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Knowledge-Driven System Simulation for 
Scenario Analysis in Risk Assessment 
 

Turati Pietro, Pedroni Nicola, Zio Enrico 

Acronyms 

AEMO : Australian Energy Market Operator 

AK-MCS : Adaptive Kriging-Monte Carlo Simulation 

ANN : Artificial Neural Network 

AR : Acceptance Ratio 

BIS : Bank of International Settlement 

Cdf : Cumulative density function 

CR : Critical Region 

CSN : Nuclear Security Council 

DD : Damage Domain 

DE : Differential Evolution 

DET : Dynamic Event Tree 

DEX : Deep EXploration 

DOE : Design Of Experiments 

ET : Event Tree 

ENS : Energy Not Served 

ES : End-State 

GOC : Gas provided in Overloaded Conditions 

GSC : Gas provided in Safe Conditions 

I/O : Input/Output 

INL : Idaho National Laboratories 

ISA : Integrated Safety Assessment 

kNN : k Near Neighbor 

LOF : Local outlier Factor 

LOO : Leave-One-Out 

 

MC : Monte Carlo 

MCMC : Markov Chain Monte Carlo 

M-H : Metropolis-Hastings 

MM : Meta-Model 

MS : Main Source 

MVL : Multiple-Value Logic 

NFE : Number of simulations need for the First 

complete Exploration 

NPP : Nuclear Power Plant 

NSE : Number of simulations need for the Second 

complete Exploration 

NSS : Not Supplied Set 

PCE : Polynomial Chaos Expansion 

PCP : Parallel Coordinate Plot 

QMC : Quasi Monte Carlo 

RSM : Response Surface Method 

SAMG : Severe Accident Management Guidelines 

SLOCA : Seal Leak Of Coolant Accident 

SoS : System of Systems 

SPLOM : Scatter PLOt Matrix 

SVM : Support Vector Machine 

UCR : Unexplored Critical Region 

UECR : Unexplored Extreme Critical Region 

 

1 Introduction 

In recent times, discussions have arisen on the fundamental concept of “risk” and other foundational issues 

related to its assessment (Aven, 2012a, 2012b, 2016b; Cox, 2015). From a general perspective, it is 

understood that the outcomes of risk assessment are conditioned on the knowledge and information 

available on the system and/or process under analysis (Aven, 2016a; Aven & Zio, 2014; Zio, 2016b). 
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Recognizing this, leads to accepting the inevitable existence of a residual risk to be dealt with, related to the 

unknowns in the system and/or process characteristics and behaviors. 

Then, it is important to be aware of the incomplete knowledge conditioning the assessment outcomes, 

somewhat along the lines of thought of the former United State Secretary of Defense, Donald Rumsfeld, 

who said the following at the press briefing on 12 February 2002, addressing the absence of evidence linking 

the government of Iraq with the supply of weapons of mass destruction to terrorist groups (Aven, 2013):  

“There are known knowns: things we know we know. We also know there are known unknowns: that is 

to say, we know there are some things we do not know. But there are also unknown unknowns: the one we 

don’t know we don’t know.” 

Correspondingly, different events can been classified according to the degree of knowledge available for 

the risk assessment (Flage & Aven, 2015): 

1. Unknown-unknown 

2. Unknown-known 

3. Known-unknown 

4. Known-known 

In particular: 1) identifies those events that were unknown to everyone, at the time of the risk 

assessment; 2) indicates those events unknown to the risk analysts performing the assessment, but known 

to someone else; 3) identifies situations of awareness where the background knowledge is weak but there 

are indications or justified beliefs that a new, unknown type of event (new in the context of the activity) 

could occur in the future; 4) indicates events that are known to the analysts performing the risk assessment, 

and for which evidence exists. 

According to (Flage & Aven, 2015), events and scenarios belonging to 1-2 and 4, and associated to 

negligible probabilities of occurrence, are black swans in the sense of (Taleb, 2007), whereas category 3 is 

representative of emerging risks, defined as new risks or familiar risks that become apparent in new or 

unfamiliar conditions (2015, International Risk Governance Council, IRGC). Note that, clearly, the concepts 

of “new” and “unfamiliar” are dependent on the background knowledge available. 

For the sake of giving an example, consider the South Australia power network, which underwent a 

massive blackout caused by a cascading failure triggered by a heavy storm on the 28th Sep 2016. Around 

1.7M people remained without power for 3h and some days were necessary to restore completely the 

energy supply. According to the preliminary report of the Australian Energy Market Operator (AEMO), the 
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heavy storm was a “non-credible event”, i.e., either an unknown-known or a known-known with a negligible 

probability associated (AEMO, 2016). 

From the above qualitative discussion, we can retain that risk assessment amounts to a systematic and 

structured effort to present the knowledge and information available on events, processes and scenarios 

that affect specific decisions to be made for the management of risk. Risk assessment can be seen as a tool 

for organizing the knowledge that analysts have, on the system of interest (Flage & Aven, 2015). 

When the unknowns and uncertainties in the assessment are many and the object of the assessment is 

a complex system, identifying and characterizing scenarios and conditions leading to critical situations 

becomes not trivial: a large set of scenarios and conditions is possible, and only few, rare ones are of interest 

because leading to critical situations. 

In this chapter, we investigate the possibility of using system simulation for scenario analysis, to increase 

the knowledge on the response of a system to different conditions, with the aim of identifying possible 

unexpected or emergent critical state of the system. Indeed, verified and validated numerical models (or 

“simulators”) offer an opportunity to increase the knowledge regarding the system under analysis. Within 

a simulation-based scenario analysis, the analyst can run a number of simulations with different initial 

configurations of the system design and operation parameters, and identify a posteriori those leading to 

critical system states. These states form the so called “Critical Regions” (CRs) or “Damage Domains” (DDs) 

(Montero-Mayorga, Queral, & Gonzalez-Cadelo, 2014). The identified CRs can correspond to the prior 

knowledge of the analyst, i.e., the analyst is already aware that those configurations lead to critical outputs; 

or, be “surprising”, i.e., the analyst is not aware of such potential consequences and be “surprised” by them. 

In the remainder of the chapter, we address the following issues with respect to the contribution of 

system simulation to risk assessment: i) challenges in simulation-based CR exploration (Section 2); ii) existing 

methods (Section 3); iii) two approaches proposed by the authors to drive scenarios exploration for CR 

identification (Section 4). Finally, in Section 5 some conclusions are drawn and future perspectives are 

discussed. 

2  Problem statement 

Simulation models of system behavior can be complex because: 

- High-dimensional, i.e., with a large number of inputs and/or outputs; 

- Nonlinear, due to the complexity of the relationships among the system elements; 

- Dynamic, because the system evolves in time; 
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- Computationally demanding, as a consequence of the above characteristics and of the numerical 

methods employed. 

The high dimensionality in the inputs implies that the conditions and scenarios to explore, and the 

corresponding system end-states to check for the identification of the CRs, increase exponentially with the 

space dimensions (Zio, 2014). Also, it challenges the effective visualization for interpretation of the results, 

calling for specifically designed representation tools. Similar issues arise also for the high dimensionality of 

the output space, where clustering techniques can be employed to identify groups of outputs having similar 

behavior, for their characterization as critical (Maio, Secchi, Vantini, & Zio, 2011; D. Mandelli et al., 2013; 

Mandelli, Yilmaz, Aldemir, Metzroth, & Denning, 2013). 

Nonlinearities in the model usually make it difficult to predict which is the output associated to a specific 

input configuration, particularly in the inverse problem of interest of discovering the set of inputs leading 

the system to a specific (critical) output. In practice, when the computational model is a black box (because 

of empirical nature or because too complicated), the only feasible way to solve the problem is to run 

simulations and post-process the results to retrieve the information of interest from the generated data. 

As for the analysis of dynamic systems, this calls for methods capable of dealing with (deterministic or 

stochastic) changes occurring during the time horizon of the analysis (by simulations), e.g., sequences of 

events occurring (possibly stochastically, e.g., components failures, or deterministically, e.g., due to control 

actions) at different times and that affect the operation of the system. 

Under the conditions depicted above, typically encountered in practice, computational cost becomes an 

issue for simulation-based system response analysis for risk assessment. Indeed, the high computational 

cost for a single simulation prevents the analyst from running and exploring a large number of 

configurations, as instead necessary to gain knowledge on the system CRs. Then, there is a need of methods 

capable of extracting information on the system, resorting to a limited number of well-designed simulations. 

To achieve this goal, the methods should be capable of automatically understanding, during the simulation, 

which configurations are most promising to explore the system CRs. 

3 State of the art 

In the context of risk assessment, the combination of Event Trees (ETs) (diagrams representing the 

sequential logic of the system response to accident initiating events) and mathematical models of the 

system dynamics has been advocated as the way for determining the End-States (ESs) that can be reached 

by the system in accident scenarios and for deriving the corresponding causality relations among the events 
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occurring in the scenarios (Aldemir, 2013; Li, Kang, Mosleh, & Pan, 2011; Siu, 1994; Zio, 2014). Works on 

Dynamic Event Trees (DETs) (Cepin & Mavko, 2002; Cojazzi, 1996; Hakobyan et al., 2008; Hsueh & Mosleh, 

1996; Kloos & Peschke, 2006; Labeau, Smidts, & Swaminathan, 2000) have highlighted that the end-states 

reached by a system as a result of an accident scenario do not depend only on the order of occurrence of 

the events in the sequence of the accident scenario, but also on the exact time at which these events occur 

and on their magnitude (Aldemir, 2013; Di Maio, Baronchelli, & Zio, 2015a; Di Maio, Vagnoli, & Zio, 2015; 

Garrett & Apostolakis, 1999; Li et al., 2011; Smidts & Devooght, 1992). However, exploring all dynamic 

sequences amounts to moving in a system state space of theoretically infinite dimension (because of the 

continuous time and magnitude variables). To address this issue, the majority of the methods available in 

the literature proceed to a discretization of the time and magnitude dimensions to reduce the state space 

size, and/or the pruning of branches associated to sequences having low probability of occurrence. 

However, these techniques may miss “rare” sequences of interest because leading to CR outcomes 

(Hakobyan et al., 2008; Rutt et al., 2006). 

To tackle these issues, some authors have introduced an adaptive simulation framework to drive the 

exploration of scenarios (i.e., ET branches) towards those having more uncertain outcomes (Hu, Groen, & 

Mosleh, 2004; Turati, Pedroni, & Zio, 2015). In simple words, the event times and magnitudes worth to be 

explored are those that can generate scenarios with outcomes different from those already identified. If 

sequences with different times of occurrence and magnitudes of the same events lead to exactly the same 

scenario outcome, thoroughly exploring them does not add any additional information on the system CRs. 

On the other hand, if the same scenario can lead to several outcomes for different occurrence times and 

magnitudes of its events, it is worth running many simulations to discover the relations between the 

occurrence time and magnitude of the events and the scenario outcomes. 

As mentioned earlier, a fundamental issue in risk assessment is the identification of the so-called CRs 

DDs, i.e., the input configurations that lead the system to safety-critical outcomes. In mathematical terms, 

given a deterministic Input/Output (I/O) model 𝒀 = 𝑓(𝑿), where the inputs 𝑿 are uncertain and where the 

outputs 𝒀 are realizations of simulations, the objective is to identify the set of inputs satisfying specific 

conditions for the output, e.g., those having output values above given safety-critical thresholds 𝝌 =

{𝒙 𝑠. 𝑡.  𝒚 ≥ 𝒀𝒕𝒉𝒓𝒆𝒔}, which correspond to critical system state, i.e. belonging to a CR. To search for these 

conditions, one approach is the Design Of Experiments (DOE) (Fang, Li, & Sudjianto, 2005; Kuhnt & 

Steinberg, 2010; Santner, Williams, & Notz, 2003), whereby a set of input configurations is selected with a 

given logic to probe the input state space, the corresponding outputs are computed by simulation and those 

leading to safety-critical outputs are identified. Then, these available I/O data are post-processed, e.g., by 
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means of expert analysis or machine learning, to get insights on the CRs such as: causality relations between 

inputs and outputs, safety-oriented characteristics, shapes and number of the CRs, etc. For example, the 

Spanish Nuclear Safety Council has developed an Integrated Safety Assessment (ISA) methodology that has 

been recently used to verify whether the current Severe Accident Management Guidelines (SAMG) are 

properly defined for a Seal Loss Of Coolant Accident (SLOCA) (Queral et al., 2016). Authors exploited the 

expert knowledge to limit the input state space within a specific domain. The reduced domain has been 

probed by means of several simulations, whose results allow a repartition of the state space according to 

the different types of consequences reached by the nuclear plant during the accident (e.g., core uncover, 

fuel melting, vessel failure, etc.). For this, a substantial expert knowledge has been involved in the post-

processing to have a physical interpretation of the events characterizing the accident scenario and of the 

impact of time on the occurrence of a failure and its recovery. Despite the large number of simulations 

performed, only a single accident scenario has been analyzed due to the high computational cost. In (Di 

Maio, Bandini, Zio, Alfonsi, & Rabiti, 2016) the authors, in collaboration with the U.S. Idaho National 

Laboratories (INL), make use of a surrogate model to reproduce the limit surface that separate the CRs from 

the safety regions during a station black-out in a Boiling Water Reactor simulated by means of the nuclear 

safety code RELAP5-3D (RELAP5-3D, 2005). Then, the identified CRs are projected on the subspace of the 

controllable variables and the most safe operation conditions are identified as those that are more distant 

from the CRs limit surface by means of a K-D Tree algorithm (Bentley, 1975). 

The identification of CRs leads to the identification of prime implicants, as an extension of the concept 

of minimal cut sets in the ET Analysis. Prime implicants are defined as the minimal sets of process 

parameters values and components failure states that are sufficient to cause a failure of the dynamic 

system. In (Di Maio, Baronchelli, et al., 2015a; Di Maio, Baronchelli, & Zio, 2015b), the authors proposed 

two different frameworks for prime implicants identification, upon discretization of the input space by 

means of Multiple-Value Logic (MVL). In the first paper, the authors employed a Differential Evolution (DE) 

algorithm for the identification of the prime implicants, whereas in the second paper they resort to a visual 

interactive method that allows retrieving the values of the main features characterizing the prime implicants 

sequences. 

In parallel to the use of simulation for CRs identification, but with a slightly different objective, 

techniques for the falsification of temporal properties have been proposed (Dreossi et al., 2015; Fainekos, 

Sankaranarayanan, Ueda, & Yazarel, 2012; Nghiem et al., 2010). Dynamic systems are designed to satisfy 

certain specifications: for example, the liquid level of a tank is controlled by automatic valves to remain 

between two threshold values; falsification looks for trajectories that lead the system out of the design 
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specifications, i.e., “falsifying” the expected system behavior. Whereas falsification techniques aim at 

showing that at least one trajectory not satisfying the design specifications exists, CRs identification 

methods aim at discovering and characterizing all trajectories that do not satisfy the design specifications. 

Furthermore, nowadays systems are more and more interconnected (Systems of Systems SoS) and new 

behavior can emerge unexpectedly (emergent behavior) (Zio, 2016a, 2016b). In (Kernstine, 2012), a method 

called ARGUS is proposed for discovering emergent behavior in dynamic SoS. In particular, an iterative 

adaptive DOE is combined with parallel computing. The method takes the advantages of the available 

computing technologies (cloud computing and clusters), keeping the efficiency and flexibility of an adaptive 

DOE. The adaptive algorithm is used to select at each iteration a batch of candidate configurations to 

explore, while a cluster of processors is employed to run in parallel the simulations. However, since the 

method has been specifically designed for the exploration of a stochastic model, it loses its advantages 

when applied to a deterministic one. In addition, ARGUS makes use of polynomial harmonics to estimate 

the mean of the response function, which have been shown not to be efficient in high dimensionality. 

Nuclear and financial industries have recently increased their attention to extreme yet possible scenarios 

(Authority, 2016; Commision, 2013). For example, the European Commission in response to the 2011 

Fukushima nuclear accident, has requested to all state members to perform specific stress tests to assess 

the resilience of the nuclear power plants to several typologies of extreme events: earthquakes, floodings, 

terrorist attacks and aircraft collisions. Similarly, the Bank for International Settlement (BIS) requires 

financial institutions to perform some stress tests for assessing their capacity and robustness against 

extreme financial scenarios (Sorge, 2004). Stress tests allow analysts to collect information regarding system 

response. However, the response is evaluated only with respect to extreme scenarios: thus, stress tests do 

not allow to discover whether among the normal range of input values and scenarios, critical events can 

emerge. 

When the computational cost becomes a constraint for the analysis, meta-models (or, equivalently, 

surrogate models) can represent a possible viable solution (Gorissen, Couckuyt, Demeester, Dhaene, & 

Crombecq, 2010). Meta-models usually resort to a set of input/output observations obtained from the real 

model to train a “surrogate” capable of reproducing the behavior of the real model at a lower computational 

cost. Once the meta-model has been validated (e.g., by means of its out-of-sample prediction accuracy), it 

can be used to replace the real model and to simulate the behavior of the system. Many types of meta-

models are available, each one with characteristics that suit specific conditions. Among the large number 

of methods available in the literature (Simpson, Poplinski, Koch, & Allen, 2001; Wang & Shan, 2007), we 
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recall here just some of them that have been used in the context of risk assessment: i) Polynomial Chaos 

Expansion (PCE), which resorts to a particular basis of the probability space to represent the real-model 

input/output relation (see Appendix B for details) (Sudret, 2008); ii) Response Surface Method (RSM), where 

usually a low-order set of polynomials is used to fit the data observations available and the corresponding 

polynomial coefficients can be estimated by linear regression (Myers, Montgomery, & Anderson-Cook, 

2016); nonetheless, the intrinsic linearity of the method makes it not suitable for nonlinear models; iii) 

Artificial Neural Networks (ANNs) (and all the associated evolutions), which resort to a large set of models 

(neurons) connected by means of nonlinear transformations (network) for reproducing any model behavior, 

including nonlinear (Cheng & Titterington, 1994; Haykin & Network, 2004); nevertheless, ANNs usually 

require a large number of input/output observations for their training; iv) Support Vector Machine (SVM), 

which is capable of reproducing nonlinear behaviors by mapping the inputs in a larger feature space; in 

practice, the meta-model is linear between the mapped features and the output, but can be nonlinear 

between the input and the output (Clarke, Griebsch, & Simpson, 2004); v) Kriging, which makes use of a 

Gaussian process to exactly interpolate the available input/output observations, allowing at the same time 

to have an estimate and an associated confidence interval of the response function for any input 

configuration (Clarke et al., 2004; Kleijnen, 2009; Rasmussen & Williams, 2006); Kriging is especially 

indicated for reproducing nonlinear models that present humps and regional behavior (see Appendix C for 

details). 

Many researchers have been developing toolboxes and software that support sequential DOE, meta-

models, iterative sampling, simulation, etc. Among the others, we report: DAKOTA (Eldred et al., 2014) from 

the Sandia National Laboratories, UQLab (Marelli & Sudret, 2014) from the ETH of Zurich, OpenCOSSAN 

(Patelli, Broggi, Angelis, & Beer, 2014) from the Institute for Risk and Uncertainty of the University of 

Liverpool, SUMO (Gorissen et al., 2010) from the Surrogate Modeling lab of Ghent, SCAIS (Queral et al., 

2016) from the Spanish Nuclear Safety Council (CSN), RAVEN from the INL (Alfonsi et al., 2016) and 

OpenTURNS from a collaboration of academic institutions and industrial companies such as EDF, Airbus and 

Phimeca (Baudin, Dutfoy, Iooss, & Popelin, 2016). Those tools are continuously updated and have an open 

version in matlab (UQLab, OpenCossan, SUMO) or in a developer C++/phyton source code (DAKOTA, SCAIS, 

RAVEN, OpenTURNS); also a commercial version with an associated interface is available for all of them, 

except for SUMO, RAVEN and OpenTURNS. 

It must be pointed out that these software are not specifically designed to address the research issues 

here stated concerning the exploration of scenarios. Rather, they are designed to render the state of the 

art of many statistical analysis methods accessible to industry and practitioners. In any case, they remain a 



9 

practical starting point for reducing programming time and speed up the design process of new methods 

for model exploration and knowledge retrieval. 

To sum up, the issue of knowledge retrieval by simulation for scenario exploration in risk assessment of 

safety-critical systems has been treated by two main approaches: 

 massive simulation, which exploits parallel and cloud computing advancements for increasing the 

number of simulations; 

 adaptive simulation, which makes use of machine learning algorithms to extract information from 

the available simulations and to use this information to “drive” the simulations towards the states 

of interest for the analysis, thus limiting the number of computationally expensive calls to the 

simulation model. 

Meta-modeling can be used in both approaches to further reduce the computational cost. In what 

follows, two recently proposed adaptive strategies are presented, showing the efficiency and the added 

value that this kind of analyses can bring to the analyst. 

4 Proposed Approaches 

Two exploration strategies proposed by the authors for increasing knowledge in a risk assessment context 

are presented in this section. Both the theory underneath the methods and some simple, but 

representative, applications are given. 

The first strategy has been designed to explore accident scenarios that could occur within a given 

dynamic system. In particular, it allows probing the time dimension and assessing the impact that time has 

on the progression of accident scenarios (Section 4.1). The second strategy aims at identifying the CRs, i.e., 

those configurations of inputs and parameters values that lead a given system to a critical output. The 

strategy has been developed with the main objective of dealing with high-dimensional systems described 

by computationally-demanding models: for this reason, particular attention has been devoted to assess the 

capability of limiting the number of calls to the numerical model used to precisely characterize the CRs 

(Section 4.2). 

4.1 EXPLORATION OF EXTREME AND UNEXPECTED EVENTS IN DYNAMIC ENGINEERED SYSTEMS 

4.1.1 Method 

Accident scenario analysis requires to identify, list and analyze all possible failure scenarios that can occur 

to the system under analysis. DETs have been used to identify (dynamic) accident scenarios and characterize 
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their consequences. A large effort is required to consider the time dimension and its impact on the accident 

consequences. To keep the analysis feasible, methods have been introduced to either a priori discretize the 

time dimension and/or to prune some branches in the accident evolution. However, excluding branches 

having low probability of occurrence without considering the associated consequences and time 

discretization can miss possible ”rare” critical accident sequences (Di Maio, Baronchelli, et al., 2015a; 

Garrett & Apostolakis, 1999; Li et al., 2011). 

Before introducing the main characteristics of the method, some definitions should be given. We define 

a scenario as an ordered sequence of events in the life evolution of the dynamic system (i.e., within its 

mission time 𝑇𝑀𝑖𝑠𝑠), which may involve a particular group of components, safety functions or actions (e.g., 

mechanical failures, activation of safety systems and human decisions). For example, scenario 𝑆1 could be 

defined by event 𝐴 (failure of a component) at time 𝑇𝐴, followed by event 𝐵 (failure of the safety system) 

at time 𝑇𝐴 < 𝑇𝐵 < 𝑇𝑀𝑖𝑠𝑠; scenario 𝑆2 could be defined by the opposite order of the events 𝐵 and 𝐴, with 

𝑇𝐵 < 𝑇𝐴 < 𝑇𝑀𝑖𝑠𝑠. Since the events in the sequences may occur with the same order but at different times, 

an infinite number of sequences exist for a single given scenario, potentially leading to different outputs 

(i.e., system states), as demonstrated in (Di Maio, Baronchelli, et al., 2015a; Di Maio, Vagnoli, et al., 2015). 

In accident progression analysis, which is the case in this section, the system output 𝒀 usually represents 

the worst condition reached by the system during the simulation (Queral et al., 2016). In what follows, we 

define End-State (ES) a categorical variable synthetically representing the state of the system on the basis 

of its outputs. This is often the case in many applications. For example, in a Nuclear Power Plant (NPP) Loss-

Of-Coolant Accident (LOCA) the output can be classified according to the different ESs reached by the 

reactor: core uncover, embrittlement condition, fuel melting, fuel relocation, vessel failure, etc., which 

correspond to consequences of different severity (Ibánez et al., 2016). 

The idea underlying the proposed strategy is that not all scenarios need to be explored with the same 

level of details. Indeed, consider two scenarios: one representing normal operation conditions, where no 

failures occur and one characterized by the occurrence of a component failure at time 𝑇𝐹 and the 

corresponding repair at time 𝑇𝑅. Obviously, there is no interest in running many simulations exploring the 

normal condition scenario, since we already know its corresponding ES. In the component failure scenario, 

instead, we are interested in exploring the impact on the ES of the failure occurring at different times. 

Indeed, we can expect that if the repair is performed just after the failure, the impact of the component 

failure is lower than if it is performed later in the scenario. 
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For an efficient exploration of the scenarios, an adaptive simulation framework has been proposed by 

the authors (see Figure 1) (Turati, Pedroni, & Zio, 2016a). The framework is based on three main steps: 

1) preliminary exploration (Section 4.1.1.1), i.e., a global exploration of the whole space of the dynamic 

system scenarios; 

2) interactive decision making (Section 4.1.1.2), i.e., after the preliminary exploration, the analyst can 

decide to either improve his/her global view of the state space by increasing the number of simulations in 

the preliminary exploration (step 1), or focus the attention on a specific event of interest (step 3); 

3) deep exploration (Section 4.1.1.3), i.e., a thorough exploration of a particular event: for example, the 

objective can be that of retrieving the possible evolutions within a specific scenario 𝑆𝑗 that can potentially 

reach a given ES 𝐸𝑆𝑖, indicated hereafter as the pair {𝑆𝑗, 𝐸𝑆𝑖}. 

For generating time sequences within a scenario of interest, we resort to a joint uniform distribution 

over each scenario support (the region of variability of the times of occurrence of the ordered events in the 

scenario) in order to thoroughly explore the scenario and discover the whole set of possible ESs that each 

scenario can reach. To this aim, a Markov Chain Monte Carlo (MCMC) Gibbs sampling is employed (Robert 

& Casella, 2004). 

4.1.1.1 Preliminary Exploration 

Hereafter, we assume that preliminary exploration is run under the constraint of limited computational 

resources, i.e., of a fixed number of simulations to run. This step aims at enhancing the global knowledge 

regarding system dynamic behavior during accident scenarios. The exploration consists of two steps: i) 

selection of the scenario to explore according to a driving function; ii) simulation of a time sequence within 

the selected scenario. 

The driving function should be flexible enough to take into account different analyst objectives and 

backgrounds. For example, the analyst could be interested in exploring and collecting information regarding 

the scenarios leading to a specific set of ES 𝐸𝑆∗, e.g., the most critical ones. In this light, the choice of the 

 

Figure 1 Sketch of the adaptive exploration framework 
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scenario during the preliminary exploration is made by selecting the scenario 𝑆∗ which maximizes the 

driving function 𝐼𝛾,𝛽(𝑆𝑗, 𝐸𝑆
∗): 

𝑆∗ = argmax
𝑗∈𝑆

𝐼𝛾,𝛽(𝑆𝑗 , 𝐸𝑆
∗), 

(1) 

where 𝐼𝛾,𝛽(𝑆𝑗, 𝐸𝑆
∗) is defined as: 

𝐼𝛾,𝛽(𝑆𝑗 , 𝐸𝑆
∗) =  𝐼𝛾,𝛽( 𝑁𝑗

𝐸𝑆, 𝑛𝑗, 𝐼𝐸𝑆∗) =  

{
 
 

 
 (𝑁𝑗

𝐸𝑆)
𝛾

𝑛𝑗
    , 𝐼𝐸𝑆∗ = 0

(𝑁𝑗
𝐸𝑆)

𝛾

𝑛𝑗
∙ 𝛽, 𝐼𝐸𝑆∗ = 1

, 
(2) 

where 𝑁𝑗
𝐸𝑆 is the number of ESs that Scenario 𝑆𝑗 can reach (if this information is not available, then it 

represents the number of ESs that have already been visited within the scenario and it is updated whenever 

a new ES is discovered by a new simulation run); 𝑛𝑗 is the number of simulations that have already been run 

within 𝑆𝑗; 𝐼𝐸𝑆∗ is a Boolean variable, which equals 1 if the simulations of scenario 𝑆𝑗 can reach at least one 

of the ESs in 𝐸𝑆∗, and 0 otherwise; 𝛾 ∈ (−∞,+∞) and  𝛽 ∈ (1,+∞) are two design parameters which 

reflects the preference of the analyst: 𝛾 represents analyst preference concerning scenario variability, 

whereas 𝛽 represents analyst preference concerning an ES set 𝐸𝑆∗. If 𝛾<0, the driving function chooses 

more frequently those scenarios that can reach a small number of ESs; if 𝛾 = 0, no preference is given to 

any scenario on the basis of its variability; otherwise, if 𝛾 > 0, the driving function selects more likely those 

scenarios that can reach a large number of ESs. Meanwhile, the higher 𝛽 value, the more frequently the 

algorithm selects those scenarios that can reach an ES belonging to 𝐸𝑆∗. It is worth noting, that if 𝛽 = 1, 

no preference are given to any ES. 

For the sake of clarity, two examples are here reported to separately show the impact of the two 

preference parameters. Consider a simple dynamic system where only four scenarios can occur 𝑆1, … , 𝑆4 

and where each scenario can reach a different number of ESs, 𝑁1
𝐸𝑆 = 1,𝑁2

𝐸𝑆 = 2,… ,𝑁4
𝐸𝑆 = 4. Finally, let 

us assume that all reachable ESs in the same scenario have the same probability of occurring and that the 

analyst has no preference regarding the ES to explore, i.e., 𝛽 = 1. Table I reports the average of 1000 

explorations, performed with 100 simulations each, that have been distributed among the different 

scenarios according to three different values of the parameter 𝛾, i.e., 𝛾 = −1 (left), 𝛾 = 0 (middle) and 𝛾 =

1 (right).  

Table I Average results of 1000 experiments. Each experiment runs 100 simulations of preliminary exploration with 
different values of the parameter 𝜸: -1 (left); 0 (middle); 1 (right) and 𝜷 = 𝟏. Column “Tot” represents the total 

number of simulations run within the respective scenario. 
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 𝑬𝑺𝟏 𝑬𝑺𝟐 𝑬𝑺𝟑 𝑬𝑺𝟒 Tot 𝑬𝑺𝟏 𝑬𝑺𝟐 𝑬𝑺𝟑 𝑬𝑺𝟒 Tot 𝑬𝑺𝟏 𝑬𝑺𝟐 𝑬𝑺𝟑 𝑬𝑺𝟒 Tot 

𝑺𝟏 47.9 0.0 0.0 0.0 47.9 25.0 0.0 0.0 0.0 25.0 10.0 0.0 0.0 0.0 10.0 

𝑺𝟐 12.0 11.9 0.0 0.0 23.9 12.4 12.6 0.0 0.0 25.0 10.0 9.9 0.0 0.0 20.0 

𝑺𝟑 5.3 5.3 5.3 0.0 15.9 8.4 8.3 8.3 0.0 25.0 10.0 10.0 10.0 0.0 30.0 

𝑺𝟒 3.0 3.1 3.0 3.1 12.2 6.2 6.2 6.3 6.3 25.0 10.0 10.0 9.9 10.1 40.0 

 

The choice of parameter 𝛾 = 1 is particularly suitable because, in this case, the exploration algorithm 

distributes the simulations among all the scenarios in order to guarantee that each scenario 𝑆𝑗 “gathers” a 

number of simulations proportional to the number 𝑁𝑗
𝐸𝑆 of ESs that each scenario can “generate”. 

Assuming now, instead, that the analyst has interest in gathering information about the most variable 

scenarios, i.e., 𝛾 = 1, and the most critical ESs, e.g., 𝐸𝑆∗ = {𝐸𝑆3; 𝐸𝑆4}. Table II reports the effects of 

different choices of parameter 𝛽 = { 1; 2;  4} on the final distribution of the simulation runs among the 

scenarios. If 𝛽 = 1, the algorithm turns to the preliminary guided exploration described above (left); 

otherwise, if 𝛽 > 1, the scenarios that can reach the set 𝐸𝑆∗ are favored in the selection step (middle, 

right). 

Table II Average results of 1000 experiments. Each experiment run 100 simulations of preliminary exploration with 𝜸 =
𝟏 and with different values of the parameter 𝜷: 1 (left); 2 (middle); 4 (right). Column “Tot” represents the total number 

of simulations run within the respective scenario. 

 𝑬𝑺𝟏 𝑬𝑺𝟐 𝑬𝑺𝟑 𝑬𝑺𝟒 Tot 𝑬𝑺𝟏 𝑬𝑺𝟐 𝑬𝑺𝟑 𝑬𝑺𝟒 Tot 𝑬𝑺𝟏 𝑬𝑺𝟐 𝑬𝑺𝟑 𝑬𝑺𝟒 Tot 

𝑺𝟏 10.0 0.0 0.0 0.0 10.0 7.0 0.0 0.0 0.0 7.0 3.1 0.0 0.0 0.0 3.1 

𝑺𝟐 10.0 9.9 0.0 0.0 20.0 7.0 6.0 0.0 0.0 12.9 3.0 2.9 0.0 0.0 5.9 

𝑺𝟑 10.0 10.0 10.0 0.0 30.0 12.5 11.7 11.7 0.0 36.0 12.6 12.3 12.5 0.0 37.4 

𝑺𝟒 10.0 10.0 9.9 10.1 40.0 12.7 11.8 11.8 11.7 48.1 13.4 13.4 13.4 13.3 53.5 

 

For the preliminary exploration, we have proposed only one function based on two parameters, which 

can reflect the analyst interest about scenario variability and a set of known ESs; however, a variety of 

functions could be used at this stage to drive the selection of scenarios according to other desirable criteria. 

4.1.1.2 Interactive Decision Making 

Every time a preliminary exploration is performed, matrices, such those reported in Table I and Table II, 

become available. Hence, based on the events visited (i.e., on the pairs Scenario-ES (𝑆𝑗 , 𝐸𝑆𝑖)) and on the 

number of simulations that have been run to visit them, the analyst can decide either to increase the 

number of simulations according to the criteria adopted in the preliminary exploration phase or to perform 

a deeper and more refined exploration of specific events of interest. According to his/her preference, the 
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analyst has to iteratively choose the maximum allowable number of simulations that can be run according 

to the preliminary or deep exploration, respectively. In many cases, the dimension of the system (state 

space) and the variability of its behavior (in practice, the number of ESs a scenario can reach and the 

corresponding probabilities), are not known a priori; on the contrary, the computational cost needed for a 

system simulation can be known (e.g., in terms of average time per simulation). Then, the computational 

effort can be considered as a constraint that the analyst needs to take into account in accordance with 

his/her preferences among the different exploration criteria. In this respect, it must be noticed that the 

proposed method does not guarantee that the whole event space is probed: inevitably, if the computational 

capacity available (in practice, the total number of simulations that can be run) is small compared to the 

size of the system state space, only a limited number of ESs can be explored for each scenario. 

4.1.1.3 Deep Exploration 

The objective of the deep exploration is to identify as precisely as possible, which system evolutions (i.e., 

which transition times) can lead to a given event of interest. For the sake of clarity, we assume that an event 

of interest is defined as the pair (Scenario, ES) = (𝑆𝑗, 𝐸𝑆
∗); nonetheless, with no loss of generality 𝐸𝑆∗ can 

represent also a set of ESs. Given the structure of the mathematical model, the guiding idea of the deep 

exploration is to generate time sequences “around” those that have already reached the event (𝑆𝑗, 𝐸𝑆
∗). In 

order to achieve this goal, we resort to a MCMC method, which allows to generate a set of random samples 

from any desired (namely, target) probability distribution 𝑝 (Robert & Casella, 2004). In detail, we utilize a 

Metropolis-Hastings (M-H) algorithm (Chib & Greenberg, 1995) to sample components transition times 

uniformly on the support 𝑆𝐸𝑆∗ of the event of interest (𝑆𝑗, 𝐸𝑆
∗), in other words, to sample uniformly among 

the transition times that lead to the event of interest. The M-H algorithm consists of two steps: i) proposition 

of a new candidate 𝑻∗ (in this case, a vector of transition times) in accordance to a proposal distribution 𝑞; 

ii) acceptance or rejection of the proposed time vector. The interested reader is referred to the Appendix A 

for more details on the algorithm. 

Nevertheless, it must be underlined that the Acceptance Ratio (AR) between the proposed samples and 

the accepted ones plays a fundamental role. High acceptance ratios (AR > 0.9) are a symptom of a proposal 

𝑞 with too small variability, i.e., most of the proposed 𝑻∗ are too close to the original ones and, thus, the 

algorithm results too slow in probing the support 𝑆𝐸𝑆∗; on the contrary, small acceptance ratios (AR < 0.2) 

are a symptom of a proposal 𝑞 with too high variability, i.e., most of the proposed 𝑻∗ are likely to fall out of 

the support of interest 𝑆𝐸𝑆∗. In this respect, adaptive MCMC methods exploiting an adaptive proposal 
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distribution have been presented in the literature and can be employed at this stage to “optimally” fill the 

support 𝑆𝐸𝑆∗ of interest (Andrieu & Thoms, 2008; Roberts & Rosenthal, 2009). 

Regarding the approach used to choose the number of simulations to run for performing the deep 

exploration, two criteria are proposed: (i) fixed number of simulations (as in the preliminary exploration, 

Section 4.1.1.1); (ii) level of filling of the support of the event of interest. For what concerns the second 

criterion, the idea is to keep on generating new simulation outcomes until 𝑆𝐸𝑆∗ is filled by an amount of 

points (i.e., configurations) that “sufficiently” cover the entire outcome variability. In detail, after the 

preliminary exploration a set of occurrence time vectors 𝐸𝑋𝑉(𝑆𝐸𝑆
∗) = {𝑻1, … , 𝑻𝑉} that lead to the event 

of interest (𝑆𝑗, 𝐸𝑆
∗) is available. As a measure of the (time) space filling, the maximum of the minimum 

distances among these time vectors is considered: then, a time filling index 𝐷𝑉(𝐸𝑋𝑉(𝑆𝐸𝑆
∗)) after the 

preliminary exploration is computed as: 

𝐷𝑉(𝐸𝑋𝑉(𝑆𝐸𝑆
∗)) = max

𝑖∈𝐸𝑋𝑉(𝑆𝐸𝑆
∗)
min
𝑗≠𝑖

𝑑(𝑻𝑖 , 𝑻𝑗) 
(3) 

where 𝑑(∙,∙) represents a proper distance between two vectors. Herein, for example, we consider the 

Euclidean one. Whenever a new time vector 𝑻𝑛 is accepted during the exploration, it is added to the set of 

time vectors that lead to the event of interest, i.e., 𝐸𝑋𝑛(𝑆𝐸𝑆
∗) = {𝐸𝑋𝑛−1(𝑆𝐸𝑆

∗); 𝑻𝑛}, and the filling index 

𝐷𝑛 (𝐸𝑋𝑛(𝑆𝐸𝑆
∗)) is consequently updated. The deep exploration ends when the ratio between the current 

filling index and the preliminary one falls below a fixed threshold 𝛿 ∈ [0, 1], i.e., when the “density” of time 

vectors in the support 𝑆𝐸𝑆∗ of interest is ~(1 𝛿⁄ )𝑙    times higher than the preliminary one, being 𝑙 the size 

of the time vector 𝑻𝑛. Thus, the space filling capability of the algorithm is strictly related to the dimension 

of the vectors involved: in practice, the higher the dimension, the larger the number of random vectors 

needed to reduce the filling index. In this light, a maximum allowable number 𝑛𝑚𝑎𝑥 of samples is also set, 

in order to limit in any case the maximum computational effort. Then, the stopping criterion becomes: 

𝐷𝑛(𝐸𝑋𝑛(𝑆𝐸𝑆
∗))

𝐷𝑉(𝐸𝑋𝑉(𝑆𝐸𝑆
∗))

< 𝛿 𝑜𝑟 𝑛 > 𝑛𝑚𝑎𝑥   . (4) 

The corresponding algorithm is summarized in Table III. 

Table III Sketch of the algorithm describing the deep exploration stopping criterion. 

1. For 𝑖 = 1,… , 𝑉 evaluate the minimum distances from the vector 𝑻𝑖  and save them in the vector 𝒅𝑉: 

𝑑𝑉(𝑖) = min
𝑗≠𝑖

𝑑(𝑻𝑖, 𝑻𝑗). 

According to this notation 𝐷𝑉(𝐸𝑋𝑉(𝑆𝐸𝑆
∗)) = max𝒅𝑉 . 

2. Given a new time vector 𝑻𝑛, update the 𝒅𝑛−1vector for 𝑖 = 1,… , 𝑛 − 1: 
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𝑑𝑛(𝑖) = min(𝑑𝑛−1(𝑖), 𝑑(𝑻𝑖 , 𝑻𝑛)), 

3. Add the n-th component to 𝒅𝑛−1 resorting to the distance already available from the previous step: 

𝑑𝑛(𝑛) =  min
𝑗≠𝑛

𝑑(𝑻𝑛 , 𝑻𝑗). 

4. Evaluate the filling index: 

𝐷𝑛(𝐸𝑋𝑛(𝑆𝐸𝑆
∗)) = max𝒅𝑛. 

5. Check if the stopping criteria are satisfied: 

𝐷𝑛(𝐸𝑋𝑛(𝑆𝐸𝑆
∗))

𝐷𝑉(𝐸𝑋𝑉(𝑆𝐸𝑆
∗))
< 𝛿 𝑜𝑟 𝑛 > 𝑛𝑚𝑎𝑥     

If not, return to step 2. 

 

4.1.2 Gas Transmission Subnetwork 

The case study under analysis is a gas transmission subnetwork composed of two pipes in parallel and 

another one in series. The input of each pipe is controlled by a valve. The block diagram is shown in Figure 

2, where each pair valve-pipe is considered as a single block. 

 

Figure 2 Block diagram of the system under analysis. 

Each pipe can transmit gas with a maximum flow rate of [𝜙𝑎 , 𝜙𝑏 , 𝜙𝑐] = [8,5,5] ∙ 10
4 𝑚3/𝑑𝑎𝑦, for pipes 

a, b, c, respectively. A control system adjusts the opening of the valves in order to guarantee the equilibrium 

between the input and output flows. Figure 3 shows the ET containing all the scenarios that can occur in 

the system. If one of the pipes in parallel breaks, the control system immediately closes the corresponding 

valve and increases the flow rate of the remaining pipe to the maximum, in order to compensate for the 

diminished flow. No reparation strategies are considered. The system presents 8 possible scenarios with 

different operating conditions: i) safe, i.e., all pipes are functioning correctly; ii) overloaded, i.e., one of the 

pipes in parallel is closed; iii) broken, i.e., no gas is provided by the system. 
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Figure 3 Event tree representation of the 8 scenarios that can occur, where 𝑻𝒂, 𝑻𝒃, 𝑻𝒄 are the times of failures of 
components a, b, c, respectively, and 𝑻𝑴𝒊𝒔𝒔 is the mission time. 

The ESs for each scenario have been defined and classified on the basis of two output variables 𝑌1, 𝑌2: i) 

the amount of Gas provided in Safe Conditions (GSC = 𝑌1), i.e., when all the components are functioning 

correctly; ii) the amount of Gas provided in Overloaded Conditions (GOC = 𝑌2), i.e., when one of the two 

pipes in parallel is down and the remaining one works at its maximum flow rate. With respect to that, 

𝐺𝑆𝐶𝑚𝑎𝑥 and 𝐺𝑂𝐶𝑚𝑎𝑥 indicate the maximum quantities of gas that can be provided within the mission time 

𝑇𝑀𝑖𝑠𝑠 = 900𝑑, in safe and overloaded conditions, respectively, i.e., 𝐺𝑆𝐶𝑚𝑎𝑥 = 𝜙𝑎 ∙ 𝑇𝑀𝑖𝑠𝑠 and 𝐺𝑂𝐶𝑚𝑎𝑥 =

max(𝜙𝑏 , 𝜙𝑐) ∙ 𝑇𝑀𝑖𝑠𝑠. The outputs are, then, divided into six ESs according to the criteria reported in Figure 

4. For example, 𝐸𝑆4 = {
1

3
𝐺𝑆𝐶𝑚𝑎𝑥 < 𝐺𝑆𝐶 ≤

2

3
𝐺𝑆𝐶𝑚𝑎𝑥 ∩ 0 ≤ 𝐺𝑂𝐶 ≤

1

3
𝐺𝑂𝐶𝑚𝑎𝑥}, which means that the 

system has operated for a medium period of time in safe conditions (
1

3
𝐺𝑆𝐶𝑚𝑎𝑥 < 𝐺𝑆𝐶 ≤

2

3
𝐺𝑆𝐶𝑚𝑎𝑥) and, 

then, once it goes in overloaded conditions, it breaks down (0 ≤ 𝐺𝑂𝐶 ≤
1

3
𝐺𝑂𝐶𝑚𝑎𝑥). 

 

Figure 4 Classification of the ESs according to the 2 output variables GSC and GOC. 
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It must be noticed that not all the ESs can be reached by all scenarios. Table IV (left matrix) reports those 

ESs that can be reached by a given scenario (indicated by 1) and those that cannot (indicated by 0): each 

column in the Table represents an ES and each row represents a scenario. This information is usually not 

available a priori and, in general, its retrieval represents one of the objectives of the state space exploration. 

However, it is used here to analyze the performance of the proposed method. In Table IV (middle and right), 

two additional matrices show the reachable ESs for two sets of different gas flow rates, e.g., [𝜙𝑎 , 𝜙𝑏 , 𝜙𝑐] =

[8, 3.7, 5] ∙ 104 𝑚3/𝑑 and [𝜙𝑎 , 𝜙𝑏 , 𝜙𝑐] = [8, 2.2, 6] ∙ 10
4 𝑚3/𝑑, respectively. These values have been 

chosen in order to analyze the performance of the method for different parameters values, which imply 

that the number of reachable ESs varies. 

Table IV Matrices of the end-states that the system can reach for each scenario for different sets of flow rate 

parameters values: [𝝓
𝒂
, 𝝓

𝒃
, 𝝓

𝒄
] = [𝟖, 𝟓, 𝟓] ∙ 𝟏𝟎𝟒 𝒎𝟑/𝒅 (left); [𝝓𝒂, 𝝓𝒃, 𝝓𝒄] = [𝟖, 𝟑. 𝟕, 𝟓] ∙ 𝟏𝟎𝟒 𝒎𝟑/𝒅 (middle) and 

[𝝓𝒂, 𝝓𝒃, 𝝓𝒄] = [𝟖, 𝟐. 𝟐, 𝟔] ∙ 𝟏𝟎
𝟒 𝒎𝟑/𝒅 (right). 

 𝑬𝑺𝟏 𝑬𝑺𝟐 𝑬𝑺𝟑 𝑬𝑺𝟒 𝑬𝑺𝟓 𝑬𝑺𝟔 𝑬𝑺𝟏 𝑬𝑺𝟐 𝑬𝑺𝟑 𝑬𝑺𝟒 𝑬𝑺𝟓 𝑬𝑺𝟔 𝑬𝑺𝟏 𝑬𝑺𝟐 𝑬𝑺𝟑 𝑬𝑺𝟒 𝑬𝑺𝟓 𝑬𝑺𝟔 

𝑺𝟏 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 

𝑺𝟐 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 

𝑺𝟑 0 0 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 

𝑺𝟒 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 

𝑺𝟓 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 

𝑺𝟔 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 

𝑺𝟕 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

𝑺𝟖 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

4.1.2.1 Preliminary Exploration 

To evaluate the performance of the preliminary exploration, two indices are introduced: (i) the Number of 

simulations needed for the First complete Exploration (NFE), i.e., the number of simulations that should be 

run to visit at least once all the reachable ESs for all the scenarios; (ii) the Number of simulations needed 

for the Second complete Exploration (NSE), i.e., the number of simulations that should be run to visit all the 

reachable ESs for all the scenarios at least twice. NFE gives information about the number of simulations 

needed to explore all the events defined by the pairs (Scenario, ES) =  (𝑆, 𝐸𝑆), when the matrices shown in 

Table IV (i.e., the ESs) are not known yet. On the contrary, NSE gives information about how the simulations 

are efficiently distributed among the different scenarios, once the matrices in Table IV (i.e., the ESs) begin 

to be known as a result of the preliminary exploration. We analyzed two different situations: in the former, 

the analyst has a very poor background knowledge regarding the system, while in the latter he/she already 
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knows the system and is interested in collecting information regarding the scenarios that can reach a 

specific ES. For this reason, in the first case 𝛽 = 0 and 𝛾 = 1; whereas in the second case, 𝛽 > 1. 

Considering the case with low prior knowledge, the results of the preliminary explorations are compared 

to those of: 1) a crude Monte Carlo simulation method (MC), that randomly selects the scenario and, then, 

simulates the proper transition times according to the same uniform sampling criterion proposed in Section 

4.1.1; 2) an entropy-driven exploration (Turati et al., 2015), which follows a procedure similar to the 

preliminary exploration, but with an entropy-driven function instead of 𝐼𝛾,𝛽(∙). 

For all the gas flow rate reported in Table IV, the preliminary exploration has been performed 1000 times 

and the corresponding empirical cumulative density functions (cdfs) of NFE (left) and NSE (right) computed. 

Preliminary exploration achieve better or at least comparable performance than the entropy-driven 

exploration in all flow configurations tested. This is depicted in Figure 5-Figure 6 where the cdfs associated 

to the preliminary exploration (light-dashed line) are “shifted” to the left with respect to those associated 

to the entropy-driven exploration (dark-dotted line). On the other side, both the preliminary and the 

entropy-driven explorations largely outperform the MC one (light line) regarding both NFE and NSE. In 

particular, the difference is even larger in NSE, i.e., when the exploration algorithm is already aware of all 

the events (S, ES) that can occur. The results of flow configuration [𝜙𝑎 , 𝜙𝑏 , 𝜙𝑐] = [8, 3.7, 5] ∙ 10
4 𝑚3/𝑑 are 

not depicted, due to the similarity with those in Figure 5. Finally, it must be noted that in one case the MC 

exploration is more effective than the other techniques (Figure 6, NFE). This is due to the fact that the rarest 

event (S, ES) occurs in a scenario that can reach a few number of end-states. However, while the entropy-

driven method is stuck, the preliminary exploration allows changing parameter 𝛾 in order to increase the 

exploration effectiveness. 
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Figure 5 Empirical cdfs of the NFE (left) and of the NSE (right) for crude MC (light line), for an entropy-driven method 
(dark dotted line) and for the preliminary guided exploration with 𝜸 = 𝟏 (light dashed line) with flow rate 

parameters [𝝓𝒂, 𝝓𝒃, 𝝓𝒄] = [𝟖, 𝟓, 𝟓] ∙ 𝟏𝟎𝟒 𝒎𝟑/𝒅. 

 

Figure 6 Empirical cdfs of the NFE (left) and of the NSE (right) for crude MC (light line), for an entropy-driven method 
(dark dotted line) and for the preliminary guided exploration with 𝜸 = 𝟏 (light dashed line) with flow rate 

parameters [𝝓𝒂, 𝝓𝒃, 𝝓𝒄] = [𝟖, 𝟐. 𝟐, 𝟔] ∙ 𝟏𝟎𝟒 𝒎𝟑/𝒅. 

Considering now the case where the analyst has some prior knowledge, we consider the flow rate 

configuration [𝜙𝑎 , 𝜙𝑏 , 𝜙𝑐] = [8, 2.2, 6] ∙ 10
4 𝑚3/𝑑 and we suppose that the analyst is interested in 

scenarios leading to 𝐸𝑆3. To assess the impact of parameter 𝛽 on the performance of the preliminary 

exploration, the average percentage increment of simulation falling into the scenarios of interest with 

respect to those falling in the same scenarios when no preference are given, i.e., 𝛽 = 1, is computed for 

different values of 𝛽 = (2, 4, 8) and for different numbers of simulation runs 𝑁𝑠𝑖𝑚𝑢𝑙 =

[250; 500; 1000; 2000; 4000]. 1000 experiments have been done for each combination of 𝛽 and 𝑁𝑠𝑖𝑚𝑢𝑙. 

Since similar behaviors have been observed for all scenarios leading to the ES of interest, only the boxplots 

associated to scenario 𝑆7 are depicted in Figure 7. The larger the 𝛽 value is, the larger the percentage 

increment, e.g., around (35, 60, 80)% for 𝛽 = {2;  4;  8}, respectively. However, it must be noted that, if 𝛽 

is too large with respect to 𝑁𝑠𝑖𝑚𝑢𝑙 (e.g., 𝛽 = 8 and 𝑁𝑠𝑖𝑚𝑢𝑙 < 1000), there is a high uncertainty in the 

performance. Indeed, if 𝛽 is too large, the algorithm focuses its exploration effort, i.e., its simulation runs, 

on the first scenario that reach to the ES of interest, “preventing” the algorithm to discover other scenarios 

that can lead to the ES of interest. In particular, the larger the number of scenarios that can reach the ES of 

interest, the larger the sensitivity to the number of simulations, given 𝛽. 
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Figure 7 Boxplots of the percentage increment of simulations in a given scenario of interest 𝑺𝟕, for parameter 
𝜷 = {𝟐;  𝟒;  𝟖} and for different numbers of simulations. 

4.1.2.2 Deep Exploration 

After a preliminary guided exploration of the system defined by parameters [𝜙𝑎 , 𝜙𝑏 , 𝜙𝑐] = [8,3.6,5] ∙

104 𝑚3/𝑑, a large variability in the outcomes is observed within scenario 𝑆5, as highlighted in Table V. Thus, 

it is interesting to retrieve the event time sequences that lead to two chosen ESs: 𝐸𝑆1, which represents 

the worst final condition, and 𝐸𝑆3, which has been visited only few times during the preliminary exploration. 

Table V Matrix reporting the ESs visited by a preliminary guided exploration of the system with parameters 
[𝝓𝒂, 𝝓𝒃, 𝝓𝒄] = [𝟖, 𝟑. 𝟔, 𝟓] ∙ 𝟏𝟎

𝟒 𝒎𝟑/𝒅𝒂𝒚, given a computational effort of 1000 simulations. 

 𝑬𝑺𝟏 𝑬𝑺𝟐 𝑬𝑺𝟑 𝑬𝑺𝟒 𝑬𝑺𝟓 𝑬𝑺𝟔 

𝑺𝟏 0 0 0 0 0 29 

𝑺𝟐 21 0 0 38 0 28 

𝑺𝟑 0 27 10 24 36 47 

𝑺𝟒 46 29 0 41 5 23 

𝑺𝟓 39 50 2 57 7 18 

𝑺𝟔 0 0 23 0 28 36 

𝑺𝟕 38 36 22 36 14 26 

𝑺𝟖 34 39 24 41 12 22 

 

The space filling parameter is set to 0.2 with a maximum number of simulations to run set to 5000. 

Multivariate Gaussian distributions have been used as proposal within the M-H algorithm. The covariance 

matrix associated to 𝐸𝑆1 has been estimated from the vectors of transient times obtained from the 

preliminary exploration. On the contrary, since only two vectors are available for 𝐸𝑆3, a diagonal covariance 
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matrix with standard deviation equal to the Euclidean distance between the two vectors is considered. The 

chosen standard deviation provides an idea of the dimension of the support to explore. Figure 8 reports the 

transition time vectors of the scenario of interest 𝑆5 after the preliminary exploration (on the left) and after 

the deep exploration (on the right). Results confirm that the proposed deep exploration is capable of 

increasing the number of simulations around the time sequences that reach the ES of interest. The results 

increase the knowledge regarding the time sequences that lead to the event of interest. For example, in 

order to obtain 𝐸𝑆3, pipe c should break within the initial 100 days whereas pipe b should work at least for 

800 days after the failure of the first one. 

 

Figure 8 Preliminary guided exploration of 𝑺𝟓 (left) and deep exploration of 𝑬𝑺𝟏 and 𝑬𝑺𝟑 in the same scenario 
(right). 

4.1.3 Discussion 

Discovering and understanding the possible outcomes of accident progression, leaving out as little as 

possible of unexpected, adds significant value to a risk assessment. The proposed adaptive simulation 

framework guides the exploration of the accident scenarios towards those that show the highest variability 

in their outcomes, thus increasing the possibility of discovering a priori unexpected situations. The method 

allows including analyst prior knowledge regarding the accident scenarios and his/her preference towards 

specific outcomes to look for, making the method very flexible. In addition, new driving functions can be 

design for attaining specific objectives during the exploration, e.g., guiding the simulations towards the most 

risky scenarios. 

Some weak points still remain in the proposed framework: i) it is assumed that the analyst is already 

aware of the accident scenarios that the system can undergo, which is not always the case in large systems 

involving a large number of components; nevertheless, some methods have been developed to 
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automatically generate possible risk scenarios (Li et al., 2011); ii) the proposed framework, in its present 

formulation, is not designed for parallel computing: however, by selecting and simulating batch of time 

sequences, it is possible to benefit from parallel computational resources. 
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4.2 CRITICAL REGIONS IDENTIFICATION 

4.2.1 Method 

With reference to Section 3, let us assume that a mathematical model 𝑌 = 𝑓(𝑿) of the system behavior is 

available, whose input 𝑿 ∈ 𝐷𝑿 ⊂ ℝ
𝑀, represents a given system operational configuration and whose 

output 𝑌 ∈ 𝐷𝒀 ⊂ ℝ reflects the condition/state of the system. We define the conditions where 𝑌 ≥ 𝑌𝑡ℎ𝑟𝑒𝑠 

as “critical” and the corresponding configurations of inputs as the CR, i.e., 𝐶𝑅 = {𝒙 ∈ 𝐷𝑿 ⊂ ℝ
𝑀: 𝑦 =

𝑓(𝒙) ≥ 𝑌𝑡ℎ𝑟𝑒𝑠}. From a mathematical perspective, we are looking for the solution of the inverse problem 

𝒙 = 𝑓−1(𝑦), with 𝑦 ≥ 𝑌𝑡ℎ𝑟𝑒𝑠; however, this is not viable in the majority of the engineering systems where 

𝑓(𝒙) is a function embedded in numerical codes, which is: i) complex, ii) black-box iii) not invertible. 

A solution is, then, to resort to a DOE for exploring the I/O relation by means of numerical simulations 

and, then, retrieve information concerning the CRs through post-processing (Levy & Steinberg, 2010; 

Santner et al., 2003). However, this approach is hard to pursue when models have the characteristics 

mentioned in Section 2. 

In what follows, a self-adaptive algorithm for exploring the numerical model and retrieving information 

regarding the CRs is presented. Eventual probabilistic distributions associated to 𝑿 are not considered, since 

the focus is, instead, on its range of values (i.e., on its domain), in order to explore all possible configurations 

during the CRs research. Hence, hereafter, without loss of generality, we assume that all inputs are 

standardized, e.g., 𝑿 ∈ 𝐷𝑿 = [0,1]
𝑀 (Rosenblatt, 1952); likewise, a standardization can be applied to the 

output 𝑌. This helps in designing a general, problem-independent algorithm and in removing effects related 

to the different orders of magnitudes possibly existing among inputs. 

The driving idea of the proposed framework is to iteratively: i) run a (possibly small) number of model 

simulations, ii) retrieve knowledge from the available simulations and iii) guide the selection of new 

configurations towards the regions of interest (Turati, Pedroni, & Zio, 2016b). The framework is 

characterized by four principal steps (see Figure 9). In short, the first step aims at identifying the inputs that 

most affect the output of the model in order to limit the exploration only to the corresponding subspace 

(dimensionality reduction) resorting to PCE-based sensitivity analysis (Sudret, 2008). The second step aims 

at training a computationally cheap-to-run meta-model that accurately reproduces the response of the real 

model on the reduced space, with a particular attention to its capacity of discriminating between the CRs 

and normal conditions, e.g., a Kriging meta-model (Kleijnen, 2009). The third step resorts to the meta-model 

for deeply exploring the reduced state space by means of MCMC, with the objective of visiting and, 

consequently, discovering those configurations of inputs leading to critical outputs (Andrieu & Thoms, 
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2008). Finally, the last step employs clustering (e.g., k-means (Jain, 2010)) and graphical representation 

techniques (e.g., Parallel Coordinates Plot PCP (Inselberg, 2009)) for retrieving information and describing 

the CRs found. 

 

Figure 9 Flow diagram of the exploration framework. 

4.2.1.1 Dimensionality Reduction 

In general terms, dimensionality reduction includes a number of strategies for identifying a lower-

dimensional subspace of variables where it is possible to build a reduced and simplified, yet representative 

and understandable, model of the system behavior (Fodor, 2002; H. Liu & Motoda, 2012). From the point 

of view of the exploration, reducing the dimensionality of the state space to explore allows the definition of 

a more effective DOE. Two main strategies have been proposed in the literature: i) feature selection, which 

aims at selecting a subset of the available variables and parameters input to the model (Guyon & Elisseeff, 

2003), and ii) feature extraction, which aims at identifying a subset of “new” features created by means of 

transformations of the initial ones (Guyon & Elisseeff, 2006). Nevertheless, dimensionality reduction 

methods usually rely on a large set of input/output data examples that are not usually available, when the 

system model is computationally expensive. 

In alternative, sensitivity analysis methods can be employed to achieve the same final objective as 

feature selection, by ranking the inputs according to their influence on the output of the model (Borgonovo 

& Plischke, 2016; Saltelli, 2008; Sudret, 2008). In particular, to this aim, global order sensitivity indices are 

more appropriate than local sensitivity indices, because they provide a measure of how the inputs globally 

affect the output of the model, i.e., with respect to different configurations of the inputs. In this paper, we 

resort to the total order sensitivity index 𝑆𝑇 (Homma & Saltelli, 1996; Sobol, 2001) that is a variance-based 
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global sensitivity measure, assessing the expected fraction of the total variance of the output 𝑌 that is due 

to the variation of a specific input 𝑖 and to its interactions with the others: 

𝑆𝑇𝑖 =
𝐸𝑿~𝑖 [𝑉𝑿𝑖 (𝑌|𝑿~𝑖 ) ]

𝑉(𝑌)
, (5) 

where 𝑿𝒊 represents the i-th component of the input vector 𝑿, 𝑿~𝑖 represents the rest of the 

components of the vector 𝑿 and 𝑆𝑇 ∈ [0,1]. A large value of 𝑆𝑇𝑖  indicates that the i-th input heavily affects 

𝑌 and, thus, should be kept in what is hereafter called “reduced-model”; on the contrary, a very low value 

of 𝑆𝑇𝑖 indicates that the i-th input does not affect 𝑌 and, thus, it can be discarded or set to a constant value. 

Usually, a threshold 𝑆𝑡ℎ𝑟𝑒𝑠 = 1 𝑀⁄  is adopted to discriminate the important inputs (Saltelli, 2008). 

Although 𝑆𝑇 usually requires a large number of MC or Quasi Monte Carlo (QMC) simulations to be 

accurately computed (Saltelli, 2008), PCE has been shown to achieve the same accuracy with a much lower 

number of simulations (Sudret, 2008) (see Appendix B, for details). For this reason, PCE is here employed 

to identify those inputs that must be kept in the reduced-model. All the analyses involving both the PCE 

approximation and the corresponding computation of the sensitivity indices, are conducted using the 

UQLab Toolbox for Matlab (Marelli & Sudret, 2014). 

4.2.1.2 Meta-modeling 

The main objective of a meta-model is to reproduce the behavior of the real (typically long-running) system 

model with a less expensive computational model. The meta-model is trained by resorting to a typically 

limited number of I/O observations from the real reduced model; on this basis, it should be capable of 

predicting the output values associated to input configurations that have not been explored yet. Since the 

real model is assumed to be deterministic (i.e., simulations of the same input configuration lead to the same 

output), it is desirable that the meta-model predicts as well the exact output value in correspondence of 

the training configurations (i.e., those known with absolute certainty). In this respect, among the numerous 

methods available in the literature (Jin, Chen, & Simpson, 2001; Shan & Wang, 2010), we resort to Kriging 

(Kleijnen, 2009; Matheron, 1963), i.e., Gaussian process modeling (see Appendix C for details). Kriging is 

capable of modeling local behaviors of the response function and of diversifying the levels of accuracy of 

the same model within different regions. 

For example, in this case, the meta-model should be accurate in discriminating whether a configuration 

belongs to CR or not. For this reason, the meta-model should be more refined in the proximity of the CRs, 

whereas it can be rough in the rest of the space. To achieve this goal, sequential adaptive training strategies 

have been recently developed (Bect, Ginsbourger, Li, Picheny, & Vazquez, 2012; Echard, Gayton, & Lemaire, 
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2011; Picheny, Ginsbourger, Roustant, Haftka, & Kim, 2010). Instead of resorting to a static DOE to select 

the input/output configurations, new configurations are iteratively added to the training set to minimize a 

proper cost function. The Adaptive Kriging-Monte Carlo Simulation (AK-MCS) (Echard et al., 2011) is here 

employed to this aim. 

In the AK-MCS, an initial Kriging model is trained with a small set of I/O observations, e.g., sampled 

according to LHS scheme; then, the algorithm proceeds iteratively according to the following steps: i) 

randomly sample a large set of input configurations 𝒳 = (𝒙(1), … , 𝒙(𝑁𝑀𝐶𝑆)), e.g., by means of LHS; ii) 

evaluate the associated responses using the Kriging meta-model 𝒴̂ = (𝒚̂1, … , 𝒚̂𝑁𝑀𝐶𝑆); iii) check if a 

convergence criterion has been reached: if so, the meta-model is sufficiently accurate; otherwise, iv) select, 

according to a predefined learning function/criterion, the best candidate subset 𝒳∗ ⊂ 𝒳 to add to the 

current DOE and evaluate the corresponding real model output 𝒴∗; v) retrain a new Kriging meta-model by 

adding the {𝒳∗, 𝒴∗} to the training set and go back to step i). 

As learning function (step iv above), we consider the so-called U-function, which is based on the concept 

of misclassification (Echard et al., 2011): 

𝑈(𝒙) =
|𝑌𝑡ℎ𝑟𝑒𝑠 − 𝜇𝑌̂(𝒙)|

𝜎𝑌̂(𝒙)
. (6) 

In practice, 𝑈(𝒙) represents the distance in terms of standard deviations of the meta-model prediction 

from the limit state 𝑌𝑡ℎ𝑟𝑒𝑠. The smaller the value, the closer the prediction is to the limit state and, thus, the 

higher the interest in adding the corresponding I/O observation to the training set, because it reduces the 

prediction uncertainty regarding configurations “close” to the limit surface (in a probabilistic sense). 

Theoretically, the best DOE is obtained by adding at each iteration only one best candidate configuration. 

However, this increases the computational cost related to the training of the meta-model, which can be 

significant when a large number of I/O configurations are used and/or when many parameters have to be 

estimated due to the high dimensionality. 

To overcome this problem, a larger number of I/O configurations can be added at the same time to the 

training set. Due to the correlation function, prediction points that are close share similar prediction values 

and misclassification probabilities; thus, it is likely that in the best candidate set, there are configurations 

having similar input values. However, evaluating the real model with respect to similar configurations 

increases the computational cost without adding the desired amount of knowledge to the meta-model. To 

this aim, clustering techniques are here employed to select, among the best candidate set, the most 

representative configurations before evaluating the corresponding real model output (Schöbi, Sudret, & 
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Marelli, 2016). An alternative method for optimally adding multiple observations to the training set has 

been recently proposed in (Chevalier et al., 2014). 

As a stopping criterion (step iii above), we resort to the leave-one-out estimate of the correction factor 

𝛼̂𝑐𝑜𝑟𝑟 𝐿𝑂𝑂 (Dubourg, Sudret, & Deheeger, 2013): 

𝛼̂𝑐𝑜𝑟𝑟 𝐿𝑂𝑂 =
1

𝑁𝐾𝑟𝑖𝑔
∑

𝕝𝑓(𝒙(𝑛))≥ 𝑌𝑡ℎ𝑟𝑒𝑠(𝒙
(𝑛))

𝑃(𝑌̂𝐷𝑂𝐸\𝒙(𝑛)(𝒙
(𝑛)) ≥  𝑌𝑡ℎ𝑟𝑒𝑠)

𝑁𝐾𝑟𝑖𝑔

𝑛=1

, (7) 

where 𝑌̂𝐷𝑂𝐸\𝒙(𝑛)(𝒙
(𝑛)) is the prediction of the output associated to the inputs 𝒙(𝑛), obtained with a 

Kriging model having as training set all the I/O observations except (𝒙(𝑛), 𝑦𝑛). This verifies that the 

probabilistic discriminating function (i.e., the prediction) converges towards the real discriminating function 

(i.e., the real limit surface). In practice, a value of 𝛼̂𝑐𝑜𝑟𝑟 𝐿𝑂𝑂 close to 1 indicates a satisfactory approximation 

of the real model, whereas very small or very large values indicate an inaccurate approximation. It must be 

noticed that, since the estimation is based on a Leave-One-Out (LOO) cross-validation, a minimum number 

of initial I/O observations, (e.g., 30 (Dubourg et al., 2013)), has to be provided to guarantee accurate 

estimates. On the other side, a maximum number of iterations can be set, in order to limit the number of 

calls to the real model. 

For building the meta-model, we resort to the UQLab Toolbox for Matlab (Marelli & Sudret, 2014), 

whereas the sequential training algorithm has been developed by the authors. 

4.2.1.3 Deep Exploration 

During the Deep EXploration (DEX) phase, the aim is to exploit the meta-model, to thoroughly explore the 

system space, in particular, to discover possible unexpected CRs. An algorithm based on the MCMC M-H 

algorithm has been designed. Although we refer the reader to the corresponding paper (Turati et al., 

2016b), we list here the main ideas. The iterative algorithm, at each step, firstly identifies the number of 

CRs already discovered using clustering techniques; then, several Markov Chains are distributed among the 

CRs in order to guarantee that each CR has been explored with the same meticulousness. In practice, the 

CRs having a low density of simulation runs within them are more likely to be underexplored than those 

having a higher density: thus, more Markov Chains will be assigned to the underexplored regions. For each 

one of the configuration visited by the Markov Chains, the corresponding meta-model is evaluated and if it 

leads to a critical output, it is added to the CRs. The algorithm continues until the number of CRs identified 

remains equal for a given number of iterations, i.e., until no more new CRs are identified, or alternatively 
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until a certain density of simulations is reach for all the CRs. In any case a maximum number of simulations 

can be set for controlling the maximum computational effort. 

4.2.1.4 Critical Regions Representation & Information Retrieval 

The outcome of the deep exploration is typically a large dataset containing a large set of points 

belonging to several CRs. However, when the state space dimensionality is higher than 3-4 

dimensions, high-dimensional data visualization techniques are necessary to retrieve useful 

insights. The interested reader is referred to (S. Liu, Maljovec, Wang, Bremer, & Pascucci, 2015) for 

an extended review of the state of the art. In what follows, we make use of two of the most known 

techniques: ScatterPLOt Matrix (SPLOM) (Hartigan, 1975) and the PCP (Inselberg, 2009), which help 

in retrieving complementary information about the CRs, such as their shapes and the corresponding 

input values in a unique, “readable”, graphical representation.  

4.2.1.5 Exploration Assessment 

Assuming that the real limit function representing the configurations in the CRs is available, the objective 

of the assessment phase is to measure how satisfactorily the exploration method has identified the 

configurations leading to critical conditions. Only for illustrative purposes, Figure 10 left shows the output 

of an accurate exploration of a two-dimensional space, where the real CR (shadowed) is sufficiently covered 

by the configurations selected by the explorative method (circles); on the contrary, Figure 10 right shows 

an incomplete exploration where a fraction of a CR is identified, but not entirely covered, and another CR is 

not even explored. 

Quantitative metrics are here introduced to assess the quality of the exploration: in particular, the 

population of critical configurations visited by the proposed methodology 𝒳𝑒𝑥𝑝
𝐶𝑅  (circles) is compared to a 

uniformly distributed population of samples belonging to the real CRs 𝒳𝑟𝑒𝑎𝑙
𝐶𝑅  (crosses), according to a 

distance-based criterion. 
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Figure 10 Representation of an accurate CR exploration (left) and of an incomplete CR exploration (right). 

A one-vs-all version of the Local Outlier Factor (LOF) is employed to this aim, where each configuration 

in the real CRs is compared to the whole population of critical configurations obtained by the exploration 

method. For the sake of completeness, LOF is a density-based outlier detection method capable of 

measuring how isolated is a sample from the rest of a given population of interest (Breunig, Kriegel, Ng, & 

Sander, 2000). In our case, the more isolated a real CR configuration is from the explored ones, the higher 

the probability that it belongs to an unexplored CR. 

The definition of the LOF relies on the concept of reachability distance between points 𝒙 and 𝒐: 

𝑑𝑟𝑒𝑎𝑐ℎ(𝒙, 𝒐) = max(𝑑𝑘𝑁𝑁(𝒐), 𝑑(𝒙, 𝒐)), (8) 

where 𝑑(∙,∙) is a generic distance and 𝑑𝑘𝑁𝑁(𝒐) is the distance of the k Near Neighbor (kNN) of o. In this 

paper, the Euclidean distance is employed; however, the Manhattan or even lower order 𝐿𝑝 distances can 

be preferable in high dimensionality (Aggarwal, Hinneburg, & Keim, 2001). Then, the local reachability 

distance, which measures how close is the configuration 𝒙 to its kNNs, can be defined as: 

𝑙𝑟𝑑𝑘(𝒙) =
𝑘

∑ 𝑑𝑟𝑒𝑎𝑐ℎ(𝒙, 𝒐)𝒐∈𝑘𝑁𝑁(𝒙)
. (9) 

In this light, the LOF of a configuration 𝒙 is defined as: 

𝐿𝑂𝐹(𝒙) =
1

𝑘
∑

𝑙𝑟𝑑𝑘(𝒐)

𝑙𝑟𝑑𝑘(𝒙)
𝒐∈𝑘𝑁𝑁(𝒙)

, (10) 

where the parameter 𝑘 has to be set by the analyst (and it is not related to the number of clusters 𝐾 

identified in Section 4.2.1.4). 

In general, a value of 𝐿𝑂𝐹(𝒙) ≈ 1 indicates that the configuration 𝒙 is well represented by the rest of the 

configurations, whereas a value of 𝐿𝑂𝐹(𝒙) ≫ 1 indicates that the configuration 𝒙 is isolated. In order to 

have a reference value for detecting a critical configuration as unexplored, the LOF is evaluated for all critical 

configurations 𝒙 ∈ 𝒳𝑒𝑥𝑝
𝐶𝑅  (namely, 𝐿𝑂𝐹𝑒𝑥𝑝). Likewise, 𝐿𝑂𝐹𝑟𝑒𝑎𝑙  represents the random variables 

corresponding to the one-vs-all evaluations of the configurations 𝒙 ∈ 𝒳𝑟𝑒𝑎𝑙
𝐶𝑅 . A configuration 𝒙 ∈ 𝒳𝑟𝑒𝑎𝑙

𝐶𝑅  is 

considered “unexplored”, if 𝐿𝑂𝐹(𝒙) > 𝐿𝑂𝐹̅̅ ̅̅ ̅̅
𝑒𝑥𝑝, where: 

is the LOF corresponding to the most isolated configuration explored. 

𝐿𝑂𝐹̅̅ ̅̅ ̅̅
𝑒𝑥𝑝 = max

𝒙∈𝒳𝑒𝑥𝑝
𝐶𝑅
𝐿𝑂𝐹(𝒙) (11) 



31 

The following distance-based statistics have been considered to synthetize the overall performance of 

the exploration method: 

1. Expected LOF: 

𝜇𝐿𝑂𝐹
𝑟𝑒𝑎𝑙 = 𝐸[𝐿𝑂𝐹𝑟𝑒𝑎𝑙] (12) 

A value of 𝜇𝐿𝑂𝐹
𝑟𝑒𝑎𝑙 ≫ 1 indicates that some CRs are probably unexplored. 

2. Unexplored Critical Region (UCR): 

𝑈𝐶𝑅 =
#(𝐿𝑂𝐹𝑟𝑒𝑎𝑙 > 𝐿𝑂𝐹̅̅ ̅̅ ̅̅

𝑒𝑥𝑝)

#𝒳𝑟𝑒𝑎𝑙
𝐶𝑅  (13) 

which is the ratio between the number of real critical configurations identified as unexplored and the 

cardinality of 𝒳𝑟𝑒𝑎𝑙
𝐶𝑅 . In practice, it represents the “fraction” of CRs that have not been explored by the 

method. 

3. Unexplored Extreme Critical Region (UECR): 

𝑈𝐸𝐶𝑅𝛾% = 𝑈𝐶𝑅𝛾%|𝒳𝑟𝑒𝑎𝑙
𝐸𝐶𝑅 =

#(𝐿𝑂𝐹𝑟𝑒𝑎𝑙 > 𝐿𝑂𝐹̅̅ ̅̅ ̅̅
𝑒𝑥𝑝|𝒳𝑟𝑒𝑎𝑙

𝐸𝐶𝑅)

#𝒳𝑟𝑒𝑎𝑙
𝐸𝐶𝑅  (14) 

where 𝒳𝑟𝑒𝑎𝑙
𝐸𝐶𝑅 ⊂ 𝒳𝑟𝑒𝑎𝑙

𝐶𝑅  is the subset of the CRs leading to the most “extreme” outputs. In particular, 𝛾 ∈

[0,100]% is the quantile used to characterize the extreme outputs: letting 𝛾 = 0.9, then a critical 

configuration is considered “extreme” if its output is larger than the output of 90% of the population. This 

metric allows the analyst to understand whether the method has discovered the CRs leading to the most 

critical outputs. 

4. Conditional Expected LOF: 

𝜇𝐿𝑂𝐹|𝑈𝐶𝑅 = 𝐸 [
𝐿𝑂𝐹𝑟𝑒𝑎𝑙

𝐿𝑂𝐹̅̅ ̅̅ ̅̅
𝑒𝑥𝑝

|𝐿𝑂𝐹𝑟𝑒𝑎𝑙 > 𝐿𝑂𝐹̅̅ ̅̅ ̅̅
𝑒𝑥𝑝] (15) 

that indicates how much isolated are on average the unexplored critical configurations with respect to the 

most isolated critical configuration explored. In practice, values of 𝜇𝐿𝑂𝐹|𝑈𝐶𝑅 ≫ 1 indicate the presence of 

critical configurations that are very isolated from the explored CRs and, thus, warn the analyst on the 

presence of CRs disconnected from those already identified. 
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4.2.2 Power Distribution Network 

A power distribution network is analyzed in order to discover its associated CRs (Mena, Hennebel, Li, Ruiz, 

& Zio, 2014). The network, represented in Figure 11, is composed of 10 feeders transporting energy from a 

unique Main Source (MS) to 8 demanding nodes (consumers) characterized by different daily load profiles. 

The load profiles 𝐿𝑗 assume different shapes according to the corresponding type of consumers 

associated. These include residential consumers and offices, whose per unit (p.u.) daily spot load profiles 

are reported in Figure 12. In detail, the daily load 𝐿𝑗 of a demanding node is given by: 

𝐿𝑗(𝑡) = 𝑟𝑗𝑅(𝑡) + 𝑜𝑗𝑂(𝑡) (16) 

where 𝑹(𝒕) and 𝑶(𝒕) are the p.u. daily loads, whereas 𝒓𝒋 and 𝒐𝒋 are the corresponding average loads 

for the residential consumer and office, respectively (Jardini, Tahan, Gouvea, Ahn, & Figueiredo, 2000). The 

values of the average loads used in this paper are reported in Table VI. Uncertainty and seasonality effects 

on the average loads can be easily embedded into the model. Nevertheless, since the focus of the study is 

on the exploration of the daily profiles to verify the impact of feeder failures, they are not taken into account 

in the analysis. 

 

Figure 11 Power network configuration. 
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Table VI Average load values for the 10 nodes of the network in kW. 

Node 1 2 3 4 5 6 7 8 9 10 

R 0 0 0 1 1 5 5 5 0 0 

O 5 5 100 0 0 0 0 0 0 0 

We assume that each feeder can independently fail only once within the 24 hour, at a random time 𝑇𝑖 ∈

[0,24) and with associated magnitude of the failure 𝐹𝑖. When the i-th feeder fails, no power can flow 

through it for a time proportional to the magnitude of the failure: for example, 𝐹𝑖 = 0.5 means that the 

feeder is out of service for half an hour. In this view, 𝑿 = [𝑇1, … , 𝑇10, 𝐹1, … , 𝐹10] is the M-dimensional vector 

of the inputs to the model and represents a given failure configuration. 

The electrical Energy Not Served (ENS) to the consumers is considered as output of the model and it is 

defined in this case as:  

𝐸𝑁𝑆(𝑿) =  ∫ ∑𝟏𝑁𝑆𝑆(𝑡)(𝑖) ∙ 𝐿𝑖(𝑡)

10

𝑖=1

𝑑𝑡

24

0

, (17) 

where 𝑁𝑆𝑆(𝑡) indicates the Not Supplied Set at time t, i.e., the set of nodes that are not served at time t 

and 𝟏 is the indicator function, which takes value 1 if 𝑖 ∈ 𝑁𝑆𝑆(𝑡) and 0 otherwise. Moreover, ENS is used 

to discriminate the critical conditions, i.e., a value of 𝐸𝑁𝑆(𝑿) ≥ 𝐸𝑁𝑆𝑡ℎ𝑟𝑒𝑠 implies that the failure 

configuration 𝑿 is critical; otherwise, 𝑿 is considered as “normal”. The value of 𝐸𝑁𝑆𝑡ℎ𝑟𝑒𝑠 is set equal to 500 

kWh, in order to focus the attention on critical events. 

 

Figure 12 Power load profiles for a residential consumer (left) and for a commercial office (right). 
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4.2.2.1 Dimensionality Reduction 

For the dimensionality reduction step, we resort to PCE, where the maximum degree of the polynomials is 

fixed to 5 in order to reduce the computational cost and focus the attention on the main trend of the model. 

The coefficients of the PCE are estimated by Least Angle Regression on the basis of a DOE of 500 samples 

obtained with a QMC Sobol’ sequence (Sobol, Asotsky, Kreinin, & Kucherenko, 2011). Figure 13 shows that 

there is a huge difference between the total order indices 𝑆𝑇 of the inputs: those associated to feeders 3 

and 10 (i.e., 𝑇3, 𝑇10, 𝐹3, 𝐹10) take values larger than 0.2, whereas the others take values lower than 0.05. 

This is in accordance with the fact that feeders 3 and 10 are the only two that can affect the energy supplied 

to the most demanding consumer (i.e., user 3). In this light, the dimensionality of the reduced-model is set 

to 4 with 𝑿∗ = (𝑇3, 𝑇10, 𝐹3, 𝐹10), and the rest of the inputs are set to randomly fixed values, since they are 

expected to have no effect on the output. 

4.2.2.2 Meta-model 

For training the meta-model we resort to an ordinary kriging, i.e., the trend is assumed to be unknown but 

constant, which allows the Gaussian process to completely adapt to the training data. An ellipsoidal 

anisotropic correlation function is used to take into account possible different behaviors of the response 

function with respect to different inputs: in particular, we resort to the 3/2 Matérn one (Abramowitz & 

Stegun, 1964; Rasmussen & Williams, 2006): 

ℎ(𝑥, 𝑥′;  𝜽) = √ ∑ (
𝑥𝑚 − 𝑥𝑚

′

𝜃𝑚
)
2

𝑚∈𝑀′

 

𝑅 (ℎ, 𝑣 =
3

2
) = (1 + ℎ√3 ) ∙ 𝑒−ℎ√3  

(18) 

where v is the shape parameter and 𝜽 the scale one. 

 

Figure 13 Sobol’ total order indices for the 20 inputs. 
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Given the dimensionality of the reduced-model, 100 configurations sampled with a Sobol’ QMC and the 

corresponding ENS are used for initializing the meta-model. Then, through the iterative AK-MCS introduced 

in Section 4.2.1.2, 10000 configurations are sampled by means of LHS and a maximum of 50 candidate 

configurations are evaluated and added to the DOE {𝓧𝑘𝑟𝑖𝑔, 𝓨𝑘𝑟𝑖𝑔} at each step. Only configurations having 

a value of the U-function lower than 4 are eligible as candidates. Actually, 𝑈(𝒙) > 4 indicates that the 

corresponding configuration is, in a probabilistic view, very distant from the critical threshold. A maximum 

number of 1000 I/O observations for training the meta-model is set in order to limit the maximum 

computational effort. Figure 14 shows the projection on the two-dimensional subspace [𝑇3, 𝑇10] of the 

configurations used to train the meta-model: on the left panel, we report the initial 100 samples used for 

the initialization, whereas on the right, those added iteratively by the AK-MCS are shown. It is worth noticing 

how the adaptive DOE distributes the observations differently in the different portions of the input domain 

(i.e., a significantly higher density in the CRs). 

4.2.2.3 Deep Exploration 

From the Kriging DOE, 169 configurations are identified as critical. In order to deeply explore the CRs, 5 

iterations of the method proposed in Section 4.2.1.3 are run with 5 Markov chains and a maximum number 

of samples equal to 5000. Figure 15 shows the projections on the two-dimensional subspace [𝑇3, 𝑇10] of 

the configurations belonging to the CRs. The left panel reports the configurations available from the meta-

model DOE, whereas that on the right contains those obtained as a result of the deep exploration (~3000 

configurations). It is worth noticing that the deep exploration allows better highlighting the boundaries of 

the CRs and, thus, to better retrieve their shapes and characteristics. This is even more apparent in high-

 

Figure 14 Projection of the DOE used for training the meta-model. The Figure on the left shows the initial 100 Sobol’ 
QMC samples, whereas on the right those added by the AK-MCS are shown. 
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dimensional spaces. Only one projection of the CRs configurations is here reported for brevity; nevertheless, 

a detailed analysis is given in the following sections. 

4.2.2.4 Representation & Information Retrieval 

A sequence of k-means clusterings with different cluster cardinality (from 𝐾=1 to 10) is applied to the critical 

configurations for identifying the representative number of separate CRs. Several cluster validity indices 

(e.g., Hubert statistic, Dunn, Silhouette, Davies and Bouldin, Calinski and Harabasz indices, etc.) have been 

computed to this aim; however, since this analysis goes beyond the present scope, the reader is referred to 

(Arbelaitz, Gurrutxaga, Muguerza, Pérez, & Perona, 2013; Charrad, Ghazzali, Boiteau, & Niknafs, 2014) for 

details on the definition and interpretation of the indices used. Two clusters have been identified and the 

corresponding PCP is reported in Figure 16. For the sake of clarity, the envelopes of the parallel coordinates 

representing the two clusters (i.e., the ranges of values characterizing the clusters) are shown in Figure 17. 

By observing these ranges, it is also possible to have an idea of the dimension of the CRs. In this case, for 

example, they occupy respectively around the (30%, 30%, 20%, 20%) of the entire range of the four 

important inputs 𝑇3, 𝑇10, 𝐹3 and 𝐹10, which corresponds to ~0.36% of the entire input domain. The CRs are 

characterized by failures occurring during the central hours of the day (between 8-15) and with a failure 

magnitude above the 0.8, i.e., the feeders are out of order for at least 48min each. In addition, it is worth 

noticing that the two clusters show different behaviors on the two axes corresponding to the failure times, 

i.e., 𝑇3 and 𝑇10. 

 

Figure 15 Two-dimensional projections of the observations belonging to the CRs: those available from the DOE of the 
meta-model (left) and those obtained with the deep exploration step (right). 
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For this reason, the corresponding SPOLM is given in Figure 18, where the “envelopes” identified on the 

PCP are represented in the panels above the diagonal by means of shadowed rectangles. It can be observed 

that the two clusters are recognizable and well separated on the subspace defined by [𝑇3, 𝑇10]: cluster 1 is 

characterized by an initial failure of feeder 10 followed by a failure of feeder 3 with a delay of at least one 

hour, whereas cluster 2 is characterized by the inverse sequence, still with a delay of at least one hour 

between failures. Indeed, if both failures happen at the same time, the ENS associated to node 3 is the same 

as if only one of the two failures had happened, because both feeders are put under repair at the same time 

and, thus, the total time of energy not supplied to user 3 is “just” one hour. 

Concerning the subspace defined by [𝐹3, 𝐹10], it must be noticed that there is no difference between the 

two clusters. However, the triangular shape of the region shows that the sum of the two failure magnitudes 

must be at least equal to 1.80, i.e., the consumer at node 3 is not served for at least 1h:48m. 

Finally, although the two-dimensional projections of the PCP envelopes overestimate the regions of the 

associated CRs, they provide a synthetic representation, which can be useful as first approximation of the 

CRs. 

 

Figure 16 Parallel Coordinates Plot of the two CRs identified. 

 

Figure 17 Envelopes of the PCP representing the inputs 
ranges. 
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4.2.2.5 Performance Assessment 

In order to have a representative picture of the real CRs, a large number of configurations involving all 20 

inputs of the model have been sampled by means of LHS and the corresponding output has been evaluated. 

Moreover, the outputs of the reduced-model involving the projections of the 20 inputs on the 4-

dimensional space defined by [𝑇3, 𝑇10, 𝐹3, 𝐹10] have been evaluated as representative of the ideal “target”, 

meta-model representation. The number of calls to the expensive model and/or to the cheap one (i.e., the 

meta-model) is given in Table VII for each exploration strategy. 

Table VII Number of calls made to the computationally cheap and/or expensive model for the different exploration 
strategies. 

COPUTATIONAL COST META-MODEL REDUCED-MODEL REAL-MODEL 

CHEAP ~200000 0 0 

EXPENSIVE 1500 100000 100000 

 

Among the large number of configurations sampled, those leading to critical values of ENS are selected 

and the corresponding LOF evaluated to verify to what extent the CRs discovered by the meta-model are 

 

Figure 18 SPLOM of the two CRs discovered by the exploration algorithm. Above the diagonal, the projections of the 
PCP envelopes are depicted by means of shadowed rectangles. 
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similar to those found by the reduced and real-models (see Section 4.2.1.5). The values of the associated 

statistics are given in Table VIII. The CRs of the meta-model are used as the reference set, thus, only the 

corresponding expected value of the LOF can be evaluated. By looking at the results obtained for the 

reduced-model, it must be observed that all the statistics assume low values: the average value of LOF is 

very close to that of the meta-model; the percentage of CRs that remains unexplored is only 3%, and the 

associated conditional value is still very low (i.e., 1.08), which means that the unexplored CRs are very close 

to the boundaries of the CRs identified by the meta-model. In this light, it can be stated that the meta-model 

exploration has accurately explored and discovered the CRs associated to the reduced-model. 

On the other side, with respect to the real model, the average LOF takes a large value compared to the 

meta-model, suggesting that a part of the CRs remains unexplored. This is confirmed by the percentage of 

unexplored CRs. However, it must be noticed that the percentage of unexplored extreme CRs is very low, 

i.e., the meta-model exploration has been able to identify the configurations leading to the most critical 

outputs. Finally, the conditional expected value 𝜇𝐿𝑂𝐹|𝑈𝐶𝑅 takes a value that is not very large, suggesting that 

the unexplored portion of CRs is likely to be close to the boundaries. 

Table VIII Local Outlier Factor (LOF)-based statistics for the different exploration strategies. 

METRIC META-MODEL REDUCED-MODEL REAL-MODEL 

𝝁𝑳𝑶𝑭 1.02 1.03 2.66 

𝑼𝑪𝑹 - 3% 72% 

𝑼𝑬𝑪𝑹𝟗𝟎% - 0% 7% 

𝝁𝑳𝑶𝑭|𝑼𝑪𝑹 - 1.08 2.20 

 

In order to visualize the results, we resort to a SPLOM where the CRs identified by the meta-model 

exploration are depicted by light circles and the configuration belonging to the CRs associated to the real 

model are depicted by crosses and squares according to their values of LOF. In particular, in accordance 

with Section 4.2.1.5, those configurations having 𝐿𝑂𝐹 ≤ 𝐿𝑂𝐹̅̅ ̅̅ ̅̅
𝑒𝑥𝑝 (see Eq. (11)) are defined as identified CRs 

(crosses), whereas those having 𝐿𝑂𝐹̅̅ ̅̅ ̅̅
𝑒𝑥𝑝 < 𝐿𝑂𝐹 are defined as undiscovered CRs (squares). It must be 

noticed that there is not a significant difference between the Meta-Model (MM)-based and the real model-

based exploration in the subspace characterized by the failure times [𝑇3, 𝑇10]. On the contrary, there is a 

significant difference in the failure magnitude subspace [𝐹3, 𝐹10]: according to the real model, it is enough 

that the sum of the magnitudes is larger than ~1.60. This means that the real model can reach a critical 

condition even if the consumer at node 3 is not served for at least 1h:36m. Indeed, the rest of the ENS 
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needed to reach the critical threshold can come from the failures of the feeders discarded during the 

dimensionality reduction step. Finally, by looking at the last column of Figure 19, it can be seen that the 

largest values of ENS, i.e., the most critical ones, are correctly discovered by our methodology (crosses). 

A sort of sensitivity analysis to the model parameters has also been conducted to verify the performance 

of the proposed methodology when the impacts of the discarded inputs is very low, i.e., when the reduced-

model is likely to represent the real model. To this aim, all the loads except that of node 3 have been reduced 

of a factor 10 (the corresponding values are reported in Table IX). In order to assure the presence of a CR 

despite the loading reduction, the threshold 𝐸𝑁𝑆𝑡ℎ𝑟𝑒𝑠 has been set equal to 475 kWh, i.e., 5% lower than 

the initial one. All the analyses have been run with the same settings and with the same number of calls to 

the model as in the initial case. 

Table IX Average load values for the 10 nodes of the network in kW. 

NODE 1 2 3 4 5 6 7 8 9 10 

R 0 0 0 0.1 0.1 0.5 0.5 0.5 0 0 

O 0.5 0.5 100 0 0 0 0 0 0 0 

 

Figure 19 SPLOM of the CRs discovered by the Meta-Model (MM) exploration (light circles). The CRs of the real model 
are depicted with different symbols whether identified (cross) or not (square). 
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Table X reports the result of the statistics associated to the LOF for the reduced and the real model-

based exploration. The average value of the LOF is for all types of exploration very close to 1, indicating that 

it is likely that all CRs have been discovered. This is confirmed by the percentage of unexplored CRs, which 

is null for both models. The value of 𝝁𝑳𝑶𝑭|𝑼𝑪𝑹 is not reported, since no configuration has been identified as 

unexplored. 

Table X Local Outlier Factor (LOF)-based statistics for the different exploration strategies. 

METRIC META-MODEL REDUCED-MODEL REAL-MODEL 

𝝁𝑳𝑶𝑭 1,02 1,01 1,07 

𝑼𝑪𝑹 - 0 0 

𝑼𝑬𝑪𝑹𝟗𝟎% - 0 0 

 

Figure 20 shows that all critical configurations discovered by means of the real model-based exploration 

(dark crosses) lay inside or at the boundaries of the CRs discovered by the proposed methodology (light 

circles). These results demonstrate how the proposed methodology is capable of identifying the CRs 

resorting to a limited number of calls to the real model: in this case, two orders of magnitude lower than 

the exploration based on the real model. 
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4.2.3 Discussion 

In Section 4.2 a new strategy has been proposed to identify and characterize CRs by simulations of models 

that are: i) computationally expensive, ii) high-dimensional, iii) complex. 

The main advantage of the proposed method is the capability of exploring and retrieving information 

with a limited number of simulations. Furthermore, the method is general and modular, i.e., it can be 

applied to a variety of problems and cases. For example, if the numerical model is not high-dimensional (or 

computationally expensive), the dimensionality reduction step (or the meta-model one) can be avoided. 

Finally, since the proposed method relies on the capability of the meta-model of accurately reproducing 

the behavior of the real model, the performance of the method is in a way conditioned by that of the Kriging. 

In particular, Kriging performance tends to decrease with the dimensionality of the important input space, 

i.e., the dimensionality of the reduced-model input space. 

 

Figure 20 SPLOM of the CRs discovered by the Meta-Model (MM) exploration (light circles). The CRs of the real model 
are depicted with different symbols, whether identified (cross) or not (square). 
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5 Conclusions 

In this chapter, the possibility of gaining knowledge for system risk assessment by scenario simulations 

has been discussed and investigated. The trivial idea is to explore how the system behaves by running 

simulations and retrieving a posteriori the information of interest, specifically with respect to those 

unexpected or unusual critical configurations forming the so-called CRs. Such exploration becomes 

obviously challenging, when the simulation model is: i) high-dimensional; ii) complex; iii) black box and iv) 

computationally expensive. Specific methods are, then, needed to obtain the information of interest with a 

limited number of calls to the (computationally expensive) model. Two main strategies have been 

considered in the literature to this aim. One resorts to parallel computing to reduce the time required to 

achieve a satisfactory level of detail during the exploration. The other one resorts to iterative adaptive 

strategies, which exploit the knowledge available from the results of the simulations already run, to select 

the best configuration for a new “informative” simulation (which should, in principle, add more information 

on the states of the system that are of interest for the analysis). 

Two methods have been presented in the chapter. One explores the uncertainty associated to different 

possible accident scenarios in order to increase the knowledge about the impact that time has on the 

evolution of scenarios of interest. The method identifies those scenarios characterized by a large variability 

in their output and, consequently, concentrates the simulation runs on them. At the same time, the method 

can embed the prior knowledge of the analyst. This allows focusing the attention and the majority of the 

computational efforts on the exploration of a limited number of accident scenarios. 

The other method aims at identifying and characterizing the configurations of inputs and parameters 

leading a system to abnormal conditions, i.e., those of the CRs. The proposed framework makes use of: i) 

dimensionality reduction techniques, to limit the dimensionality of the input space; ii) meta-modeling to 

reproduce the real model and reduce the computational cost for a model run; iii) an adaptive exploration 

algorithm to identify and thoroughly probe the critical regions; iv) clustering and high-dimensional data 

visualization techniques to retrieve and visualize the knowledge enclosed in the simulations run. The 

framework is modular and flexible, making it easy to adapt to different types of applications. 

Finally, it must be emphasized that the knowledge that can be retrieved from the simulations is 

conditioned on the knowledge available in the model: the more detailed and accurate the model, the more 

challenging the exploration, but also the more complete and informative the information that can be 

retrieved. 
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Appendix 

A. METROPOLIS-HASTINGS 

The Metropolis-Hastings (M-H) is a well-known Markov Chain Monte Carlo (MCMC) method for sampling 

from unconventional probability distributions. The general idea of a MCMC method is to generate a Markov 

Chain having the target distribution 𝑝 as its stationary distribution (Robert & Casella, 2004).  

For generating the Markov Chain, the M-H algorithm iteratively samples a candidate 𝑻∗ from a proposal 

distribution 𝑞, and accept-reject the proposed sample according to an acceptance criterion (Hastings, 1970). 

For the proposal step, easy to sample distributions are usually considered. For example, in Section 4 we 

resort to a Multivariate Gaussian distribution 𝑞(𝑻∗ | 𝑻𝒏 )~𝑁(𝑻𝒏 , 𝚺), having as mean value the last 

accepted sample 𝑻𝒏 and as covariance matrix 𝚺, whose coefficient can be estimated using a set of samples 

available from the target distribution, or can be set a priori by the analyst. Once sampled, the candidate 𝑻∗ 

can be accepted (i.e., 𝑻𝒏+𝟏 = 𝑻
∗) or rejected (i.e., 𝑻𝒏+𝟏 = 𝑻𝒏) with a probability 𝛼(𝑻𝒏, 𝑻

∗) =

min(𝑟(𝑻𝒏, 𝑻
∗), 1), where r is defined as follows: 

𝑟(𝑻𝒏, 𝑻
∗) = {

𝑝(𝑻∗) ∙ 𝑞(𝑻𝒏 | 𝑻
∗ )

𝑝(𝑻𝒏) ∙ 𝑞(𝑻
∗ | 𝑻𝒏 )

,  𝑝(𝑻𝒏) ∙ 𝑞(𝑻
∗ | 𝑻𝒏 ) > 0

1       , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      ,

 (19) 

𝑝 being the target distribution from which we want to sample. If the proposal distribution is symmetric, 

i.e., 𝑞(𝑻𝒏 | 𝑻
∗ ) = 𝑞(𝑻∗ | 𝑻𝒏 ), then, Eq. (19) can be rewritten as: 

𝑟(𝑻𝒏, 𝑻
∗) = {

𝑝(𝑻∗)

𝑝(𝑻𝒏)
, 𝑝(𝑻𝒏) > 0

1       , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (20) 

Finally, if the target distribution is uniform on the support Ω𝐼 of the event of interest, then, the 

probability 𝛼(𝑻𝒏, 𝑻
∗) can be written as: 

𝛼(𝑻𝒏, 𝑻
∗) = {

1, 𝑻∗ ∈ Ω𝐼
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (21) 

In order to reach with a small number of samples the stationary distribution, a critical indicator is the 

Acceptance Ratio (AR) between the proposed candidate and the accepted ones: if AR is too high (AR>0.9), 

it is likely that the proposed candidate is very close to the previous one, meaning that the Markov Chain is 

too slow in spanning the space of interest. On the contrary, if AR is small (AR<0.2), the proposal distribution 

is sampling candidates that are too distant from the accepted ones and thus in regions where the target 
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distribution is very low or even outside the target domain Ω𝐼, meaning that distribution is approximated 

with several repetitions of the same samples. 

B. POLYNOMIAL CHAOS EXPANSION – BASED SENSITIVITY ANALYSIS 

Given a function 𝑌 = 𝑓(𝑿), where 𝑿 represents a vector of random inputs and 𝑌 is the associated output. 

It is possible to decompose the function by means of the Polynomial Chaos Expansion (PCE) representation 

(Ghanem & Spanos, 1991), that is: 

𝑌 = 𝑓(𝑋1, … , 𝑋𝑀) = ∑ 𝑦𝜶𝜓𝜶(𝑋1, … , 𝑋𝑀)

𝜶∈ℕ𝑀

, (22) 

where 𝑦𝛼 is the coefficient associated to the multivariate Hilbertian basis 𝜓𝜶(∙), orthonormal with 

respect to the multivariate distribution characterizing the inputs (usually the uniform or the normal 

distribution are considered). In order to be valid, the Hilbertian space should be chosen such that it contains 

the response function 𝑌 (Soize & Ghanem, 2004). If the input multivariate distribution is uniform, then 𝜓𝜶(∙) 

is a multivariate Legendre polynomial, where the multi-index 𝜶 = (𝛼1, … , 𝛼𝑀) indicates the order of the 

polynomials associated to each component of the vector 𝑿. For example, if 𝜶 = (3,1,0,2), then the 

associated Legendre polynomial is characterized by a third order polynomial for 𝑋1, a first order polynomial 

for 𝑋2, a zero order polynomial for 𝑋3 and a second order polynomial for 𝑋4. The polynomial chaos 

expansion, in order to keep reasonable the numerical cost, can be truncated to a maximum polynomial 

order 𝑝, providing an approximation of the real response function: 

𝑌 = 𝑓(𝑋1, … , 𝑋𝑀) ≈ ∑ 𝑦𝜶𝜓𝜶(𝑋1, … , 𝑋𝑀)

𝜶∈𝐴𝑀,𝑝

, (23) 

where 𝐴𝑀,𝑝 ⊂ ℕ𝑀 is the multi-index subset corresponding to polynomials having maximum order equal 

to 𝑝, i.e., 𝐴𝑀,𝑝 = {𝜶 ∈ ℕ𝑀 𝑠. 𝑡. |𝜶| < 𝑝 } with corresponding cardinality #𝐴𝑀,𝑝 = (
𝑀 + 𝑝
𝑝

). 

The great advantage of the PCE is that, once the approximation (23) is computed, then the total order 

sensitivity indices can be trivially approximated as:  

𝑆𝑇𝑖 ≈ 𝑆̃𝑇𝑖 =
∑ 𝑦𝒖

2
𝒖∈𝑈𝑖 

∑ 𝑦𝜶
2

𝜶∈𝐴𝑀,𝑝
, (24) 

where 𝑈𝑖 = {𝒖 ∈ 𝐴𝑀,𝑝 𝑠. 𝑡. 𝑢𝑖 ≠ 0 } is the subset of all the multi-indices corresponding to multivariate 

Legendre polynomials with non-zero degree associated to the i-th component, i.e., the subset of multi-

indices representing polynomials that include the i-th component (Sudret, 2008). The approximated total 

order sensitivity indices 𝑆̃𝑇𝑖 converges to the real one witht the degree of the polynomial truncation 𝑝. In practice, 
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the computational cost required for estimating 𝑆𝑇 depends only on the computational cost needed to 

approximate the output function with the PCE. 

The estimation of the PCE coefficients can be conducted both via projection and regression. Even though 

the projection technique is more rigorous, it requires to know explicitly the definition of the function 𝑓 (Le 

Matre, Reagan, Najm, Ghanem, & Knio, 2002), which is typically not the case when dealing with black box 

functions or complex numerical codes. For this reason, we resort to a regression method, in particular, to 

the Least Angle Regression (LARS) coupled with an adaptive sparse PCE representation (Blatman & Sudret, 

2011), which is devised to automatically detect the significant PCE coefficients limiting at the same time the 

computational cost for the PC approximation. The sparse representation of the coefficient matrix, indeed, 

allows keeping into the memory only those coefficients having a non-negligible value, which is typically the 

case in many real applications. In order to train the regression model, a number 𝑁𝑃𝐶𝐸 of input configurations 

is usually sampled according to Latin Hypercube Sampling (LHS) or other Quasi Monte Carlo (QMC) 

techniques (McKay, Beckman, & Conover, 1979; Sobol et al., 2011). Consequently, the corresponding real 

model outputs are evaluated and used to fit the regression model. Recently, an optimal DOE for the 

estimation of the PC coefficients has been proposed to further reduce the number of calls to the possibly 

long-running model (Burnaev, Panin, & Sudret, 2016).  

Finally, it must be pointed out that PCE is a meta-modeling technique capable of well representing the 

global behavior of the response function. Nonetheless, when the response function presents local behavior 

such as spikes or step changes, although a good fit can be theoretically achieved by the PCE increasing the 

polynomial order, the corresponding computational cost to estimate the parameters can become 

burdensome. 

C. KRIGING 

Kriging is a stochastic interpolation algorithm, which assumes that the model output 𝑌 = 𝑓(𝑿) is the 

realization of a Gaussian process indexed by 𝑿 ∈ 𝐷𝑋 ⊂ ℝ
𝑀 where, in our case, 𝐷𝑋 is the domain of validity 

of the meta-model and 𝑀 is the dimensionality of input state space (Kleijnen, 2009; Matheron, 1963). In 

practice, Kriging is a linear regression model where the residuals are correlated by means of a Gaussian 

process, instead of being independent: 

𝑌 = 𝑓(𝑿) = 𝑁(ℎ(𝑿)𝑇𝜷, 𝜎2𝑍(𝑿)), (25) 

where ℎ(𝑿)𝑇𝜷 represents the mean value, also known as trend, which is a general linear regression 

model (e.g., ℎ(𝑿) can involve polynomial terms and it reflects the prior knowledge about the model), 𝜎2 is 
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the variance of the Gaussian process and 𝑍(𝑿) is a zero mean, unit variance stationary Gaussian process 

whose underlying correlation function is represented by 𝑅(𝒙, 𝒙′; 𝜽). The correlation function typically 

depends on the distance of the two vectors 𝒙, 𝒙′: the closer they are, the higher their correlation. Due to 

the Gaussian process hypothesis, every set of realizations of the model output can be described by a 

Gaussian vector: 

[
𝑌̂(𝒙)
𝒚
]~𝑁𝑁𝐾𝑟𝑖𝑔+1 ([

𝒉(𝒙)𝑇𝜷
𝑯𝜷

] ; 𝜎2 [
1 𝒓𝑻(𝒙)

𝒓(𝒙) 𝑹
]). (26) 

Assuming that 𝒚 = (𝑦1, … , 𝑦𝑁𝐾𝑟𝑖𝑔) is an experimental design with associated information matrix 𝑯 and 

correlation matrix 𝑹 (i.e., 𝑹𝑖𝑗 = 𝑅(𝒙
(𝑖), 𝒙(𝑗); 𝜽), 𝑖, 𝑗 = 1,… ,𝑁𝐾𝑟𝑖𝑔), then the prediction of the output 𝑌̂ for 

a given configuration 𝒙 is given by: 

𝑌̂(𝒙)|𝒚, 𝜎𝟐, 𝜽~𝑁(𝜇𝑌̂; 𝜎𝑌̂
2), (27) 

where 

𝜇𝑌̂(𝒙) = ℎ(𝒙)𝑇𝜷 + 𝑟(𝒙)𝑇𝑹−𝟏(𝒚 − 𝑯𝛃), (28) 

𝜎𝑌̂
2(𝒙) = 𝜎2(1 − 𝑟(𝒙)𝑇𝑹−𝟏𝑟(𝒙)𝑇) + (ℎ(𝒙)𝑇 − 𝒓(𝒙)T𝑹−𝟏𝑯)(𝑯T𝑹−𝟏𝑯)−1(ℎ(𝒙)𝑇 − 𝒓(𝒙)T𝑹−𝟏𝑯)𝑇  (29) 

with the regression coefficients estimated by 𝜷 = (𝑯T𝑹−𝟏𝑯)
−1
𝑯𝑇𝑹−𝟏𝒚. 

One of the main advantages of this formulation is that a confidence interval can be associated to each 

prediction 𝑌̂(𝒙). This can be used for assessing the accuracy and precision of the meta-model: the smaller 

the confidence interval, the more precise the model prediction for the corresponding configuration. 
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