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We analyze the Andreev spectrum in a four-terminal Josephson junction between one-dimensional
topological superconductors in class D. We find that a topologically protected crossing in the space
of three superconducting phase differences can occur between the two lowest Andreev bound states.
This crossing can be detected through the transconductance quantization, in units of 2e> /h, between
two voltage-biased terminals. Our prediction provides yet another example of topology in multi-
terminal Josephson junctions. We discuss possible realizations of such junctions with semiconducting
crossed nanowires and with quantum-spin Hall insulators.

Introduction. It was long realized that an arbitrary
Hamiltonian parametrically controlled by three param-
eters admits for topologically protected crossings in its
energy spectrum [I]. In the vicinity of a crossing, the
Hamiltonian in this three-parameter space takes the same
form as the one introduced by Hermann Weyl in 1929
to describe relativistic massless particles in three dimen-
sions. The crossings are now called Weyl points. This
finding, as well as its generalization to physical systems
protected by additional symmetries, was important for
the prediction of topological properties in various areas
of condensed matter, optical, or mechanical physics.

In a recent work [2], it was predicted that such Weyl
crossings appear at zero energy in the Andreev spectrum
of four-terminal Josephson junctions made with conven-
tional s-wave superconductors connected through a com-
mon normal scattering region. In that case, the three
parameters are three superconducting phase differences
between the four leads. Due to spin-rotation symmetry,
such crossings are the only allowed states at zero energy.
At such “Andreev-Weyl” crossings, the Chern number of
the ground state in a submanifold of the phase space
characterized by two phase differences changes. As a
consequence, the Andreev-Weyl crossings would mani-
fest themselves through a quantized transconductance,
in units of 4e?/h, between two voltage-biased termi-
nals [2),3]. This prediction was subsequently extended to
junctions with three terminals in an external magnetic
field [ [5].

On the other hand, Andreev-Weyl crossings have been
shown to shift away from zero-energy, if spin-rotation
symmetry is broken due to, e.g., spin-orbit coupling [6].
As long as the shift is small, the lowest energy state will
cross the Fermi level on a surface surrounding the Weyl
point in the space of the three phases. The prediction for
the transconductance quantization away from the Weyl
points remains valid. On the other hand, spin-orbit cou-
pling may lead to the appearance of topological super-
conductivity with Majorana edge states [7H]. Possible
realizations using semiconductor nanowires [10} 1] are
studied extensively. Four-terminal junctions based on
the same kind of materials have already been realized,
and one may wonder whether they might have similar

FIG. 1: Four-terminal junction formed of one-dimensional
topological superconducting leads (blue lines) accommodat-
ing Majorana zero modes ; at their extremities (red stars),
and in the presence of a weak tunnel coupling between any
pair of leads (dashed lines).

properties to those described above. In this paper, we
show that indeed they do, but with a significant twist
compared to the previously studied case. The lowest An-
dreev state in such junctions depends 47-periodically [§]
on the superconducting phase differences, which is a hall-
mark of the Majorana physics. As such it crosses the
Fermi level along surfaces in the three-parameter phase
space of a four-terminal junction. However, it can have
finite-energy Weyl crossings with the next Andreev level,
which is — by contrast — 27-periodic. Below we show
that these “Majorana-Weyl” crossings occur with a large
probability in specific models. In the presence of such
crossings, the 2m-periodic state acquires a finite Chern
number. As before, a finite Chern number is associated
with a quantized transconductance, but now in units of
2¢2/h due to the lifted spin degeneracy. Our predictions
could be tested with the platforms of semiconducting
nanowires [I2] and heterostructures [I3] that are cur-
rently investigated for the detection and manipulation
of Majorana modes.

Tunnel junction. The physics can be most easily un-
derstood in the case of a tunnel junction made of four
weakly coupled one-dimensional spinless p-wave super-
conductors [], corresponding to class D in the classifica-
tion of topological insulators and superconductors [14],
as illustrated in Fig. [I] In that case, the effective low-
energy Hamiltonian can be written in terms of the four



Majorana end modes at the junction. It takes the form

1
H = 5 Z §ab7a7b (1)
1<a<b<4
with
o= lalsin (5% —6w). @

Here, 7, is a Majorana fermionic operator (such that
42 = 1), which describes the Majorana zero mode at
the end of superconductor a, with superconducting phase
Xo [15], when it is decoupled from the others. (Without
loss of generality we set x4 = 0 below.) Furthermore,
tap = |tap|€'®e® are proportional to the tunneling matrix
elements for electrons between leads a and b. Note that
Hermiticity of the tunnel Hamiltonian requires ¢,, = t7;.
The Hamiltonian (1)) accounts for all (bound) states in an
energy bandwidth <« A, where A is the superconducting
gap, provided that the transmission probabilities between
the leads are small.

Next, we introduce fermion operators, c; =
(71 +4v2)/2 and c— = (y3+4v4)/2. Then, Hamilto-
nian (1)) reads H = 3CTHC, where C = (¢, c_, c, —CL)T
is an annihilation/creation operator in particle/hole
space and

H=S 0o+T- 1 (3)

is a Bogoliubov-de Gennes (BdG) Hamiltonian. Here
o = (04,04,0;) and T = (74, 7y, T) are vectors of Pauli
matrices in (c,,c_)-space and (c, cf)-space, respectively,
and

S = (§1a — &3, —&13 — €21, &12 — &3a), (4a)
T = (&4 — &3, —&13 + 824,812 + &34). (4D)

Hamiltonian , which is the sum of two Weyl Hamilto-
nians, admits for four eigenstates with pairwise opposite
energies, E,, = o (|S] + 7|T|) with 0,7 = £. We readily
check with Eqgs. and that E,, and E,_ depend
27- and 4m-periodically on the phase differences, respec-
tively. Namely, Eo+(x1+27, X2, X3) = TEo+(x1, X2, X3)
and similar relations with the other phases [I7]. This
is expected as |o+) is a conventional Andreev bound
state whose energy remains above (if o = +) or below
(if 0 = —) the Fermi level at all phases, while |o—) is
a Majorana-Andreev bound state that crosses the Fermi
level as any of the phases are varied. (Indeed, a single
scalar equation, |S| = |T|, determines the position of this
crossing.)

More interestingly for our purpose, the states |o+)
and |o—) cross each other when T' = 0. On the other
hand, at S = 0, the crossing is between the states
|o+) and |6—), where 6 = —o. Each such Majorana-
Weyl crossing is determined by three scalar equations.

X2=0, x3;=2n/3
t

E, \/\/E++

X2 =m6, x3=2m/3
E/t

EJ

(a) S N e E_, ( b) ’ S . E_,

Xx2=0, x3=-2m/3
E/t

n 2r X

FIG. 2: Phase dependence of (a)-(c) the Andreev spectrum
and (d) the Chern number in a symmetric four-terminal tun-
nel junction with ¢/t = 0.2 and ¢ = 4m/3.

Therefore they generally occur at isolated points in the
three-dimensional space of phase differences of the four-
terminal junction. In the specific case where all ¢4, = 0,
the Weyl points determined by S = 0 and T' = 0 take
place at zero energy and coincide at the same set of
phases, (x1,x2,x3) = (0,0,0) mod 27. But, in general,
the Weyl points do not coincide and occur at finite en-
ergy. Due to particle-hole symmetry, the Weyl crossings
at a given value of the phases (x7, X3, x3) occuring at
energies £F* carry the same topological charge. Fur-
thermore, 27-phase translations [I7] bring another set of
two Weyl points with the same charge. Thus, eight pairs
of Weyl points at opposite energies with the same topo-
logical charges appear in the region 0 < x1, X2, X3 < 47
at phases (xi+2mnq, x5+2mng, x5+2mng) withn;, =0, 1.
The fermion doubling theorem [I8] ensures that eight
other pairs of Weyl points with the opposite topological
charges must exist in the same region of phases.

We show typical spectra in Fig. [2]for a symmetric junc-
tion with tees1 = teT9/* and taqro = t’ with ¢, ¢, ¢ real.
The Weyl crossings at T' = 0 and S = 0 take place at
phases (¢/2,0,¢/2) and (—¢/2,0,—¢/2) mod 27, as il-
lustrated in Figs. [2(a) and [2|(c), respectively; Fig. 2{b)
shows a gapped Andreev spectrum.

Weyl points are monopoles for Berry curvature. Fixing
the phase x1, we define the Berry curvatures

Bor(x13 X2, X3) = =2Im{(9x, (o7()0x; o)} (5)



in the (x2,x3)-plane of the two remaining phase differ-
ences for each state |o7). Integration over the region
0 < x2,x3 < 4m then yields the (quantized) first Chern
numbers,

Cor(x1) / dXz/ dxs Bor(x15x2:x3)-  (6)
Possible values are constrained by symmetry consid-
erations. Namely, particle-hole symmetry imposes
Cir(x1) = =C_;(x1). Moreover, while the states |o+)
are 2m-periodic, shifting one of the phases by 27w ex-
changes the states | + —) and | — —). Therefore, the
latter two states have to carry the same Chern num-
ber. Together with particle-hole symmetry, this imposes
Co—(x1) = 0.

As the phase x; is varied across the Weyl point at x7,
Cy1(x1) changes by —oQ*, where Q* is the topological
charge of the Weyl point, see Fig. (d) for an illustration.
The fact, that C,_(x1) remains zero can be understood
from the observation that the states |0—) participate in
two Weyl crossings (with the state | — +)) as the higher
energy state and in two other Weyl crossings (with the
state | + +)) as the lower energy state, such that the
different contributions to the Berry curvature cancel each
other.

We are now in a position to compute the currents
through the junction. As the BdG formalism describ-
ing superconducting heterostructures introduces a double
counting of states, only two of the four states are phys-
ical. We choose to keep the states 0 = +. According
to [2] (see also Supplemental Material [19]), in a multi-
terminal Josephson junction, the Andreev states’ Berry
curvatures determine a non-adiabatic correction to the
Josephson currents flowing through two voltage-biased
terminals,

10FE,, .
L3(t) = 262 [h 6)(:3 F 7X3,2B - (x15 X2, X3) | hr (1),
(7)

where x23 = 2eV5 3/h with dc voltage biases V5 and Vs
in terminals 2 and 3, and we used Bi,(x1;X3,X2) =
—Bir(x1; X2, X3). Furthermore h, = n, — 1/2 describes
the (time-dependent) occupations n, of the states |+ 7).

At fixed occupation of the states, we find that the time-
averaged currents are given as

_ 2¢2
Iz = ¢TV3,2C++(X1)h+~ (8)

As the state | + +) lies above the Fermi level, we may
assume n4 = 0 to obtain the quantized transconductance

1_2 262 _ I_
Gaz = Vs TC++(X1)a

The unit of transconductance quantization is half the one
found in [2] because of the lifted spin degeneracy in the
junction considered here.

Equation @ is our main result. While it ressem-
bles the predicted transconductance quantization in non-
topological four-terminal junctions (taken apart the mod-
ified unit of transconductance quantization), there are
important differences. As the Andreev spectrum does not
have a gap at the Fermi level, the transconductance does
not probe the ground state of the system. While the 47-
periodic state |[+—) does not carry a Chern number itself,
it is essential in transferring Berry curvature across the
Fermi level. Similarly to signatures of Majorana physics
in two-terminal junctions [20], the observation of con-
ductance quantization requires that the system does not
relax to its equilibrium occupations [2I]. As the result
does not depend on the occupation n_ of the state |+—),
however, it is robust with respect to random switchings.

Arbitrary junction. Our result is not restricted to tun-
nel junctions. In general, we may use the formalism of
[22] to find that the Andreev spectrum is determined by

det [1 4 a®(E)S(E)e'XS*(—E)e™™] = 0. (10)

Here S(F) is the 4 x 4 scattering (or S-)matrix
for electrons with energy FE between the four one-
dimensional leads, S*(—F) is the corresponding S-matrix
for holes, x is a diagonal matrix whose diagonal elements
(X1, X2, X3, X4 = 0) are the superconducting phases, and
a(E) = EJA —iy/1 — (E/A)? is the Andreev reflection
amplitude. The important difference between Eq.
and a similar one used in [2] is the reversed sign in front
of the second term in the determinant. It originates from
the m-phase shift in the Andreev reflection processes be-
tween electrons and holes incident upon a p-wave super-
conductor, in contrast with the s-wave case considered
earlier.

As it was noticed in [6], a?(E) = —a?(v/A2 — E?).
Therefore, the solutions of Eq. near the gap edge
can be related with those found in [2] near the Fermi
level, and vice-versa. In particular, in the short-junction
limit in which the energy dependence of the normal S-
matrix (on the scale of Thouless energy Ep > A) can
be neglected, S(E) =~ S(0), we readily find that (%) the
state | + +) has finite probability [23] 24] to merge with
the continuum spectrum at isolated points in the phase
space (the equivalents of Andreev-Weyl crossings at zero
energy found in [2]), (i) state | + —) crosses the Fermi
level along surfaces in the phase space (the equivalent of
states merging with the continuum at the gap edge in
the Supplementary Information of [2]), and (#ii) the four
Andreev states cross each other at zero energy and phases
X1 = X2 = x3 = 0 in the time-reversal symmetric case,
S(0) = ST(0). In the latter case, two Weyl crossings
with opposite charges are superposed and Cy(x1) =0
at any xi.

The possibility of Weyl crossings at finite energy
was also mentioned in the Supplementary Information
of[2], in which context they were playing no role in
the transconductance quantization. We can characterize
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FIG. 3: Histogram of (a) the energies and (b) energy differ-
ence (both in absolute value) of two Majorana-Weyl crossings
in 5000 short, four-terminal Josephson junctions through a
normal region described by a scattering matrix drawn out of
the circular unitary ensemble (no time-reversal symmetry).

E/A

102040608 1 02040.60.8 1

their occurence using random matrix theory [23], namely
by drawing scattering matrices from the circular uni-
tary ensemble to describe systems without time-reversal
symmetry. We find that the total probability to realize
Majorana-Weyl crossings is 82%. The probability density
for them to occur at a given energy is shown in Fig. 3.
(There are 14% matrices with both Majorana-Weyl and
gap-edge touchings in their Andreev spectrum.)

Note that the tunnel case discussed earlier can be
recast within the scattering formalism, where it corre-
sponds to a normal state scattering matrix

S = (1 —imvT)" (1 + imvT), (11)

where T is the matrix of tunnel hopping elements be-
tween the leads and v is the normal density of states. In-
deed, using T' = T'T with |T,| < v~ and a(E) ~ E/A—i
at |E| < A, we may recast Eq. as a Hamiltonian
equation

Bty = 2imvA Y |Toy|sin (X“QX” - (;Sab) vy (12)

b
with T, = |Tup|e?®*>. The corresponding Hamiltonian
is equivalent to Eq. provided one identifies [tq,| =
VT, where Top = 47202 |Typ|? < 1 is the transmis-
sion probability between leads a and b.

Ezxperimental realizations. The model studied above is
applicable to junctions made with crossed nanowires like
in [12]. Alternatively, a four-terminal Josephson junc-
tion can be realized by depositing superconductors on the
edges of a quantum point contact made with a quantum
spin-Hall insulator. In the presence of time-reversal sym-
metry, back-scattering within a single edge is forbidden.
In that case, we find that the 27- and 4m-periodic An-
dreev states become degenerate along lines in the space
of phases rather than at isolated points. If time-reversal
symmetry is broken, we recover the results for the crossed
nanowires discussed before.

Conclusions. In this work we unveiled a topological
property of the Andreev spectrum in multiterminal junc-
tions between topological superconductors. Namely, we
predicted that finite-energy Weyl crossings between 27-
and 4m-periodic Andreev states may result in a quantized
transconductance in units of 2e2/h between two voltage-
bias leads. We anticipate the conditions for the robust-
ness of this prediction in the presence of non-adiabatic
effects will be different from the case of conventional su-
perconductors [3]. Furthermore, it would be interesting
to understand whether the result found in this work can
be analyzed within the general classification of topologi-
cal insulators and superconductors [I4] [25].

We thank Y. Oreg for urging us to address this prob-
lem, as well as Y. Nazarov for interesting discussion.
We acknowledge funding by the ANR through the grant
ANR-17-PIRE-0001.
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Supplemental Material:
“Majorana-Weyl crossings in topological multi-terminal junctions”

Below we derive Eq. (7) in the main text for the non-
adiabatic correction to the Josephson currents flowing in
a multi-terminal junction between spinless p-wave super-
conducting leads in the presence of a voltage bias.

1. Without voltage bias, the (second-quantized)
Hamiltonian describing a multi-terminal junction with
spinless p-wave superconducting leads attached through
a normal scattering region can be put in the form

_H:%WWﬂl (S1)

Here H is a BdG (first-quantized) Hamiltonian and the
electron annihilation and creation operators are gathered
in a Nambu annihilation operator

m:(é). (S2)

The BAG Hamiltonian defines an eigenproblem,

Unp, o Unp
(i) =a (). (53
with the normalization condition
/d:r [un ()l (2) + vp(2)0),(2)] = Onm (S4)

or, equivalently,

S ) = Yonte)

and Zun ) (y) =0.  (SH)

=d(z —y)

The solutions possess particle-hole symmetry. Indeed,
if £, is an eigenenergy associated with an eigenvector
®,, = (upn,v,)T, then —¢, is another eigenenergy associ-
ated with the eigenvector ®, = (v:,u*)”. Using these
solutions and

I A A
e= () ()] e
n
where the prime indicates that the sum is restricted to

only one of the two particle-hole symmetric states, we
can diagonalize the Hamiltonian as

!
H= Z 5n'7;rﬂ’n~ (S7)

The restricted sum is necessary to ensure Fermi commu-
tation relations for the operators 7, [SI]. Note that it
does not matter whether the state with €,, >0 or e, <0
is retained in the sum. However, for later convenience,
we will retain a state whose wave function depends con-
tinuously on the superconducting phases.

2. We may similarly express the current operator in
lead k

1
I = iqﬁzk\lf, (S8)

where 7, = (2e/h)0H /Ox, and xi is the (fixed) super-
conducting phase in lead k. Inserting Eq. into (S8)
and defining occupations f, = (vi~,), we get for the
current expectation value

(39)
(Note that we use notation [ ¢ = [ dz ¢(z).)
3. TFollowing [S2], we now look for an adiabatic ex-
pansion of the solution of the BAG Hamiltonian in the
presence of slowly time-varying phases x(t),

Hx(1)]® = P, (S10)

ih En
in the form ®(t) = > c,(t)®n[x(t)] with x(t) =
{xx(t)}. Note that there is no prime in the sum as we
expand ® in the complete basis of adiabatic solutions of
Eq. at each set of phases x. Then, Eq. reads
equivalently

09,,
thé, — enc 1 Zxkc (/ "y

mk

> (S11)

Taking the initial condition ¢,(t = 0) = 0, to determine
the adiabatic expansion for the state ®(™), we find that
Eq. (S11)) yields in leading order

0
ihén — [en —ih Y X (/q,jl n)
[ k OXk

The solution is given as c(t) = exp[if(t)] with

cn=0. (S12)

x(t)

%/dsen Z/

> x(0)

ka An,k(X(S))7

(S13)
where A, = i [ ®](0®,,/0xx) is the (real) Berry con-
nection.

In the next order, the (small) coefficients ¢, (t) sat-
isfy the equation

ov,\ .
1hey, — EmCm = —ih /‘IJJf ) M (S14
E Xk ( ™ (S14)

Neglecting the small Berry connection contributions, the
solution reads

ih 09, \
ANe—— > x| [ @ =) O, 1
o En_gmzk:Xk </ ma)(k)e (515

Combining these results, we obtain the eigenvectors
®(M () in leading order in x:



1

dM () = ")

—thXk Z

m#n

en(x(t)) —em(x(t))

o (516)

fl

=) @, ()

4. The instantaneous current is obtained by replacing ®,, with ®™ in Eq. (S9). Using Eq. (S16) and standard
properties of eigenstates, we evaluate
oH OH
ot I gy _ /@T o, S17
/ Xk " OXk (517)
1 OH 0P O 00}
—i ' B ot —— <1> et Z ) — ol ", g,
w32 3 [ (feggen) (fon5e) - (o) (/)]
Oe 1 OH 0P
= " +2hIm e /@L— m) (/cbin ”)
Oxk zl: v m%:n €n — Em ( Ixk Ixi
Oe 0P
= " 412h Im / o ”)
TREOREDN (R THITEN
Oe od! 0P Oen(
= " 42 v; Im / " ”) n fh B, S18
Xk ;Xl ( Ixr Oxi 8Xk ZXl il (518)

where B, i1 = OpAn, — 01 An i is the Berry curvature of
level n, up to first order in x.

We readily check that the corresponding expression
for the partlcle hole conjugated states has the opposite

sign, [ @M (OH/xy,) @) = — [ O (9K foyy) D).
Then, the average current in lead k is given as
11 2e Oey,
<I/€> = Z (5 - fn) W (3' + QBZXan kil - (819)

n

This result is identical to the one derived in [S3] for multi-
terminal junctions with conventional superconducting

leads. In the latter case, a summation over spins yields
the additional factor 2 in the unit of conductance quan-
tization.
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