (this will be used in
the next paragraph with an involution distinct from κ). In particular d(t2) is torsion-free for any
t ∈ TB(κ); hence the definable hull of any element of TB(κ) is torsion-free.

We now show that TB(κ) can contain but finitely many involutions (possibly none). Suppose
that it contains infinitely many. Since B has only finitely many conjugacy classes of involutions,
there are i, j ∈ TB(κ) which are B-conjugate. Now i ∈ B so {B, i} ⊆ F ◦(B); by Lemma F
(although [9, Lemma 24] would do here) B = B+i · {B, i} so there is x ∈ {B, i} ⊆ (F ◦(B))−i

with j = ix. Since i inverts x, d(x2) is torsion-free. Also, 1 6= ij = iix = x2 ∈ F ◦(B). Let
X = d(x2) which is an abelian, definable, connected, infinite subgroup; like ij it is centralised by
κ and inverted by i. There are two cases.

• If B = C◦
G(ι) then ι centralises X whereas κi inverts it (yes, κ and i do commute). Since

X ≤ F ◦(B) with C◦
G(ι) ≤ B, the Devil’s Ladder, Proposition 4, applied to the pair (ι, κi)

leads to κi ∈ NĜ(B) and κ ∈ NĜ(B): a contradiction.

• If κ is Ĝ-conjugate to ι, say κ = ιγ for some γ ∈ Ĝ, we work in Bγ ≥ C◦
G(κ). Since κ

centralises X , X ≤ Bγ . Since i ∈ CĜ(κ) ∩ B ≤ CG(κ), and by connectedness of the Sylow
2-subgroup of Ĝ, one has i ∈ C◦

G(κ) ≤ Bγ . Since i inverts X , X ≤ F ◦(Bγ). Finally by
conjugacy ρκ = ρι so climbing the Devil’s Ladder for the pair (κ, i) we find C◦

G(X) ≤ Bγ =
Bγκ. Since X ≤ F ◦(B) this implies UρB

(Z(F ◦(B))) ≤ C◦
G(X) ≤ Bγ . Uniqueness principles

now yield B = Bγ . Hence κ ∈ NĜ(B): a contradiction.

We conclude to rank equality. Let i1, . . . , in be the finitely many involutions in TB(κ) (possibly
n = 0) and set i0 = 1. If t ∈ TB(κ) then the torsion subgroup of d(t) is some 〈im〉, so d(imt) is
2-divisible, and imt ∈ TB(κ). Hence TB(κ) ⊆ ∪imTB(κ), which proves rkTB(κ) = rkTB(κ).

Remarks.

• One needs TB(κ) to be infinite only to show Up(B) = 1; if one were to assume the latter, the
rest of the argument would still work with finite TB(κ), and yield TB(κ) = {1}.

• The fact that Up(B) = 1 is a strong indication of the moral inconsistency of the configuration.

5 The Proof — The Maximality Proposition

Proposition 6 is the technical core of the present article; we would be delighted to learn of a finite
group-theoretic analogue. It was first devised in the context of minimal connected simple groups
of odd type [5], then ported to N◦

◦ -groups of odd type [11], and to actions on minimal connected
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simple groups of degenerate type [12]. The main idea and the final contradiction have not changed
but every generalisation has required new technical arguments. So neither of the above mentioned
adaptations was routine; nor was combining them. We can finally state a general form.

Proposition 6 (Maximality). Let Ĝ be a connected, U⊥
2 group of finite Morley rank and G E Ĝ

be a definable, connected, W⊥
2 , non-soluble, N◦

◦ -subgroup. Suppose that for all ι ∈ I(Ĝ), C◦
G(ι) is

soluble.
Then for all ι ∈ I(Ĝ), C◦

G(ι) is a Borel subgroup of G.

Proof. The proof is longer and more demanding than others in the article, but one should be careful
to distinguish two levels.

• At a superficial level, all arguments resorting to local analysis in G and to the Bender method
(Steps 5 and 7) would be much shorter and more intuitive if one knew that Borel subgroups
of G have abelian intersections. There is no hope to prove such a thing but it may be a good
idea to have a quick look at the structure of the proof in this ideally-behaved case.

• At a deeper level, assuming abelianity of intersections does not make the statement of the
proposition obvious and the reader is invited to think about it. Even with abelian inter-
sections of Borel subgroups there would still be something to prove; this certainly uses the
TB(κ) sets and rank computations of §4.2 as nothing else is available. As a matter of fact,
even under abelian assumptions, we cannot think of a better strategy than the following.

The long-run goal (Step 10) is to collapse the configuration by showing that G-conjugates of some
subgroup of G generically lie inside B. This form of contradiction was suggested by Jaligot to the
author then his PhD student for [6]. It is typical of Jaligot’s early work in odd type [1, Lemme 2.13].
(The author’s original argument based on the distribution of involutions was both doubtful and
less elegant; even recently he could feel the collapse in terms of involutions, but failed to write it
down properly.)

Controlling generic G-conjugates of an arbitrary subgroup is not an easy task. The surprise
(Step 9) is that the TB(κ) sets, or more precisely the TB(κ) sets, form the desired family. Seeing
this requires a thorough analysis of TB(κ), and embedding it into some abelian subgroup of B with
pathological rigidity properties (Step 7). The crux of the argument involves some intersection of
Borel subgroups. Interestingly enough, abelian intersections could be removed from [5, 6, 7, 11] by
a somehow artificial observation on torsion; abelian intersections started playing a non-trivial role
in [12] but as a result the global proof then divided into two parallel lines. We could find a more
uniform treatment, although the proof of Step 7 still divides into two along the line of abelianity.

The beginning of the argument (Steps 5, 4, 2) simply prepares for the analysis, showing that
TB(κ) behaves like a semisimple group. Of course controlling torsion with Proposition 5 is essential
in the first place; studying torsion separately thus allowing inductive treatment was the main
success of [11]. The proof starts here.

5.1 The Reactor

Since Ĝ is connected, by torality principles every involution has a conjugate in some fixed 2-torus
Ŝ◦. We may therefore assume that Ĝ = G · d(Ŝ◦), so that the standard rank computations of the
Genericity Proposition 2 apply. Moreover, Ĝ/G is connected and abelian, hence W⊥

2 . Since G is
W⊥

2 as well, so is Ĝ by Lemma L.
We then proceed by descending induction on ρι and fix some involution ι0 ∈ I(Ĝ) such that for

any µ ∈ I(Ĝ) with ρµ ≻ ρι0 , C◦
G(µ) is a Borel subgroup. Notice that induction will not be used as

such in the current proof but merely in order to apply Propositions 4 and 5.
Be warned that there will be some running ambiguity on ι0 starting from Notation 3 onwards,

the resolution being in the proof of Step 9.

1 – Notation.

• Let B ≥ C◦
G(ι0) be a Borel subgroup of G and suppose B > C◦

G(ι0); let ρ = ρB.
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• Let KB = {κ ∈ ιĜ0 \NĜ(B) : rk TB(κ) ≥ rkB − rkC◦
G(ι0)}; by the Genericity Proposition 2,

KB is generic in ιĜ0 .

• Let κ ∈ KB.

• For the moment we simply write T = TB(κ).

By Inductive Torsion Control (Proposition 5), one has rkT ≥ rkB− rkC◦
G(ι0), and T contains

no torsion elements.

2 – Step (uniqueness).

(i) B is the only Borel subgroup of G containing C◦
G(ι0).

(ii) NĜ(B) contains a Sylow 2-subgroup Ŝ0 of Ĝ.

(iii) If λ ∈ I(Ĝ) ∩NĜ(B), then [B, λ] ≤ F ◦(B) and B = B+λ · (F ◦(B))−λ with finite fibers.

(iv) (NG(B))−λ ⊆ B.

Proof of Step 2. SinceG isW⊥
2 , by Algebraicity Proposition 3 there is a unique Borel subgroup ofG

containing C◦
G(ι0); in particular CĜ(ι0) normalises B. By torality principles, NĜ(B) contains a full

Sylow 2-subgroup Ŝ0 of Ĝ, which is a 2-torus as Ĝ is W⊥
2 . Now let λ ∈ I(Ĝ)∩NĜ(B). Conjugating

in NĜ(B) we may suppose λ ∈ Ŝ0. Then B̂ = B · d(Ŝ0) is a definable, connected, soluble group, so
B̂′ ≤ F ◦(B̂). Using Zilber’s indecomposibility theorem, [B, λ] ≤ [B, Ŝ0] ≤ (B ∩F ◦(B̂))◦ ≤ F ◦(B).
So Lemma F yields B = (B+)◦ · {B, λ}. Of course {B, λ} ⊆ (F ◦(B))−λ .

It remains to prove (iv). The 2-torus Ŝ0 also acts on NG(B), so it centralises the finite set
NG(B)/B. It follows that if n ∈ (NG(B))−λ , then nB = nλB = n−1B, that is, n2 ∈ B. If G
has no involutions then neither does NG(B)/B by torsion lifting. But if G does have involutions,
then by torality principles B ≥ C◦

G(ι0) already contains a maximal 2-torus of G, which is a Sylow
2-subgroup of G: hence in that case again, NG(B)/B has no involutions. In any case n ∈ B, which
proves (NG(B))−λ ⊆ B. ♦

The most important claims for the moment are (i) and (iii). Claim (iv) will play its role in the
sole final Step but was more conveniently proved here.

5.2 The Fuel

Controlling ιG0 ∩ NĜ(B) was claimed to be essential in [7, after Corollaire 5.37]. We can actually
do without but this will result in some counterpoint of involutions with a final chord at the very
end of the proof of Step 9.

3 – Notation. Let IB = {ι ∈ ιĜ0 : C◦
G(ι) ≤ B}.

Remarks. IB = ι
NG(B)
0 and any maximal 2-torus Ŝ ≤ NĜ(B) intersects IB , two facts we shall use

with no reference. A proof and an observation follow.

• If ι ∈ IB then there is x ∈ Ĝ = G · d(Ŝ0) with ι = ιx0 , where Ŝ0 is a 2-torus containing ι0;
one may clearly assume x ∈ G. Now by Uniqueness Step 2 (i) and definition of IB, Bx is the
only Borel subgroup of G containing C◦

G(ι) ≤ B, whence x ∈ NG(B) and IB ⊆ ι
NG(B)
0 . The

converse inclusion is obvious.

By Step 2 (ii), NĜ(B) contains a Sylow 2-subgroup of Ĝ so any maximal 2-torus Ŝ ≤ NĜ(B)
is in fact a Sylow 2-subgroup of NĜ(B), and contains an NĜ(B)-conjugate ι of ι0; then
ι ∈ Ŝ ∩ IB .

• On the other hand it is not clear at all whether equality holds in IB ⊆ ιG0 ∩ NĜ(B). As a
matter of fact we cannot show that B is self-normalising in G; this is easy when G is 2⊥ but
not in general. At this point, using C◦

G(ι) < B, there is a lovely little argument showing that
CG(ι) is connected (which is not obvious if G < Ĝ as Steinberg’s torsion theorem no longer
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applies), but one cannot go further. Moreover, self-normalisation techniques à la [ABF13] do
not work in the N◦

◦ context.

The first claim below will remedy this.

4 – Step (action).

(i) If λ ∈ ιG0 ∩NĜ(B) but λ /∈ IB, then λ inverts Uρ(Z(F ◦(B))).

(ii) [Uρ(Z(F ◦(B))),T] 6= 1.

Proof of Step 4. For this proof letting YB = Uρ(Z(F ◦(B))) will spare a few parentheses.
Let λ be as in the statement and suppose that X = C◦

YB
(λ) is non-trivial. Then X is a ρ-group.

By uniqueness Step 2 (iii), B = B+λ · (F ◦(B))−λ ; obviously both terms normalise X so X E B.
It follows from uniqueness principles that Uρ(B) is the only Sylow ρ-subgroup of G containing X .
Since X ≤ C◦

G(λ) is contained in some conjugate Bx of B, we have Uρ(Bx) = Uρ(B) so C◦
G(λ) ≤ B

and λ ∈ IB : a contradiction.
We move to the second claim. Suppose that T centralises YB. Let C = C◦

G(T), a definable,
connected, soluble, κ-invariant subgroup; let U be a Sylow ρ-subgroup of C containing YB. By
normalisation principles κ has a C-conjugate λ normalising U , and inverting T. Since Uρ(B) is the
only Sylow ρ-subgroup of G containing YB , λ normalises B. Hence λ ∈ ιĜ0 ∩NĜ(B) = ιG0 ∩NĜ(B).
We see two cases.

First suppose λ /∈ IB . Then by claim (i), λ inverts YB . If ρC = ρ, then apply uniqueness
principles: Uρ(B) is the only Sylow ρ-subgroup of G containing YB, so it also is the only Sylow
ρ-subgroup of G containing Uρ(C). As the latter is κ-invariant, so is B: a contradiction. Therefore
ρC ≻ ρ. It follows that λ inverts UρC

(C), whence [UρC
(C), YB ] = 1 by commutation principles.

This forces UρC
(C) ≤ C◦

G(YB) ≤ B, against ρC ≻ ρ.
So λ ∈ IB , i.e. C◦

G(λ) ≤ B. But by uniqueness Step 2 (iii), T ⊆ (F ◦(B))−λ , and therefore
T ⊆ F ◦(B)∩F ◦(B)κ. Since all elements in T are torsion-free by the Torsion Control Proposition 5,
one even has T ⊆ (F ◦(B) ∩ F ◦(B)κ)◦. The latter is abelian by [8, 4.46(2) (our Fact 10)], and T

is therefore a definable, connected, abelian subgroup. Now always by the Torsion Control and
Genericity Propositions 5 and 2, and by the decomposition of B obtained in Step 2 (iii), one has:

rkT = rk TB(κ) ≥ rkB − rkC◦
G(ι0) = rkB − rkC◦

G(λ) = rkB − rkC◦
B(λ) = rk(F ◦(B))−λ

A definable set contains at most one definable, connected, generic subgroup, so T is the only
definable, connected, generic group included in (F ◦(B))−λ: hence NĜ((F ◦(B))−λ) ≤ NĜ(T) and
B+λ normalises T. Moreover T∩B+λ = 1 since λ inverts T and T contains no torsion elements. So
T ·B+λ = T⋊B+λ is a definable subgroup of rank ≥ rk(F ◦(Bλ))−λ +rkB+λ = rkB by Step 2 (iii).
Hence B = T⋊B+λ normalises T; B = N◦

G(T) since G is an N◦
◦ -group. In particular κ normalises

B: a contradiction. ♦

Claim (i) will be used only once more, in the next Step.

5.3 The Fuel, refined

5 – Step (abelianity).

(i) If ι ∈ IB then T ∩ CG(ι) = 1.

(ii) There is no definable, connected, soluble, κ-invariant group containing Uρ(Z(F ◦(B))) and T.

(iii) T is a definable, abelian, torsion-free group.

Proof of Step 5. The first claim is easy. Let ι ∈ IB and t ∈ T \ {1} be such that tι = t. Then
ι ∈ CĜ(t) which is κ-invariant; by normalisation principles and abelianity of the Sylow 2-subgroup,
κ has a CĜ(t)-conjugate λ commuting with ι. By uniqueness Step 2 (i), B is the only Borel subgroup
of G containing C◦

G(ι), so λ normalises B. Recall from Inductive Torsion Control, Proposition 5,
that d(t) is torsion-free. By uniqueness Step 2 (iii), tλ = tκ = t−1 forces t2 = [t−1, λ] ∈ F ◦(B) and
t ∈ F ◦(B). We then apply the Devil’s Ladder, Proposition 4, to the action of 〈ι, κ〉 on d(t) and
find that κ normalises B: a contradiction.
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As the proof of the second claim is a little involved let us first see how it entails the third one.
Suppose that X = (F ◦(B)∩F ◦(B)κ)◦ is non-trivial and let H = N◦

G(X); then G being an N◦
◦ -group

and the second claim yield a contradiction. Hence X = 1 which proves abelianity of (B ∩ Bκ)◦.
Then, since elements of T ⊆ B ∩ Bκ contain no torsion in their definable hulls by Proposition 5,
one has T ⊆ (B ∩ Bκ)◦ and T is therefore an abelian group, obviously definable and torsion-free.
So we now proceed to proving the second claim. Here again we let YB = Uρ(Z(F ◦(B))).

Let L be a definable, connected, soluble, κ-invariant group containing YB and T. We shall show
that YB and T commute, which will contradict Step 4 (ii). To do this we proceed piecewise in
the following sense. Bear in mind that for t ∈ T, d(t) is torsion-free by Inductive Torsion Control,
Proposition 5, so one may take Burdges’ decomposition of the definable, connected, abelian group
d(t). As a result, the set T is a union of products of various abelian τ -groups for various parameters
τ . We shall show that each of them centralises YB, which will be the contradiction.

So we let τ be a parameter and Θ be an abelian τ -group included in the set T. If τ = ρ then
we are done as Θ ≤ Uρ(B). So suppose τ ≺ ρ and prepare to use the Bender method (§2.4). Since
L ≥ 〈YB ,T〉, L is not abelian by Step 4 (ii).

Let C ≤ G be a Borel subgroup of G containing N◦
G(L′) ≥ L and maximising ρC . Notice that:

UρC
(Z(F ◦(C))) ≤ C◦

G(F ◦(C)) ≤ C◦
G(C′) ≤ C◦

G(L′) ≤ N◦
G(L′)

so by uniqueness principles and definition of C, C is actually the only Borel subgroup of G con-
taining N◦

G(L′). As the latter is κ-invariant, so is C; in particular C 6= B. Moreover YB ≤ C so
uniqueness principles force ρC ≻ ρ, and H = (B ∩ C)◦ ≥ 〈YB ,T〉 is non-abelian. So we are under
the assumptions of Fact 11 with Bℓ = B and Bh = C.

We determine the linking parameter ρ′, i.e. the only parameter of the homogeneous group
H ′ [8, 4.51(3) (Fact 11)]. Fact 7 (vi) (no need for Frécon homogeneity here) shows that the by
Step 4 (ii) non-trivial commutator [YB ,T] is a ρ-subgroup of H ′, hence ρ′ = ρ.

We now construct a most remarkable involution. Let Vρ ≤ C be a Sylow ρ-subgroup of C
containing YB. Since κ normalises C, it has by normalisation principles a C-conjugate λ normalising
Vρ. By uniqueness principles, Uρ(B) is the only Sylow ρ-subgroup of G containing YB , so λ
normalises B. If λ /∈ IB then by Step 4 (i) λ inverts YB; since ρC ≻ ρ it certainly inverts
UρC

(C) as well, whence by commutation principles [YB , UρC
(C)] = 1 and UρC

(C) ≤ C◦
G(YB) ≤ B,

contradicting ρC ≻ ρ. Hence λ ∈ IB ; it normalises B and C (hence H).
We return to our abelian τ -group Θ included in the set T, with τ ≺ ρ. Let Vτ ≤ H be a Sylow

τ -subgroup of H containing Θ. By normalisation principles λ has an H-conjugate µ normalising
Vτ . We shall prove that µ actually centralises Vτ ; little work will remain after that. Observe that
Vτ is a definable, connected, nilpotent group contained in two different Borel subgroups of G so
by [8, 4.46(2) (Fact 9)] it is abelian. By the commutator argument of Fact 7 (vi) or the simpler
push-forward argument of Fact 7 (v) (no need for Frécon homogeneity here), [Vτ , µ] is a τ -group
inverted by µ.

Now note that µ, like λ, is in IB, and normalises B and C. Moreover by Step 2 (iii), [Vτ , µ] ≤
F ◦(B). We shall prove that [Vτ , µ] ≤ F ◦(C) as well by making it commute with all of F ◦(C),
checking it on each term of Burdges’ decomposition of F ◦(C). Keep Fact 11 in mind.

First, by [8, 4.38], ρ′ = ρ is the least parameter in F ◦(C); we handle it as follows. Recall that
[Vτ , µ] ≤ F ◦(B) is a τ -group, so [Vτ , µ] ≤ Uτ (F ◦(B)). By [8, 4.52(7)] and since ρ′ = ρ 6= τ , the
latter is in Z(H). But by [8, 4.52(3)], Uρ(F ◦(C)) = Uρ′(F ◦(C)) = (F ◦(B) ∩ F ◦(C))◦ ≤ H , so
[Vτ , µ] does commute with Uρ(F ◦(C)). Now let σ ≻ ρ be another parameter. Remember that
µ normalises C; since µ ∈ ιĜ0 , σ ≻ ρµ and µ inverts Uσ(F ◦(C)). It inverts [Vτ , µ] as well so
commutation principles force [Vτ , µ] to centralise Uσ(F ◦(C)).

As a consequence [Vτ , µ] ≤ C centralises F ◦(C). Unfortunately this is not quite enough to apply
the Fitting subgroup theorem as literally stated in [BN94b, Proposition 7.4] due to connectedness
issues. The first option is to note that with exactly the same proof as in [BN94b, Proposition 7.4]:
in any connected, soluble group K of finite Morley rank one has C◦

K(F ◦(K)) ≤ F ◦(K). Another
option is to observe that by [8, 4.52(1)], F ◦(C) has no torsion unipotence: in particular, the
torsion in F (C) is central in C [8, 2.14]. Altogether [Vτ , µ] commutes with F (C) and we then
use the Fitting subgroup theorem stated in [BN94b, Proposition 7.4] to conclude [Vτ , µ] ≤ F (C).
Either way we find [Vτ , µ] ≤ F ◦(C), and we already knew [Vτ , µ] ≤ F ◦(B). By connectedness
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[Vτ , µ] ≤ (F ◦(B) ∩ F ◦(C))◦. But the latter as we know [8, 4.51(3)] is ρ′ = ρ-homogeneous: since
ρ ≻ τ , this shows [Vτ , µ] = 1.

In particular µ ∈ IB centralises Θ ≤ Vτ . By claim (i), Θ = 1 which certainly commutes with
YB. This contradiction finishes the proof of claim (ii). ♦

Remark. It is possible to avoid using the Devil’s Ladder in the proof of claim (i). Postpone and
finish the proof of claim (ii) as follows:

In particular µ ∈ IB centralises Θ, so µ ∈ CĜ(Θ) which is κ-invariant. By normal-
isation principles and abelianity of the Sylow 2-subgroup, κ has a CĜ(Θ)-conjugate
ν commuting with µ. Since µ ∈ IB , by uniqueness Step 2 (i), ν normalises B. By
Step 2 (iii), Θ = [Θ, ν] ≤ F ◦(B) commutes with YB. Hence all of T commutes with YB ,
against Step 4 (ii).

Then prove claim (i):

Now let t ∈ T \ {1} be centralised by ι ∈ IB . Like in the previous paragraph, t ∈
F ◦(B); t has infinite order and is inverted by κ. But we proved in the third claim that
(F ◦(B) ∩ F ◦(B)κ)◦ = 1, a contradiction.

Both claims (i) and (iii) are crucial. Claim (ii) is a gadget used in the proof of claim (iii) and
in the next step.

5.4 The Core

6 – Notation.

• Let π be the set of parameters occurring in T.

• Let Jκ = Uπ(C◦
B(T)) (one has T ≤ Jκ by Step 5 (iii)).

We feel extremely uncomfortable with the next step. The question of why to maximise over
C◦
B(T) is a mystery and always was. Nine years before writing these lines, the author then a

PhD student produced an incorrect study of some similar maximal intersection configuration, and
after noticing a well-hidden flaw had to reassemble his proof by trying all possible maximisations.
Exactly the same happened to him again. We feel like one piece of the puzzle is still missing, or
more confusingly that we are playing with incomplete sets of pieces from distinct puzzles. There
are many ways to get it wrong and the step works by miracle.

7 – Step (rigidity). Jκ is an abelian Carter π-subgroup of B. There is a maximal 2-torus Ŝ of Ĝ
contained in NĜ(B) ∩NĜ(Jκ), and for any ι ∈ IB ∩ Ŝ, one has C◦

Uπ(N◦

G
(Jκ))(ι) ≤ C◦

G(T).

Proof of Step 7. First of all, observe that by torality principles there is a maximal 2-torus Ŝ0 of Ĝ
containing ι0; by uniqueness Step 2 (i) Ŝ0 normalises B. Bear in mind that any maximal 2-torus
in NĜ(B) contains an involution in IB .

We need more stucture now, so let C 6= B be a Borel subgroup of G containing C◦
B(T) and

maximising H = (B ∩ C)◦. There is such a Borel subgroup indeed since C◦
G(T) is κ-invariant

whereas B is not. As one expects there are two cases and we first deal with the abelian one. The
other will be more involved technically, but there will be no more complications of this kind when
we are done.

Suppose that H is abelian. Since H ≥ C◦
B(T) ≥ T by abelianity of the latter, Step 5 (iii), and

since H is supposed to be abelian as well, H = C◦
B(T) ≤ N◦

G(Jκ). We now consider N◦
G(Jκ). It is

not clear at all whether B contains N◦
G(Jκ) but one may ask.

If (H is abelian and) B happens to be the only Borel subgroup of G containing N◦
G(Jκ), then:

Uπ

(

N◦
C◦

G
(T)(Jκ)

)

≤ Uπ

(

N◦
C◦

B
(T)(Jκ)

)

= Uπ (C◦
B(T)) = Jκ

and Jκ ≤ C◦
G(T) is a Carter π-subgroup of C◦

G(T). As the latter is κ-invariant, by normalisation
principles κ has a C◦

G(T)-conjugate λ normalising Jκ. But our current assumption that B is the
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only Borel subgroup of G containing N◦
G(Jκ) forces λ to normalise B as well. By Step 2 (iii)

and since λ like κ inverts the 2-divisible group T, we find T = [T, λ] ≤ F ◦(B) which contradicts
Step 4 (ii).

So (provided H is abelian) B is not the only Borel subgroup of G containing N◦
G(Jκ): let D 6= B

one such. Then C◦
B(T) = H ≤ N◦

B(Jκ) ≤ (B∩D)◦ so by maximality of H , H = (B∩D)◦ = N◦
B(Jκ)

and Jκ = Uπ(C◦
B(T)) = Uπ(H) is a Carter π-subgroup of B. By normalisation principles there is

a B-conjugate Ŝ of Ŝ0 normalising Jκ. For ι ∈ Ŝ ∩ IB one has C◦
G(ι) ≤ B and:

C◦
Uπ(N◦

G
(Jκ))(ι) ≤ N◦

B(Jκ) = H ≤ C◦
G(T)

It is not easy to say more as N◦
G(Jκ) need not be nilpotent, but we are done with the proof in the

abelian case.
We now suppose that H is not abelian. However H ≥ C◦

B(T) so if D 6= B is a Borel subgroup of
G containing H , one has by definition of the latter H = (B∩D)◦. By [8, 4.50(3) and (6) (Fact 10)],
we are under the assumptions of Fact 11. Keep it at hand. Let Q ≤ H be a Carter subgroup of H .
Let ρ′ denote the parameter of the homogeneous group H ′. Studying Jκ certainly means asking
about ρ′ and π.

Here is a useful principle: if σ is a set of parameters not containing ρ′, Vσ ≤ H is a σ-subgroup
of H , and Ŝ ≤ NĜ(B) ∩ NĜ(Vσ) ∩ NĜ(C) is a 2-torus, then Ŝ centralises Vσ . It is easily proved:
first, Vσ being nilpotent by definition of a σ-group and contained in two distinct Borel subgroups,
is abelian by Fact 9. Now let B̂ = B · d(Ŝ), a definable, connected, soluble subgroup of Ĝ. Then
by Zilber’s indecomposibility theorem, [B, Ŝ] ≤ (F ◦(B̂) ∩ B)◦ ≤ F ◦(B) and likewise in C. Hence
[Vσ, Ŝ] ≤ (F ◦(B) ∩ F ◦(C))◦ which is ρ′-homogeneous [8, 4.52(3)]. As ρ′ /∈ σ, we have [Vσ, Ŝ] = 1
by (Fact 7 (v) or (vi)), and Ŝ centralises Vσ .

The argument really starts here. First, ρ′ ∈ π. Otherwise by lemma K, T is included in a Carter
subgroup of H ; we may assume T ≤ Q, and in particular by abelianity of Q (Fact 9), Q ≤ C◦

G(T).
By Lemma A, NĜ(Q) ≤ NĜ(B) ∪NĜ(C). So there are two cases (yes, this does work for groups).

• First suppose (ρ′ /∈ π and) NĜ(Q) ≤ NĜ(C). In particular N◦
B(Q) ≤ N◦

H(Q) = Q and Q is
a Carter subgroup of B. By normalisation principles, Ŝ0 has a B-conjugate Ŝ in NĜ(B) ∩
NĜ(Q) ≤ NĜ(B) ∩ NĜ(Uπ(Q)) ∩ NĜ(C). As we noted Ŝ must centralise Uπ(Q) ≥ T. But
there is an involution ι ∈ Ŝ ∩ IB , and this contradicts Step 5 (i).

• Hence (still assuming ρ′ /∈ π) one has NĜ(Q) ≤ NĜ(B). Then N◦
C◦

G
(T)(Q) ≤ N◦

C◦

B
(T)(Q) ≤

N◦
H(Q) = Q and Q ≤ C◦

G(T) is a Carter subgroup of C◦
G(T). As the latter is κ-invariant,

by normalisation principles κ has a C◦
G(T)-conjugate λ normalising Q. Now since NĜ(Q) ≤

NĜ(B), λ normalises B. Then T is inverted by λ and 2-divisible, whence T = [T, λ] ≤
[B, λ] ≤ F ◦(B) by Step 2 (iii), contradicting Step 4 (ii).

So we have proved ρ′ ∈ π. On the other hand ρB = ρ /∈ π as otherwise C◦
G(Uρ(T)) would

contradict Step 5 (ii). Suppose for a second ρC ≻ ρB; then since ρ 6= ρ′, one has Uρ(Z(F ◦(B))) ≤
Z(H) ≤ C◦

G(T) [8, 4.52(7)], against Step 4 (ii). Since parameters differ [8, 4.50(6)] one has ρB ≻ ρC .
In particular [8, 4.52(2)], Q is a Carter subgroup of B.

We now show that T is ρ′-homogeneous, i.e. π = {ρ′}. Let σ = π \ {ρ′}. Since H ′ is ρ′-
homogeneous, by Lemma K we may assume that Uσ(T) ≤ Q. Now Uρ′(H) = Uρ′(F ◦(H)) is a
Sylow ρ′-subgroup of B [8, implicit but clear in 4.52(6)]. By normalisation principles Ŝ0 has a
B-conjugate Ŝ in NĜ(B) ∩ NĜ(Uρ′(H)) ≤ NĜ(B) ∩ NĜ(C) [8, 4.52(6)]. Hence Ŝ normalises H .
But Q is a Carter subgroup of H so by normalisation principles over H , Ŝ has an H-conjugate Ŝ1 in
NĜ(B)∩NĜ(C)∩NĜ(Q). By our initial principle, Ŝ1 centralises Uσ(Q) ≥ Uσ(T). Since Ŝ1 contains
an involution in IB, we find Uσ(T) = 1 by Step 5 (i), as desired. Hence T is ρ′-homogeneous.

As a conclusion π = {ρ′} and Jκ = Uρ′(C◦
B(T)) ≤ Uρ′(H). The latter is an abelian Sylow

ρ′-subgroup of B [8, implicit but clear in 4.52(6) and noted above]. Also, T ≤ Uρ′(H) ≤ C◦
B(T)

and Jκ = Uρ′(H). We constructed a maximal 2-torus Ŝ ≤ NĜ(B) ∩NĜ(Jκ) a minute ago.
Finally fix ι ∈ Ŝ ∩ IB . We aim at showing that C◦

Uρ′ (N◦

G
(Jκ))(ι) ≤ C◦

G(T). Recall that Ŝ

normalises C. By normalisation principles Ŝ normalises some Sylow ρ′-subgroup Vρ′ of C. Then
with Lemma E under the action of ι, Vρ′ = (V +

ρ′ )◦ · {Vρ′ , ι}. Now (V +
ρ′ )◦ is a ρ′-subgroup of
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(B ∩ C)◦ = H , so (V +
ρ′ )◦ ≤ Jκ ≤ F ◦(C) [8, 4.52(6)]. Letting Ĉ = C · d(Ŝ) one easily sees as

we often did that {Vρ′ , ι} ⊆ F ◦(C). So Vρ′ ≤ F ◦(C) and Vρ′ ≤ Uρ′(F ◦(C)). Conjugating Sylow
ρ′-subgroups in C this means that Uρ′(F ◦(C)) is actually the only Sylow ρ′-subgroup of C. But
by [8, 4.52(8)] any Sylow ρ′-subgroup of G containing Uρ′(H) is contained in C. This means that
Uρ′(F ◦(C)) is the only Sylow ρ′-subgroup of G containing Uρ′(H) = Jκ.

As a conclusion, any Sylow ρ′-subgroup of N◦
G(Jκ) lies in Uρ′(F ◦(C)). Hence, paying attention

to the fact that ι normalises the nilpotent ρ′-group Uρ′(F ◦(C)):

C◦
Uπ(N◦

G
(Jκ))(ι) ≤ C◦

Uρ′ (F◦(C))(ι) ≤ Uρ′(H) = Jκ ≤ C◦
G(T) ♦

We shall use the Bender method no more.

5.5 The Reaction

8 – Notation.

• We now write Tκ for TB(κ), as the involution κ will vary in KB.

• Let Y = {B, ι0}.

9 – Step (conjugacy). (i) Y is a normal subgroup of B.

(ii) rkB = rkCG(ι0) + rkY .

(iii) Any element of Y \ {1} lies in finitely many G-conjugates of Y .

(iv) Tκ and Y are G-conjugate.

Proof of Step 9. As a matter of fact we let Yι = {B, ι} for any ι ∈ IB . Since IB = ι
NG(B)
0 , such

sets are NG(B)-conjugate to Yι0 = Y .
Let ι ∈ Ŝ ∩ IB ; do not forget that there is such an involution all right. Under the action of ι we

may write Jκ = J+
κ (+)[Jκ, ι]. By Step 5 (i), Tκ ∩ J+

κ = 1. So using the very definition of κ ∈ KB

this yields the rank estimate:

rk[Jκ, ι] = rk Jκ − rk J+
κ ≥ rkTκ ≥ rkB − rkC◦

G(ι0) = rkB − rkC◦
B(ι) = rk ιB ≥ rk ιJκ = rk[Jκ, ι]

Equality follows. In particular [Jκ, ι] ⊆ Yι is generic in Yι. Since a definable set of degree 1 contains
at most one definable, generic subgroup, one has CB(ι) ≤ NB(Yι) ≤ NB([Jκ, ι]). On the other
hand since Ĝ is W⊥

2 , [Jκ, ι] has no involutions; it is disjoint from CB(ι). Hence [Jκ, ι] · CB(ι) =
[Jκ, ι] ⋊ CB(ι) is a generic subgroup of B. It follows B = [Jκ, ι] ⋊ CB(ι). At this stage it is clear
that Yι = [Jκ, ι] is a normal subgroup of B contained in F ◦(B), and the same holds of Y by
NG(B)-conjugacy. Moreover rkYι = rkTκ; we are not done.

Consider the definable function f : Tκ → Yι which maps t to [t, ι]; as Jκ is abelian, it is a group
homomorphism. Bearing in mind that Tκ ∩CJκ

(ι) = 1 by Step 5 (i) and in view of the equality of
ranks, f is actually a group isomorphism; we are not done.

Let us show that any non-trivial element of Y = Yι0 lies in finitely many G-conjugates. For if
a ∈ Y \ {1} then by the isomorphism Tκ ≃ Y and Inductive Torsion Control, Proposition 5, a has
infinite order: C = C◦

G(a) ≥ 〈Uρ(Z(F ◦(B))), Y 〉 is therefore soluble, and ι0-invariant. If ρC ≻ ρB
then ι0 inverts both UρC

(C) and Y , and commutation principles yield [UρC
(C), Y ] = 1 whence

UρC
(C) ≤ N◦

G(Y ) = B, a contradiction. Hence ρC 4 ρB and equality follows. Now uniqueness
principles show that Uρ(B) is the only Sylow ρ-subgroup of G containing Uρ(C). If a ∈ Y g with
g ∈ G then Uρ(Bg) is the only Sylow ρ-subgroup of G containing Uρ(C) likewise, so g ∈ NG(B).
Since B ≤ NG(Y ) ≤ NG(B), this can happen only for a finite number of conjugates of Y ; we are
not done.

It remains to conjugate Tκ to Y . We claim that Jκ ≤ C◦
G(Tκ) is a Carter π-subgroup of C◦

G(Tκ),
where π is as in Notation 6. For let N = Uπ(N◦

G(Jκ)) and N1 = Uπ(N ∩ C◦
G(Tκ)). We wish to

decompose under the action of ι, the involution we fixed at the beginning of the proof. Be very
careful however that ι need not normaliseN1. But since Ŝ normalises Jκ it also normalisesN . Then
N̂ = N · d(Ŝ) is yet another definable, connected, soluble group, so {N, ι} ⊆ (N̂ ′ ∩N)◦ ≤ F ◦(N),
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and Lemma F applies to N . Now take n1 ∈ N1 and write its decomposition n1 = pn inside N ,
with p ∈ (N+)◦ and n ∈ {N, ι}. Then p ∈ C◦

Uπ(N◦

G
(Jκ))(ι) ≤ C◦

G(Tκ) by Step 7. So n ∈ C◦
G(Tκ).

On the other hand, for any t ∈ Tκ one has using a famous identity:

1 = [[ι, n−1], t]n · [[n, t−1], ι]t · [[t, ι], n]ι

= [n−2, t]n · [[t, ι], n]ι

= [[t, ι], n]ι

Hence n commutes with [Tκ, ι] = Yι and n ∈ NG(N◦
G(Yι)) = NG(B). Since p ∈ C◦

G(ι) ≤ B, one
has n1 = pn ∈ NG(B), meaning N1 ≤ N◦

G(B) = B. Now N1 ≤ Uπ(N◦
B(Jκ)) and since Jκ is a

Carter π-subgroup of B, N1 ≤ Jκ. Therefore Jκ is a Carter π-subgroup of C◦
G(Tκ).

Stretto. This extra rigidity has devastating consequences. By normalisation principles, κ has a
C◦
G(Tκ)-conjugate λ normalising Jκ. If λ normalises B then Tκ ≤ [Jκ, λ] ≤ F ◦(B) by Step 2 (iii),

which contradicts [Uρ(Z(F ◦(B))),Tκ] 6= 1 from Step 4 (ii). So λ does not normalise B. On the
other hand Tλ(B) contains Tκ so λ ∈ KB. In particular, everything we said so far of κ holds of λ:
by rank equality, Tλ = Tκ.

By conjugacy of Sylow 2-subgroups, λ has an NĜ(Jκ)-conjugate µ in Ŝ. Remember that we
took Ĝ = G ·d(Ŝ◦), so NĜ(Jκ) = NG(Jκ) ·d(Ŝ) and µ = λn for some n ∈ NG(Jκ). Moreover µ ∈ Ŝ
commutes with the involution ι we fixed earlier in the proof. Let X = C◦

Yι
(µ) ≤ F ◦(B).

• Suppose X = 1. Then µ inverts Yι, so:

Yι ≤ [Jκ, µ] = [Jκ, λn] = [Jκ, λ]n ≤ T
n
λ = T

n
κ

and equality follows from the equality of ranks.

• Suppose X 6= 1. We apply the Devil’s Ladder, Proposition 4, to the action of 〈µ, ι〉 on X
inside Bµ, the only Borel subgroup of G containing C◦

G(µ) by Uniqueness Step 2 (i). We find
Bµ ≥ C◦

G(X) ≥ Uρ(Z(F ◦(B))). Uniqueness principles force Uρ(Bµ) = Uρ(B), which means
µ ∈ IB ∩ Ŝ. In particular, everything we said in this proof of ι holds of µ, so:

Yµ = [Jκ, µ] = [Jκ, λn] = [Jκ, λ]n ≤ T
n
λ = T

n
κ

and equality follows from the equality of ranks.

In any case, Tκ is G-conjugate to Y : we are done. ♦

Notations and Steps from 3 to 7 may be forgotten.

5.6 Critical Mass

10 – Step (the collapse).

We first estimate rk{Tκ : κ ∈ KB}. The set under consideration is definable all right as a
subset of {Y g : g ∈ G} = G/NG(Y ) by Step 9 (iv). If Tκ = Tλ then there is g ∈ G with Tκ = Y g.
In particular, κ and λ lie in NĜ(N◦

G(Y g)) = NĜ(Bg) by Step 9 (i). Since κ and λ are G-conjugate,
κλ ∈ NG(Bg). Now κ inverts κλ so by Step 2 (iv), κλ ∈ Bg, and λ ∈ κTBg (κ). The latter has the
same rank as Y by Proposition 5 and Step 9 (iv). It follows that rk{Tκ : κ ∈ KB} ≥ rkKB−rkY =
rkG− rkCG(ι) − rkY .

We move to something else. Let F be a definable family of conjugates of Y . Since an element
in Y lies in only finitely many conjugates by Step 9 (iii), rk

⋃

F = rk F + rkY . We first apply this
to F1 = {Tκ : κ ∈ KB}, finding:

rk
⋃

F1

= rk
⋃

κ∈KB

Tκ ≥ rkG− rkCG(ι0) − rkY + rk Y = rkG− rkCG(ι0)

We now apply it to F2 = {Y g : g ∈ G/NG(Y )}, finding:

rk
⋃

F2

= rkY G = rkG− rkNG(B) + rkY = rkG− rkB + rkY
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Both agree by Step 9 (ii), so
⋃

F1
is generic in

⋃

F2
. However

⋃

F1
⊆

(
⋃

F2
∩B

)

, which contradicts
[8, Lemma 3.33].

This concludes the proof of Proposition 6.

6 The Proof — After the Maximality Proposition

6.1 The Dihedral Case

The following is a combination of two different lines of thought: the study of a pathological “W = 2”
configuration in [5, Chapitre 4] (published as [7, §3]) and the final argument in [12]. Since we can
quickly focus on the 2⊥ case only a few details need be adapted in order to move from minimal
connected simple to N◦

◦ -groups, so we feel that the resulting proposition owes much to Burdges and
Cherlin. The final contradiction is by constructing two disjoint generic subsets of some definable
subset of G.

Proposition 7 (Dihedral Case). Let Ĝ be a connected, U⊥
2 group of finite Morley rank and G E Ĝ

be a definable, connected, non-soluble, N◦
◦ -subgroup. Suppose that for all ι ∈ I(Ĝ), C◦

G(ι) is soluble.

Suppose that the Sylow 2-subgroup of Ĝ is isomorphic to that of PSL2(C). Suppose in addition
that for ι ∈ I(Ĝ), the group C◦

G(ι) is contained in a unique Borel subgroup of G.

Then Ĝ/G is 2⊥ and Bι = C◦
G(ι) is a Borel subgroup of G inverted by any involution ω ∈

CG(ι) \ {ι}.

Proof. First observe that by torality principles, all involutions in Ĝ are conjugate. If one is in Ĝ\G
then all are, and G is 2⊥. If one is in G then Pr2(G) = 1 and Pr2(Ĝ/G) = 0; Ĝ/G is 2⊥ by the
degenerate type analysis [BBC07] and connectedness.

1 – Notation.

• Let V = {1, ι, ω, ιω} ≤ Ĝ be a four-group.

• Let T̂ι be a 2-torus containing ι and inverted by ω, and T̂ω likewise.

• Let Bι be the only Borel subgroup of G containing C◦
G(ι), and Bω likewise (observe that by

uniqueness of Bι over C◦
G(ι), V normalises Bι and Bω).

• Let ρ = ρBι
.

Here is a small unipotence principle we shall use with no reference: if L ≤ G is a definable,
connected, soluble, V -invariant subgroup, then ρL 4 ρ. This is obvious as otherwise all involutions
in V invert UρL

(L). Bigeneration, Fact 3, will also play a growing role in the subsequent pages.

2 – Step. Bι 6= Bω.

Proof of Step 2. Suppose not. If G is 2⊥, then it is W⊥
2 : by the Maximality Proposition 6, Bι is a

Borel subgroup of G. Hence C◦
G(ι) = Bι = Bω = C◦

G(ω), and therefore Bι = C◦
G(ιω) as well. Yet

bigeneration, Fact 3, applies to the action of V on the 2⊥ group G: a contradiction.
If G is not 2⊥ then bigeneration might fail. But now all involutions are in G; by torality

principles ι ∈ C◦
G(ι) ≤ Bι = Bω so Bω contains T̂ω ⋊ 〈ι〉, which contradicts the structure of torsion

in connected, soluble groups. ♦

3 – Notation. Let H = (Bι ∩Bω)◦.

Since ω normalises Bι and vice-versa, H is V -invariant.

4 – Step. H is abelian and 2⊥. Moreover ι centralises Uρ(Bι) and ω inverts it; V centralises H
and N◦

G(H) = C◦
G(H).
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Proof of Step 4. If H = 1 then C◦
Bι

(ω) = 1 and ω inverts Bι; since ω inverts T̂ι which normalises
Bι, commutation principles yield [T̂ι, Bι] = 1 and Bι ≤ C◦

G(ι). So Bι = C◦
G(ι) is an abelian Borel

subgroup inverted by ω and by ιω. Hence all our claims hold if H = 1. We now suppose H 6= 1.
Suppose that H is not abelian and let L = N◦

G(H ′), a definable, connected, soluble, V -invariant
group. Then ρL 4 ρ but since L contains Uρ(Z(F ◦(Bι))) and Uρ(Z(F ◦(Bω))), equality holds.
Hence Uρ(Z(F ◦(Bι))) ≤ Uρ(L); by uniqueness principles Uρ(Bι) is the only Sylow ρ-subgroup of
G containing Uρ(L). The same holds of Uρ(Bω), proving equality and Bι = Bω, against Step 2.
So H is abelian.

Now suppose that Uρ(H) 6= 1 and let L = N◦
G(Uρ(H)). Same causes having the same effects,

we reach a contradiction again. Hence Uρ(H) = 1, and it follows that ω inverts Uρ(Bι). The same
argument works for ιω, so ι centralises Uρ(Bι).

We now claim that V centralises H . For let K = [H, ι]; since H is abelian, using Zilber’s
indecomposibility theorem we see that K is a definable, connected, abelian group inverted by ι; in
particular it is 2-divisible. Since ι centralises Uρ(Bι) and inverts Uρ(Bω), commutation principles
yield 〈Uρ(Bι), Uρ(Bω)〉 ≤ C◦

G(K) and the latter is V -invariant. Uniqueness principles and Step 2
forbid solubility of C◦

G(K): this means K = 1, and ι centralises H . The same holds of ω.
Suppose that H has involutions: since it is V -invariant, so is its Sylow 2-subgroup T (no need

for normalisation principles here). If ι ∈ T , then ι ∈ H ≤ Bι and ω ∈ Bω by conjugacy; hence Bω
contains T̂ω ⋊ 〈ι〉, against the structure of torsion in connected, soluble groups. So ι /∈ T , and by
assumption on the structure of the Sylow 2-subgroup of Ĝ, ι inverts T ; the same holds of ω and
ιω, a contradiction.

It remains to show that N◦
G(H) = C◦

G(H). Let N = N◦
G(H). First assume that G is 2⊥. Then

using Lemma E under the action of ι we write N = (N+ι)◦ · {N, ι} where {N, ι} is 2-divisible.
Since ι centralises H , commutation principles applied pointwise force {N, ι} ⊆ CG(H). We turn
to the action of ω on N1 = (N+ι)◦; with Lemma E again N1 = (N+ω

1 )◦ · {N1, ω}, and here again
{N1, ω} ⊆ CG(H). Finally (N+ω

1 )◦ ≤ C◦
G(ι, ω) ≤ H ≤ CG(H) by abelianity, so N ≤ CG(H) and

we conclude by connectedness of N .
Now suppose that Ĝ/G is 2⊥: as a consequence V ≤ G. It is not quite clear whether N has

involutions and whether {N, ι} is 2-divisible, so we argue as follows. By normalisation principles,
there is a V -invariant Carter subgroupQ ofN . The previous argument applies to Q, soQ ≤ C◦

G(H);
it also applies to F ◦(N), so F ◦(N) ≤ C◦

G(H), and N = F ◦(N) ·Q ≤ C◦
G(N). ♦

5 – Step. We may suppose that G is 2⊥.

Proof of Step 5. Suppose that G contains involutions, i.e. V ≤ G. We shall prove that H = 1. So
suppose in addition that H 6= 1. For the consistency of notations, let i = ι ∈ G, w = ω ∈ G, and
Ti = T̂i, Tw = T̂w.

We claim that w does not invert F ◦(Bi). For if it does, then w inverts Ti ≤ Bi and F ◦(Bi), so
by commutation principles [Ti, F ◦(Bi)] = 1. Let Q ≤ Bi be a Carter subgroup of Bi containing Ti;
then Bi = F ◦(Bi) ·Q centralises Ti, and Tw ≤ Z(Bw) by conjugacy. Hence Ti ⋊ 〈w〉 ≤ 〈Ti, Tw〉 ≤
C◦
G(H), against the structure of torsion in connected, soluble groups and G being N◦

◦ .
Hence Yi = C◦

F◦(Bi)(w) 6= 1. Since Uρ(Bi) is abelian by Step 4, Uρ(Bi) ≤ C◦
G(Yi); since Yi is

V -invariant, our small unipotence principle and general uniqueness principles force C◦
G(Yi) ≤ Bi.

Hence by Step 4:
N◦
Bw

(H) = C◦
Bw

(H) ≤ C◦
Bw

(Yi) ≤ H

which proves that H is a Carter subgroup of Bw. It therefore contains involutions, against Step 4.
This contradiction shows that if G has involutions then H = 1. Hence, as in the beginning of

Step 4, w inverts Bi = C◦
G(i) and so does any other involution in CG(i) \ {i}: if G has involutions,

Proposition 7 is proved. ♦

From now on, we suppose that G is 2⊥; we are after a contradiction. Since G is W⊥
2 , Maximality

Proposition 6 applies and C◦
G(ι) = Bι is a Borel subgroup of G. Moreover since G is 2⊥, it admits

a decomposition G = G+ι · G−ι by Lemma E, and the fibers are trivial. From the connectedness
of G we deduce that CG(ι) = G+ is connected. Finally, since the 2-torus T̂ι normalises Bι, it
centralises the finite quotient NG(Bι)/Bι, and so does ι. Now N = NG(Bι) admits a decomposition
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N = N+ · {N, ι} as well; we just proved N+ ≤ B and {N, ι} ⊆ B. Hence Bι = CG(ι) is a self-
normalising Borel subgroup of G, which will be used with no reference.

6 – Step. For any involution λ ∈ CĜ(ι) \ {ι}, B−λ
ι = F ◦(Bι).

Proof of Step 6. The claim is actually obvious if H = 1, an extreme case in which the below
argument remains however valid. Let Xι = C◦

F◦(Bι)(ω) and Xω = C◦
F◦(Bω)(ι).

Suppose that Xι 6= 1 and Xω 6= 1. By abelianity of Uρ(Bι) from Step 4, Uρ(Bι) ≤ C◦
G(Xι). As

the latter is V -invariant, it has parameter exactly ρ, so C◦
G(Xι) ≤ N◦

G(Uρ(Bι)) = Bι; by uniqueness
principles Bι is the only Borel subgroup of G with parameter ρ containing C◦

G(Xι), and likewise
for Bω over C◦

G(Xω). It follows that C◦
Bω

(H) ≤ (Bι∩Bω)◦ = H and H is a Carter subgroup of Bω.
The latter is T̂ω⋊ 〈ι〉-invariant, so by normalisation principles NĜ(H) contains a Sylow 2-subgroup
Ŝ of Ĝ. Since V ≤ CĜ(H) by Step 4, we may assume V ≤ Ŝ.

Still assuming that Xι 6= 1 and Xω 6= 1, we denote by µ the involution of V which lies in
Ŝ◦ = T̂µ and fix ν ∈ V \ 〈µ〉. Then by assumption on the structure of the Sylow 2-subgroup
of Ĝ, ν inverts T̂µ; it also centralises H , so by commutation principles T̂µ ⋊ 〈ν〉 = Ŝ centralises
H ≥ 〈Xι, Xω〉. Since Bι is the only Borel subgroup of G with parameter ρ containing C◦

G(Xι) (and
likewise for ω), Ŝ normalises both Bι and Bω. Remember that V = 〈ι, ω〉 = 〈µ, ν〉; so up to taking
νµ instead of ν, we may suppose that Ŝ normalises Bν . Now ν inverts T̂µ and centralises Bν , so
by commutation principles [T̂µ, Bν ] = 1 and Bν ≤ C◦

G(µ) = Bµ: a contradiction to Step 2.
All this shows that Xι = 1 or Xω = 1; we suppose the first. Then ω inverts F ◦(Bι). Using

Lemma E we write Bι = B+ω
ι · {Bι, ω}. Notice that since Bι is 2⊥, B−

ι = {Bι, ω} (the sign − refers
to the action of ω throughout the present paragraph). Since ω inverts the 2-divisible subgroup
F ◦(Bι), one has F ◦(Bι) ⊆ B−

ι . Since the set B−
ι is 2-divisible, commutation principles applied

pointwise show F ◦(Bι) ⊆ B−
ι ⊆ CBι

(F ◦(Bι)). Hence B−
ι turns out to be a union of translates of

F ◦(Bι). Now CBι
(F ◦(Bι)) is normal in Bι and nilpotent, so by definition of the Fitting subgroup

CBι
(F ◦(Bι)) ≤ F (Bι). As a consequence B−

ι ⊆ F (Bι) is a union of finitely many translates of
F ◦(Bι). But degB−

ι = deg{Bι, ω} = degωBι = 1, so F ◦(Bι) = B−
ι .

The previous paragraph shows that if Xι = 1, then our desired conclusion holds of λ = ω; it
then also holds of λ = ιω. Now any involution λ ∈ CĜ(ι) \ {ι} is a CĜ(ι)-conjugate of ω or ιω, say
λ = ωn with n ∈ CĜ(ι) ≤ NĜ(Bι) ≤ NĜ(F ◦(Bι)), so:

B−λ
ι = B−ωn

ι =
(

B−ω
ι

)n
= (F ◦(Bι))n = F ◦(Bι)

Similarly, if Xω = 1, then for any λ ∈ CĜ(ω) \ {ω}, B−λ
ω = F ◦(Bω). We conjugate ω to ι and

see that in this case we are done as well. ♦

7 – Step. rkG−ι ≤ 2 rkF ◦(Bι).

Proof of Step 7. Let κ = ιω and Ǧ = G ⋊ V . Observe that in Ǧ the involutions ι, ω, κ are not
conjugate; one has exactly three conjugacy classes, which also are G-classes. So for (ω1, κ1) ∈
ωG × κG, the definable closure d(ω1κ1) contains a unique involution which must be a conjugate ι1
of ι.

Now consider the definable function from ωG × κG to ιG which maps (ω1, κ1) to ι1; we shall
compute its fibers. If (ω2, κ2) also maps to ι1 then ω1ω2 ∈ CG(ι1) = Bι1 . Hence ω1ω2 ∈ B

−ω1

ι1 =
F ◦(Bι1) by Step 6, and fibers have rank at most 2 rkF ◦(Bι). As the map is obviously onto, one
has 2 rkF ◦(Bι) ≥ rk Ǧ− rkB = rkG−ι . ♦

8 – Step. (F ◦(Bω))F
◦(Bι) and (F ◦(Bιω))F

◦(Bι) are generic subsets of G−ι .

Proof of Step 8. Recall from Step 6 that ι inverts F ◦(Bω) and centralises Bι. In particular since
G is 2⊥, one has F ◦(Bω) ∩ Bι = 1; moreover (F ◦(Bω))F

◦(Bι) ⊆ G−ι . We now compute the rank.
Consider the definable function from F ◦(Bι) ×F ◦(Bω) to G which maps (a, x) to xa. Let us prove
that it has finite fibers.

Suppose xa = yb with b ∈ F ◦(Bι) and y ∈ F ◦(Bω); then xab
−1

= y, and applying ω one finds:

y = yω = xab
−1ω = xωa

−1b = xa
−1b = yba

−2b

42



Since F ◦(Bι) is abelian and G is 2⊥, this results in a−1b ∈ CG(y) and x = y. We now estimate
the size CF◦(Bι)(x). Suppose Y = C◦

F◦(Bι)(x) is infinite. Since Y is V -invariant, so is C◦
G(Y ),

a definable, connected, soluble group containing F ◦(Bι). As we know, C◦
G(Y ) has unipotence

parameter at most ρ, so C◦
G(Y ) normalises Uρ(Bι) and C◦

G(Y ) ≤ Bι; as a matter of fact, by
uniqueness principles Bι is the only Borel subgroup of G with parameter ρ containing C◦

G(Y ). It
follows x ∈ NG(Bι). Hence x ∈ NG(Bι) ∩ F ◦(Bω) = CG(ι) ∩ F ◦(Bω) = 1.

As a result, fibers are finite; it follows rk(F ◦(Bω))F
◦(Bι) = 2 rkF ◦(Bι) ≥ rkG−ι by Step 7;

inclusion forces equality. The same holds of (F ◦(Bιω))F
◦(Bι). ♦

We now finish the proof of Proposition 7. By Step 8, both the sets (F ◦(Bω))F
◦(Bι) and

(F ◦(Bιω))F
◦(Bι) are generic in G−ι . So there is t ∈ F ◦(Bω) ∩F ◦(Bιω)f \ {1} for some f ∈ F ◦(Bι).

Then the involution (ιω)f = f−1ιωf = fωιωf = ιωf2 centralises t, whereas ιω inverts it. So
f2 ∈ G inverts t. This creates an involution in G: against Step 5.

6.2 Strong Embedding

Strong embedding is a classical topic in finite group theory [Bender, 1971]. Recall that a proper
subgroup M of a group G is said to be strongly embedded if M contains an involution but M ∩Mg

does not for any g /∈ M . The reader should also keep in mind a few basic facts about strongly
embedded configurations [BN94b, Theorem 10.19] (checking the apparently missing assumptions
would be almost immediate here):

• involutions in M are M -conjugate;

• a Sylow 2-subgroup of M is a Sylow 2-subgroup of G;

• M contains the centraliser of any of its involutions.

We need no more. The study of a minimal connected simple group with a strongly embedded
subgroup was carried in [4, Theorem 1].

Proposition 8 (Strong Embedding). Let G be a connected, U⊥
2 , non-soluble, N◦

◦ -group of finite
Morley rank. If G has a definable, soluble, strongly embedded subgroup, then Pr2(G) ≤ 1.

Our proof will be considerably shorter than [4]: thanks to the Maximality Proposition 6 we
need only handle the case of central involutions [4, §4]. Apart from this, our argument is a subset
of the one in [4, §4]: we construct two disjoint generic sets. We only hope to have helped clarify
matters in Step 8 below.

(Incidently, an alternative proof of the non-central case of [4, Theorem 1] was suggested using
state-of-the-art genericity arguments in minimal connected simple groups [ABF13, Theorem 6.1].
Yet this new proof reproduces the central case [4, §4] and affects only the configuration we need
not consider by Maximality.)

Proof. We let G be a minimal counterexample, i.e. G satisfies the assumptions but Pr2(G) ≥ 2.
By the 2-structure Proposition 1, the Sylow 2-subgroups of G are connected.

1 – Notation. Let M < G be a definable, soluble, strongly embedded subgroup. Let S ≤ M be
a Sylow 2-subgroup of G and A = Ω2(S◦) be the group generated by the involutions of S◦.

2 – Step. For all i ∈ I(G), C◦
G(i) is soluble.

Proof of Step 2. First observe that Z(G) has no involutions by strong embedding, as they would
lie in S ≤ M and in any conjugate.

Suppose that there is i ∈ A \ {1} with non-soluble C◦
G(i). Fix some 2-torus τi ≤ S of Prüfer

rank 1 containing i; since C◦
G(τi) is soluble because G is anN◦

◦ -group, there exists by the descending
chain condition some α ∈ τi with C◦

G(α) soluble. We take α with minimal order; then C◦
G(α2) is

not soluble, and α2 6= 1 since α 6= i.
Let H = C◦

G(α2) and N = M ∩H . Since α2 6= 1 and Z(G) has no 2-elements, H < G. Observe
how α ∈ τi ≤ S ≤ N . Let H = H/〈α2〉 and N = N/〈α2〉. Then N is definable, soluble, and
strongly embedded in H which still has Prüfer rank ≥ 2: against minimality of G as a counter-
example. ♦
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3 – Notation. Let B = M◦.

4 – Step. B is a Borel subgroup of G and A ≤ Z(B); the group M/B is non-trivial and has odd
order. Moreover the following hold.

(i) Strongly real elements of G which lie in B actually lie in A.

(ii) If i ∈ I(B) inverts n ∈ NG(B) then n ∈ B.

(iii) For any g ∈ G, BgI(G) is generic in G.

(iv) (B ∩Bg)◦ = 1 for g /∈ NG(B).

Proof of Step 4. By Step 2, connectedness of the Sylow 2-subgroup, and the maximality Proposi-
tion 6, C◦

G(i) is a Borel subgroup of G for any i ∈ I(G). But for i ∈ A \ {1}, CG(i) ≤ M by strong
embedding of the latter, so C◦

G(i) ≤ B and equality follows. In particular, A ≤ Z(B).
By structure of the Sylow 2-subgroup, NG(B)/B has odd order, and so has its subgroup M/B.

But M being strongly embedded conjugates its (more than one) involutions, which are central in
B: this shows B < M .

If b ∈ B is inverted by some k ∈ I(G) then k normalises CG(b) ≥ A; by normalisation principles
and structure of the Sylow 2-subgroup, one has k ∈ CG(b), so b has order at most 2; this is claim (i).
If i ∈ I(B) inverts n ∈ NG(B) then computing modulo B: n−1B = niB = nB, and n2 ∈ B. Since
NG(B)/B has odd order, n ∈ B, proving (ii).

We move to (iii). Consider the definable function B × I(G) which maps (b, k) to bk. If b1k1 =
b2k2 with obvious notations, then b−1

2 b1 is a strongly real element of G lying in B, hence has
order at most 2 by claim (i): this happens only finitely many times, so fibers are finite and
rk(B · I(G)) = rkB + rk I(G) = rkB + rkG− rkB = rkG. Then for any g ∈ G:

rk (BgI(G)) = rk (gBgI(G)g) = rk (g (BI(G))g) = rk (BI(G)) = rkG

It remains to control intersections of conjugates of B, claim (iv). Suppose that H = (B ∩Bg)◦

is infinite. Let Q ≤ H be a Carter subgroup of H ; since Ag centralises Bg ≥ H ≥ Q, it normalises
the definable, connected, soluble group N◦

G(Q). By bigeneration, Fact 3, N◦
G(Q) ≤ 〈C◦

G(ag) :
a ∈ A \ {1}〉 = Bg, so N◦

B(Q) ≤ N◦
H(Q) = Q and Q is actually a Carter subgroup of B. Hence

Q contains a Sylow 2-subgroup of B: hence A ≤ Q ≤ Bg, and strong embedding guarantees
g ∈ NG(B). ♦

5 – Notation. Let w ∈ M \B (denoted σ in [4, Notation 4.1(2)]).

6 – Step. We may assume that w is strongly real, in which case the following hold.

(i) CG(w) has no involutions.

(ii) If some involution k ∈ I(G) inverts w, then k inverts C◦
G(w).

(iii) C◦
B(w) = 1.

Proof of Step 6. By Step 4 (iii), both BI(G) and BwI(G) are generic in G, so they intersect.
Hence up to translating by an element of B, we may suppose that w is a strongly real element.

Suppose that there is an involution ℓ ∈ CG(w). Then w ∈ CG(ℓ) = C◦
G(ℓ) by Steinberg’s

torsion theorem and connectedness of the Sylow 2-subgroup; C◦
G(ℓ) is a conjugate of B (Sylow

theory suffices here; no need to invoke strong embedding). But w is strongly real, so by Step 4 (i)
it is an involution, against the fact that M/B has odd order.

We prove (ii): let k be an involution inverting w. Then C◦
G(k) is a conjugate Bk of B, and

k ∈ Bk. Observe how w /∈ NG(Bk) by Step 4 (ii). So C◦
G(k, w) ≤ (Bk ∩ Bwk )◦ is trivial by

Step 4 (iv), and k inverts C◦
G(w).

Finally let H = C◦
B(w) and suppose H 6= 1. Bear in mind that A centralises H , so it normalises

the definable, soluble group N◦
G(H). By bigeneration, Fact 3, N◦

G(H) ≤ B. But k inverts H , so
it normalises N◦

G(H) as well. Hence N◦
G(H) ≤ B ∩ Bk, and Step 4 (iv) forces k ∈ NG(B). Now

k ∈ B inverts w ∈ NG(B) \B, a contradiction to Step 4 (ii). This shows that C◦
B(w) = 1. ♦
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7 – Notation. Let Č = C◦
G(w) \NG(B).

Č is obviously generic in C◦
G(w), as C◦

NG(B)(w) ≤ C◦
B(w) = 1 by Step 6 (iii).

8 – Step. BČB is generic in G.

Proof of Step 8. This is the only part where we slightly rewrite the argument given in [4]. Let
F = {(m, ℓ) ∈ Bw × I(G) : mℓ = m−1}.

Let m ∈ Bw. If m is inverted by some involution in G, then by Step 6 (iii) C◦
B(m) = 1 and

mB ⊆ Bm is generic in Bm. So is wB , and m is therefore B-conjugate with w. So let us count
involutions inverting w. First, there is such an involution k by Step 6. If ℓ is another such, then
kℓ ∈ CG(w) and ℓ ∈ kCG(w). Conversely, since k inverts C◦

G(w) by Step 6 (ii), any element in
kC◦

G(w) is an involution inverting w. This together shows:

rk F = rkwB + rkC◦
G(w) = rkB + rkC◦

G(w)

On the other hand, since BwI(G) and BI(G) are generic in G by Step 4 (iii), a generic ℓ ∈ I(G)
inverts some element in Bw. Hence rk F ≥ rk I(G) = rkG− rkB.

Finally consider the definable function which maps (b1, c, b2) ∈ B × Č × B to b1cb2. We claim
that all fibers are finite. Since the fiber over b1c0b2 has the same rank as the fiber over c0, we
compute the latter. Suppose b1cb2 = c0 with obvious notations. Then applying w:

c0 = cw0 = bw1 cb
w
2 = [w, b−1

1 ]b1cb2[b2, w] = [w, b−1
1 ]c0[b2, w]

In particular, [w, b−1
1 ]c0 = [b2, w]−1 ∈ B ∩ Bc0 which is finite by Step 4 (iv). Since C◦

B(w) = 1 by
Step 6 (iii), there are finitely many possibilities for b1 and b2, and c is then determined. So the
function has finite fibers, and therefore:

rk
(

BČB
)

= 2 rkB + rkC◦
G(w) = rk F + rkB ≥ rkG ♦

We now finish the proof of Proposition 8. By Steps 4 (iii) and 8, both BI(G) and BČB are
generic in G. So they intersect; there is an involution k = b1cb2 ∈ BČB. Conjugating by b1, there
is an involution ℓ = cb ∈ ČB. Now applying w one finds:

ℓw = cbw = cb[b, w] = ℓ[b, w]

which means that [b, w] ∈ B is a strongly real element. There are two possibilities. If [b, w] 6= 1
then by Step 4 (i), [b, w] ∈ A \ {1} and ℓ ∈ CG([b, w]), so ℓ and c lie in B: a contradiction. If
[b, w] = 1 then w centralises b and cb = ℓ: against Step 6 (i).

6.3 November

Theorem. Let Ĝ be a connected, U⊥
2 group of finite Morley rank and G E Ĝ be a definable,

connected, non-soluble, N◦
◦ -subgroup.

Then the Sylow 2-subgroup of G has one of the following structures: isomorphic to that of
PSL2(C), isomorphic to that of SL2(C), a 2-torus of Prüfer 2-rank at most 2.

Suppose in addition that for all involutions ι ∈ I(Ĝ), the group C◦
G(ι) is soluble.

Then m2(Ĝ) ≤ 2, one of G or Ĝ/G is 2⊥, and involutions are conjugate in Ĝ. Moreover one
of the following cases occurs:

• PSL2: G ≃ PSL2(K) in characteristic not 2; Ĝ/G is 2⊥;

• CiBo∅: G is 2⊥; m2(Ĝ) ≤ 1; for ι ∈ I(Ĝ), CG(ι) = C◦
G(ι) is a self-normalising Borel subgroup

of G;

• CiBo1: m2(G) = m2(Ĝ) = 1; Ĝ/G is 2⊥; for i ∈ I(Ĝ) = I(G), CG(i) = C◦
G(i) is a self-

normalising Borel subgroup of G;
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• CiBo2: Pr2(G) = 1 and m2(G) = m2(Ĝ) = 2; Ĝ/G is 2⊥; for i ∈ I(Ĝ) = I(G), C◦
G(i)

is an abelian Borel subgroup of G inverted by any involution in CG(i) \ {i} and satisfies
rkG = 3 rkC◦

G(i);

• CiBo3: Pr2(G) = m2(G) = m2(Ĝ) = 2; Ĝ/G is 2⊥; for i ∈ I(Ĝ) = I(G), CG(i) = C◦
G(i) is a

self-normalising Borel subgroup of G; if i 6= j are two involutions of G then CG(i) 6= CG(j).

Proof.

1 – Step. We may suppose that for all ι ∈ I(Ĝ), C◦
G(ι) is soluble.

Proof of Step 1. By the 2-structure Proposition 1, the Sylow 2-subgroup of G is isomorphic to that
of PSL2(C), to that of SL2(C), or is connected. Our dividing line is based on the Prüfer 2-rank.

If Pr2(G) ≤ 2 then we are done with the first part of the theorem; since the second and longer
part is precisely under the assumption that for all ι ∈ I(Ĝ), C◦

G(ι) is soluble, we may proceed if
Pr2(G) ≤ 2.

So suppose not: we shall prove a contradiction in Step 4 below. We may assume that G is
minimal with Pr2(G) ≥ 3, and that Ĝ = G. First note that G/Z(G) has Prüfer rank at least 3 but
is centreless. So we may suppose Z(G) = 1. In this setting we actually prove that for all ι ∈ I(Ĝ),
C◦
G(ι) is soluble.

Suppose that there is some involution i ∈ G = Ĝ with C◦
G(i) non-soluble. Then as in Step 2 of

Proposition 8 we take a 2-torus of rank 1 τi containing i and α ∈ τi of minimal order with C◦
G(α)

soluble; α2 6= 1. Let H = C◦
G(α2): by torality principles, it has the same Prüfer 2-rank as G, hence

by minimality of G as a counterexample H = G and α2 ∈ Z(G), a contradiction.
So if G is minimal with Pr2(G) ≥ 3, then for all ι ∈ I(Ĝ) = I(G), C◦

G(ι) is soluble. We proceed
under the assumption. ♦

2 – Step. We may suppose that G is W⊥
2 .

Proof of Step 2. Suppose G is not. By the 2-Structure Proposition 1 and since centralisers◦ in G
of involutions are soluble, the Sylow 2-subgroup of G is isomorphic to that of PSL2(C), that is
Pr2(G) = 1 and m2(G) = 2. Fix i ∈ I(G).

If C◦
G(i) is contained in at least two Borel subgroups of G, then by the Algebraicity Propos-

ition 3, G ≃ PSL2(K) for some algebraically closed field of characteristic not 2. The latter has
no outer automorphisms [BN94b, Theorem 8.4]; by the assumption on centralisers of involutions,
Ĝ/G is 2⊥ and we are in case PSL2.

So we may assume that C◦
G(i) is contained in a unique Borel subgroup of G. We then apply the

Dihedral Proposition 7 inside Ǧ = G to find that C◦
G(i) is an abelian Borel subgroup of G inverted

by any involution in CG(i) \ {i}. By torality principles in G there exist Sylow 2-subgroups of G,
say Si = S◦

i ⋊ 〈w〉 with i ∈ S◦
i , and Sw = S◦

w ⋊ 〈i〉 likewise. In order to reach case CiBo2 one first
shows that Ĝ/G is 2⊥; only the rank estimate will remain to prove.

If Ĝ/G is not 2⊥ then Si is no Sylow 2-subgroup of Ĝ. Let Ŝ ≤ Ĝ be a Sylow 2-subgroup
containing Si properly; it is folklore that Pr2(Ŝ) ≥ 2. Since Ŝ◦ is 2-divisible and invariant under
ω ∈ Ŝ, we may apply Maschke’s Theorem (see for instance [Del12, Fact 2]) to find a quasi-
complement, i.e. a w-invariant 2-torus T̂ with Ŝ◦ = S◦

i (+)T̂ . Then using Zilber’s indecomposibility
theorem, [T̂ , w] ≤ (T̂ ∩ G)◦ = 1, that is, w centralises T̂ . It follows that T̂ normalises both C◦

G(i)
and C◦

G(w); by the rigidity of tori, it centralises therefore both S◦
i and S◦

w. Hence S◦
i ⋊ 〈w〉 ≤

〈S◦
i , S

◦
w〉 ≤ C◦

G(T̂ ), so by the structure of torsion in connected, soluble groups, C◦
G(T̂ ) may not be

soluble. As T̂ 6≤ G this does not contradict G being N◦
◦ , but this is against the fact that T̂ 6= 1

contains an involution of Ĝ, which has soluble centraliser◦ by assumption.
Hence Ĝ/G is 2⊥; we finally show rkG = 3 rkC◦

G(i). This exactly follows [5, Proposition 4.1.30
and Corollaire 4.1.31] or [7, Proposition 3.26 and Corollaire 3.27]: since CG(i) is not connected
for i ∈ I(G), using the map from [BBC07, §5] (some day we shall return to this) one sees that
generic, independent j, k ∈ I(G) are such that d(jk) is not 2-divisible, and we let ℓ be the only
involution in d(jk). Then (j, k) 7→ ℓ is a (generically) well-defined, definable function; obvious rank
computations yield rkG = 3 rkC◦

G(i). ♦

3 – Notation. For ι ∈ I(Ĝ) let Bι = C◦
G(ι).

46



By Steps 1 and 2 and the Maximality Proposition 6, Bι is a Borel subgroup of G.

4 – Step. Pr2(Ĝ) ≤ 2.

Proof of Step 4. Suppose Pr2(Ĝ) ≥ 3. We may assume that Ĝ = G ·d(Ŝ) for some maximal 2-torus
Ŝ of Ĝ. In particular Ĝ/G is W⊥

2 . But so is G by Step 2; by Lemma L, so is Ĝ, i.e. Ŝ is actually
a Sylow 2-subgroup of Ĝ. Let A = Ω2(Ŝ) be the group generated by the involutions of Ŝ; then
A ≤ Ĝ is an elementary abelian 2-group with 2-rank Pr2(Ĝ) ≥ 3. Let ρ = max{ρBι

: ι ∈ A \ {1}}
and ι ∈ A \ {1} be such that ρBι

= ρ.
We show that for any involution λ ∈ A \ {1}, Bλ = Bι. Let κ ∈ A \ 〈ι〉 be such that X =

C◦
Uρ(Z(F◦(Bι)))(κ) 6= 1; this exists as A has rank at least 3. Then X ≤ C◦

G(κ) = Bκ, so ρκ = ρ and

X ≤ Uρ(Bκ). Let as always B̂ι = Bι ·d(Ŝ); one has {Bι, κ} ⊆ (B̂′
ι∩B)◦ ≤ F ◦(Bι) so we may apply

Lemma F and write Bι = B+κ
ι · {Bι, κ} ⊆ B+

ι · F ◦(Bι). Now both B+
ι and F ◦(Bι) normalise X ,

hence X is normal in Bι. Uniqueness principles imply that Uρ(Bι) is the only Sylow ρ-subgroup
of G containing X . In particular Uρ(Bι) = Uρ(Bκ). Hence C◦

G(ι) = Bι = Bκ = C◦
G(κ) = C◦

G(ικ).
Turning to an arbitrary λ ∈ A \ {1} we apply bigeneration, Fact 3, to the action of V = 〈ι, κ〉 on
the soluble group Bλ, and find Bλ ≤ 〈C◦

Bλ
(µ) : µ ∈ V \{1}〉 ≤ Bι. So Bλ = Bι for any λ ∈ A\{1}.

We claim that Pr2(G) = 1. First, if G is 2⊥ then bigeneration applies and we find G = 〈C◦
G(µ) :

µ ∈ V \ {1}〉 = Bι, a contradiction. Therefore G has involutions. In order to bound its Prüfer
2-rank we shall use the Strong Embedding Proposition 8. We argue that M = NG(Bι) is strongly
embedded in G. For let j be an involution in S = Ŝ ∩G, which is a Sylow 2-subgroup of G; then
j ∈ NG(Bι). But G is W⊥

2 and Bι contains a maximal 2-torus of G, so j ∈ Bι. Let V = 〈ι, κ〉;
recall that V centralises Bι. In particular V centralises j, and normalises Bj . As the latter is
soluble we apply bigeneration, Fact 3, and find Bj = 〈C◦

Bj
(λ) : λ ∈ V \ {1}〉 ≤ Bι. Now if j ∈ Mx

with x ∈ G, then we argue likewise: j ∈ Bxι , so V x centralises j, hence V x normalises Bj , and
Bj = Bxι . Therefore x ∈ NG(Bι), and M = NG(Bι) is strongly embedded in G. By the Strong
Embedding Proposition 8, Pr2(G) = 1, as desired.

Observe that any two commuting involutions of Ĝ centralise the same Borel subgroup of G:
for if 〈µ, ν〉 is a four-subgroup of Ĝ then up to conjugacy 〈µ, ν〉 ≤ A, so Bµ = Bν . Now any two
non-conjugate involutions of Ĝ commute to a third involution, so they centralise the same Borel
subgroup of G. But there are at least two conjugacy classes of involutions in Ĝ, since Pr2(G) = 1
and Pr2(Ĝ) ≥ 3. So actually any two involutions of Ĝ centralise the same Borel subgroup of G.
This is to mean: for any g ∈ G, Bgι = Bι; Bι is normal in G, which contradicts G being N◦

◦ . ♦

5 – Step. Let ι ∈ I(Ĝ). If ι ∈ G or G is 2⊥, then Bι is self-normalising in G.

Proof of Step 5. First suppose i = ι ∈ I(G). We claim that i is the only involution in Z(Bi). If
Pr2(G) = 1 this is clear by the structure of torsion in connected, soluble groups. If Pr2(G) ≥ 2 (and
one has equality by Step 4), then let k ∈ I(Bi) \ {i}: if k ∈ Z(Bi) then Bk = Bi = Bik is clearly
strongly embedded, against Proposition 8. In particular, NG(Bi) ≤ Bi ·CG(i) ≤ CG(i) = C◦

G(i) =
Bi by Steinberg’s torsion theorem and connectedness of the Sylow 2-subgroup of G (Step 2).

Now suppose that G is 2⊥ (this case was already covered in Proposition 7, between Steps 5
and 6). Since N = NG(Bι) ≤ G is 2⊥ it admits a decomposition N = N+ι · N−ι under the
action of ι. But on the one hand so does G: hence G = CG(ι) · G−ι with trivial fibers and by a
degree argument CG(ι) is connected, so N+ ≤ Bι. And on the other hand, by torality principles
there exists a 2-torus Ŝ◦ of Ĝ containing ι; Ŝ◦ normalises Bι and NG(Bι). By connectedness, Ŝ◦

centralises the finite group NG(Bι)/Bι, and so does ι. So N− ⊆ Bι and therefore N = Bι. ♦

6 – Notation. For κ, λ ∈ I(Ĝ) let Tκ(λ) = TBκ
(λ).

Before reading the following be very careful that Inductive Torsion Control, Proposition 5,
requires Ĝ to be W⊥

2 ; for the moment only G need be by Step 2.

7 – Step (Antalya). If Ĝ is W⊥
2 and λ /∈ NĜ(Bκ) then Tκ(λ) is finite.

If in addition Ĝ = G · d(Ŝ◦) for some maximal 2-torus Ŝ◦ ≤ Ĝ, then rkC◦
Ĝ

(κ) = rkC◦
Ĝ

(λ) and
the generic left translate ĝC◦

Ĝ
(λ) contains a conjugate of κ.
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Proof of Step 7. Suppose that Ĝ is W⊥
2 and Tκ(λ) is infinite. Then by Inductive Torsion Control,

Proposition 5, Tκ(λ) is infinite and contains no torsion elements. Then λ inverts Tκ(λ) pointwise,
and normalises CĜ(Tκ(λ)); the latter contains κ. By the structure of the Sylow 2-subgroup of Ĝ
and normalisation principles, λ has a CĜ(Tκ(λ))-conjugate µ commuting with κ. Now µ inverts
Tκ(λ) and normalises Bκ. Since NĜ(Bκ) already contains a Sylow 2-subgroup of Ĝ which is a
2-torus, µ is toral in NĜ(Bκ) by torality principles. Hence Tκ(λ) ⊆ {B,µ} ⊆ F ◦(B). We now take
any t ∈ Tκ(λ) \ {1} and X = d(t), and we climb the Devil’s Ladder, Proposition 4: Bκ is the only
Borel subgroup of G containing C◦

G(X). In particular, λ normalises Bκ, a contradiction.
For the rest of the argument we assume in addition that Ĝ = G·d(Ŝ◦) for some maximal 2-torus

Ŝ◦ ≤ Ĝ; in particular Ĝ is W⊥
2 by Step 2 and Lemma L, but also Ĝ/G is abelian.

Let us introduce the following definable maps:

πκ,λ : κĜ \NĜ(Bλ) → Ĝ/C◦
Ĝ

(λ)
κ1 7→ κ1C

◦
Ĝ

(λ)

We shall compute fibers.
Suppose that πκ,λ(κ1) = πκ,λ(κ2). Then by the assumption that Ĝ = G · d(Ŝ◦), G controls

Ĝ-conjugacy of involutions. Hence κ1κ2 ∈ C◦
Ĝ

(λ) ∩G ≤ CG(λ). Be very careful that we do not a
priori have connectedness of the latter, insofar as there is no outer version of Steinberg’s torsion
theorem; as a matter of fact connectedness is immediate only when G is 2⊥ or λ ∈ G, not in
general.

But if c ∈ CG(λ) is inverted by κ, then κ normalises CĜ(c) which contains λ; since Ĝ is W⊥
2 and

by normalisation principles, κ has a CĜ(c)-conjugate µ commuting with λ. Now µ ∈ NĜ(CG(λ))
which contains a maximal 2-torus by torality principles; torality principles again provide some
maximal 2-torus Tµ ≤ NĜ(CG(λ)) containing µ. Then by Zilber’s indecomposibility theorem,
[c, µ] ∈ [c, Tµ] ≤ C◦

G(λ), that is, c2 ∈ C◦
G(λ). If G is 2⊥ the conclusion comes easily; if G contains

involutions, then by torality principles C◦
G(λ) contains a maximal 2-torus of G which is a Sylow

2-subgroup of G by Step 2, so c ∈ C◦
G(λ).

Turning back to our fiber computation, we do have κ1κ2 ∈ C◦
G(λ), and κ1κ2 ∈ Tλ(κ). The latter

is finite as first proved. Hence πκ,λ has finite fibers; it follows, keeping the Genericity Proposition 2
in mind:

rkκĜ ≤ rk Ĝ− rkC◦
Ĝ

(λ)

that is, rkC◦
Ĝ

(λ) ≤ rkC◦
Ĝ

(κ), and vice-versa. So equality holds. By a degree argument, πκ,λ is
now generically onto. ♦

8 – Step. We may suppose that Pr2(Ĝ) = 1.

Proof of Step 8. Suppose that Pr2(Ĝ) ≥ 2; equality follows from Step 4 and we aim at finding
case CiBo3. There seem to be three cases depending on the values of Pr2(G) and Pr2(Ĝ/G) =
2 − Pr2(G). We give a common argument. Notice that we however rely on Step 4, to the author’s
great aesthetic discontentment.

Let Ŝ◦ ≤ Ĝ be a maximal 2-torus of Ĝ and Ǧ = G ·d(Ŝ◦). Bear in mind that Ǧ is W⊥
2 by Step 2

and Lemma L. In particular, Ŝ◦ is a Sylow 2-subgroup of Ĝ. Let κ, λ, µ be the three involutions
in Ŝ◦.

If κ, λ and µ are not pairwise G-conjugate, then they are not Ǧ-conjugate either. So Ǧ has at
least (hence exactly) three conjugacy classes of involutions by Lemma N: κ, λ and µ are pairwise not
G-conjugate. We apply Step 7 in Ǧ. The generic left-translate ǧC◦

Ǧ
(λ) contains both a conjugate

κ1 of κ and a conjugate µ1 of µ. Now κ1 and µ1 are not Ǧ-conjugate so d(κ1µ1) contains an
involution ν. By the structure of the Sylow 2-subgroup of Ǧ, ν must be a conjugate λ1 of λ. Of
course λ1 ∈ d(κ1µ1) ≤ C◦

Ǧ
(λ). By the structure of the Sylow 2-subgroup of Ǧ again, λ is the only

conjugate of λ in its centraliser. Hence λ1 = λ. It follows that κ1, µ1 ∈ CǦ(λ), and ǧ ∈ CǦ(λ): a
contradiction to genericity of ǧC◦

Ǧ
(λ) in Ǧ/C◦

Ǧ
(λ).

So involutions in Ǧ are G-conjugate. This certainly rules out the case where Pr2(G) = 1 =
Pr2(Ǧ/G). Actually this also eliminates the case where Pr2(G) = 0 and Pr2(Ǧ/G) = 2. For in
that case, κ, λ, µ remain distinct in the quotient Ǧ/G: so G cannot conjugate them in Ǧ.
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Hence Pr2(G) = 2 and by Step 4, Ĝ/G is 2⊥. We have proved that G conjugates its involutions;
by Step 5 their centralisers◦ in G are self-normalising Borel subgroups. Notice that if i 6= j are two
involutions of G with Bi = Bj then i ∈ C◦

G(j) so i and j commute; now Bi = Bj = Bij is strongly
embedded in G, against Proposition 8. We recognize case CiBo3. ♦

This is the end. If G has involutions then by Steps 2 and 8, m2(G) = Pr2(G) = 1 and
Pr2(Ĝ/G) = 0 = m2(Ĝ/G): with a look at Step 5 this is case CiBo1. So we may suppose that
G is 2⊥. Since Pr2(Ĝ) = 1, Proposition 7 yields m2(Ĝ) = 1. With a look at Step 5 this is case
CiBo∅. In Memoriam
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