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ABSTRACT
In turbomachinery, it is well known that tighter operating clearances improve the efficiency. However, this leads

to unwanted potential unilateral and frictional contact occurrences between the rotating (blades) and stationary
components (casings) together with attendant thermal excitations. Unilateral contact induces discontinuities in the
velocity at impact times, hence the terminology nonsmooth dynamics. Current modeling strategies of rotor-stator
interactions are either based on regularizing penalty methods or on explicit time-marching methods derived from
Carpenter’s forward Lagrange multiplier method. Regularization introduces an artificial time scale in the formulation
corresponding to numerical stiffness which is not desirable. Carpenter’s scheme has been successfully applied to
turbomachinery industrial models in the sole mechanical framework, but faces serious stability issues when dealing
with the additional heat equation.

This work overcomes the above issues by using the Moreau–Jean nonsmooth integration scheme within an implicit
� -method. This numerical scheme is based on a mathematically sound description of the contact dynamics by means
of measure differential inclusions and enjoys attractive features. The procedure is unconditionally stable opening
doors to quick preliminary simulations with time-steps one hundred times larger than with previous algorithms. It
can also deal with strongly coupled thermomechanical problems.

Nomenclature

Muu, Cuu, Kuu Structural mass, damping and stiffness ma-
trices
C�� , K�� Heat capacity and heat conductivity matri-
ces
Ku� Thermoelastic coupling matrix
I Identity matrix
0 Zero matrix
u, � Nodal displacement and temperature vectors
x Generalized degrees of freedom vector
v Generalized velocity vector
M;C;K Generalized mass, damping, stiffness matri-
ces
fu, f� Nodal force and heat flow vectors

� Normal contact force (Lagrange multiplier)
g Gap vector
y Relative velocity vector
� Coulomb friction coefficient
ur Radial displacement
� Nodal temperature
�N Normal nodal contact force
h Time-step size

 � -method numerical parameter
proj.K; y/ Projection operator of y on K
TK.x/ Tangent cone to K evaluated at x
˝ Kronecker tensor product

Introduction
Turbomachinery equipment manufacturers tend to improve the aerodynamic performance by reducing operating gaps between
rotating and stationary components. This leads to frequent contact occurrences, referred to as rotor-stator interaction, in

�Address all correspondence to this author
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compressor and turbine stages of modern aircraft and helicopter engines [1]. To reduce the possibly harmful effects of
such events on the global dynamics and subsequent damage, casings are commonly coated with abradable materials [1].
This strategy has proven efficient, however the resulting dynamics, coupling contact and frictional heating, is still not well
understood and modelled.

Various developments have been dedicated to the improvement of turbomachines design to account for blade–tip rubbing,
modal interaction or whip–whirl motions [1]. In these works, contact is dealt with using either a regularized approach [2] or
the forward Lagrange multiplier formulation [3, 4]. The regularized approach consists in modeling the contact between the
rotor and the stator through a stiff spring. Though very simple to implement, the additional and somehow artificial spring
leads to stiff numerical problems which are prone to stability issues [5, 6]. The Lagrange multiplier formulation preserves the
nonsmooth framework induced by contact conditions but uses an explicit procedure in time for which stability is guaranteed
only for sufficiently small time-steps. This is particularly problematic since thermal fluxes generated by frictional heating
seem to play a significant role in rotor-stator interactions [7] and are thus considered in the model. Indeed, explicit schemes
are not well-suited for the heat equation as they lead to stiff numerical problems [8]. More specifically, the stability is typically
governed by a relationship of the form �t � �x2=2, implying that a refinement of the space discretization has drastic
consequences on the necessary refinement in time.

A simple thermo-mechanical model of a bladed-disk sector section 1 is first considered in this work. The coupling is
two-fold: from heat diffusion to mechanics via thermal expansion, and from mechanics to heat through a frictional heating
law. The governing equations are solved via dedicated nonsmooth solvers which rely on an implicit numerical scheme [6] as
described in section 2. Time-domain histories, systematic comparison with the forward Lagrange multiplier method as well as
sensitivity analysis to time-step are discussed in section 3. Finally, the methodology is adapted to an industrial-size model
in section 4.

1 Description of the simplified model
Due to the high computational costs induced by non-linear phenomena in large-scale problems, model-order reduction methods
are often implemented for realizable computations, as exposed in section 4. However, the simple one-sector model illustrated
in fig. 1 is first used to validate the methodology. The stator is rigid and the rotor includes 2028 degrees of freedom (507 free
nodes in each space direction and temperature) and seven contact points. It possesses constrained nodes (zero displacement

rotor

rigid stator

contact node 3
contact node 4

Fig. 1: Simplified finite element sector. Contact nodes [ ], constrained nodes [ ], and corresponding contact forces [ ].

and prescribed temperature of 25 ıC) on its internal bore and contact nodes on the blade tip. The structural dynamics is
governed by an equation of the form

Muu
RuC Cuu PuCKuuuCKu�� D fu C fuc (1)

where u is the vector of generalized displacements, � is the vector of generalized temperatures, Muu, Cuu, and Kuu are
respectively the mass, damping and stiffness matrices stemming from the finite element discretization. The temperature-
induced expansions are accounted for through the coupling matrix Ku� . The external forces are split into the external load fu
and the contact forces fuc . In a more elaborate model, fu could include centrifugal or aerodynamic effects while contact
could be induced by the static deflection or the vibrations of the stator. In this work, the load fu, described further, activates
contact. To every contact node i D 1; : : : ; 7 corresponds a gap function gi .u/ measuring the algebraic distance to the stator
and an impulsive contact force �i in the inward-pointing normal direction. The following so-called Signorini conditions
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complements eq. (1):

8̂<̂
:
gi � 0

�i � 0

gi�i D 0:

(2a)
(2b)
(2c)

The first two inequalities enforce the non-penetration and the non-sticking condition, respectively. Equality (2c) translates the
fact that the gap is open (gi > 0) if and only if the associated contact force is zero, except in the very specific case gi D 0 and
�i D 0. The seven Signorini conditions (one for each contact node) are usually gathered in the compact form 0 � g ? � � 0

where g D Œg1; : : : ; g7�
>, � D Œ�1; : : : ; �7�

> and the operators �, ? and � are defined component-wise. In addition to
Signorini conditions, as in any space semi-discretized contact formulation, an impact law is required to ensure uniqueness
of the solution [9]. In order to mimic lasting contact phases, we choose an inelastic Newton impact law: yCi D 0 where
yCi D Pgi .u.t

C// denotes the normal velocity right after the impact time. In the tangential direction, fuc includes Coulomb
friction, therefore proportional to the normal forces. This can be written as fuc D CuNT� where CNT is a rectangular matrix
transferring the normal impulses � in the local coordinates to the generalized coordinates in the normal direction, as well as in
the tangential direction through the Coulomb friction coefficient. In the present case, the local nodal reference frames at the
contact nodes are oriented according to the global cylindrical directions so that CuNT takes the form

CuNT D I7 ˝

24 �1

��R�

0

35 (3)

where R is the stator radius and � the angular velocity—the contribution of the blade vibration in the tangential contact
velocity is neglected. Note that because of the high tangential contact velocity, there is no stick-slip transitions and friction is
therefore not source of nonsmoothness here. Also, eq. (1) does not include centrifugal stiffening or spin softening. They could
however be incorporated in a straightforward manner.

The thermal dynamics is governed by an equation of the form

C�� P� CK��� D f� C f�c (4)

where C�� and K�� are the heat capacity and heat conductivity matrices. As for the structure, the external load is separated
into external fluxes f� and frictional heating due to contact f�c . Each of the seven frictional heat fluxes ��i follows a simple
law ��i D ˛�i which are included in f�c through a relationship of the form f�c D C�NT� where C�NT D ˛I7. This means that
each contact occurrence generates a heat flux proportional to the normal contact force. This simple law [10] is sufficient to
illustrate the capabilities of the proposed numerical method. However it is worth mentioning that it might induce temperature
discontinuities. Indeed, if one �i is impulsive, eq. (4) shows that P� will also be corresponding to a discontinuous � . Integrating
more complex laws is straightforward. Also, in contrast to other available investigations [11, 12], contact-induced wear in
rotor-stator interactions are not considered in the present model.

Altogether, eq. (1) and eq. (4) are compactly recast in the form

MRxC CPxCKx D fC fc (5)

with

M D
�

Muu 0
0 0

�
; C D

�
Cuu 0

0 C��

�
; K D

�
Kuu Ku�

0 K��

�
(6)

and

x D
�

u
�

�
; f D

�
fu

f�

�
; fc D

�
fuc
f�c

�
: (7)
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The matrices M and K were obtained using SOLID226 coupled–field elements in ANSYS R
. The damping matrix verifies
Cuu D 10�5Kuu. Contact is activated via fu, chosen here as a sinusoidal function of frequency 33 Hz and amplitude 100 N, in
the radial direction and on all contact nodes. The frequency corresponds to � D 2000 rpm, assuming the blade hits the stator
once per rotation. For comparison, the first flexural mode of the blade has a frequency of 1300 Hz. The contact frequency
could also be due to the vibration of the blade, as in section 4.

A TA6V titanium alloy, widely used for the production of aircraft compressor components, is considered. The material
properties, estimated from several alloys properties, read as follows: density 4430 kg m�3, Young’s modulus 110 GPa,
Poisson’s ratio 0:3, heat capacitance 520 J K�1 kg�1, heat conductivity 6:7 J K�1 m�1, dilatation coefficient 9 µm m�1 K�1.
The coefficient of frictional heating is ˛ D 0:1 and the coefficient of friction in Coulomb’s law is � D 0:15.

2 Nonsmooth numerical methods
2.1 Formulation using Differential Measures
Equation (1) may seem to be an Ordinary Differential Equation (ODE). More rigorously, it should be described by means of
weaker mathematical objects such as distributions or measures. Indeed, fuc contains impulsive terms: every time a gap closes,
the corresponding contact node instantly looses all its kinetic energy. This instant loss of kinetic energy is mirrored by an
impulse that is proportional to a Dirac distribution (which is not a function). Equation (1) is therefore an abuse of notation in
the context of nonsmooth dynamics. In this subsection, the model is reformulated in a sounder mathematical manner, using
measure differential inclusions, making the use of efficient dedicated numerical methods possible.

Introducing differential measures dv and d� [6] and the Lebesgue measure dt , eq. (5) can be expressed as

�
MdvC .CvCKx � f/dt D dr
v D Px:

(8a)
(8b)

In short, the prefactors of dt are smooth terms, while dv and dr are measures which, when integrated between two arbitrarily
close times, can yield non-zero values: they contain impulses, which are proportional to Dirac delta distributions. The
measure dr stores all contact forces and frictional heating. Loosely speaking, the reader who is not familiar with measures can
compare eq. (8a) to eq. (5) multiplied by dt .

Using convex analysis, the Signorini conditions eq. (2) together with the inelastic impact law mentioned above can be
formulated using the proj operator and the tangent cone T in RC [6] as:

yC D proj.TRC.g.u//; y�/ (9)

where the equality is componentwise, and the vector y stacks the normal contact velocities Œ Pg1; : : : ; Pg7�>. The contact
impulses are related to y through

� D OW�1.yC � y�/ and OW D .rug/>M�1.rug/: (10)

Let us inspect eq. (9) for the i th unilateral constraint. By definition, the tangent cone reads as

TRC.gi .u// D
(
R if gi .u/ > 0
RC if gi .u/ D 0

(11)

and the following can be said.

� During a free flight, gi .u/ > 0 so yC D proj.R; y�/ D y� and from eq. (11), �i D 0 follows: there is no reaction
impulse and velocity is continuous.
� At the beginning of a contact phase, gi .u/ D 0 and y�i � 0 so that yCi D 0 and the impact law is recovered. The

corresponding impulse is � D � OW�1y� � 0.
� In the middle of a contact phase, gi .u/ D 0 and y� D 0 so that yC D 0 and there is no reaction impulse.
� At the end of a contact phase, gi .u/ D 0 and y�i < 0 so that yC D proj.RC; 0/ D 0 and �i D 0. The contact force

vanishes and the gap opens.

To summarize, the problem is governed by eq. (8), eq. (9), the frictional heating law f�c D C�NT� as well as the geometric
relationships fuc D CuNT� and y D rug Px.
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2.2 Time discretization
We now proceed with the Moreau–Jean discretisation [13, 14] of eq. (8), using an linearly implicit solver. For n 2 N�C, let tn
denote the nth time-step such that tn D nh where h is the time-step. Integrating eq. (8) between tn and tnC1 yields:8̂<̂

:
Z tnC1

tn

MdvC
Z tnC1

tn

.CvCKx � f/dt D
Z tnC1

tn

dr

v D Pu:

(12a)

(12b)

Smooth quantities are discretized by means of the � -method, where to avoid confusion with the temperature � , the numerical
parameter is denoted by 
 :

Z tnC1

tn

vdt D h
�

vnC1 C .1 � 
/vn

�
WD hvnC
 (13)

and similarly for x and f, so that eq. (12a) becomes

(
M.vnC1 � vn/C h

�
CvnC
 CKxnC
 � fnC


�
DpnC1

vn D Pun

(14a)
(14b)

with pnC1D
Z tnC1

tn

dr. Introducing OM D .MC h
CC h2
2K/, eq. (14a) is rewritten as

OM.vnC1 � vn/ D �hCvn � h2
Kvn � hKun C hfnC
 C pnC1: (15)

We now introduce a predictor step, corresponding to the dynamics without the unilateral constraints. The purpose of this
step is to estimate whether the contact status is about to change in the next time-step. Two new quantities are defined: the
predicted gap chosen as QgnC1 D g.un C hvn=2/ and the predicted velocity QvnC1 such that

OM.vnC1 � QvnC1/ D pnC1: (16)

The predicted normal velocities in the local coordinates are given by QynC1 D rug QvnC1. Equation (9) is discretized as

ynC1 D proj.TRC.QgnC1/; QynC1/: (17)

Then, the reactions in the global frame pnC1 are computed from the normal contact reactions in the local frame �nC1 D
OW�1.ynC1 � yn/ through the geometric relationship pnC1 D CuNT�nC1. The velocity is finally updated by adding the effects

of contact to the contact-less prediction QvnC1:

vnC1 D QvnC1 C OM�1pnC1: (18)

3 Validation using the simple model
In this section, the reference solution is generated via the methodology described in the previous section, with a time-step
h D 1=3 � 10�6. The error of a data series is defined as the integral of the absolute value of the difference with the reference
solution, divided by the integral of absolute value of the reference solution, over the time interval Œ0 s; 1 s�. For example, a
time series of the temperature of the first node �1 shows the error

� D

R
Œ0;1�
j�1 � �

ref
1 jR

Œ0;1�
j� ref
1 j

: (19)

Although imperfect, this definition is useful to quantify discrepancies in the remaining.
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3.1 Time-step sensitivity analysis
Figure 2 displays the time evolution of the radial displacement, the temperature and the normal contact force for the middle of
the blade tip, that is, contact node 4 in fig. 1, and different time-steps.
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Fig. 2: Sensitivity to time-step in terms of radial displace-
ment ur , temperature � and normal contact force � at node 4.
Reference [ ], h D 10�4 s [ ] and h D 10�5 s [ ].
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Fig. 3: Close-up view of fig. 2.

For h D 10�4 s, the error is about 3 %, while temperature and contact force show 16 % and 25 % errors, respectively.
After one second, the temperature is underestimated by about 5 %, resulting from an underestimation of the normal contact
force. This can lead to significant errors on longer simulations, but might be sufficient if contact events are expected to be of
short durations. With h D 10�5 s, the errors reduce to 0:21 %, 0:18 % and 1:72 %: the curves cannot be distinguished from
the reference. Due to the strong thermomechanical coupling, the temperature oscillates at the loading frequency of 33 Hz.
Heat accumulates and the temperature globally increases. As a result, the blade expands through the coupling term Ku� and
the gap tends to reduce while the normal force tend to increase. A close-up view on the last time range 0:9 s to 1 s is provided
in fig. 3. Note that the simulated temperatures of thousands of degrees go far beyond the material capabilities: that is an
obvious shortcoming of the simple chosen model, which does not include nonlinear effects (other than contact) nor damage,
but is sufficient for the present scope: validating the methodology. A more realistic model is presented in section 4.

The normal contact force, always non-negative, is seen to be non-zero only when the gap is closed, in accordance with the
Signorini conditions eq. (2). Even with relatively large time-steps, the position exhibits clear kinks when the gap opens and
closes, corresponding to velocity discontinuities induced by the inelastic impact law, features which would not be accurately
captured via a classical time-domain integration scheme dedicated to smooth dynamics.

The proposed algorithm does not strictly prevent penetration, as illustrated in fig. 4. However, the residual penetration,
which is small compared to the geometrical tolerances of the machine components, tends to zero as the time-step reduces.
Also, once contact is activated, penetration never increases.

To conclude on the convergence analysis, the error is depicted as a function of the time-step in fig. 5. Given that the
Carpenter’s algorithm is unstable with h > 5 � 10�7 s (see section 3.3), the proposed method enable the use of time-steps
larger by several of orders of magnitude.

3.2 Effect of coupling on contact geometry
The previous figures were depicted for contact node 4 (middle of the blade tip), which is the first one to close the gap. In
this section, it is shown that thermomechanical coupling can have an effect on the contact geometry. Figure 6 compares the
simulation results between node 4 and its neighbour node 3, as defined in fig. 1.

For both nodes, the contact force � is non-zero if and only if the gap is closed. The middle node touches the stator on a
longer interval than node 3, resulting in a normal force of larger amplitude, and higher temperature due to frictional heating.
At the beginning, all boundary nodes impact the stator. After a few contact occurrences, the middle of the blade has expanded
so much due to heating that the nodes located at the end of the blade tip (nodes 1 and 7) separate from the stator. This is
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Fig. 5: Error as a function of the number of time-steps at contact node 4 for one second of simulation: ur [ ], � [ ] and
� [ ]

a logical consequence of the simple model and tend to validate the simulation methods. Every time the gap g4 closes and
opens, the trajectory of node 3 displays a small kink because of the structural coupling Muu and Kuu. In contrast, when
thermomechanical coupling is ignored, the discrepancies between normal forces and displacements tend to reduce, see fig. 7.

�2
�1

0
1

u
r

[�
10

�5
m

]

0:9 0:92 0:94 0:96 0:98 1

1
0
2
0
3
0
4
0

Time [s]

�
[d

aN
]

1
:5
2
2
:5
3

�
[�

10
3

ı C
]

Fig. 6: Time histories for contact nodes 3 [ ] and 4 [ ].

�2
0

u
r

[�
10

�5
m

]

0:9 0:92 0:94 0:96 0:98 1

5

Time [s]

�
[d

aN
]
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without thermomechanical coupling.

7



The effect of temperature on the normal force appears clearly when comparing the bottom plot with that of fig. 6: thermal
expansion further magnifies gap closure and attendant contact force.

3.3 Comparison with Carpenter’s scheme
Results are now compared to the ones obtained with Carpenter’s forward Lagrange multiplier method. Figure 8 shows
that displacements and normal forces match well, with overall relative errors of 0:82 % on nodal displacement, 5:1 % on
temperature and 7:3 % on contact force. Figure 9 is a close-up of fig. 8.
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Fig. 8: Comparison of time histories for node 4. Moreau–
Jean [ ] and Carpenter [ ].

�2
�1

0
1

u
r

[�
10

�5
m

]

0:9 0:92 0:94 0:96 0:98 1

0
1
0
2
0
3
0
4
0

Time [s]

�
[d

aN
]

2
2
:5

3

�
[1

03
ı C

]

Fig. 9: Close-up view of fig. 8.

The major benefit of the proposed method is its unconditional stability while Carpenter’s scheme is unstable whenever
h > 4:6 � 10�7 s. The presented nonsmooth approach enables the use of time-step hundreds of time larger with similar error.

4 Industrial application
We now show that the above simulation methods are not limited to simple models such as section 1 by using a more realistic
model of an axial compressor sector with a twisted blade.

4.1 Model
The model illustrated in fig. 10 comprises 5686 nodes and a total of 18768 DOFs (including 4692 thermal DOFs), with 9
contact nodes located on the middle plane of the blade tip. In order to obtain reasonable computational times (of the order of

node 1

(a) Positions at rest

node 1

(b) First flexural modeshape

Fig. 10: Finite element model of simplified industrial compressor sector. Contact nodes [ ], constrained nodes [ ]. Colouring
refers to the radial displacement

the minute), the model is first reduced using a thermomechanical model-order reduction method developed by the authors [15].
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The contact simulations were performed by periodically forcing the blade on its first flexural mode at frequency 507 Hz to
reflect an aerodynamic excitation. The forcing amplitude was chosen in order to obtain approximately a steady-state radial
displacement amplitude of 10�4 m on node 1 without contact.

4.2 Sensitivity to model parameters
To emphasize the effect of friction-induced heating during rotor-stator interactions in turbomachinery, a contact simulation is
performed with and without frictional heating. The structure is initially at rest. The results are depicted for node 1 in fig. 11.
The response curves oscillate very fast because the simulation time is much larger than the excitation period.
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Fig. 11: Time histories for node 1 with [ ] and without [ ] frictional heating.

During the first contacts, little difference is observed between the two responses. Then, the gap in the simulation with
heating tends to reduce, while the contact force increases. At the end of the simulation, discrepancies of the order of 25 %
on the displacement and 30 % on the contact force are predicted. This qualitative analysis shows that thermal effects have
noticeable influence during the contacts, even for short durations.

The nonlinear nature of the system, stemming from the contact conditions, can be emphasized by doubling the excitation
force amplitude, see fig. 12.

Magnification on the time interval [0 s,0:05 s] is provided in fig. 13.
As expected, the first contact occurs earlier when the external load is magnified, due to higher vibration amplitudes. The

higher excitation level also leads to an increased contact force and thereby to higher temperatures, inducing slightly smaller
displacements. The temperature seems to diverge with the doubled load, probably because frictional heating generates more
heat than the blade can diffuse. A thermoelastic instability emerges: it could advance the wear of machine components or
even lead to more extensive damages.

4.3 Sensitivity to time-step
For this model, the stability condition required by Carpenter’s algorithm is h D 5 � 10�7 s. The Moreau–Jean and Carpenter
algorithms were implemented with this time-step. The response for node 1 is displayed in fig. 14. Again, they are in very
good agreement.

Figure 15 shows results for various time-steps with Moreau–Jean’s procedure. The results with h D 10�5 s and with
h D 5 � 10�7 s are almost identical, meaning that convergence is achieved for h D 10�5 s. Therefore, the stability condition
of Carpenter’s algorithm is unnecessarily limiting. Moreover, for the same time-step h D 5 � 10�7 s, Carpenter’s algorithm
took about twice as long as Moreau–Jean’s algorithm in our implementation—this might be due to implementation difference
and may not be true in general. More computation times are reported in fig. 16. All computations were performed using
MATLAB R
 on a 4-core computer (2:3 GHz clock frequency).
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Fig. 12: Time histories for node 1. Effect of excitation
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Fig. 13: Close-up view of fig. 12.
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Fig. 14: Contact simulation results for node 1. Carpenter algorithm [ ] and Moreau algorithm [ ] for h D 5 � 10�7 s.

Conclusion

Conventional time-domain integration schemes to simulate rotor-stator interaction thermomechanical formulations face
numerical stability issues: regularized contact constraints lead to numerical stiffness while explicit solution methods such
as Carpenter’s forward Lagrange multiplier scheme are not suited for the heat equation. The methodology proposed in the
present paper, based on the Moreau–Jean procedure for measure differential inclusions addresses these shortcomings. It is
shown to be very robust on two models of different sizes. While Carpenter’s stability requires time-steps of the order of
5 � 10�7 s, the thermomechanical Moreau–Jean scheme generates reasonable responses with time-steps of the order of 10�4 s
for the simplified model and 10�5 s for the industrial model, offering significant gains in the computational effort. With
h D 10�5 s, the error in displacement, temperature and normal contact force is approximately 2 %. The methodology is also
compatible with model reduction [15] offering additional computation gains of several orders of magnitude and application to
industrial-size models, including those with complex geometries.
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Fig. 15: Moreau–Jean’s scheme sensitivity to time-step for node 1: h D 5 � 10�7 s [ ], 10�6 s [ ], 5 � 10�6 s [ ] and
10�5 s [ ].
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