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a b s t r a c t

The functional role of the superior temporal sulcus (STS) has been implicated in a number

of studies, including those investigating face perception, voice perception, and faceevoice

integration. However, the nature of the STS preference for these ‘social stimuli’ remains

unclear, as does the location within the STS for specific types of information processing.

The aim of this study was to directly examine properties of the STS in terms of selective

response to social stimuli. We used functional magnetic resonance imaging (fMRI) to scan

participants whilst they were presented with auditory, visual, or audiovisual stimuli of

people or objects, with the intention of localising areas preferring both faces and voices

(i.e., ‘people-selective’ regions) and audiovisual regions designed to specifically integrate

person-related information. Results highlighted a ‘people-selective, heteromodal’ region in

the trunk of the right STS which was activated by both faces and voices, and a restricted

portion of the right posterior STS (pSTS) with an integrative preference for information

from people, as compared to objects. These results point towards the dedicated role of the

STS as a ‘social-information processing’ centre.

ª 2013 Elsevier Ltd. Open access under CC BY license.
1. Introduction distinct sections: the anterior, mid, and posterior STS (aSTS,
In the last decade, the human superior temporal sulcus (STS)

and surrounding areas have been widely studied (see Hein &

Knight, 2008 for a review). The STS is a major sulcal land-

mark in the temporal lobe, lying between cortices on the sur-

face of the superior temporal gyrus (STG) andmiddle temporal

gyrus (MTG). An extensive region, it can be divided into three
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mid-STS, pSTS). Furthermore, in most individuals, the pSTS

divides into two spatially separable terminal ascending

branches e the so-called anterior and posterior terminal

ascending branches. Thus, the STS can also be anatomically

separated into the branch, bifurcation (equivalent to pSTS)

and trunk parts (equivalent to mid-STS, aSTS) (Ochiai et al.,

2004). There is now a large body of evidence which suggests
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the STS is a major player in social perception e particularly,

the pSTS region. This evidence has been provided from two

separate camps of research; the first which has investigated

unimodal face and voice processing, and the secondwhichhas

pointed to the role of the pSTS in multisensory integration of

social signals (Allison, Puce, & McCarthy, 2000).

We rely greatly on information gathered from both facial

and vocal information when engaging in social interaction.

Along with the inferior occipital gyri (IOGs) and lateral

fusiform gyrus (FG) [specifically, the fusiform face area (FFA)

(Kanwisher, McDermott, & Chun, 1997)] the pSTS has been

highlighted as a key component of the human neural system

for face perception (Haxby, Hoffman, & Gobbini, 2000). It

appears to be particularly involved in processing the more

dynamic aspects of faces: when attending to these aspects

the magnitude of the response to faces in the FFA is reduced

and the response in the pSTS increases (Hoffman & Haxby,

2000). Although perhaps not as strong as for faces, evi-

dence for voice-selective regions, particularly in the STS, is

accumulating. Several fMRI studies (e.g., Belin, Zatorre,

Lafaille, Ahad, & Pike, 2000; Ethofer, Van De Ville, Scherer,

& Vuilleumier, 2009; Grandjean et al., 2005; Linden et al.,

2011) have demonstrated the existence of voice-selective

neuronal populations: these voice-selective regions of cor-

tex [‘temporal voice areas’ (TVAs)] are organized in several

clusters distributed antero-posteriorly along the STG and

STS bilaterally, generally with a right-hemispheric prepon-

derance (Belin et al., 2000; Kreifelts, Ethofer, Shiozawa,

Grodd, & Wildgruber, 2009). The aSTS and pSTS in partic-

ular appear to play an important role in the paralinguistic

processing of voices, such as voice identity (Andics et al.,

2010; Belin & Zatorre, 2003; Latinus, Crabbe, & Belin, 2011).

Thus parts of the pSTS appear to show greater response to

social signals compared to non-social control stimuli in both

the visual and auditory modalities, although the relative

location of face- and voice-sensitive regions in pSTS remains

unclear.

Turning away from unimodal face and voice processing,

another vital skill for effective social communication is the

ability to combine information we receive from multiple

sensory modalities into one percept. Converging results point

to the role of the pSTS in multisensory integration, particu-

larly in audiovisual processing. The logic of fMRI experiments

on audiovisual integration has been to search for brain regions

which are significantly involved in the processing of unimodal

visual and auditory stimuli, but show an even stronger acti-

vation if these inputs are presented togetherdthe so-called

‘supra-additive response’, where the response to the

bimodal stimuli is larger than the sum of the unimodal re-

sponses. Integration of speech (Calvert, Campbell, &

Brammer, 2000; Wright, Pelphrey, Allison, McKeown, &

McCarthy, 2003), affective (Ethofer et al., 2006; Kreifelts et al.,

2009; Pourtois, de Gelder, Bol, & Crommelinck, 2005), and

identity (Blank, Anwander, & von Kriegstein, 2011) informa-

tion from faces and voices have all been found in the pSTS.

However, it should also be noted that integration of ‘non-so-

cial’ information e such as tools and their corresponding

sounds (Beauchamp, Lee, Argall, & Martin, 2004) and letters

and speech sounds (van Atteveldt, Formisano, Goebel, &

Blomert, 2004) e has also been observed in the pSTS, and
thus it is unclear whether this region performs a more ‘gen-

eral’ integrative role, or shows preferences for particular

stimulus categories.

Here we brought together these distinct lines of research

by examining properties of the STS in terms of selective

response to social stimuli. Normal adult volunteers partici-

pated in an ‘audiovisual localiser’ scan during which they

were stimulated with auditory, visual, or audiovisual stimuli

of people or objects. We proposed, given that face-selective,

voice-selective and integrative regions are found within the

STS, that in addition to areas preferring both faces and voices

(i.e., ‘people-selective’ regions) there could also be audiovi-

sual regions that are more sensitive to social stimuli, as

compared to information from non-social categories, such as

objects.

We found that a restricted portion of the right pSTS was

characterised by a conjunction of (1) an ‘integrative’ response,

i.e., stronger response to audiovisual stimuli compared to vi-

sual and compared to auditory stimuli and (2) ‘people-selec-

tivity’, i.e., preference for social stimuli irrespective of the

modality (voice> objects; face> objects). Furthermore, a large

region further extending down the trunk of the right STS was

observed to be heteromodal: that is, this region was activated

by both faces and voices, but did not necessarily show inte-

grative properties.
2. Materials and methods

2.1. Participants

Forty English-speaking participants (15 males and 25 females;

mean age: 25 years � 5 years) took part in the scan. All had

self-reported normal or corrected vision and hearing. The

ethical committee from the University of Glasgow approved

the study. All volunteers provided informed written consent

before, and received payment for, participation.

2.2. Stimuli

24 people (12 males and 12 females) were video-recorded

producing a variety of vocal expressions, both speech and

non-speech (e.g., saying the word ‘had’, humming, yawning).

Recordings took place in the television studio at the Learning

and Teaching Centre, Glasgow University, and participants

were paid at the rate of £6 per hour. The participants were

filmed under standard studio lighting conditions (standard

tungsten light), and sat directly facing the camera, at a dis-

tance so that the whole face was in frame. Videos were

recorded with 25 frames per second (40 msec per frame) using

a Panasonic DVC Pro AJD 610 camera, fitted with a Fujiform

A17 � 7.8 BERM-M28 lens, and transferred and edited using

Adobe Premier Elements. Within the video recording, vocal-

isations were recorded with 16-bit resolution at a sampling

frequency of 44,100 Hz. Under the same conditions, 24moving

objects producing sound were also filmed (e.g., a moving toy

car, a ball bouncing, a violin being played). The objects were

filmed with the intention of recording the canonical view.

Videos were edited so that every production of a vocal sound

by a participant formed a separate clip, with the clips lasting

http://dx.doi.org/10.1016/j.cortex.2013.07.011
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2 sec each. The videos of the objects were edited to form

separate clips of 2 sec each also. For examples of stimuli,

please refer to Fig. 1.

Stimulus clips were combined together in Adobe Premier

Elements to form 18 different 16 sec blocks. Thus, each block

contained eight different stimuli. These blocks were broadly

categorised as:

(1) Faces paired with their corresponding vocal sounds (AV-P)

(2) Objects (visual and audio) (AV-O)

(3) Voices alone (A-P)

(4) Objects (audio only) (A-O)

(5) Faces alone (V-P)

(6) Objects (visual only) (V-O)

Thus, categories 1 and 2 were audiovisual; 3 and 4 were

audio only; and 5 and 6 were visual only. There were three

different stimulus blocks of each type, each containing
Fig. 1 e Examples of (a) audiovisual, (b) visual and (c) auditory s

http://vnl.psy.gla.ac.uk/resources.
different visual/auditory/audio-visual stimuli. A 16-sec null

event block comprising silence and a grey screen was also

created. Each of the 18 blocks was repeated twice, and the

blocks were presented pseudo-randomly: each block was al-

ways preceded and followed by a block from a different

category (e.g., a block from the ‘Faces alone’ category could

never be preceded/followed by any other block from the ‘Faces

alone’ category). The null event block was repeated six times,

and interspersed randomly within the presentations of the

stimulus blocks.

2.3. Design and procedure

Stimuli were presented using the Psychtoolbox in Matlab, via

electrostatic headphones (NordicNeuroLab, Norway) at a

sound pressure level of 80 dB as measured using a Lutron Sl-

4010 sound level metre. Before they were scanned, subjects

were presented with sound samples to verify that the sound
timuli. Stimuli for the audiovisual localiser are available at

http://vnl.psy.gla.ac.uk/resources
http://dx.doi.org/10.1016/j.cortex.2013.07.011
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pressure level was comfortable and loud enough considering

the scanner noise. Stimuli were presented in one scanning run

while blood oxygenation-level dependent (BOLD) signal was

measured in the fMRI scanner. Participants were not required

to perform an active task; however, they were instructed to

pay close attention to the stimuli.

2.4. Imaging parameters

Functional images covering the whole brain (slices ¼ 32, field

of view ¼ 210 � 210 mm, voxel size ¼ 3 � 3 � 3 mm) were

acquired on a 3 T Tim Trio Scanner (Siemens) with a 12-

channel head coil, using an echoplanar imaging (EPI)

sequence [interleaved, TR ¼ 2 sec, TE ¼ 30 msec, Flip Angle

(FA) ¼ 80�]. We acquired 336 EPI volumes for the experiment.

The first 4 sec of the functional run consisted of ‘dummy’

gradient and radio frequency pulses to allow for steady state

magnetisation during which no stimuli were presented and

no fMRI data collected. MRI was performed at the Centre for

Cognitive Neuroimaging (CCNi) in Glasgow, UK.

At theendofeach fMRI session,high-resolutionT1-weighted

structural imageswere collected in 192 axial slices and isotropic

voxels (1 mm3; field of view: 256 � 256 mm, TR ¼ 1900 msec,

TE ¼ 2.92 msec, time to inversion ¼ 900 msec, FA ¼ 9�).

2.5. Imaging analysis

SPM8 software (Wellcome Department of Imaging Neurosci-

ence, London, UK; http://www.fil.ion.ucl.ac.uk/spm) was used

to pre-process and analyse the imaging data. First the

anatomical scan was ACePC centred, and this correction

applied to all EPI volumes.

Functional data were motion corrected using a spatial

transformation which realigned all functional volumes to the

first volume of the run and subsequently realigned the vol-

umes to the mean volume. The anatomical scan was co-

registered to the mean volume and segmented. The anatom-

ical and functional images were then normalised to the

Montreal Neurological Institute (MNI) template using the pa-

rameters issued from the segmentation keeping the voxel

resolution of the original scans (1 � 1 � 1 and 3 � 3 � 3

respectively). Functional images were then smoothed with a

Gaussian function (8 � 8 � 8 mm).

EPI time series were analysed using the general linear

model as implemented in SPM8. Functional data were ana-

lysed in one two-level random-effects design. The first-level,

fixed-effects individual participant analysis involved a

design matrix containing a separate regressor for each block

category (1e6). These regressors contained boxcar functions

representing the onset and offset of stimulation blocks

convolvedwith a canonical haemodynamic response function

(HRF). To account for residual motion artefacts the realign-

ment parameters were also added as nuisance covariates to

the design matrix. Using the modified general linear model

parameter estimates for each condition at each voxel were

calculated and then used to create contrast images for each

category relative to baseline: AV-P > baseline, AV-

O> baseline, A-P> baseline, A-O> baseline, V-P> baseline, V-

O > baseline. These six contrast images, from each partici-

pant, were taken forward into the second-level two factor
(modality and category) ANOVA. The order of conditions was:

Audiovisual (Person); Audiovisual (Object); Audio only (Per-

son); Audio only (Object); Visual only (Person); Visual only

(Object).

Stimulus condition effects were tested with

A(P þ O) > baseline for sounds, V(P þ O) > baseline for images

and AV(Pþ O)> baseline for cross-modal sound-image. These

contrasts were thresholded at p < .05 (FWE peak voxel cor-

rected) with a minimum cluster size of five contiguous voxels.

The inclusion of non-face and non-vocal stimuli also

allowed us to examine selectivity for faces and voices. We

identified face-selective and voice-selective regions, firstly

with inclusion of audiovisual conditions (i.e., AV-P þ V-

P>AV-OþV-O for face selective, AV-PþA-P>AV-OþA-O for

voice selective), and then with only unimodal conditions

included. These contrasts were thresholded at p < .05 (FWE

correction for cluster size) in conjunction with a peak voxel

threshold of p< .0001 (uncorrected). In addition, we imposed a

minimum cluster size of 10 contiguous voxels.

We then identified ‘people-selective’ regions as those who

showed a ‘person-preferring’ response, regardless of the

condition, whether this was audiovisual, audio only, or visual

only (i.e., AV-PþA-PþV-P>AV-OþA-Oþ V-O). This contrast

was thresholded at p < .05 (FWE peak voxel corrected) with a

minimum cluster size of 10 contiguous voxels.

2.5.1. Conjunction analyses
We further performed a series of conjunction analyses in

SPM8 in order to identify regions meeting a number of func-

tional criteria:

2.5.1.1. AUDIOVISUAL INTEGRATION. We tested for general audio-

visual, integrative regions with the conjunction analysis

AV(PþO)> V(PþO)XAV(PþO)>A(PþO) [i.e., the ‘max rule’

(Beauchamp, 2005; Love, Pollick, & Latinus, 2011)]. This local-

ised regions which showed a higher response to audiovisual

stimuli as compared to both visual only and audio only stimuli.

We then tested for audiovisual regions which were also

people selective [AV(P þ O) > V(P þ O) X AV(P þ O) >

A(P þ O) X (AV-P þ A-P þ V-P > AV-O þ A-O þ V-O)].

2.5.1.2. HETEROMODAL RESPONSE. We tested for regions that

responded to both auditory and visual information (irrespective

or their response to audiovisual stimuli) with the conjunction

analysis A(P þ O) X V(P þ O). It is important to note that

alongside identifying heteromodal regions, integrative regions

could also emerge from this criterion, as there was no criteria/

requirement regarding the strength of the AV response.

We then tested for heteromodal regions that were also

‘people selective’ with the conjunction A(P þ O) X

V(P þ O) X (AV-P þ A-P þ V-P > AV-O þ A-O þ V-O).

For all conjunction analyses, results were thresholded at

p < .05 (FWE peak voxel corrected) with a cluster extent

threshold of k > 5.
3. Results

Regions activating more to auditory information (voices and

object sounds) than the baseline condition were bilateral

http://www.fil.ion.ucl.ac.uk/spm
http://dx.doi.org/10.1016/j.cortex.2013.07.011
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Table 2 e Face and voice-selective regions. Results of
independently contrasting faces and voices against object
images and non-vocal sounds (a, b and c, d respectively).

Brain regions Coordinates (mm) k t-statistic

x y z

(a) Face-selective regions (including AV information)

STG/STS 51 �34 1 867 13.98

MFG 51 2 46 735 9.05

MTG �60 �16 �5 405 8.12

Precuneus 3 �58 31 249 7.72

IOG 27 �97 �5 45 5.79*

(b) Face-selective regions (excluding AV information)

STG/STS 51 �37 4 820 10.51

MFG 51 �1 46 856 8.86

Precuneus 3 �58 28 197 5.62

STG/STS �57 �40 7 171 4.88

Caudate 18 �4 16 184 4.56

IOG 42 �82 �11 72 5.38*

FG 42 �46 �17 13 4.20*

(c) Voice-selective regions (including AV information)
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auditory cortex, right inferior frontal gyrus (IFG), and bilateral

middle frontal gyrus (MFG) (Table 1a). Regions activatingmore

to visual information (silent faces and objects) than the

baseline condition were the broad visual cortex, bilateral STG,

left medial frontal gyrus, bilateral IFG, right superior frontal

gyrus (SFG), the posterior cingulate and the precuneus (Table

1b). Regions activating more to audiovisual stimuli than

baselinewere bilateral visual and auditory cortex, bilateral IFG

and right medial frontal gyrus (Table 1c).

Face-selective regions were found in the right STG and left

MTG, the right MFG, precuneus and caudate. At a more liberal

threshold [p < .001 (uncorrected)], the right IFG and right

FFA emerged as face-selective regions (see Table 2a and b).

Voice-selective regions were found in the bilateral STG/MTG,

precuneus and right MFG (Table 2c and d).

Regions which showed a greater response to people-

specific information as compared to object-specific informa-

tion (regardless of the modality) included the bilateral STG,

bilateral IFG, the right precuneus, and right hippocampus

(Table 3a/Fig. 2a).
Table 1 e Stimulus condition effects. Results of
independently contrasting unimodal (a and b) and
audiovisual (c) conditions against baseline.

Brain regions Coordinates (mm) k t-statistic

x y z

(a) A > baseline

STG �48 �25 7 1846 20.76

STG 51 �22 4 2062 20.14

IFG 39 17 25 112 6.22

MFG �42 17 25 136 6.11

(b) V > baseline

Middle occipital

gyrus (MOG)

45 �70 1 6135 24.21

IFG 42 11 28 650 9.30

Superior parietal

lobule

30 �55 49 145 7.74

IFG �39 11 22 272 7.74

IFG 30 32 �14 47 6.29

SFG 3 59 34 20 5.52

Medial frontal gyrus �3 53 �14 27 5.50

Posterior cingulate gyrus 0 �52 16 22 5.43

Precuneus �27 �55 49 15 4.96

(c) AV > baseline

MOG 45 �70 1 8670 22.65

IFG 42 14 25 608 10.38

IFG �39 11 22 123 7.34

Precentral gyrus �48 �1 49 48 5.82

Medial frontal

gyrus

6 59 4 11 5.55

IFG 27 32 �11 19 5.35

IFG �39 29 1 13 5.22

Superior parietal

lobule

30 �55 49 11 5.03

Contrasts were height thresholded (t ¼ 4.51) to display voxels

reaching a significance level of p < .05 with FWE correction and an

additional minimum cluster size of greater than five contiguous

voxels. MNI coordinates and t-scores are from the peak voxel of a

cluster.

STG/STS 51 �34 1 521 12.08

MTG �60 �10 �8 295 9.25

Precuneus 3 �58 28 99 7.12

MFG 45 20 25 45 5.56

(d) Voice-selective regions (excluding AV information)

STG/STS 57 �19 �5 247 5.03

STG �60 �10 �8 105 4.12

Precuneus 3 �58 28 33 3.69

Contrasts were height thresholded (t ¼ 3.13) to display voxels

reaching a significance level of p < .0001 combined with an FWE

correction of p < .05 for cluster size. MNI coordinates and t-scores

are from the peak voxel of a cluster.

*Contrasts were significant at a peak voxel threshold of p < .0001

(uncorrected), with no cluster thresholding.
3.1. Conjunction analyses

3.1.1. Audiovisual, integrative regions
Audiovisual integrative regions (regardless of stimulus cate-

gory), i.e., following the ‘max rule’ [AV(P þ O) >

A(P þ O) X AV(P þ O) > V(P þ O)] were found in the bilateral

thalamus and bilateral STG/STS (Table 4a/Fig. 2b). An inte-

grative, people-selective region, i.e., a region following both

the max rule and showing an average greater response to

people than object in audition (voice > object) and vision

(face > object) was observed in the right STG/pSTS (Table 4b/

Fig. 2c). This region can also be seen at the level of individual

participants in Fig. 3.

As an additional test of our results, we defined integrative

regions using one half of the data, which highlighted clusters

in the right and left posterior superior temporal gyrus/sulcus

(pSTG/STS; see Table 5a). Within each of these clusters, we

then tested to see whether people-selectivity e as defined

using the other half of the data e was significant. Within the

left pSTS, this contrast was not significant (t ¼ �.46, p ¼ .675);

however, within the right pSTS this elicited a significant effect

(t ¼ 3.06, p < .002). This appears to confirm our initial finding

that this particular cluster in the right pSTS is both people-

selective and integrative.

http://dx.doi.org/10.1016/j.cortex.2013.07.011
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Table 3 e People-selective regions. Results of
independently contrasting people-related information
against object related information, regardless of condition.

Brain regions Coordinates (mm) k t-statistic

x y z

(a) ‘People-selective’ regions

STG/STS 51 �34 1 710 15.01

STG �60 �16 �5 324 9.25

IFG 42 20 25 406 8.85

Precuneus 3 �58 28 187 8.83

Hippocampus 21 �7 �14 25 6.39

IFG �39 14 22 11 4.96

Contrasts were height thresholded (t ¼ 4.51) to display voxels

reaching a significance level of p < .05 (FWE corrected for multiple

comparisons). MNI coordinates and t-scores are from the peak

voxel of a cluster.

Fig. 2 e People-selectivity, audiovisual integration and heteromo

AV-P D A-P D V-P > AV-O D A-O D V-O*; (b) Integrative audi

AV(P D O) > A(P D O) X AV(P D O) > V(P D O); (c) Conjunctio

Heteromodal regions; (e) Conjunction of a and d: Heteromodal, p

(t [ 4.52) to display voxels reaching a significance level of p < .

size of greater than five contiguous voxels. MNI coordinates an

*AV [ audiovisual; V [ visual; A [ auditory; P [ people; O [

c o r t e x 5 0 ( 2 0 1 4 ) 1 2 5e1 3 6130
3.1.2. Heteromodal regions
Regions which responded to both visual and auditory infor-

mation, as compared to baseline, consisted of the bilateral

STG, and bilateral inferior frontal gyri (Table 4c/Fig. 2d). Note

that whereas the ‘heteromodality’ criterion does not make

any assumption on what should be the response to the AV

condition, a large part of the right pSTS also followed the ‘max

rule’. People-selective heteromodal regions, i.e., regions that

responded significantly to both auditory and visual stimuli

and that preferred social stimuli in both modalities, extended

anteriorly to a large part of the STG/STS, and also activated the

bilateral IFG (Table 4d/Fig. 2e). These regions can also be seen

at the level of individual participants in Fig. 3.

Similarly to the previous analysis, we defined heteromodal

regions using one half of the data, which highlighted clusters

in the right and left pSTG/STS; see Table 5b. Within each of

these clusters, we then tested to see whether people-

selectivity e as defined using the other half of the data e

was significant. Within the left pSTS, this contrast was not

significant (t ¼ �.15, p ¼ .56); however, within the right pSTS

this elicited a significant effect (t ¼ 2.96, p < .002).
dality: (a) ‘People-selective’ regions, defined by a contrast of

ovisual regions, defined by a contrast of

n of a and b: Integrative, people-selective regions; (d)

eople-selective regions. Contrasts were height thresholded

05 with FWE correction and an additional minimum cluster

d t-scores are from the peak voxel of a cluster.

objects.
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Table 4 e Results of conjunction analyses: (a) Integrative
audiovisual regions (AV > A X AV > V); (b) Integrative,
people-selective regions; (c) Heteromodal regions
(Auditory > Baseline X Visual > Baseline); (d)
Heteromodal, people-selective regions.

Brain regions Coordinates (mm) k t-statistic

x y z

(a) Integrative regions (max rule: AV > A X AV > V)

Thalamus �15 �25 �5 21 7.04

STG/STS 60 �37 16 108 6.18

Thalamus 15 �25 �5 10 5.83

STG �51 �46 13 14 5.36

(b) People-selective integrative regions

STG/STS 51 �40 13 52 5.97

(c) Heteromodal regions (A X V)

STG/STS 54 �40 13 575 11.10

STG/STS �54 �46 13 183 8.51

IFG 39 17 25 109 6.15

IFG �42 14 25 95 6.08

STG 36 2 �20 16 5.56

(d) People-selective heteromodal regions

STG/STS 51 �40 10 325 10.50

IFG 39 17 25 108 6.22

IFG �39 14 22 11 4.96

Contrasts were height thresholded (t ¼ 4.52) to display voxels

reaching a significance level of p < .05 with FWE correction and an

additional minimum cluster size of greater than five contiguous

voxels. MNI coordinates and t-scores are from the peak voxel of a

cluster.
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4. Discussion

The aim of this study was to examine the neural correlates of

people-selectivity (i.e., regions that preferred face and voice

information, regardless of condition), audiovisual integration

(i.e., a significantly stronger response to audiovisual as

compared to unimodal stimuli), and ‘heteromodality’ (i.e., a

significant response to both vision and audition), specifically

within the pSTS. Participants were scanned during an

‘audiovisual localiser’ during which they passively viewed a

series of audiovisual, visual and auditory stimuli of either

people or objects; responses to each specific condition were

compared and contrasted. Using a single dataset and ecolog-

ical stimuli e dynamic movies of faces and voices e our re-

sults not only confirm the multisensory nature of the pSTS,

but also that areas of this structure selectively process person-

related information irrespective of the sensory modality.

4.1. Face-selectivity, voice-selectivity and people-
selectivity in the STS

We firstly examined voice- and face-selectivity in our partic-

ipants by contrasting the response to voices as compared to

non-vocal sounds, and faces as compared to visual repre-

sentations of objects, respectively.

When we contrasted the response to auditory information

against baseline, the broad auditory cortex was highlighted

bilaterally. A voice-selective response was confined to the
upper banks of the bilateral STS; regions that appear to

correspond with the ‘TVAs’ identified by Belin et al. (2000) and

Belin, Fecteau, and Bédard (2004). Maximum voice-selectivity

was found in the mid-STS, a result which has been found in

a number of other studies (e.g., Belin, Zatorre, & Ahad, 2002;

Belin et al., 2000; Kreifelts et al., 2009). The ‘voice-selective’

regions of the STS tend to show a greater response to vocal

sounds than to non-vocal sounds from natural sources, or

acoustical controls such as scrambled voices or amplitude-

modulated noise. This response is also observed for vocal

sounds of non-linguistic content (Belin, Bestelmeyer, Latinus,

& Watson, 2011; Belin et al., 2002), highlighting that these re-

gions process more than just the speech content of voice. In a

voice recognition study, von Kriegstein and Giraud (2004)

delineated three distinct areas along the right STS involved

in different aspects of voice processing: whereas the mid-

anterior STS carries out a spectral analysis of voices, more

posterior and anterior areas emphasise more paralinguistic

voice processing e for example, identity. We also identified

the right precuneus as a voice-selective region in this experi-

ment. Although perhaps less commonly found than the TVA,

activation of the precuneus has been apparent in a number of

studies investigating voice perception (e.g., von Kriegstein,

Eger, Kleinschmidt, & Giraud, 2003; Sokhi, Hunter,

Wilkinson, & Woodruff, 2005).

The visual versus baseline contrast showed activation

maps covering most of the visual ventral stream, including

early visual cortex (V1:3), V4, V5/MT, the fusiform and para-

hippocampal gyri and an extensive part of the human inferior

temporal (IT) gyrus. This is consistent with the vast majority

of research studying visual responsiveness. Face-selectivity

was found in a network of regions, including the extensive

right STS, left pSTS to mid-STS, the MFG, precuneus and

caudate e all regions which have been associated with either

the core or extended face-processing system (e.g., Andrews,

Davies-Thompson, Kingstone, & Young, 2010; Haxby et al.,

2000; Rossion et al., 2003). Notably, at the set-threshold for the

group-level analysis, the commonly found FFAs did not

emerge, although these regions e along with the bilateral

occipital face areas (OFAs) e did appear for a number of in-

dividual participants, as well as at the group level at an un-

corrected cluster threshold. Instead, the strongest response

appeared to be in the STG/STS e particularly, the right pSTS.

In our experiment, we used only dynamic faces, in an attempt

to maximise the ecological validity of our stimuli. The pSTS is

known to be involved in the representation of the dynamic

properties of faces (Allison et al., 2000; Haxby et al., 2000;

Haxby, Hoffman, & Gobbini, 2002) such as mouth, eye and

head movements (Lee et al., 2010) and facial expressions

(Phillips et al., 1997): although it does respond to pictures of

static faces (Hoffman & Haxby, 2000; Kanwisher et al., 1997), it

shows a response of significantly greater magnitude (up to

three times) to dynamic as compared to static faces (Pitcher,

Dilks, Saxe, Triantafyllou, & Kanwisher, 2011). Thus, it could

be that continuously presenting only moving faces height-

ened the response in the pSTS and attenuated the response in

the FFA.

We further generalized this approach to all conditions and

identified ‘people-selective’ regions in our group of partici-

pants as those that responded to social stimuli in all
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Fig. 3 e Results from individual participants: people-selective, integrative regions and people-selective, heteromodal

regions. For descriptive purposes, contrasts are height thresholded (t [ 3.12) to display voxels reaching a significance level

of p < .001 (uncorrected). MNI coordinates and t-scores are from global and local (Participant 2) maxima of STS cluster.
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Table 5 e Integrative and heteromodal regions as defined
using one half of the data: (a) Integrative, audiovisual
regions (AV > A X AV > V); (b) Heteromodal regions
(A X V).

Brain regions Coordinates (mm) k t-statistic

x y z

(a) ‘Integrative’ regions (AV > A X AV > V)

STG/STS 51 �40 10 135 6.68

STG/STS �51 �46 13 22 5.76

(b) ‘Heteromodal’ regions (A X V)

STG/STS 54 �40 13 119 7.00

STS �54 �46 13 13 5.45

Contrasts were height thresholded (t ¼ 4.57) to display voxels

reaching a significance level of p < .05 with FWE correction and an

additional minimum cluster size of greater than five contiguous

voxels. MNI coordinates and t-scores are from the peak voxel of a

cluster.
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conditions, whether this was audiovisual, audio only or visual

only. Such regions were found bilaterally in the pSTS to mid-

STS, in addition to the right aSTS, the IFG, hippocampus and

precuneus. In a pioneering study, Kreifelts et al. (2009)

examined voice-selectivity, face-selectivity and integration

of affective information within the STS. They found, using

fMRI, that the neural representations of the audiovisual inte-

gration of non-verbal emotional signals, voice sensitivity and

face sensitivity were located in different parts of the STS with

maximum voice sensitivity in the trunk section and

maximum face sensitivity in the posterior terminal ascending

branch. These authors did not observe the large overlap as

was seen in our study, andwe can only speculate as to some of

the possible reasons.We predict the large response of the STG

was in part due to contrasting dynamic audiovisual pre-

sentations of people against audiovisual presentations of ob-

jects, plus unimodal face and voice information e thus, these

would have activated the portions of the STG/STS responsive

to audiovisual information, in addition to those responsive to

dynamic face information and voice-selective regions. In the

study by Kreifelts, face and voice-selectivity were examined

using separate localisers, which simply contrasted the

response to different sets of unimodal stimuli. What is more,

in their face-localiser, the authors only used static faces.

Although static faces can also activate the STS (Haxby et al.,

2000; Kanwisher et al., 1997) dynamic faces are known to

evoke a more pronounced response in this region.

In summary, we find that in this experiment, a large part of

the STS e extending from pSTS to aSTS e was overall ‘people

selective’: this is striking, considering that previous research

has localised face-selectivity and voice-selectivity in different,

mostly non-overlapping portions of this region, specifically

the pSTS and mid-STS to aSTS, respectively.
4.2. Faceevoice integration and the STS

We used a conjunction analysis and the classical ‘max crite-

rion’ to define integrative, audiovisual regions in our study.

This analysis highlighted the bilateral thalami and the
bilateral pSTS as regions responding more to audiovisual in-

formation as compared to both visual information and audio

information alone.

Both the thalamus and the pSTS are well described as

playing a role in multimodal processing. There is now

converging evidence that not only sensory non-specific, but

also sensory specific, thalamic nuclei may integrate different

sensory stimuli and further influence cortical multisensory

processing by means of thalamo-cortical feed-forward con-

nections. Some studies provide evidence of thalamic influence

on multisensory information processes in rats (Komura,

Tamura, Uwano, Nishijo, & Ono, 2005) and humans (Baier,

Kleinschmidt, & Müller, 2006) and others link modulations of

neuronal activity in subcortical structures with behavioural

consequences like audiovisual speech processing (Bushara,

Grafman, & Hallett, 2001) and multisensory attention tasks

(Vohn et al., 2007). Kreifelts, Ethofer, Grodd, Erb, and

Wildgruber (2007) also reported in humans an enhanced

classification accuracy of audiovisual emotional stimuli

(relative to unimodal presentation) and linked this increase in

perceptual performance to enhanced fMRI-signals in multi-

sensory convergence zones, including the thalamus.

The upper bank of the STS has also emerged as a crucial

integrative area, particular the pSTS. This region is known to

have bidirectional connections with unisensory auditory and

visual cortices (Cusick, 1997; Padberg, Seltzer, & Cusick, 2003)

and to contain around 23% of multisensory neurons

(Barraclough, Xiao, Baker, Oram, & Perrett, 2005). Ghazanfar,

Maier, Hoffman, and Logothetis (2005) showed that the STS

was involved in speech processing when monkeys observed

dynamic faces and voices of other monkeys. Consistent with

findings from animals, the human pSTS also becomes active

when processing audiovisual speech information (Calvert,

2001), in addition to presentations of tools and their corre-

sponding sounds (Beauchamp et al., 2004), letters and speech

sounds (van Atteveldt et al., 2004), and faces and voices

(Beauchamp et al., 2004; reviewed in Hein & Knight, 2008).

Recently e and also using the max criterion e Szycik, Jansma,

and Münte (2009) found the bilateral STS to be involved in

faceevoice integration. Crucially, this was observed using

markedly different stimuli to ours e firstly, they presented a

static face in their unimodal condition and secondly, they

added white noise to their auditory and audiovisual stimuli.

The fact that the activation of this region is preserved across

stimulus types and sets underlines its importance in the

integration of faces and voices. Previously, the hippocampus

has also been implicated as key region in the integration of

face and voice information (Joassin et al., 2011). At the set-

threshold, this region did not emerge: however, as in a recent

study by Love et al. (2011), the left hippocampus did emerge at

less conservative, uncorrected significance level. This lends

further support to the importance of this region; albeit, in a

more minor role within this context.

Our conjunction of people-selective and integrative re-

sponses highlighted a cluster in the right pSTS, which was

more responsive to people-related informationewhether this

was faces and voices, faces only or voices only. In addition,

this region showed a significant preference for audiovisual

information, as compared to both audio only and visual only

information. Interestingly, this analysis removed the
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activation previously seen in the thalamus and the left pSTS,

suggesting that these regions may be either more ‘general’ e

or even, ‘object-selective’e integrative regions. The right pSTS

has been found in previous studies examining audiovisual

integration (e.g., Ethofer et al., 2006; Hagan et al., 2009;

Kreifelts, Ethofer, Huberle, Grodd, & Wildgruber, 2010; Love

et al., 2011; Werner & Noppeney, 2010; also reviewed in

Calvert, 2001) but crucially, these have generally compared

audiovisual to unimodal responses within independent

stimulus sets, without contrasting activation to different

stimulus categories. To our knowledge, this is the first study

that directly looks at person-selectivity of audiovisual inte-

grative regions and we therefore propose that the right pSTS

could have a crucial role in combining ‘socially-relevant’ in-

formation across modalities.

4.3. ‘Heteromodality’ and the STS

Further, we examined responses across modalities: ‘hetero-

modal’ regions were defined as those that simply responded

significantly to both audio and visual information as

compared to baseline, irrespective of what their response to

the AV condition was. Thus, along with potentially high-

lighting regions which integrated face and voice information

(i.e., showed a significantly stronger response to audiovisual

information), this criteria was also able to identify regions

which responded to both faces and voices, but did not

necessarily integrate this information. This analysis isolated

regions in the right pSTS to mid-STS, left pSTS, bilateral IFG

and putamen. The bilateral pSTS proved to be an audiovisual,

integrative region, overlapping with the regions found in our

previous analysis. However, activation continuing down the

trunk region of the STS appeared to be genuinely hetero-

modal: the response to audiovisual information that was not

significantly more than either audio or visual presentation,

but the auditory and visual responses to the unimodal stimuli

were significantly greater than baseline.

When we looked specifically at people-selective portions

of these regions, activation followed the line of the posterior

to mid-STS. The peak of activation, in the pSTS, again

overlapped with people-selective integrative regions.

Kreifelts et al. (2010) also observed a sensitivity to voices as

well as faces in the right pSTS, which they suggest might be

conceived as an essential characteristic of the neural

structures subserving the audiovisual integration of human

communicative signals. However, they also point out that in

their study, given the differences in control stimuli for the

separate voice and face-sensitivity experiments, they

refrain from any direct comparisons between the two

qualities.

Outwith the STS, in the IFG, there was an equal response to

both faceevoice combinations and faces alone, but a lesser

response to voices alone. Interestingly, this ‘heteromodal’

analysis highlighted a multitude of regions that did not

emerge using our integrative criterion. We propose that the

‘heteromodality’ criterion, which does not make any

assumption on what the response to combined stimuli should

be but simply requires a response in both modalities, should

not be used as an integrative criterion but could act as an

interesting complement to the typical analyses used when
defining audiovisual regions, especially as some of these

defining statistical criteria are recognised as being particularly

stringent (Beauchamp, 2005; Love et al., 2011).

4.4. People-selectivity and the right hemisphere

In our study we found a strong right-hemispheric response to

people-selective information. Although we found an initial

people-selective response in both right and left hemispheres,

conjunction analyses show lateralised integrative and heter-

omodal effects in the right hemisphere, specifically the right

pSTS to mid-STS, and not in the left hemisphere. Given pre-

vious findings on face- and voice-selectivity, this dominance

is perhaps unsurprising.

Although studies on face perception have reported face-

selective regions in the fusiform gyri of both the left and

right cerebral hemispheres, fusiform activations for faces are

often found to be greater in the right than in the left (De Renzi,

Perani, Carlesimo, Silveri, & Fazio, 1994; Kanwisher et al., 1997;

Le Grand, Mondloch, Maurer, & Brent, 2003; McCarthy, Puce,

Gore, & Allison, 1997), and previous psychophysical in-

vestigations with split brain patients also suggest lateral

asymmetry in face processing and encoding (Gazzaniga &

Smylie, 1983; Miller, Kingstone, & Gazzaniga, 2002). In a

recent study (Meng, Cherian, Singal, & Sinha, 2012), the au-

thors found that face-selectivity persisted in the right hemi-

sphere even after activity on the left had returned to baseline.

Similarly, studies which have examined voice-selectivity e

although smaller in number e also suggest a preference of the

right hemisphere. For example, in Belin et al. (2000), the au-

thors observed that averaged in a group of subjects, voice-

sensitive activity appeared stronger in the right hemisphere.

It appears this asymmetry may be particularly specific to the

non-linguistic aspects of voices. In one functional magnetic

resonance imaging (fMRI) study (von Kriegstein et al., 2003), it

was shown that a task targeting on the speaker’s voice (in

comparison to a task focussing on verbal content) leads to a

response in the right anterior temporal sulcus of the listener.

In further study by Belin et al. (2002), it was shown that tem-

poral lobe areas in both hemispheres responded more

strongly to human voices than to other sounds (e.g., bells, dog

barks, machine sounds) but that, again, it was the right aSTS

that responded significantly stronger to non-speech vocal-

isations than to scrambled versions of the same stimuli. In our

experiment, we found bilateral face and voice-selective re-

sponses e however, for both of these effects the strongest

activation was in the right hemisphere. Given the fact that the

linguistic content of our stimuli were kept to a minimum, and

that participants passively viewed and heard the visual and

auditory information, this right dominance could possibly be

expected.

We further identified both integrative and heteromodal

regions bilaterally, in the STS and the thalamus (for the

former analysis only). However, it was only in the right

hemispheres that these effects showed a heightened prefer-

ence for face and voice information. This extends on the

multitude of research that suggests that there is right-hemi-

spheric functional asymmetry in response to social infor-

mation. Indeed, the right hemisphere shows a preference for

not only faces and voices, both also other socially-relevant
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information such as biological human motion (Beauchamp,

Lee, Haxby, & Martin, 2003; Peuskens, Vanrie, Verfaillie, &

Orban, 2005) and sex pheromones (Savic, Berglund, Gulyas,

& Roland, 2001; Savic, Berglund, & Lindstrom, 2005). For all

of these functions, stronger involvement of the right hemi-

sphere in coding some aspects of person perception seems to

be the rule, whereas involvement of the left hemisphere ap-

pears to sometimes be a shared role, and only exceptionally a

main role. However, the reason to why this ‘social asymme-

try’ exists in the first place still remains a relatively open

question [see Brancucci, Lucci, Mazzatenta, and Tommasi

(2009) for a review]. Additionally, whether the right hemi-

sphere also prefers to integrate these other types of ‘people-

selective’ information will only be answered with further

investigation.
5. Conclusion

Our results build on previous research suggesting that the

STS is a ‘social-information processing’ region, by clearly

delineating ‘people-selective’ regions that respond discern-

ingly to both face and voice information, across modalities.

Furthermore, this study also provides the first evidence of a

‘people-selective’ integrative region in the right pSTS. Future

directions could involve exploring selectivity for other types

of socially-relevant information in the STS, inter-individual

variability of STS functionality, and further investigating

the nature of neuronal populations in ‘people-selective’ STS

regions.
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