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Abstract—Testing analog, mixed-signal and RF (AMS-RF) cir-
cuits represents a significant cost component for testing complex
SoCs. Moreover, AMS-RF test generation and validation are still
largely handcrafted tasks that rely on expert design knowledge
for each particular Device Under Test (DUT). Mixed-signal test
automation has been sought by the test community for the last
decades, trying to mimic the success of digital test approaches.
Indeed, in the digital domain, test is vastly automated and
standard techniques are already available (ATPGs, BIST, scan
registers, etc.). In the last decade, a methodology based on
leveraging the power of machine learning algorithms has been
proposed for AMS-RF circuits that opens the door to a higher
level of automation. In this paper we review recent results in
this line and try to put together what could be such a complete
methodology and what remains to be done.

I. INTRODUCTION

Nowadays, traditional specification-based functional test
continues to be the golden standard for AMS-RF production
test. However, the wide variety of AMS-RF circuits and the
huge number of their associated specifications make functional
test automation a challenging task. Obviously, testing an RF
transceiver is completely different from testing an Analog-to-
Digital Converter, and they actually require different dedicated
test equipment. That being said, there exist some attempts to
systematic functional test for some circuit families, essentially
Built-In Self Test (BIST) approaches [1]–[5]. BIST techniques
move the test problem to the design stage by embedding test
instruments together with the Device Under Test (DUT). The
path to automation of such approaches would parallel that of
“conventional” automated design synthesis [6] since co-design
is mandatory.

In the last few years the preeminent position of functional
specification test for AMS-RF testing has been challenged.
Current market trends in rapidly growing sectors (e.g., auto-
motive, space, healthcare, etc.) put a lot of pressure on quality
and reliability. A defect that induces no performance loss at
production time may be unacceptable as a potential threat for
field operation. The goal is to achieve sub-ppm defect levels
and, as a matter of fact, functional tests are not enough for
guaranteeing this target defect coverage. Moreover, the a priori
evaluation of defect coverage for functional test is seldom
carried out due to computational power constraints.

In the last decade, a promising alternative to functional
test has been proposed based on leveraging the power of
advanced machine learning algorithms [7]. The core idea is
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Fig. 1. Generic test flow for machine learning indirect test.

to build a mapping model from simple measurements, usually
called signatures, to the set of functional specifications. The
benefits of this machine learning indirect test methodology are
threefold. First, the outcome of the test can be interpreted in a
conventional manner: the estimated specifications are directly
compared to their test acceptance windows. Second, the simple
measurements are devised to be cheaper than their functional
counterparts. And third, these simple measurements can also
be tailored to yield a higher defect coverage.

Figure 1 depicts a generic flow for machine learning in-
direct test. The premise of machine learning indirect test
is that the simple measurements and the specifications are
correlated since their variations are controlled by the same
statistical process (i.e., the parametric stochastic variations of
the fabrication process). Thus, in a first stage, a defect filter is
trained to screen out any outlier (which usually corresponds
to a spot defect) that doesn’t belong to the expected nominal
distribution. Next, a machine learning regression model is
trained and used to replace specification tests. Finally the
test procedure can be completed by adaptive schemes that
update test parameters to the possible evolutions or drifts of the
fabrication process. In this paper we discuss recent advances in
machine learning indirect test. The following sections develop
the three steps of the test flow depicted in Fig. 1 with an accent
on their automation potential.
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II. DEFECT FILTER

Machine learning indirect test is aimed at identifying ex-
treme process variations that lead to malfunction of the DUT.
In fact, defects not related to process variations may not be
detected. In this scenario, a necessary first step to assure the
correctness of the complete test flow is to screen out these non-
parametric defects that may not obey the correlation function
between signatures and specifications. This first step is usually
known as a defect filter.

Defect filters were first proposed in [8]. The original imple-
mentation of the defect filter is aimed at detecting outliers
in the nominal multidimensional distribution of a set of
signatures. Instead of looking at the marginal distribution of
the signatures individually, the authors propose to build a non-
parametric multidimensional estimate of the joint probability
density function of signatures from a subset of devices. The
evaluation of a new device in the production line consists in
performing the signature measurements and then computing
its associated probability of occurrence. If this probability is
below a given acceptance threshold, the device is considered
as an outlier and screened out. The procedure of learning the
joint probability density function can easily be automated since
it relies on well known statistical tools (one-class classifiers,
non-parametric kernel density estimation, etc.) [9].

However, a question remains unanswered: how can we
guarantee that a given defect filter has a good defect cov-
erage? Answering this question requires: a) proposing a set
of appropriate signatures, meaning that the defects should
appear as outliers with respect to their nominal parametric
joint distribution; and b) either finding a mathematical proof
of correctness, or being able to evaluate test coverage with
sufficient accuracy. From an EDA viewpoint a) is related to
Automated Test Pattern Generation (ATPG) and b) is related
to formal verification and defect simulation.

In an ideal scenario, we should be able to propose appro-
priate signatures prior to performing any simulations, relying
on some form of formal proof. Unfortunately, we are not
aware of any such systematic formal approach except for the
simplest circuit families, such as linear time-invariant circuits
[10]. Instead of that, most approximations try to capture the
designer expertise to propose ad hoc sensitive signatures for
a given DUT. Then, an optimization loop can be employed
to maximize this sensitivity to defects, that is, to maximize
defect coverage. As a matter of fact, any defect-oriented test
strategy may be used as a starting point for building a defect
filter [11]–[14].

For the sake of brevity we cannot review all the proposals in
the literature, but let us comment the recent generic proposal
in [11] that takes automation into account. The main idea
of this approach consists in measuring the DC voltages at
primary outputs and some internal nodes, which would require
some DfT modifications. In addition, since the sensitivity of
these signatures may not be sufficient, authors propose to
introduce some circuit topological modifications during test
mode that are supposed to facilitate the detection of defects.

These topological modifications are carried out by introducing
pull-up or pull-down DfT transistors on selected nodes. Both
the selection of internal DC probes location and the DfT
pull-up and pull-down insertion points are automatically opti-
mized using a multi-objective genetic optimization algorithm
that tries to minimize circuit modifications while maximizing
defect coverage. Though it is a step in the right direction,
this strategy has still some limitations: the DfT structures
should be co-designed with the DUT (this is thus a problem
of automated design synthesis), and some defects may not be
detected by DC-only measurements (for instance an open in
a unit capacitor).

In general, within the framework of defect-oriented test
strategies, test coverage must be estimated, if not for optimiza-
tion, at least for validation. This represents a key roadblock
for the whole process. Indeed, estimating test coverage a
priori, during the design stage, requires defect simulation and
this leads to additional challenges. AMS-RF defect simulation
is an old topic that has regained recent interest in the test
community. A sound methodology has actually been proposed
in the 80s, the so-called Inductive Fault Analysis [15]. It
consists in randomly introducing disks of extra or missing
material in the different layers of the DUT layout (with the
radius and the layer probability coming from fab data) to
induce shorts and opens with realistic likelihoods. Another
simplified approach that led to a commercial tool consists
in extracting shorts and opens likelihoods based on extracted
parasitics. Short likelihood is deemed to be proportional to
parasitic resistors in a given layer, while open likelihood is
proportional to parasitic capacitance [16].

However, the main problem is not probabilistic defect
generation, but the simulation of the defect itself. First of all,
there are no widely accepted simulation models for defects,
particularly for opens [17], [18]. Secondly, some defects lead
to simulation convergence issues. And finally, the computa-
tional burden of simulating a sufficiently representative set of
defects is prohibitive for practical industrial designs. Recent
efforts have been carried out to address these issues, like the
standardization of AMS-RF defect modeling and definition
[19]. In addition, simulation frameworks have been proposed
in order to minimize the number of defects to be simulated for
a robust test coverage estimation (within a given confidence
interval) [16], [20]. These works propose to use likelihood
weighted random sampling of defects in order to avoid any
selection bias while simulating a representative (but as reduced
as possible) set of defects.

From an EDA point of view, it is clear that systematic
approaches to defect filtering exist and could be automated,
although the computational burden of test validation continues
to be a challenge.

III. MACHINE LEARNING INDIRECT TEST

As it was mentioned in the introduction, machine learning
indirect test is aimed at replacing the measurement of complex
functional specifications by a set of simpler signatures. A
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machine learning regression algorithm is used to map the sig-
natures to the specifications. Conceptually this is not different
from the linear approach proposed in [21]. However, using
modern regression tools greatly extends the validity range of
the models.

The usual approach to machine learning indirect test is
based on supervised machine learning algorithms. The process
is developed in two stages: a learning stage, and a testing
stage. During the learning stage both performance parameters
and signatures are measured from a set of training devices. A
machine learning algorithm is then trained over the two sets of
measurements to build a mapping model. In the testing stage,
signatures are measured for each DUT, and performances
are inferred by using the mapping model obtained in the
previous stage. Test result interpretation is the same as in
conventional functional test. This is an elegant way to deal
with the issue of valid ranges of acceptance, and also gives
a valuable insight into reliability since we can estimate how
far the circuit is from its nominal specification. In addition,
machine learning algorithms are designed to handle complex
multi-dimensional and non-linear relations like those between
defects and specifications, and by extension, between signa-
tures and specifications.

Machine learning indirect test is a promising test framework
that is very suitable for its automation. However, it is not
free of shortcomings that should be addressed. Maybe the
first question for someone not familiar with this approach
would be the selection of a suitable regression model and how
to train it robustly. There exist plenty of regression models
in the Statistics literature with different characteristics. In a
first approximation, the choice of the model should rely on
comparing the number of reliable signatures to the number
of samples in the training set. Models with high bias and
low variance (like linear models) are best suited for situations
with a small number of training samples with respect to the
number of signatures. On the contrary, models with high
variance and low bias (like nearest neighbors) may be better
suited in situations where a lot of data is available for a
few signatures. In the major part of the test-related literature,
relatively few signatures are considered and the most used
models are possibly Multivariate Adaptive Regression Splines
(MARS) [22]–[24] and Neural-Netwroks (typically perceptron
models) [25], [26]. The possibility also exists to use classifiers
instead of regression models, but this gives a much more
defect-oriented flavor to the approach that we will keep out of
the scope of this paper.

Anyway, if model selection is a concern, there are some
techniques to automate this decision. One that we have used in
the past, which also improves the robustness of the predictions,
is called ensemble learning [27], [28]. Ensemble learning relies
on a cross-validation process which consists in randomly split-
ting the training set in a number N of partitions. One of these
partitions is set aside as a validation set and a model is trained
on the union of the remaining N − 1 partitions. Then, the
prediction error is computed for the samples in the validation
set and the operation is repeated by leaving a different partition

out for validation. The final model is a weighted average
of the N trained models, where each individual model is
weighted by the inverse of its generalization error. Notice that
such an ensemble can be produced from a single model type,
or from a mixture of models. The final weighted averaging
implicitly performs model selection, and the variability of the
generalization error in the N partitions can also be used as an
indication of the robustness of the modeling process [29].

One of the key issues to enable machine learning indirect
test automation is the definition of an appropriate set of
signatures. It is obvious that such a set must capture the
major part of the circuit parametric variability but with limited
redundancy. In practice, signature sets are proposed based
on expert knowledge but are usually suboptimal: they may
contain redundant information, noisy signatures, signatures
that are actually uncorrelated to the target performances, and
even some functional test measurements. The statistic field of
feature selection comes at hand to clean up such an ad hoc
signature set. A variety of feature selection proposals can be
found in the literature based on different strategies [30]–[37].

A direct approach to feature selection consists in preselect-
ing a subset of features, based on some statistical observations,
before training any regression models. This approach, widely
used when the number of initial features is high, is known as
filtering. Different approaches have been presented in the last
few years based on non-linear correlation metrics [33], [34],
PCA [36], mutual information [35], etc. However, filtering
approaches tend to capture only the most significant variation
components. If more accuracy are required, it is necessary to
resort to wrapper techniques. Basically, a wrapper algorithm
uses the machine learning prediction model as a black box
within an optimization loop, with the objective of finding
the subset of signatures of minimum cost that minimizes the
prediction error in an independent validation set [30], [32]. The
main drawback of wrapper approaches is the computational
burden of the search in the input space of features, specially
when the cardinality of this set is high. In such cases, hybrid
filtering-wrapper approaches can be considered to guide the
search in the input signature space based on the dynamic
evaluation of a correlation metric [31].

While feature selection can be considered a solved problem,
proposing the original set of features remains as an open
problem for the automation of the test flow. Just like for the
defect filter, this issue is equivalent to the definition of an
appropriate ATPG: we need systematic strategies. In this line,
some work has been presented for guiding the design of new
features based on the missing information in the input set of
signatures with respect to the Monte Carlo process parameters
[30]. This diagnosis information help designing new tests that
specifically target that missing information. Another approach
to the problem consists in optimizing the input stimulus and
the output measurements. This is the approach in [24] where
the break point coordinates of a piece-wise linear stimulus
are optimized together with the capture times of the output
waveform in order to minimize the prediction error of the
regression model. While this is a sound strategy the choice
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and the parametrization of the input stimulus and output
measurements are still ad hoc. In addition the computational
cost is high since the optimization loop embeds a full Monte
Carlo electrical simulation campaign for each iteration.

Another key roadblock for the automation of the machine
learning indirect test is the validation of the test itself. The
computational cost can be significant since it requires Monte
Carlo simulation campaigns to generate both the training and
the test set. Moreover, since regression models cannot be
extrapolated, it is necessary that the generated data extends
over the complete variation range. If we consider a mature
fabrication process, a huge number of Monte Carlo samples
would be needed to cover a 6σ variation range. Some tech-
niques have been proposed to circumvent this issue. Extreme
value theory is used in [38] to estimate the performance of the
test in the situation where the test boundaries lie in the tails of
the distribution. Other techniques such as importance sampling
[39] and statistical blockade [40]–[43] rely on altering the
selection likelihood of Monte Carlo samples in such a way
that sampling is pushed towards the test boundaries. This way
we guarantee that the model is trained with both passing and
failing devices, mimicking what should be observed in the
production line.

Beside the computational cost, another issue is that this
simulation-based validation implicitly accepts that the Monte
Carlo models provided by the foundry are accurate, even in the
tails of the distributions, something that has been questioned
in [44]. Generally speaking, any model-based approach is
prone to non-model errors. That is, anything not included
in the model is a threat to the accuracy of the methodology
and can lead to unexpected errors. This holds for the Monte
Carlo model, but also for any surrogate model used to speed-
up simulations, models of the package, load board and the
test setup in general. An interesting concept that could be a
solution to this issue is that of Bayesian model fusion [45],
[46]. The idea is to train the regression model on simulation
data (accepting that the available simulation models may be
unreliable) and then some tuning parameters of the model are
dynamically adjusted from experimental data as they become
available. The underlying hypothesis is that non-model errors
will only slightly perturb the regression model but not its
underlying structure.

Again, from an EDA point of view, it seems that systematic
methodologies exist for most problems but the computational
burden associated to complex AMS-RF circuit simulation is
the main obstacle for fully automated approaches.

IV. ADAPTIVE TEST ALGORITHM

Strictly speaking, the complete production test process could
end in the previous stage with the obtention of the test results.
However, in the last few years, an additional step has been pro-
posed to extend and improve the test flow by adding adaptive
algorithms. The basic idea behind adaptive test algorithms is
to harness the statistic information that is accumulated during
the testing procedure to adapt the test program in a device-
by-device basis [47]–[50]. Adapting the test program may

call for eliminating certain test that are deemed redundant,
changing the order of some tests for faster detection of likely
defects, moving the test limits to account for process drifts,
etc. In general, for a given test procedure comprising a list
of test measurements, adaptive test approaches are aimed at
optimizing the sequence of test measurements. Each time that
a test is executed, the algorithm takes into account the outcome
of that test to select the following best test. “Best test” must
be understood as the one that brings us closer to the final test
decision for this particular device.

For instance, in [47] the authors estimate the joint probabil-
ity density function of the measurements in the test list and use
it to guide test execution towards the tests that are more likely
to fail. If no test is deemed likely to fail based on previous
measurements, the device is considered as a good device
and the test stops. The approach in [50] is slightly different:
The test list is ordered a priori by building a sequence of
classifiers with an incremental number of test measurements.
The resulting test list and classifier list are applied to each
device and the test sequence is stopped if a classifier outputs
a pass decision with sufficient confidence. The benefit of this
“stop-on-pass” approach is that it is compatible with multi-site
testing. One of the main difficulties faced by these academic
proposals is the lack of actual production data to perform
valid experiments in actual production conditions. Recently,
the adaptive approach presented in [48] has been successfully
applied to an actual production line which shows the industrial
interest on the technique.

Moreover, adaptive algorithms can be also added to the
other stages of the test flow. Thus, the work in [51] presents
an adaptive defect filter which updates the definition of outlier
taking into account process drifts, while the work in [52] pro-
poses a generic adaptive strategy for machine learning indirect
test. The circuits are tested with a machine learning indirect
test but undergo a full characterization if the confidence in
the test outcome is insufficient. As more data is collected, the
uncertainty region shrinks.

V. CONCLUSIONS

Enabling mixed-signal test automation faces two key road-
blocks. The first and most obvious one is the computa-
tional burden of test evaluation. Indeed, complex mixed-signal
simulation are prohibitive to be introduced in optimization
loops. This problem is not exclusive of mixed-signal test,
but it is shared by automated design synthesis. The second
challenge is to find a way to capitalize expert knowledge
to provide measurement candidates for both defect filter and
test signatures. Again, this problem is similar to capturing
the expertise of a designer for automated design synthesis.
Hopefully, future advances will benefit both domains.
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