
HAL Id: hal-01989261
https://hal.science/hal-01989261

Submitted on 22 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Numerical Simulation of an Oscillating Cylinder in a
Cross-Flow at Low Reynolds Number: Forced and Free

Oscillations
Antoine Placzek, Jean-François Sigrist, Aziz Hamdouni

To cite this version:
Antoine Placzek, Jean-François Sigrist, Aziz Hamdouni. Numerical Simulation of an Oscillating Cylin-
der in a Cross-Flow at Low Reynolds Number: Forced and Free Oscillations. Computers and Fluids,
2009, 38 (1), pp.80-100. �10.1016/j.compfluid.2008.01.007�. �hal-01989261�

https://hal.science/hal-01989261
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Numerical simulation of an oscillating cylinder in a cross-flow at
low Reynolds number: Forced and free oscillations

Antoine Placzek a, Jean-Franc�ois Sigrist b,*, Aziz Hamdouni c

aONERA, The French Aerospace Lab, Aeroelasticity and Structural Dynamics Department, 29 Avenue de la Division Leclerc,

BP72, 92322 Châtillon Cedex, France
bService Scientifique et Technique, DCNS Propulsion, 44620 La Montagne, France
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A numerical simulation of the flow past a circular cylinder which is able to oscillate transversely to the incident stream is presented in this 
paper for a fixed Reynolds number equal to 100. The 2D Navier–Stokes equations are solved by a finite volume method with an industrial 
CFD code in which a coupling procedure has been implemented in order to obtain the cylinder displacement. A preliminary work is first 
conducted for a fixed cylinder to check the wake characteristics for Reynolds numbers smaller than 150 in the laminar regime. The 
Strouhal frequency fS and the aerodynamic coefficients are thus controlled among other parameters. Simulations are then performed with 
forced oscillations characterized by the frequency ratio F = f0/fS, where f0 is the forced oscillation frequency, and by the adimensional 
amplitude A. The wake characteristics are analyzed using the ti me series of the fluctuating aerodynamic coefficients and their power 
spectral densities (PSD). The frequency content is then linked to the shape of the phase portraits and to the vortex shedding mode. By 
choosing interesting couples (A, F), different vortex shedding modes have been observed, which are similar to those of the Wil-liamson–
Roshko map. A second batch of simulations involving free vibrations (so-called vortex-induced vibrations or VIV) is finally carried out. 
Oscillations of the cylinder are now directly induced by the vortex shedding process in the wake and therefore, the time inte-gration of the 
motion is realized by an explicit staggered algorithm which provides the cylinder displacement according to the aerody-namic charges 
exerted on the cylinder wall. Amplitude and frequency response of the cylinder are thus investigated over a wide range of reduced 
velocities to observe the different phenomena at stake. In particular, the vortex shedding modes have also been related to the frequency 
response observed and our results at Re = 100 show a very good agreement with other studies using different numerical approaches.

0. Introduction

Flow around a fixed or oscillating cylinder has received
continued attention in the past few decades. In addition to
being a building block in the understanding of bluff body
dynamics, it has a large number of applications in many
engineering situations. This study is the first step to inves-
tigate the feasibility of coupled fluid–structure computa-

tions with an industrial CFD code which could be used
later on a tube bundle configuration, like those existing
in nuclear steam generators.

The wake of a fixed circular cylinder exhibits a large vari-
ety of complex phenomena stemming from the diverse insta-
bilities growing in the near wake. The classification of these
phenomena was primarily based on experimental measure-
ments and therefore the limits describing the transition
between the different regimes were sometimes not exactly
established. However a rather clear classification relying
either on the evolution of the Strouhal number [8] or on
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the base pressure coefficient curve [48] is nowadays available.
According to these classifications, the following regimes can
be highlighted: for Re [ 49, two stationary recirculation
zones attached to the cylinder wall can be observed; then
for 49 [ Re [ 190, the wake is still laminar and consists
of two periodic staggered rows of vortices forming the
well-known Von Kármán streets, the vortices of each row
being shed alternately from either side of the cylinder. For
greater Reynolds numbers, the wake becomes three-dimen-
sional (for 190 [ Re [ 260) and progressively turbulent.
This regime is followed by the shear-layer transition
(Re J 1200) where the separating shear layers become
unstable and finally by the boundary-layer transition (Re
of order 105) which is associated to the drag crisis, i.e. a dra-
matic decrease of the drag coefficient. Over all these regimes,
the flow exhibits a certain periodicity which is known as the
Strouhal frequency, denoted here by fS. When a periodic
vortex street is well established, this frequency corresponds
to that of the vortex shedding frequency; in other caseswhere
the VonKármán streets are not clearly visible, the frequency
can be defined as the one of the fluctuations of the stream-
wise velocity component for example.

In many applications, the cylinder is not fixed but oscil-
lates at a given frequency that could interact with the vor-
tex shedding process. For forced oscillations in a certain
range of amplitude and frequency, the cylinder motion is
able to control the instability mechanism which leads to
vortex shedding. One of the most interesting characteristics
of this fluid–structure interaction is the synchronization, or
‘‘lock-in”, between the vortex shedding and vibration fre-
quencies. The vortex shedding frequency diverges from
that corresponding to a fixed cylinder fS and becomes equal
to the forced oscillation frequency f0. Similar phenomena
are observed for vortex-induced vibrations (VIV): in this
case, the flow causes the cylinder to oscillate at its natural
frequency fN which depends on the mass, the rigidity and
possibly the damping of the cylinder. The cylinder oscilla-
tion frequency is thus different from the Strouhal frequency
fS that would be obtained if the cylinder was supposed to
be fixed. This phenomenon occurs over a certain range of
reduced velocities, where the vortex shedding frequency
becomes equal to the natural frequency and a peak of
amplitude is reached.

This complicated fluid–structure interaction phenome-
non still draws the attention of researchers and has become
the typical test case for new numerical techniques. A lot of
studies, involving Reynolds Averaged Navier–Stokes
(RANS) methods [39,18], Large Eddy Simulations (LES)
[6,32,2,15], Direct Numerical Simulations (DNS) [11],
using finite volume or finite element [3,29,27] approxima-
tions to solve the Navier–Stokes equations, can be found
in the literature for a large range of Reynolds numbers.
It is also crucial to check that the numerical computation
leads to the same phenomena than those observed in exper-
imental works [7,21].

The present study aims at performing numerical simula-
tions of VIV using a general numerical tool that can be fur-

ther used to study industrial problems using a general
approach based on computational fluid dynamics and com-
putational solid dynamics code coupling. It is therefore of
paramount importance to validate the fluid code and the
coupling procedure for such applications prior to perform
numerical studies on real configurations. Validation is
achieved by comparing the numerical results of our VIV
simulations with other numerical studies and discussing
the observed simulated phenomena. The paper is organized
as follows: the numerical model used for the computations
is first presented; numerical results obtained for fluid flow
around a fixed cylinder are then briefly exposed before pre-
senting the structure response and fluid flow pattern for
forced and free oscillations of the cylinder.

1. Numerical model

1.1. Resolution of the Navier–Stokes equations

The flow field is governed by the Navier–Stokes equa-
tions, which read for a Newtonian incompressible fluid:

divu ¼ 0
ou

ot
þ divðu� uÞ ¼ � 1

q
rp þ mDu

8

<

:

ð1Þ

where u = (u v)T is the velocity vector with u and v being
respectively the streamwise and transverse velocity compo-
nents, p is the pressure, q and m are the fluid density and kine-
matic viscosity. As the Reynolds number does not rise above
190, the flow is assumed to be laminar and two-dimensional
according to the description of the flow regimes given by
Williamson [48] for this range of Reynolds numbers.

The Navier–Stokes equations are discretized using the
finite volume technique, i.e. integral form of the conserva-
tion equations are solved on control volumes which form a
partition of the computational domain (see [13] for more
details). Surface and volume integral approximations
require the values of variables at locations other than the
computational nodes. Indeed, the integrand involves the
product of several variables (convective fluxes) or variable
gradients at those locations (diffusive fluxes). Interpolations
are therefore performed to evaluate these fluxes with the
high-order MARS (Monotone Advection and Reconstruc-
tion Scheme) algorithmwhich has been developed especially
for the CFD code used here [46]. The MARS algorithm is a
second order conditional upwinding approximation devel-
oped in order to decrease the numerical dispersion. For
unsteady computations, the time dependent term is approx-
imated by an Euler scheme (implicit scheme).

The pressure–velocity decoupling is achieved by the
SIMPLE (Semi-Implicit Method for Pressure-Linked
Equations) algorithm for steady computations or the PISO
(pressure implicit with splitting of operators) procedure for
unsteady cases. The pressure field is first predicted, then
corrected by several iterations so that the Poisson equation
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for pressure and the momentum conservation equations for
velocity are satisfied.

Once Eqs. (1) have been discretized and the pressure–
velocity decoupling has been realized, the problem is repre-
sented by a matrix system composed of the cell-centered
unknowns which has to be inverted. The resolution is per-
formed with the pre-conditioned conjugate gradient
method and provides the velocity components u and v,
and the pressure p. The same CFD code and numerical
techniques have already been used by Sigrist and Abouri
[42]. A complementary description of the whole resolution
method can also be found in this reference.

1.2. Geometry and boundary conditions

The computational domain is represented in Fig. 1a
with the cylinder of diameter d. The size of the domain
and the position of the cylinder have been chosen accord-
ing to simulations performed by Gerouache [16] with the
same code for different lengths and heights. The results
are very sensitive to the size of the computational domain,
particularly when the Reynolds number is small. Indeed, as
the Reynolds number decreases, the flow is mainly gov-
erned by the viscous effects whose region of influence varies
with Re�1. If the computational domain is not chosen wide
enough to contain this influence region, the error caused by
the artificial boundary conditions disturbs the solution,
even near the cylinder. For Re < 1, Lange et al. [25] advise
choosing H/D > 320Re�0.8 to maintain the error smaller
than 1%. For greater Reynolds numbers [33] showed that
the aspect ratio should not be smaller than H/d = 22 for
Re = 100 and that the influence of the outlet boundary
condition becomes negligible for L2/d P 34. The size of
the computational domain has been chosen here to keep
the number of control cells to a reasonable amount,
although the length and height are not conform to the val-
ues advocated by [33]. However, the configuration retained
(H/d = 20, L2/d = 20) provides acceptable results and the
authors are aware of the blockage effects, particularly as

regards the surestimation of the drag coefficient and Strou-
hal number when the Reynolds number is small.

The mesh presented in Fig. 1b is block-structured and a
ring of diameter D = 12d (represented with a dashed line in
Fig. 1a) has been introduced around the cylinder to facili-
tate the use of the moving mesh procedure when the cylin-
der oscillates. Grid independence tests have already been
performed by Gerouache [16] for the same configuration
and CFD code. The configuration of the blocks and the
number of control cells have therefore been built according
to the observations made in this study. Thus the total num-
ber of cells in the whole model used here stands at 28,800.
It should also be mentioned that a ratio has been intro-
duced along the radial direction in the ring surrounding
the cylinder, so that the mesh is finer near the cylinder wall
and becomes coarser away from it (see Fig. 1b).

The boundary conditions adopted are specified in
Fig. 1a. The inlet velocity U1 is chosen according to the
cylinder diameter d and the fluid characteristics (q, m) to
obtain the desired Reynolds number: Re = U1 d/m. When
the cylinder is moving, particular attention should be paid
to respect the cinematic coupling condition at the cylinder
wall. Continuity of the velocities imposes the following
equality for an unidirectional vertical motion:

v ¼ _y on C ð2Þ

where v is the vertical component of the fluid velocity, _y is
the cylinder velocity and C denotes the cylinder wall. In or-
der to reduce the computational time, the moving mesh
procedure has been developed as a user subroutine so that
it operates only in the ring surrounding the cylinder and
leads to a deformed mesh whose structure is preserved dur-
ing the oscillations [41].

1.3. Cylinder motion

Two different techniques will be used in this study to
obtain the cylinder motion. On the one hand, when forced

Fig. 1. Configuration of the computational domain and overview of the mesh used for the simulations. d is the cylinder diameter, x is the horizontal

direction, y the vertical one.
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oscillations are imposed, the motion is known and can
therefore be directly imposed. On the other hand, when
the motion results from the vortex shedding process, the
displacement has to be computed from the fluid forces
before it could be applied to the cylinder.

The forced oscillations of the cylinder are characterized
by the frequency f0 and the maximal adimensional ampli-
tude A = ymax/d, where ymax is the maximal vertical
imposed displacement. A sinusoidal motion governed by
the following equation is explicitly imposed to the cylinder
in a dedicated subroutine implemented within the CFD
code at each time step before solving the flow field:

yðtÞ ¼ ymax sinð2pf0tÞ ð3Þ
The cylinder oscillates independently from the flow but the
wake can be strongly affected by the cylinder motion. The
different wake regimes are classified thanks to the adimen-
sional amplitude A defined above and the frequency ratio
F = f0/fS, where fS refers to the Strouhal frequency for
the fixed cylinder.

When vortex-induced vibrations are studied, the motion
corresponds generally to the cylinder bending mode. In
two-dimensions, the cylinder flexibility can be easily mod-
eled by a mass-spring system excited by the fluid forces.
The vertical cylinder motion y(t) is consequently governed
by the equation of the following undamped oscillator:

m€y þ ky ¼ F y ð4Þ
where m denotes the cylinder mass, k is the rigidity of the
fictitious spring and Fy is the resultant of the lift force (ver-
tical component of the aerodynamic force), this latter being
a priori unknown. In absence of external forces, Eq. (4)
provides the natural cylinder frequency fN which will be
used later to drive the oscillations:

fN ¼ 1

2p

ffiffiffiffi

k

m

r

ð5Þ

The couple (m, k) could thus be chosen to represent the fre-
quency of the bending mode, but when fluid forces are not
null, the actual oscillation frequency f depends on them
and is consequently different from fN in general. The reso-
lution of Eq. (4) requires the knowledge of the lift force
Fy(t), meaning that the flow field has to be computed be-
fore. In fact, this is a typical fluid–structure interaction
problem because the lift force influences the cylinder dis-
placement y(t) which in turn modifies the flow field and
therefore Fy(t), and so on.

The resolution of such problems can be conducted rela-
tively easily by using staggered procedures, i.e. the fluid and
the structure are solved successively for a given time step. A
detailed description of such algorithms has been proposed
for example by Piperno [34] or Farhat et al. [12]. Unfortu-
nately, these methods lead inevitably to a time shift between
the fluid and the structure, which are not computed exactly
at the same time step. The main drawback is that the cou-
pling rely on a prediction of the displacement which has
to be as accurate as possible, otherwise the energy transfer

at the fluid–structure interface is not well evaluated. As a
consequence, the coupling procedure is likely to cause arti-
ficial instabilities (due for example to a negative numerical
damping) leading to the divergence of the system. This
numerical problem can be by-passed with the use of implicit
procedures introducing subiterations for the same time step
and leading to the convergence of the displacement and
fluid force at a given time step (see examples in
[1,17,23,44]). Implicit coupling has been used for instance
by Sigrist and Abouri [42] who have noticed its superiority
for non-linear coupled problems (shock responses). Com-
parisons between different coupling procedures (implicit
and explicit) have also been performed by Placzek et al.
[36] on a confined cylinder configuration to chose the best
compromise between CPU time and accuracy.

The comparisons performed by Placzek et al. [36] reveal
that for our application, the explicit algorithm adapted
from [41] (referred to as the blended procedure in [36]) pro-
vides satisfactory results, as it combines a good accuracy
and a relatively small CPU time. The method used for
the time integration of Eq. (4) is based on an explicit algo-
rithm, better than the one tested by Sigrist and Abouri [42].
Indeed, the numerical damping is dramatically reduced by
combining a centered upwind and downwind discretization
scheme for the prediction of the displacement. The steps of
the coupling algorithm are the following:

1. Initialization for the first iteration (x0, v0, a0 and F0 are
the initial displacement, velocity, acceleration and
force):

yn ¼ x0; _yn ¼ v0; €yn ¼ a0; F n
y ¼ F 0 ð6Þ

2. Explicit prediction of the cylinder acceleration for the
time step tn+1 using Eq. (4):

€ynþ1 ¼
F n

y

m
� k

m
yn ð7Þ

3. Evaluation of the cylinder velocity and displacement
with linear approximations (dt is the fluid time step,
and h is the blending factor):

_ynþ1 ¼ _yn þ dt€ynþ1

ynþ1 ¼ yn þ dt½ð1� hÞ _yn þ h _ynþ1�
ð8Þ

4. Mesh update: computation of the new mesh configura-
tion (according to the displacement yn+1 evaluated in
the preceding step) with the moving mesh procedure.

5. Resolution of the Navier–Stokes equations with the
CFD code on the new mesh configuration to obtain
F nþ1

y .
6. Return to step 2 for the next time step.

The previous procedure is implemented in a coupling
subroutine handled by the CFD code at each time step
before solving the flow field. This provides a numerical
basis for more general code coupling procedures for future
applications. Several numerical tests conducted by Sigrist
[41] and Placzek et al. [36] have shown that h = 0.5 pro-
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duces the smallest numerical damping in the coupled fluid/
structure calculation. Hence application of such algorithms
to numerical simulations of VIV is straightforward; from a
numerical point of view, this algorithm is not prone to alter
the simulation of fluid–structure energy exchanges since the
numerical damping is reduced.

Finally, it is worth mentioning that in both cases (forced
and free oscillations), the cylinder motion is taken into
account by the fluid model which is written in an arbitrary
Lagrangian–Eulerian (ALE) formulation (see [10]). This
formulation slightly modifies the Navier–Stokes equations
by introducing an additional term related to the mesh
motion: the convective term in Eq. (1) is changed in
div[u � (u � w)], where w is the mesh velocity field. Thanks
to the moving mesh algorithm adapted from the one devel-
oped by Sigrist [41], the mesh velocity w is computed for
each cell and the mesh can therefore be updated from the
knowledge of the wall cylinder motion y. Combined with
the fact that the size of the ring where the mesh moves
can be easily chosen so that the mesh distortion remains
small, this procedure which has already been used success-
fully by Sigrist [41] and Sigrist and Abouri [42] turns out to
be also efficient in the case of an infinite domain.

2. Fixed cylinder wake

The wake of a fixed cylinder is investigated here for four
Reynolds numbers in the permanent regime (5 [ Re [ 49)

and four others in the 2D periodic regime
(49[ Re [ 190). The mesh remains stationary and several
characteristic parameters of the wake are checked to con-
trol the validity and the accuracy of the numerical model.

2.1. Permanent regime

Simulations are carried out until the convergence resid-
ual becomes smaller than 10�7. The Reynolds numbers
investigated are 10, 20, 30 and 40, all below the Hopf bifur-
cation between the permanent and the periodic regime, and
the wake is thus characterized by two recirculation zones
attached to the rear cylinder wall. They are recognizable
by the strong vorticity f = $ ^ u and by low pressure levels,
as it can be seen in Fig. 2.

The first parameter controlled is the lengthLr of the recir-
culation zone which is defined by the downstream distance
on the central line of the wake where the velocity is null. Val-
ues of Lr are easily obtained by plotting the velocity versus
the distance after the cylinder wall for each Reynolds num-
ber (Fig. 3a). In the same way, values of the separation angle
hs are obtained by plotting the vorticity at the cylinder wall
against the angular position: hs corresponds to the angle
where the vorticity becomes null (Fig. 3b). The evolution
of these two parameters is presented in Figs. 4a and b. The
recirculation length is a linear function of theReynolds num-
ber and a least squares approximation provides the follow-
ing expression: Lr = 0.0671Re � 0.4155. The intersection
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Fig. 2. Details of the vorticity contours (left) and pressure field (right) in the wake at Re = 40.
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of this line with the axis of abscissa defines the value of the
critical Reynolds number Rec from which the recirculation
zones appear. The value found here Rec = 6.19 is slightly
surevaluated compared to the one proposed by Gerouache
[16] (Rec = 5.74), and Socolescu [45] (Rec = 5.84). Values
of the recirculation length are close to the common values
obtained in other studies but the discrepancy between the
results increases withRe. For the separation angle hs, the val-
ues are also in good agreement with other studies. For these
two parameters, the relative errors (computed as the abso-
lute value of the difference between the value obtained with
the present simulation and the average of the values found
in other studies divided by this same value) remain inferior
to 5% for the four Reynolds numbers tested.

Values of the drag CD and suction coefficients Ca are
also controlled. As expected, the lift coefficient CL remains
null because of the perfect symmetry of the flow field. The
expressions of the aerodynamic coefficients are reminded
below:

CD ¼ F D

1=2qU 2
1d

CL ¼ F L

1=2qU 2
1d

Ca ¼
p1 � p0

1=2qU 2
1

ð9Þ

FD (resp. FL) is the drag (resp. the lift) force by length unit,
p1 is the reference pressure and p0 is the pressure at the
rear stagnation point. Values of the drag coefficient (see
Fig. 4c) are close to those of Gerouache [16] and Tuann
and Olson [47] who also used a small aspect ratio, but as
mentioned before, they are slightly surestimated compared

to other studies like those of Lange et al. [25], Henderson
[20], Dennis and Chang [9] where the aspect ratio H/D is
greater. However, the agreement becomes better when Re

increases and the relative errors on the drag coefficient re-
main inferior to 5% for each Reynolds number. Finally, the
errors on the suction coefficient Ca are slightly larger but
still under 10%. This can be explained by the fact that Ca

is a local variable which is, from the computational point
of view, very sensitive to numerical error.

2.2. Periodic vortex shedding regime

Transient simulations are now investigated. The simula-
tion time is chosen long enough to observe about 15 vorti-
ces shedding once the periodic regime is established. The
time step is set to about 1/150 of the Strouhal period dur-
ing the transient phase at the beginning of the computa-
tions. Once the periodic regime is reached, the time step
is then divided by 4 to increase the accuracy of the results.
The CPU time stand at about 26 h. To obtain the Von Kár-
mán streets, the symmetry of the wake has to be numeri-
cally broken thanks to a numerical artefact: 1%
amplitude arbitrary noise is added to the incident velocity
for that purpose. This perturbation is only maintained dur-
ing a small time interval.

The Reynolds numbers investigated now are 60, 80, 100
and 120. In this case, the wake is composed of two stag-
gered rows of vortices being shed alternately from either
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side of the cylinder. Fig. 5 shows the vorticity contours in
the wake of the cylinder over a complete Strouhal period
TS at Re = 100. At t = t0, a vortex is forming in the lower
side of the wake and is then completely detached from the
cylinder wall at t = t0 + 1/3TS. On the following snapshot,
the vortex of the upper side is about to be inserted between
the lower vortex formed previously and a new vortex which
is forming. At t = t0 + TS, the vortex in the upper side is
completely detached and the wake topology is exactly the
same as the one observed at t = t0.

The periodicity of the shedding leads naturally to the
fluctuation of the aerodynamic coefficients which will be
denoted now by C0

D, C
0
L and C0

a for the fluctuating values
and by C0

D, C
0
L and C0

a for the mean values. These latter
are evaluated as the average value of the fluctuating coeffi-
cients over several periods chosen after the transient. The
convergence of the coefficients is shown in Fig. 6 at
Re = 100. The first part of the time series (t* < 10) exhibits
the transient phase during which the perturbation initially
introduced arrives on the cylinder and causes the shedding.
The periodic state reached is characterized by the oscilla-
tion of the drag coefficient at twice the lift frequency. The
fluctuations of the suction coefficient are governed by two

frequencies: the main frequency is equal to the lift oscilla-
tion frequency and the secondary is identical to the drag
oscillation frequency.

The Strouhal frequency fS can be defined as the lift coef-
ficient frequency or the fluctuation frequency of velocity
for any point in the near wake. The two frequencies are
equal and the Strouhal number is obtained by the following
relation:

St ¼ fS
d

U1
ð10Þ

The values of the Strouhal numbers obtained here are com-
pared in Fig. 7a to the analytical expressions of Fey et al.
[14], Norberg [30], Roshko [38], Williamson and Roshko
[49] and to other values from [16,25,20]. Although the evo-
lution of the Strouhal is well respected, the values com-
puted are slightly surestimated; however the relative error
does not rise above 3.5%. This should one more time be re-
lated to the small aspect ratio used here which could also
explain the great values of the mean drag coefficient C0

D

compared to those of [20] (see Fig. 7b). The mean value
of the lift C0

L is null and we therefore use the maximal value
reached C0

L;max or the root mean square value C0
L;rms as rep-

Fig. 5. Vorticity contours in the wake over one Strouhal period at Re = 100.
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resentative parameters. The graph Fig. 7c presents the evo-
lutions of the maximal lift coefficient C0

L;max compared to
the values of Gerouache [16] and of the rms lift coefficient
C0

L;rms. This latter is compared to the empirical expression
derived by Norberg [30] and show a very good agreement.
Finally the mean suction coefficient C0

a is compared to the
results of [16,48,20] in Fig. 7d: the C0

a is slightly underesti-
mated but the trend is respected. The accuracy of the re-
sults is rather satisfactory, especially concerning the
values of the Strouhal number and of the lift coefficient
which should be precise as they will play a major role in
the following study of the VIV.

3. Forced oscillations

Simulations are now performed for a cylinder forced to
oscillate at the frequency f0 which is better described by the
frequency ratio F = f0/fS. Computations are run for a Rey-
nolds number constant and equal to 100 from the solution
for the fixed cylinder, i.e. when the Von Kármán streets are
already present. Only the forced frequency f0 and possibly
the amplitude A are changed. The lock-in zone is defined
by the domain where the vortex shedding frequency
diverges from the value expected at the Reynolds number
considered and locks on the frequency of the forced oscil-
lations: this zone is represented in the plane (A, F) in

Fig. 8 according to the limits established by Koopmann
[24]. The lock-in zone is comprised between two limits
almost symmetrical with respect to the axis F = 1.0,
although slight differences confirmed by the numerical sim-
ulations of Anagnostopoulos [3] are observed for low
amplitudes. In order to highlight the different response
regimes of the cylinder, the amplitude A is kept constant
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beyond a certain level and F varies over a range wide
enough so that the lock-in zone should be crossed.

3.1. Cylinder response and lock-in zone

The cylinder response is studied for several frequency
ratios F between 0.50 and 1.50 while the amplitude A is
kept constant and equal to 0.25. We present in the follow-
ing two types of responses, the first in the lock-in zone and
the second out of it. For A = 0.25, the upper and lower lim-
its are approximately located at F = 0.75 and F = 1.25
according to the frontiers established by Koopmann [24].

3.2. Locked configurations

Two cases are presented here to illustrate the locked con-
figurations: F = 0.90 and F = 1.10. Time series of the aero-
dynamic coefficients are characterized by a pure sinusoidal
response (see Fig. 9, col. 1) and exhibit a strong increase of
the drag coefficient: indeed, for the fixed cylinder the mean
drag coefficient was C0

D ¼ 1:37 (see Fig. 7b), whereas the
values reach now C0

D ¼ 1:50 for F = 0.90 and C0
D ¼ 1:75

for F = 1.10. The maximal value of the lift coefficient
(C0

L;max ¼ 0:33 for the fixed cylinder) is smaller for
F = 0.90 (C0

L;max ¼ 0:28) but increases then when F = 1.10
(C0

L;max ¼ 1:44). The spectra of the lift coefficient presented
in Fig. 9, col. 2 highlight this sinusoidal response and clearly
show that the main frequency is f0 since f* = f/f0 � 1.0. This

indicates that the aerodynamic forces are now governed by
the forced frequency instead of the Strouhal frequency fS
determined above for a fixed cylinder. In the same way,
PSDs of the drag coefficient - not represented here - would
show a main peak at f* � 2.0, meaning that the forced fre-
quency also controls the drag fluctuations. This periodicity
can also be observed in the wake: visualizations of the vor-
ticity contours in the wake (not shown here) would be
exactly the same at two instants separated by one period
T0 = 1/f0.

The phase portraits of the system are also a very practi-
cal tool to analyze the response. Indeed, they represent the
energy transfer (product of the fluctuating lift force charac-
terized by the fluctuating lift coefficient C0

L and the adimen-
sional cylinder displacement y* = y(t)/d) between the
motion of the cylinder and the fluid and thus provide an
interesting description of how the system behaves. Phase
portraits for the two cases under study are therefore given
in Fig. 9, col. 3 as a complement to the PSDs. The existence
of a unique limit cycle is the result of the perfect undamped
sinusoidal response and the inclination of the cycle gives an
estimation of the phase angle between the imposed dis-
placement and the lift.

3.3. Unlocked configurations

The lock-in region is defined like Nobari and Naredan
[29] as the domain where the evolution of C0

L is purely sinu-
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soidal and governed by the forced oscillation frequency.
This means that only one peak at f* = 1.0 should be present
in the frequency spectrum. A locked or unlocked wake is
therefore easily identified not only thanks to the PSDs,
but also and preferably with the analysis of the phase
portraits.

The frequency ratios F = 0.50 and F = 1.50 are chosen
to illustrate this as they lead to an unlocked wake. Time
series of the lift coefficient are no longer purely sinusoidal
and a beating behavior is observed: the signal is not peri-
odic over two successive cycles of oscillation but over sev-
eral ones. The time series are therefore characterized by a
cycle-to-cycle period, which is different from the ‘‘real” per-
iod, this latter being defined by the time interval after
which the signal is exactly the same. The beating behavior
has also been observed numerically by Anagnostopoulos
[3] who noted that when the frequency ratio F was greater
than 1 or smaller than 1 and outside the lock-in zone, the
flow was not absolutely periodic at subsequent cycles but
a quasi-periodic flow pattern occurred. The presence of
more than one peak in the frequency spectra has also been
observed by Nobari and Naredan [29] or Mittal and
Kumar [27] for transverse or in-line oscillations. For
F = 0.50 (Fig. 10a, col. 1), the cycle-to-cycle oscillation is
associated to the Strouhal period TS but it is obvious that
the signal is not TS periodic. The beating period TB describ-
ing the periodicity of the signal is in this case equal to the

forced oscillation period T0 and by definition of F we have
TS = FT0 = 0.5T0. The case F = 1.50 (Fig. 10b, col. 1) is
more complex: this time, the cycle-to-cycle oscillation is
associated to the forced oscillation period T0 and the
Strouhal period is TS = 1.5T0. The beating period TB is
now equal to 8T0.

The PSDs presented in Fig. 10, col. 2 for the cases
F = 0.50 and F = 1.50 exhibit now two peaks. The first
peak at f* = 1.0 corresponds to the forced oscillation fre-
quency f0 and is still present on the two spectra but is alter-
nately the main peak (F = 1.50) or the secondary one
(F = 0.50). The second peak comes from the Strouhal fre-
quency fS evaluated for the fixed cylinder and is therefore
located at f* � fS/f0 = 1/F = 2 for F = 0.50 and f* � 2/3
for F = 1.50. The unlocked configurations are thus charac-
terized by the presence of the two frequencies f0 and fS,
each one playing now a role in the vortex shedding process.
The main peak is always responsible for the cycle-to-cycle
oscillation whereas the low-frequency peak affects the peri-
odicity of the signal. For the case F = 0.50, the beating is
enough energetic and is therefore identified on the spectra
as the low-frequency peak at f* = 1.0 (Fig. 10a, col. 2):
the beating frequency fB giving the periodicity of the time
series of the C0

L is thus approximately equal to f0. For the
case F = 1.50, the second peak at f* = 2/3 corresponds to
the Strouhal frequency fS. In this case, the beating is less
energetic in the sense that the difference of amplitude
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between successive cycles is smaller (for F = 0.50, the differ-
ence of amplitude was about 50% whereas now it is less
than 25%). Combined with the fact that the time simulation
is possibly not long enough, the beating frequency is not
detected by the spectral analysis represented in Fig. 10b,
col. 2.

Finally, the phase portraits (Fig. 10, col. 3) are dramat-
ically different from those obtained earlier. Indeed, they
highlight the presence of more than one frequency in the
signal which causes a fluctuation of the C0

L value between
two successive cycles. These fluctuations are characterized
by a different path between two cycles and as a result, there
are many ways in the interior of the limit cycle.

Although the beating frequency fB is sometimes hardly
visible on the spectra (cf. the case F = 1.50), it plays an
important role for the vortex shedding process. Even if it
is not visible on the spectra, the beating period TB = 1/fB
can be evaluated by plotting the vorticity contours at differ-
ent instants: the time interval between two identical snap-
shots provides an estimation of TB. Fig. 11 represents the
vorticity contours at t = t0, t = t0 + T0, t = t0 + TS, and
t = t0 + TB. In the present case, we find TB = 8T0. This
value agrees with the time series of the C0

L (Fig. 10b, col.
1) where it can be seen that the amplitude at two instants
separated by TB is the same. It is clear from the vorticity
contours that the periodicity of the wake is now governed
by the beating period TB (the first and last pictures are
exactly the same) instead of the Strouhal period TS or the
forced oscillation period T0 as it could be expected by see-
ing the PSD. Inside the lock-in zone, we observed that the
wake was governed by the period T0 of the forced oscilla-

tion which was also the period of lift coefficient fluctua-
tions. On the contrary, the behavior is more complex
outside the lock-in zone: according to the relative impor-
tance of the peaks in the PSD (Fig. 10), it can be argued
that the cycle-to-cycle period of the lift is governed by
the Strouhal frequency below the lower limit of the lock-
in zone (resp. the forced oscillation frequency upon the
upper limit). However, the periodicity of the C0

L is associ-
ated to a certain beating period TB which is a multiple of
the cycle-to-cycle period and which corresponds to the
periodicity of the vortex shedding process.

3.4. Aerodynamic coefficients

In addition to a shift of the shedding frequency, the
lock-in region is also characterized by an increase of the
aerodynamic coefficients, when compared to the fixed cyl-
inder case. Fig. 12 represents the evolution of the mean
drag and maximal lift coefficient when the frequency ratio
F is increased and the amplitude A = 0.25 is constant. The
evolution of the mean suction coefficient is not given here
as it is quite similar to the mean drag coefficient, the max-
imal value being obtained in both cases at F = 1.10. The
aerodynamic coefficients are practically always greater than
the fixed cylinder values which are represented with dashed
lines. The shape of the drag curve Fig. 12a is characterized
by a maximum inside the lock-in zone and the drag coeffi-
cient seems to relapse near the fixed cylinder value outside
of the lock-in zone. On the contrary, after a small drop, the
lift is increasing from the beginning of the lock-in zone.
Outside the lock-in zone, this amplification seems to

Fig. 11. Vorticity contours at different strategic moments for F = 1.50.
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become less pronounced when F is further increased. The
computed curves are compared to the results of Anagnos-
topoulos [3] and Nobari and Naredan [29]. The shape of
the drag curve is globally similar with a maximum in the
lock-in zone but the discrepancies between the values are
important. Although there are some small differences con-
cerning the parameters of the model (Re = 106 for Anag-
nostopoulos [3], A = 0.2 for Nobari and Naredan [29]),
the discrepancies stem certainly from the values obtained
for the fixed cylinder case: Anagnostopoulos found
C0

D ¼ 1:28, Nobari C0
D ¼ 1:72 and the present study yields

C0
D ¼ 1:37. This explains that the drag curve is comprised

between the two others, and recalling that the mean drag
is slightly surestimated, one could expect that the curve
would be shifted towards lower values if a greater aspect
ratio had been used. Concerning the lift coefficient, the
fixed cylinder case provided C0

L;max ¼ 0:33 whereas Anag-
nostopoulos found C0

L;max ¼ 0:17. There is a factor 2
between the two values and therefore the discrepancy
between the curves Fig. 12b is very important. Despite
the great differences, the two curves exhibit an increase of
the lift coefficient inside the lock-in zone and a stabilization
of the amplification near the end of the lock-in zone.

To conclude this paragraph, it is worth mentioning that
a jump in the phase angle could be observed at the begin-
ning of the lock-in zone. Carberry et al. [7] find experimen-
tally at about F = 0.80 a jump of the lift coefficient and of
the phase angle / defined as the shift between the cylinder
displacement and the fluctuating lift force. Below this
value, / is approximately equal to 180� and falls to 0� at
the critical value of F. The authors attribute this jump to
a modification of the vortex shedding mode which appears
in the wake. In the present study, it is also observed that
the lift coefficient increases when F increases but Carberry
et al. [7] found out that the steepest slope is at F = 0.80,
whereas in the present case this happens later, between
F = 1.00 and 1.25. The phase angle has only been evaluated
in the lock-in zone where the fluctuations are purely sinu-
soidal. The present simulations show a smooth decrease
of / with F and no real jump has been observed: the values
found here are / = 113.8 for F = 0.90, / = 80.5 for

F = 1.00 and / = 47.7 for F = 1.10. A plausible reason is
the difference in the Reynolds number between our study
(Re = 100) and the one of Carberry et al. [7] where
Re = 2300. Although it is not yet clear, it has been noticed
by Khalak and Williamson [22], Anagnostopoulos [3],
Nobari and Naredan [29] that the change of vortex shed-
ding mode is most of the time not observed at low Rey-
nolds numbers, whereas it can be seen at higher Reynolds
numbers [48].

3.5. Vortex shedding modes

Attention has also been paid here to the topology of the
wake. The beating phenomenon described previously also
appears at (A, F) = (0.25, 1.25). It has been analyzed and
associated to a vortex merging mechanism for this couple
of parameters by Placzek et al. [35]. Then greater values
for the amplitude A have been used to observe different
shedding modes, which are commonly called the 2P and
P + S modes according to the appellations employed by
Williamson and Roshko [49]. The values used to investi-
gate other shedding modes are deduced from the vortex
shedding map proposed by Williamson and Roshko [49].

First, the couple (A, F) = (1.00, 0.90) is chosen in the
middle of the 2P shedding mode domain. The wake looks
like a 2S shedding mode but the vortices are stretched in
the vertical direction because of the increased amplitude
of oscillation (see Fig. 14a). When the wake structure is
observed in detail, it is possible to discern a secondary vor-
tex denoted V2, whose intensity is very small. The vortices
are still alternately shed from the upper and lower side of
the cylinder as in a 2S mode, but as they move down-
stream, the weakly energetic vortex V2 slips over its follow-
ing neighbor V3 and forms the tail of its preceding neighbor
V1. The vortices are then assembled by asymmetric pairs
(V2–V3). Over one cycle period, two pairs are shed, so
the vortex shedding mode looks like a 2P mode in which
the vortices would not be identical in a same pair. As the
small vortex is weakly energetic, it quickly disappears in
the far wake. The vortex shedding mode in the far wake
looks therefore like a 2S mode with deformed vortices. It
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is not surprising to obtain a deformed shedding mode
instead of the regular 2P mode. As already mentioned,
the reason comes certainly from the low Reynolds number
used here. Indeed, it has been noted by Khalak and Wil-
liamson [22] that the 2P mode is not observed at low Rey-
nolds numbers but the reasons why the wake is different
remain obscure. Experiments presented by Ramberg and
Griffin [37] exhibited only the P + S mode for Re < 190;
the 2P mode in their laminar-regime studies has nonethe-
less never been observed.

The couple (A, F) = (1.25, 1.50) located in the middle of
the P + S shedding mode area on the shedding mode map,

leads to a wake composed of two distinct rows of vortices.
In the upper row, the vortices are grouped by pairs (P)
whereas a single vortex (S) is shed in the lower row. The
wake pattern is shown in Fig. 14b. The time evolution of
the fluctuating lift coefficient C0

L and the frequency content
can be linked to the vortex shedding regimes. Times series
for the two cases (A, F) = (1.00, 0.90) and (A, F) =
(1.25, 1.50) (Fig. 13, col. 1) do not exhibit any beating
behavior but the signal is modulated by a second frequency
over one cycle of oscillation. These additional frequencies
appear on the PSD spectra shown in Fig. 13, col. 2. The
main difference between the preceding cases at A = 0.25
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is that these frequencies are now high frequencies which do
not affect the cycle-to-cycle periodicity but only the shape
of each cycle. The phase portraits (Fig. 13, col. 3) therefore
exhibit only one path but the shape is not ovoid like for
locked configurations because of the presence of additional
frequencies. The question here is to determine whether the
wake is locked or not, since the spectra contains more than
one frequency but the phase portraits exhibit only one
path. It could be argued that although several frequencies
exist, the wake is locked since the main frequency is always
at f* = 1.0 and the additional high frequencies do not affect
the cycle-to-cycle periodicity. The major difference between
the present cases and the preceding (at F = 0.25) concerns
the position of the second peak relative to the first. For a
small amplitude of oscillation A = 0.25, the second peak
is a low-frequency peak. As a result, a low-frequency beat-
ing behavior is observed: the fluctuations of the lift are not
periodic over one cycle of oscillation but over several ones.
On the contrary, for high amplitudes (A = 1.25 and
A = 1.00), the secondary peak in the spectrum is a high fre-
quency peak. The fluctuations of the lift are therefore mod-
ulated by a high frequency signal which influences the
response during one cycle. The fluctuations of the lift
remain thus periodic between two successive cycles, but
over one cycle, a small fluctuation is observed. We suppose
that this fluctuation could be related to the emission of the
pair in the upper side of the wake.

The influence of the amplitude on the vortex shedding
mode is crucial. Indeed, according to the values, high- or
low-frequency phenomena are observed. For small ampli-
tudes, the low-frequency beating behavior in the time histo-
ries of C0

L has been linked by Placzek et al. [35] to a vortex
merging in the wake for (A, F) = (0.25, 1.25). On the con-
trary, for high amplitudes ((A, F) = (1.00, 0.90) and
(A, F) = (1.25, 1.50)), the appearance of high frequencies
in the spectra leads to the emission of a pair of vortices
in the upper side of the wake, which could be related to
the modulation observed in the time evolution of the lift
coefficient.

This first work has shown that the phenomena com-
monly observed in the case of a cylinder forced to oscillate
in a transverse flow can be reproduced with our industrial
code. In view of the preceding results, the simulation of
vortex-induced vibrations seems to be feasible and results
for Re = 100 are presented in the sequel.

4. Vortex-induced vibrations

The case of an elastically mounted cylinder vibrating as
a result of fluid forcing is one of the most basic and reveal-
ing cases in the general subject of bluff-body fluid–structure
interactions. The first part of the work has been conducted
with the aim of illustrating and understanding the phenom-
ena involved when the cylinder was subjected to forced
oscillations whose characteristics were known, as well as
demonstrating the ability of the CFD code to capture the
physics of VIV. Similar phenomena are now observed

when the vibrations are induced by the flow, the frequency
and amplitude responses being in this case not known a

priori.
The vortex shedding process in the wake leads to fluctu-

ating drag and lift forces which cause the oscillations of the
cylinder. The phenomenon is self-limited: the fluid flow
adjusts so that the oscillation amplitude is restricted to a
certain upper limit. It has been observed by Mittal and
Kumar [27] that the various mechanisms by which the
oscillator is able to self-limit its vibration amplitude are a
reduction in the amplitude of the aerodynamic forces,
appearance of additional frequency components in the time
histories of the fluid forces and de-tuning of the vortex-
shedding frequency from the structural frequency.
Although the phenomenon has been observed for a long
time, the maximal amplitude of vibration is not yet clearly
defined. Indeed, the cylinder response depends on various
parameters and particularly the mass-damping parameter
m*f, where m* represents the adimensional cylinder mass
and f is the structural damping. Khalak and Williamson
give in their article the schematic amplitude response of
the cylinder for high or low mass-damping parameters
(see Fig. 3 of [22]). For high m*f, only two branches (called
initial excitation branch and lower branch) are observed,
whereas the behavior at low m*f is more complex and
involves three branches (namely the two preceding
branches and an additional one called the upper branch).
Each branch of the response characterizes a different
regime, where the adimensional amplitude of oscillation
A is more or less pronounced. The determination of the
maximal amplitude that can be reached is still an open
question: while the maximal amplitude on the lower branch
seems to be about A = 0.6, the maximum reached on the
upper branch is highly dependent on the mass-damping
parameter. Khalak and Williamson suggest A = 1.20 as
the maximal value but they find no signs of amplitude sat-
uration when the mass-damping parameter was reduced to
extremely small values.

For hydrodynamic applications like ours, the mass-
damping parameter takes generally low values and the cyl-
inder response should exhibit three branches. However m*f

is not only responsible for the number of branches in the
amplitude response. There is clearly an influence of the
Reynolds number, especially at low values like in the lam-
inar shedding regime (Re � 100). Attention has been drawn
before for forced oscillations on the fact that the 2P shed-
ding mode was not observed at low Reynolds number. The
differences in the vortex shedding mode also exist for VIV
and they prohibit the jump to the upper branch. This is
confirmed by the 2D direct numerical simulation data from
Newman and Karniadakis [28] for Re = 100 and 200 and
the low Re experiments of [4] which did not show the upper
branch. The absence of the upper branch in the simulations
may be due to the fact that the vortex shedding mode
obtained at low Re does not give a net energy transfer from
the fluid to body motion over one cycle, unlike the 2P mode
at higher Re [22].
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The numerical results exposed in the following will be
compared to those of Shiels et al. [40] who also carry out
simulations at Re = 100. Indeed the main part of their
results is presented in the case of an undamped oscillator
like in the present study. To begin with the VIV study,
the various non dimensional parameters commonly used
to classify the response regimes of the cylinder are briefly
reminded before turning to numerical results. Then the
results of our simulations for an undamped cylinder at
Re = 100 are presented and compared to those of Shiels
et al.

4.1. Adimensional parameters

The mass-damping parameter m*f is adapted to deter-
mine whether the cylinder response is composed of two
or three branches, but for a given response shape (2 or 3
branches), it remains to determine the best parameter
which collapses the different response regimes for a large
range of structural parameters. The reduced velocity U*

(typically a reference velocity like U1 divided by the cylin-
der diameter and a frequency like fN for example) has often
been used to plot the results but the width of the amplitude
peak varies with the mass of the system. A ‘‘true” reduced
velocity U*/f* used by Khalak and Williamson [22] seems
to collapse ideally the results over a wide range of cylinder
mass. The adimensional parameters used in different stud-
ies are thus quite diversified because of the different tech-
niques employed to make the cylinder equation
adimensional. The general equation of the oscillator with
structural damping is:

m€y þ c _y þ ky ¼ F y ð11Þ

where m is the cylinder mass, c is the structural damping, k
is the rigidity and Fy is the resultant of the lift force. The
natural frequency fN of the cylinder (see Eq. (5)) and the
frequency in water fH (defined below Eq. (12)) are often
used in the adimensionalization process:

fH ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k

mþ ma

s

where ma � md ¼ qpR2L ð12Þ

The frequency in water fH depends on the added mass ma

which can be approximated here by the displaced mass of
water md as the cylinder is situated in an infinite domain
where the viscosity is small. Since no universal set of adi-
mensional parameters exists, the comparison of the results
between them requires to juggle with those used in different
studies. For that purpose, Table 1 summarizes the different
sets of adimensional parameters commonly used in the lit-
erature and to which we will refer in the following to com-
pare our results.

The set of parameters used by Shiels et al. [40] (see the
last column of Table 1) have been especially developed to
by-pass the problem of definition for the structural fre-
quencies fN and fH in extreme cases where k and/or m

are null. A complementary adimensional rigidity

k	 ¼ k=ð0:5qU 2
1LÞ is also introduced by Shiels et al. [40]

to define a new representative parameter k	eff called the
‘‘effective rigidity”:

k	eff ¼ k	 � 4p2f 	2m	 ð13Þ

This parameter is always defined, even if the mass or the
rigidity (or both) are null. Moreover, it collapses very well
the data for different structural parameters.

4.2. Response of the cylinder undergoing VIV

A set of simulations is performed without structural
damping and thus the movement is governed by Eq. (4).
The time integration is realized with the blended procedure
(see Eqs. (6)–(8)), but further simulations are currently car-
ried out with the implicit procedure already employed by
Abouri [1] and Sigrist and Abouri [42]. The behavior of
the cylinder is summarized on the curves plotted in
Fig. 15. The response regimes for the amplitude of oscilla-
tion, the actual frequency of the cylinder and the aerody-
namic coefficients are plotted against k	eff .

As expected, the amplitude response is only composed
of the lower branch. The results show a very good agree-
ment with those of Shiels et al. [40], for each parameter.
A ‘‘resonant” zone is observed in the range k	eff � ½0–5�,
where the maximal amplitude of oscillation reaches
A = 0.58 at k	eff ¼ 2:32 (Fig. 15a). The peak of amplitude
is naturally associated with an increase of the aerodynamic
coefficients. Fig. 15b presents the evolution of the actual
reduced frequency of the cylinder f* = f d/U1. Inside the
‘‘resonant” zone, the frequency shifts from the Strouhal
frequency fS and increases until a value corresponding to
the natural frequency of the cylinder: the ‘‘resonant” zone
is thus similar to the lock-in zone described previously for
forced vibrations and the same name is therefore adopted
to describe this zone. Finally, the mean drag and maximal
lift coefficients are characterized by a maximum inside the
lock-in zone which is associated to the maximal amplitude
response (Fig. 15c). Outside this zone, the aerodynamic

Table 1

Adimensional sets of parameters commonly used to classify the VIV

response regimes

Adimensionnal

parameter

Guilmineau and

Queutey [18]

Khalak and

Williamson [22]

Shiels et al.

[40]

Amplitude A* y/d y/d y/d

Frequency f* f/fN f/fH f d/U1
Velocity U* U1/(fNd) U1/(fHd) U1/(2pfNd)

Mass m* m/md m/md m/(0.5qd2L)

Damping f c=
ffiffiffiffiffiffi

km
p

c=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðmþ mdÞ
p

c/

(0.5qU1dL)

y is the vertical cylinder displacement, d is the cylinder diameter and L its

length, U1 is the inlet velocity and q is the density of the fluid, m, k and c

are respectively the cylinder mass, rigidity and damping, f is the actual

oscillation frequency of the cylinder, fN is the natural cylinder frequency

Eq. (5), fH is the natural frequency in water Eq. (12) and finally md is the

displaced mass of water Eq. (12).
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coefficients relapse near the values corresponding to the
fixed cylinder case. Values of the lift for k	eff < 0 have been
set according to Shiels et al. [40] to the opposite of the
C0

L;max value in order to indicate the existence of a phase
shift equal to p between the cylinder displacement and
the C0

L. Without this artefact, the curve would have had
the same shape as the one of the reduced frequency f*. In
the following, a detailed analysis of three cases
(k	eff ¼ 17:5, k	eff ¼ 2:32 and k	eff ¼ 0:05) is exposed : the fre-
quency content, vortex shedding modes and lock-in zone
are studied and the phenomena observed are linked
together.

4.2.1. Frequency content and phase portraits

Time histories of the cylinder displacement are now very
interesting data, because the motion is not known a priori

as it was the case for forced vibrations. The graphs in the
first row Fig. 16 highlight the difference of amplitude
between the different regimes for the cylinder displacement.
In the lock-in zone, the amplitude is maximal but remains
limited. This is due to the self-limitation phenomenon men-
tioned before. The periodic regime is reached quickly:
about 10 oscillation cycles only are necessary to reach the
maximal amplitude response. The PSDs of the fluctuating
lift coefficient C0

L are plotted versus the frequency ratio
f* = f/fH in the second row Fig. 16. For the intermediate
case k	eff ¼ 2:32, the peak at f* � 1.0 indicates that the lift

is governed by the natural frequency of the structure
instead of the Strouhal frequency fS for Re = 100. The adi-
mensional frequencies f* = fS/fH corresponding to the
Strouhal frequency at Re = 100 in the three cases are:
f* = 1.35 for k	eff ¼ 0:05, f* = 0.82 for k	eff ¼ 2:32, and
f* = 0.51 for k	eff ¼ 17:5. The preceding values indicate that
for k	eff ¼ 0:05 and k	eff ¼ 17:5, the oscillations of the cylin-
der are driven by the Strouhal frequency, as the peaks high-
lighted in Fig. 16 are located approximately at f* = fS/fH.
On the contrary, the spectrum for k	eff ¼ 2:32 reveals that
the lift is governed by the structural frequency fH since
the peak is located at f* � f/fH = 1.0.

Over a certain range of k	eff , the cylinder response exhib-
its an amplification of the amplitude and of the aerody-
namic coefficients. This amplification can be related to
the synchronization of the cylinder frequency on its natural
frequency: this is typical for the lock-in zone, which is
defined as the domain where the cylinder frequency shifts
from the Strouhal frequency and locks on the structural
one.

The phase portraits of the oscillator are represented on
the third row Fig. 16. Unlike the forced vibration case,
the shape of the phase portraits is similar for each k	eff either
inside or outside the lock-in zone. The limit cycle is no
longer ovoid but always resembles a double Lissajou figure.
Mittal and Kumar [27] observed a simple Lissajou figure in
the case of in-line and transverse free oscillations but the
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same shape of phase portrait exhibiting a double Lissajou
has also been obtained by Guilmineau and Queutey [18]
for transverse oscillations like here. The three phase por-
traits of Fig. 16 can be compared to those plotted by Kha-
lak and Williamson [22], see Fig. 13 in this reference.
Firstly, the global inclination of the phase portraits
becomes progressively horizontal like here as k	eff decreases
(or equivalently as U* increases). Secondly, the intermedi-
ate case located in the lock-in zone is obviously more reg-
ular in this study as the upper branch is not reached.
Indeed, Khalak and Williamson noted that the irregulari-
ties appearing in the phase portrait were the manifestation
of the less steady dynamics of the upper branch. Finally,
the extent of the first and last portraits is like in our case
smaller than for the intermediate case. The absence of the
upper branch in our case also explains why the global incli-
nation of the portrait is always in the first quadrant for the
three cases: Khalak and Williamson [22] obtained an incli-

nation in the second quadrant for the last case because a
phase jump occurred. One reason for the absence of phase
jump in our study can be the low Reynolds number used
[18,22], which prohibits on the one hand the modification
of the vortex shedding modes as it will be seen later and
on the other hand the jump to the upper branch.

4.2.2. Vortex shedding modes

The vortex shedding patterns for the three cases under
study are illustrated in Fig. 17 with the vorticity field.
The vortices are shed alternately from the upper and lower
sides of the cylinder, according to the classical Von Kár-
mán streets or 2S mode: no clear modification of the wake
has been observed over the range of k	eff studied. The vor-
tices are more stretched in the vertical direction at
k	eff ¼ 2:32 than in the other cases. This slight modification
is certainly due to the increased amplitude of oscillation in
the intermediate case, which deforms the wake in the verti-
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cal direction. Similar results have been obtained by Shiels
et al. [40], as it can be seen in Fig. 17a.

For higher Reynolds numbers, a change between a 2S
and 2P mode is often observed [22,18] and can be linked
to the transition between the upper and lower branch of
excitation. This transition has also been connected to the
phase jump in the case of forced oscillations or VIV. How-
ever, at low Reynolds number such a change of the mode
shape is not observed. Moreover, the numerical simula-
tions fail sometimes to capture this mode change, even
for high Reynolds numbers: in their study Al-Jamal and
Dalton [2] did not obtain the 2S and 2P modes although
they use large eddy simulations at Re = 8000. The authors
argue that these modes are only observed for sinusoidal

oscillations like those used in forced oscillations. When
oscillations are not purely sinusoidal, as it is the case in
VIV for certain reduced velocities, the 2S, 2P, etc. struc-
tures may not become fully established because the ampli-
tude of oscillation and phase angle are both time
dependent. The lack of constancy in amplitude and phase
angle could likely lead to the lack of repeatability in vortex
formation which certainly could suppress the standard
mode patterns.

The oscillations of the cylinder are not always purely
sinusoidal and a beating behavior similar to the one
observed for forced vibrations is observed for example at
k	eff ¼ 7:79: the vertical displacement is not periodic
between two successive cycles (see Fig. 18a), but over sev-

Fig. 17. Vortex shedding modes inside and outside the lock-in zone for the cylinder undergoing VIV at Re = 100.
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eral cycles. The spectrum (Fig. 18b) exhibits therefore
two peaks: the main peak is located at f 	

m ¼ 0:77 and the
secondary peak at f 	

s ¼ 0:90. It should be noted that
these two peaks are between f* = fS/fH = 0.68 and
f* = fH/fH = 1, the first value corresponding to the Strou-
hal frequency whereas the second is the natural cylinder
frequency in water. The beating behavior can thus be
understood as a desynchronization phenomenon: the cylin-
der oscillation frequency progressively shifts from the nat-
ural frequency fH, which is predominant at k	eff ¼ 2:32, to
the Strouhal frequency which drives the wake at
k	eff ¼ 17:5. When k	eff is increased, there is a progressive
change of the main peak in the spectrum associated with
the end of the lock-in zone and which is the sign of the
response modification.

This beating behavior is often observed [22,27,40,2] and
has been related to a mode change, or a mode competition.
Khalak and Williamson [22] have shown that this beating is
associated which the transition between the lower and
upper branch of excitation, and therefore with the transi-
tion between the 2S and 2P modes. We do not have a sig-
nificant mode change, but the beating is however connected
to the little modification of the vortex patterns between
k	eff ¼ 2:32 and k	eff ¼ 17:5. As mentioned above, at low
Reynolds number the classical mode change 2S to 2P is
not observed; however, a little modification of the wake
appears and a similar beating phenomenon happens, which
is related to this vortex pattern change and to the progres-
sive transition between a cylinder response driven by the
natural frequency fN to a response characterized by the
Strouhal frequency fS.

4.2.3. Lock-in zone

The lock-in zone can be identified in Fig. 15a as the region
where an amplification of the oscillation amplitude is
observed. This first representation focuses on the amplitude
resonance which characterizes the lock-in. A second inter-
pretation (Fig. 15b) consists in defining the lock-in as the
range where the frequency shifts from the Strouhal value.
Instead of plotting the reduced frequency f* = fD/U1, the
lock-in can also be characterized by representing the adi-
mensional frequency f* = f/fH against a representative
parameter (the effective rigidity k	eff like [40] or the reduced
velocity U* like [22]). In this case, the lock-in zone can be
interpreted as the region where the actual cylinder oscilla-
tion frequency f is approximately equal to the natural cylin-
der frequency fH. This approach is represented in Fig. 19. As
there is no evident relation between the effective rigidity k	eff
used by Shiels et al. [40] and the reduced velocityU* adopted
byKhalak andWilliamson [22], the subplot in Fig. 19 gives a
relation in the form of a curve to facilitate the link with the
previous paragraphs.

The horizontal line f* = 1 indicates that the cylinder
oscillation frequency is the natural frequency, while the
oblique lines give the Strouhal frequencies over the range
of reduced velocities studied. Two lines are represented
because results from Khalak and Williamson have been

obtained at higher Reynolds numbers for which the Strou-
hal number is slightly greater (the results of Khalak and
Williamson [22] spread over the interval Re � [103; 104]
where fortunately the Strouhal number is nearly constant
and will be approximated here by the average value
St = 0.21).

If we observe first the results of Khalak and Williamson
[22], it can be seen that for small or high U*, the cylinder
oscillations are driven by the Strouhal. In the range
U* � [4–6], the cylinder frequency f is exactly equal to the
natural frequency of the cylinder: this corresponds to the
upper branch. Over the range U* � [6–10], the frequency
f is still not equal to the Strouhal frequency but its value
remains constant over this interval: this corresponds to
the lower branch. The interval U* � [4–10] can be defined
as the lock-in zone because the cylinder frequency shifts
from the Strouhal frequency. The transition zone between
the upper and lower branch is characterized by the simul-
taneous existence of two frequencies in the response.

In our case, the response is less complex because only
one branch is observed. However, the two first and last
points (U* = 3.0, 4.0 and U* = 11.3, 14.1) show that the
cylinder oscillations are in this case driven by the Strouhal
frequency. In the range U* � [4.4–11.3], the actual fre-
quency of the cylinder shifts progressively from the Strou-
hal frequency and follows an oblique line whose slope is
very smooth and quasi-horizontal. Over this interval, the
cylinder is locked near the natural frequency of the cylin-
der. In the present case, the lock-in zone is not strictly
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horizontal but rather oblique. This is due to the mass of the
system as it is shown by Shiels et al. [40]. The authors per-
form several series of simulations for different mass ratios
m* between 0 and 20. For small masses, the lock-in zone
is not very pronounced. On the contrary, for high mass
ratios the lock-in zone is immediately visible and forms a
horizontal level located at f* = 1 (see Fig. 13 of [40]). In
most cases tested here, we choose a mass ratio m* = 3.3,
which explains the slight slope of the level.

5. Conclusion

The numerical simulation of the vortex-induced vibra-
tions phenomenon has been investigated here at
Re = 100. The first task of the study has shown that a
rather accurate description of the wake for a fixed cylinder
could be obtained. Based on these results, the simulation of
a cylinder forced to oscillate in a transverse stream has
been performed to analyze the different phenomena
appearing. The frequency content and vortex shedding
modes have been studied and linked together by changing
the frequency and amplitude of the imposed oscillations.
The well-known lock-in zone has been highlighted and
characterized with the analysis of PSDs and phase portraits
of the cylinder displacement and lift coefficient.

This step has provided interesting elements to understand
the phenomena involved and to validate the CFD code: the
numerical results have indeed proved that our industrial
code was able to capture the vortex induced vibration phe-
nomenon. The lock-in zone has been characterized and the
response regimes (amplitude, actual oscillation frequency
and aerodynamic coefficients) are in good agreement with
similar studies. Restrictions must however be underlined as
the results are for instance in good agreement for low values
of the Reynolds number and without structural damping.
Ongoing numerical simulations are performed for higher
Reynolds number (1000 6 Re 6 10.000) with turbulence
modeling using the k–x SST model of Menter [26]. The
results are rather promising: the amplitude response is cor-
rectly evaluated for high reduced velocities and the upper
branch is reached [43]; these results are therefore very
encouraging since previous attempts to simulate the upper
branch with numerical approaches somehow failed to pre-
dict the upper branch response [18,31].

Detailed investigation and analysis of these complemen-
tary simulations will be presented in a coming paper and
future application of the presented work will be devoted
to numerical simulation of flow-induced vibration phenom-
enon in tube bundle of nuclear propulsion steam genera-
tors or vortex-induced vibrations on mooring cables and
periscopes.
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