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Weak localization in transition metal dichalcogenide monolayers and their
heterostructures with graphene

Stefan Ilić, Julia S. Meyer, and Manuel Houzet
Univ. Grenoble Alpes, CEA, INAC-Pheliqs, F-38000 Grenoble, France

(Dated: April 16, 2019)

We calculate the interference correction to the conductivity of doped transition metal dichalco-
genide (TMDC) monolayers. Because of the interplay between valley structure and intrinsic spin-
orbit coupling (SOC), these materials exhibit a rich weak localization (WL) behavior that is qual-
itatively different from conventional metals or similar two-dimensional materials such as graphene.
Our results can also be used to describe graphene/TMDC heterostructures, where the SOC is in-
duced in the graphene sheet. We discuss new parameter regimes that go beyond existing theories,
and can be used to interpret recent experiments in order to assess the strength of SOC and disorder.
Furthermore, we show that an in-plane Zeeman field can be used to distinguish the contributions of
different kinds of SOC to the WL magnetoconductance.

I. INTRODUCTION

Transition metal dichalcogenide (TMDC) monolayers
are a class of two-dimensional semiconductors of the form
MX2, where M is a transition metal and X is a chalcogen.
Similarly to graphene, TMDCs have a hexagonal lat-
tice structure, and a number of them (M=Mo, W; X=S,
Se, Te) have minima/maxima of the conduction/valence
band at the two corners (valleys) ±K of the Brillouin
zone. Unlike graphene, however, TMDCs have two in-
equivalent lattice sites and no inversion symmetry, which
allows for a large band gap in their spectrum1,2.

Because of the heavy constituent atoms, these materi-
als also host strong intrinsic spin-orbit coupling (SOC),
which acts as an effective out-of-plane Zeeman field
with opposite orientation in the two valleys3–5. This
valley-dependent SOC enables a variety of applications
of TMDCs in optoelectronics and so-called valleytronics,
as electrons from different valleys can be excited selec-
tively with circularly polarized light6,7. When sufficiently
doped, several TMDCs become superconducting8–11,
where intrinsic SOC plays an important role, as it causes
unconventional “Ising pairing” of the Cooper pairs and a
great enhancement of the in-plane upper critical field8,12.

The possibility of inducing SOC in a graphene sheet
by coupling it to gapped TMDCs in heterostructures has
recently sparked scientific interest, as it can lead to phe-
nomena such as edge states13,14 and the spin Hall effect
15–17. The induced SOC originates from hybridization
of the transition metal and carbon orbitals14. It has two
contributions: Kane-Mele SOC18, which can open a topo-
logical gap at the Dirac points ±K, and so-called valley-
Zeeman SOC, which breaks the inversion symmetry of
graphene and causes spin splitting in the band structure.

Transport measurements in doped TMDCs19–21 and
graphene/TMDC heterostructures14,22–26 can give infor-
mation about the amplitude and mechanism of SOC by
studying the quantum correction to the conductance, due
to weak localization (WL) and/or antilocalization (WAL)
of electrons. W(A)L can be probed by applying a perpen-
dicular magnetic field B⊥, which suppresses the quantum

correction by breaking time-reversal symmetry. By mea-
suring the resulting magnetoconductance as a function of
B⊥ and fitting it to theoretical models, one can extract
parameters such as scattering and spin relaxation rates.

So far, the experiments have been interpreted using the
so-called Hikami-Larkin-Nagaoka (HLN)27 formula (for
TMDC experiments 19–21) or a similar formula provided
by the McCann-Fal’ko (MF)28 theory in the regime of
strong intervalley scattering (for graphene/TMDC exper-
iments 14,22–26). HLN theory holds for two-dimensional
single-band systems in the presence of SOC. If SOC
is weak, constructive electron interference along time-
reversed trajectories gives rise to a decrease in conduc-
tance (WL). By contrast, strong SOC leads to a phase
shift due to the spin precession, which results in destruc-
tive interference and an increase in conductance (WAL).
In Dirac materials, such as TMDCs and graphene, the
physical picture becomes more complex. Here, the quan-
tum correction is sensitive to the sublattice degree of free-
dom, or so-called lattice isospin. Due to the associated
Berry phase, it can introduce phase shifts similarly to
the spin physics. Furthermore, the multivalley nature of
these materials and intervalley scattering also influence
the quantum correction. MF theory takes these effects
into account for the case of graphene, and gives a full de-
scription of WL and WAL with any disorder that satisfies
time-reversal symmetry. In the presence of spin-orbit im-
purities and in the regime of strong intervalley scattering,
such that the valley physics is suppressed, it reduces to
the HLN formula.

However, the applicability of MF and HLN theories to
TMDCs and graphene/TMDC is limited, since they were
both developed to describe spin-degenerate systems and
do not capture the spin splitting caused by the presence
of valley-dependent SOC. A theory for TMDCs that takes
it into account was given by Ochoa et al.29 in the regime
close to the bottom/top of the conduction/valence band,
|µ| ≈ Eg, where µ is the chemical potential and 2Eg
is the band-gap. This parameter regime, however, does
not fully describe graphene/TMDC heterostructures and
highly doped TMDCs, where |µ| � Eg.

In this work, we present a general theory of the in-
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terference correction for a massive Dirac material with
valley-Zeeman SOC. Furthermore, we account for the ef-
fect of an in-plane Zeeman field. Our formula can be
applied to TMDCs and graphene/TMDC heterostruc-
tures. Namely, we generalize Ref. 29 to any chemical
potential µ, and we show that several contributions to
the interference-induced magnetoconductance are sensi-
tive to the magnitude of doping, and are modified or sup-
pressed as the doping increases. We discuss in detail the
regime where intervalley scattering dominates over any
spin-dependent scattering, which is the most commonly
invoked regime when interpreting the experimental data.
We find that the interplay between valley-dependent
SOC, ∆so, and intervalley scattering, parametrized by
the scattering time τiv, leads to new regimes of WL and
WAL. In the limit τ−1

iv � ∆so, MF still holds and HLN

is valid if τ−1
iv � τ−1

φ , where τφ accounts for inelastic
dephasing of electrons. However, we find new behav-
ior not captured by these formulas if ∆so

>∼ τ−1
iv . Since

both TMDCs and graphene/TMDC are expected to have
substantial valley-dependent SOC4,13,14, our newfound
regimes are experimentally relevant and can be used to
extract parameters from the interference-induced mag-
netoconductance in both systems.

This article is organized in the following way: In
Sec. II, we introduce the model Hamiltonian for disor-
dered TMDCs and graphene/TMDC heterostructures.
In Sec. III, we calculate the interference correction for
these materials using the standard diagrammatic tech-
nique for disordered systems. We discuss our results in
Sec. IV.

II. THE MODEL

The low-energy Hamiltonian describing TMDC mono-
layers in the vicinity of the ±K points, and in the pres-
ence of a parallel magnetic field is given by4 Hq =
H0 +HSOC +HW +H||, where

H0 = v(qxσxηz + qyσy) + Egσz,

HSOC = ∆KMσzszηz + ∆V Zszηz + λ(σxsyηz − σysx)

+ ζ(qxσxsz + qyσyszηz),

HW =κ(q2
x − q2

y)σx − 2κqxqyσyηz,

H|| =hsx. (1)

Here, we use units where h̄ = kB = 1. The two
Dirac cones are described by H0, where q = (qx, qy) =
q(cos θ, sin θ) is a small momentum measured from ±K,
v is the velocity associated with the linearized kinetic
dispersion, and Eg is the difference in on-site energy re-
sponsible for opening the band gap. Spin-orbit coupling
is described by HSOC , where ∆KM and ∆V Z charac-
terize Kane-Mele and valley-Zeeman SOC, respectively.
Rashba SOC, which is related to a mirror symmetry
breaking due to the substrate or external fields, is de-
scribed by λ. The spin-dependence of the velocity is

accounted for by ζ. HW describes the so-called trigo-
nal warping. Finally, H|| is the in-plane Zeeman field,

where the Zeeman energy h = 1
2gµBB|| is determined by

the amplitude of the in-plane magnetic field and the g-
factor, which is expected to take the value g ≈ 2 in these
materials. We introduce Pauli matrices σx,y,z, sx,y,z and
ηx,y,z acting in sublattice, spin, and valley space, respec-
tively. The Hamiltonian (1) contains all terms up to the
first order in q allowed by the symmetries of the sys-
tem, as well as HW and H||, which break rotational and
time-reversal symmetry, respectively.

Furthermore, the low-energy sector of
graphene/TMDC heterostructures is also well de-
scribed by the Hamiltonian (1). First-principle
calculations13,14 show that the Dirac cones of graphene
in these heterostructures are preserved and are within
the TMDC band gap. The coupling to the TMDC
modifies the graphene spectrum by introducing the
staggered sublattice potential, Egσz, and SOC, HSOC .

To proceed, we assume that the Dirac Hamiltonian
H0 gives the dominant contribution to the energy of the
system. H0 is diagonalized by a unitary transformation
Uq = e−iηzαq eiβqσyηz eiαqσzηz , where tan(2αq) = qy/qx
and tan(2βq) = vq/Eg. It has a simple spectrum,

±Eq = ±
√
q2v2 + E2

g . After projecting UqHqU
†
q onto

the conduction band, we obtain the effective Hamilto-
nian

Hq = ξq + ∆soszηz + λ
vqF
µ

(sy cos θ − sx sin θ)

+ κ
vq3
F

µ
cos 3θ ηz + hsx. (2)

Here, the energy is measured from the chemical potential,
ξq = Eq−µ. Furthermore, we have introduced the Fermi

momentum qF =
√
µ2 − E2

g/v and spin-orbit splitting

∆so = ∆KMEg/µ+∆V Z+ζvq2
F /µ. Note that at µ� Eg

(as in the case of graphene, e.g.), Kane-Mele SOC does
not contribute to the spin-orbit splitting. The chemical
potential µ is assumed to be sufficiently above the band
gap Eg, so that it is the dominant energy scale, |µ| −
Eg � ∆so, λ, h, κq

2
F . A Hamiltonian of a similar form

can be found in the valence band after the substitution
ξq → −ξq, µ → −µ. Although, in the remainder of
the text, we will focus only on the conduction band for
simplicity, our results also hold in the valence band as
long as both spin-split bands are occupied. This is readily
achieved in graphene/TMDC heterostructures, while a
very high doping is required in TMDCs, due to the large
spin-splitting caused by the intrinsic SOC in the valence
band4.

The effect of potential impurities can be modeled
by introducing a random disorder, HD0

qq′ = U0
q−q′ +∑

i=±,x
∑
j=x,y V

ij
q−q′σiηj ,where σ± = 1 ± σz. The first

term is the intravalley contribution, which is diagonal in
spin and sublattice space. The second term represents
all spin-independent intervalley contributions allowed by
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time-reversal30 and x − y symmetry. Intervalley disor-
der requires large momentum transfer, and is caused by
short-range impurities, such as atomic defects. Upon ro-

tating UqH
D0
qq′U

†
q′ and projecting to the conduction band,

a variety of other scattering processes will be generated
as combinations of the band structure and potential scat-
tering parameters.

For simplicity, we will account for these processes,
as well as all other possible scattering processes, phe-
nomenologically, by independent scattering potentials.
To do so, we supplement HD0

qq′ with all the other
disorder terms allowed by the time-reversal symme-
try, as was done previously in similar studies of weak
localization28,29. The disorder Hamiltonian is then given
as HD

qq′ = HD0
qq′ + δHD

qq′ , where

δHD
qq′ =

∑
i=x,y,z

U iq−q′Σi +
∑

i=0,x,y,z

∑
j=x,y,z

Aijq−q′Σisjηz

+
∑
j=x,y

∑
i=x,y,z

M ij
q−q′σysiηj . (3)

Here Σ0,z,x = σ0,x,z and Σy = σyηz. The first line in
Eq. (3) describes intravalley disorder. Here, the first
and second term account for spin-dependent and spin-
independent contributions, respectively. The second line
describes spin-dependent intervalley disorder. We char-
acterize the random disorder potentials by Gaussian cor-
relators and assume that different kinds of disorder are
uncorrelated:

〈U iqU
j
q′〉 = U2

i δijδqq̄′ ,

〈Xij
q X

kl
q′ 〉 = X2

ijδikδjlδqq̄′ . (4)

Here, the brackets 〈...〉 represent disorder averaging and
X = A, V,M . Furthermore, we use the abbreviation q̄ =
−q.

We proceed by writing the rotated phenomenological

disorder potential, UqH
D
qq′U

†
q′ , in the projected basis

HDqq′ =
∑

i=0,x,y,z

[
U iq−q′f

i
θ,θ′ +

∑
j=x,y,z

Aijq−q′f
i
θ,θ′sjηz

]

+
∑
j=x,y

[ ∑
i=±,x

V ijq−q′g
i
θ,θ′ηj +

∑
i=x,y,z

M ij
q−q′g

y
θ,θ′siηj

]
,

(5)

where the functions f iθ,θ′ and giθθ′ capture the anisotropy
of the projected disorder potential, which is due to the
momentum dependence of the unitary transformation

Uq. In particular, 2f0
θ,θ′ = 1 + e−iηz(θ−θ′) +

Eg
µ

(
1 −

e−iηz(θ−θ′)) and 2fxθ,θ′ = vqF
µ

(
e−iηzθ + eiηzθ

′)
ηz. Fur-

thermore, fyθ,θ′ = ifx
θ,θ̄′

ηz, f
z
θ,θ′ = f0

θ̄,θ′
, g+

θ,θ′ = (1 +
Eg
µ ),

g−θ,θ′ = (
Eg
µ − 1)eiηz(θ+θ′), gxθ,θ′ = f0

−θ̄,θ′ , and gyθ,θ′ =

iηzf
x
−θ,θ′ . Here, we used the notation θ̄ = θ + π. In sim-

ple metals, anisotropic disorder usually only leads to the
renormalization of the diffusion constant and the trans-
port time. It has more profound physical consequences in

our system, as it captures the sublattice isospin physics
and the effect of the Berry curvature.

In order to describe quantum transport in our system,
we will employ the standard diagrammatic technique for
disordered systems. In particular, we introduce disorder-
averaged, zero-temperature retarded (R) and advanced
(A) Green’s functions as

GR,Aqω =

(
ω −Hq ±

i

2τ

)−1

. (6)

Here, the self-energy ±i/(2τ) is calculated from the self-
consistent Born approximation, ω is the frequency, and
the inverse scattering time τ−1 is given by

τ−1 = τ−1
0 + τ−1

z + τ−1
iv +

∑
i=z,zv,iv

∑
j=e,o

τ−1
i,j . (7)

The individual contributions to Eq. (7) are defined in the
left column of Table I, where we introduced the Fermi ve-
locity, vF = v2qF /µ, and the density of states per valley
and per spin at the Fermi level, ν = µ/(2πv2

F ). Further-

more, we will assume that the diagonal disorder rate τ−1
0

is the dominant one, i.e., τ−1 ≈ τ−1
0 , and we will use the

diffusive approximation |µ|−Eg � τ−1
0 � ∆so, h, λ, κq

2
F .

Assuming that only potential disorder is present in the
system, we can estimate the phenomenological scattering
rates, related with the parameters in Eq. (4), as shown
in the right column of Table I. We do so by comparing
the disorder terms generated by HD

qq′ after rotation and
projection onto the conduction band with the terms gen-
erated by HD0

qq′ only, but taking into account corrections

up to order 1/µ. In this way, we can relate the phe-
nomenological disorder parameters with the main Hamil-
tonian (1) and the magnitude of the potential disorder.

The current operator in the projected basis is given by
Jxq = vF cos θ. Due to the anisotropy of the disorder po-
tential, the current vertex is renormalized, as illustrated
in diagrammatic form in Fig. 1(a). Namely, the bare ver-
tex is dressed by a series of ladder diagrams, known as
diffusons. The renormalized vertex is then given as

J̃xq =
τtr
τ0
Jxq with τtr =

(
1 +

v2q2
F

4E2
g + v2q2

F

)
τ0. (8)

Here, we have introduced the transport time τtr, which
takes the value τ0 at the bottom of the conduction band
µ ≈ Eg, where the spectrum is parabolic (similarly
to conventional metals), and 2τ0 deep in the conduc-
tion band µ � Eg, where the spectrum is linear (as in
graphene)32. The Drude conductivity is then given as

σ =
e2

2π

∫
d2p

(2π)2
Tr

[
J̃xqG

R
qωJxqG

A
qω

]∣∣∣∣∣
ω=0

= 4e2νD,

(9)
where D = 1

2v
2
F τtr is the diffusion constant, and the fac-

tor 4 originates from spin and valley degeneracy. The
corresponding diagram is shown in Fig. 1(b).
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Intravalley scattering rates Estimates

τ−1
0 = πνU2

0 (1 +
E2
g

µ2 ) /

τ−1
z1 = πν(U2

x + U2
y )

v2q2F
µ2 τ−1

z2 = πνU2
z (1 +

E2
g

µ2 ) τ−1
z = τ−1

z1 + τ−1
z2 τ−1

z1 , τ
−1
z2 ∝ τ

−1
0 (

κvq3F
µ2 )2

τ−1
z,e1 = πν(A2

xz +A2
yz)

v2q2F
µ2 τ−1

z,e2 = πνA2
zz(1 +

E2
g

µ2 ) τ−1
z,e = τ−1

z,e1 + τ−1
z,e2 τ−1

z,e1, τ
−1
z,e2 ∝ τ

−1
0 (

∆KMv2q2F
µ3 )2

τ−1
z,o1 = πν

∑
i,j=x,y(A2

ij)
v2q2F
µ2 τ−1

z,o2 = πν(A2
zx +A2

zy)(1 +
E2
g

µ2 ) τ−1
z,o = τ−1

z,o1 + τ−1
z,o2 τ−1

z,o1, τ
−1
z,o2 ∝ τ

−1
0 (λvqF

µ2 )2

τ−1
zv,e = πνA2

0z(1 +
E2
g

µ2 ) τ−1
zv,e ∝ τ−1

0 (
κv∆KM q3F

µ3 )2

τ−1
zv,o = πν(A2

0x +A2
0y)(1 +

E2
g

µ2 ) τ−1
zv,o ∝ τ−1

0 (
λEgvqF
µ3 )2

Intervalley scattering rates Estimates

τ−1
iv = πν

∑
i=x,y[2

∑
j=± Vji(1 + j

Eg
µ

)2 + (V 2
xi)

v2q2F
µ2 ] /

τ−1
iv,e = πν(M2

zx +M2
zy)

v2q2F
µ2 τ−1

iv,e ∝ τ
−1
iv ( ∆KMvqF

µ2 )2

τ−1
iv,o = πν

∑
i,j=x,y(M2

ij)
v2q2F
µ2 τ−1

iv,o ∝ τ
−1
iv (λvqF

µ2 )2

TABLE I. Left: Dominant diagonal scattering rate, τ−1
0 , and the 11 other independent scattering rates31 originating from the

disorder Hamiltonian (3). The notation for the scattering rates was taken and adapted from Ref. 28. The index z indicates
that the related disorder potential is sublattice dependent. zv and iv indicate coupling to the valley matrices ηz and ηx,y,
respectively. Indices e and o indicate coupling to the spin matrices sz and sx,y, respectively. Spin-independent disorder is
represented by the rates τ−1

0 , τ−1
z , and τ−1

iv , which describe diagonal, intervalley, and sublattice-dependent intravalley disorder.
Spin-dependent disorder is represented by the rates τ−1

i,j (i = z, zv, iv; j = e, o), which describe intra- (i = z, zv) or intervalley
(i = iv), and spin-preserving (j = e) or spin-flipping (j = o) disorder. Right: Estimates of the phenomenological scattering
rates, obtained by the combination of band structure parameters and potential disorder only, assuming that all intervalley
components of the potential disorder are of similar strength.

FIG. 1. (a) Vertex renormalization. (b) Drude conductivity
diagram. Solid arrows represent Green’s functions, while the
dashed lines represent disorder. The upper (lower) branch
of the diagrams corresponds to retarded (advanced) Green’s
functions.

III. INTERFERENCE CORRECTION

The interference correction to the Drude conductiv-
ity (9) can be expressed in terms of Cooperons, Cab,a

′b′

αβ,α′β′ ,

which represent disorder averages of two Green’s func-
tions and correspond to maximally crossed diagrams33.
The Greek indices in the subscript (Latin indices in the
superscript) correspond to the spin (valley) degree of free-
dom and take values ±1. The Cooperons are determined
from a system of coupled Bethe-Salpeter equations, as
shown in diagrammatic form in Fig. 2(a). Namely,

Cab,a
′b′

αβ,α′β′(θ, θ
′; Q) = W ab,a′b′

αβ,α′β′(θ, θ
′) +

∫ 2π

0

dθ′′

2π
W aa1,bb1
αα1,ββ1

(θ, θ′′)Πa1b1
α1β1,α2β2

(θ′′; Q)Ca1b1,a
′b′

α2β2,α′β′
(θ′′, θ′; Q). (10)

Here, summation over repeated indices is assumed, and we have introduced the disorder correlator W and the polar-
ization operator Π as

W ab,a′b′

αβ,α′β′(θ, θ
′) = 〈[HDqq′ ]

aa′

αα′ [HDq̄q̄′ ]
bb′

ββ′〉 and Πab
αβ,α′β′(θ; Q) = ν

∫
dξq[GRqε+ω]aαα′ [G

A
q̄+Qω]bββ′ , (11)

respectively. Note that the Green’s functions are diagonal in valley space, so the polarization operator only depends
on two valley indices. The weak localization correction δσ can now be expressed in terms of Cooperons as

δσ =
e2

2π

∫
d2Q

(2π)2

∫ 2π

0

d θ

2π

d θ′

2π
4πντ3

0

[
2πδ(θ − θ′)− 2πντ0W

ab,ab
αβ,αβ(θ, θ′)

]
J̃xqJ̃xq̄′C

ab,ba
αβ,βα(θ, θ̄′; Q). (12)

Here, the first contribution in the square bracket comes from the bare Hikami box33 [shown in Fig. 2(b)], while
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the second one comes from two Hikami boxes dressed by
an intravalley impurity line [shown in Fig. 2(c)].

FIG. 2. (a) Bethe-Salpeter equation for the Cooperons. (b)
Bare Hikami box. The Hikami boxes with external lines that
are diagonal in spin-space give a dominant contribution to
the quantum correction in the diffusive limit. (c) Dressed
Hikami boxes. For the definition of diagram elements, see
Fig. 1. Greek indices in the subscript describe spin, while
Latin indices in the superscript describe the valley degree of
freedom.

We proceed by solving Eq. (10) in the presence of the
dominant diagonal scattering only, in Sec. III A. Next,
we include all other types of disorder in Sec. III B. Fi-
nally, the interference-induced magnetoconductance and
the main result of our work are presented in Sec. III C.

A. Cooperons in the presence of diagonal disorder
only

In order to resolve the angular structure of the Cooper-
ons, we will first consider the case where only the diago-
nal disorder with rate τ−1

0 is present. The other types of
scattering will not affect this structure, but only intro-
duce additional Cooperon gaps. Furthermore, the angu-
lar structure is independent of the spin structure. There-
fore, we also neglect the spin structure here, setting ∆so

and h to zero. To simplify the notation, spin indices are
omitted in this subsection.

We proceed with this calculation in the same spirit
as in Ref. 34. First, we expand the Cooperons and the
disorder correlator in harmonics,

Cab,a
′b′(θ, θ′; Q) =

∞∑
n,m=−∞

Cab,a
′b′

nm (Q)e−i(nθ−mθ
′),

W ab,a′b′(θ, θ′) =

∞∑
n=−∞

W ab,a′b′

n e−in(θ−θ′). (13)

Furthermore, a = a′ and b = b′ in the absence of in-
tervalley scattering. The only Cooperon that enters
the interference correction (12) is the intravalley one,
Caa,aa(θ, θ′). From Eqs. (10) and (13), we get a system

of coupled equations for its harmonics, whose solution
yields

Caa,aa(θ, θ′; Q) = Caa,aa00 (Q) + Caa,aaaa (Q)e−ia(θ−θ′)

with Caa,aaii (Q) =
1

2πντ2
0

1

Di|Q|2 − iω + τ−1
φ + Γi

.

(14)

Here, a = ±1, Γ0 = 1
τ0

(µ−Eg)2

(µ+Eg)2 and Γa = 1
τ0

2E2
g

µ2−E2
g

are

the relevant Cooperon gaps, and D0 = 1
8v

2
F τ0(3 +

E2
g

µ2 )

and Da = v2
F τ0

(E2
g+µ2)2

(µ2−E2
g)2 are diffusion constants. Further-

more, we introduced the inelastic dephasing rate, τ−1
φ .

We see that, in general, both C00 and Caa will have a
large gap of the order τ−1

0 and, thus, will be suppressed
in the diffusive limit, except in two special cases. Firstly,
Γ0 vanishes at µ = Eg. Close to the band bottom, for

µ/Eg − 1 <∼ 2
√
τ0/τφ, one finds Γ0

<∼ τ−1
φ . Thus, in this

regime, the Cooperon C00 is not suppressed. Secondly,
Γa vanishes for µ → ∞. Thus, deep in the band, at
µ/Eg >∼

√
2τφ/τ0, one finds Γa <∼ τ

−1
φ , and the Cooperon

Caa is not suppressed either. Higher-order harmonics,
although non-zero, will always have a non-vanishing gap
of the order τ−1

0 and will be neglected. We can therefore
write

Caa,aa(θ, θ̄; Q) =
Ξ

2πντ2
0

1

D|Q|2 − iω + τ−1
φ + ΓΞ

,

where Ξ =


1, µ

Eg
− 1 <∼ 2

√
τ0
τφ
,

0, 2
√

τ0
τφ
� µ

Eg
− 1�

√
2τφ
τ0
,

−1, µ
Eg

>∼
√

2τφ
τ0
,

(15)

and Γ1 = τ−1
0 [vqF /(2µ)]4, Γ−1 = 2τ−1

0 (Eg/µ)2. Note
that the diffusion constants D0 and Da reduce to D, in-
troduced in Eq. (9), in the relevant limits.

Upon inserting Eq. (15) into Eq. (12), we obtain the
quantum correction for massive Dirac fermion systems in
the presence of smooth disorder, consistent with Ref. 34.
Its behavior is governed by the doping-dependent coef-
ficient Ξ: for a large Dirac mass Eg (Ξ = 1), we get
WL, whereas in the massless system (Ξ = −1), we get
WAL. The quantum correction vanishes in the interme-
diate mass regime. This can be reinterpreted34 in terms
of the Berry phase of a massive Dirac material given as
ϕB = π(1 − Eg/µ), which introduces no phase shift to
the electron interference in the large mass limit (leading
to WL), and a shift of π for massless systems (leading to
WAL).

Next, we will find the intervalley Cooperon
Caā,aā(θ, θ′). Note that it does not enter the quantum
correction (12), but it is useful to resolve its angular
structure for later use. We find that the only harmonic
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that is not gapped is C00, and we can write

Caā,aā(θ, θ′; Q) = Caā,aā00 (Q)

=
1

2πντ2
0

1

D|Q|2 − iω + τ−1
φ

. (16)

B. Cooperons in the presence of all disorder terms

We proceed to solve the Cooperon equation (10) in
the presence of all disorder terms. Additional intervalley
Cooperons of the form Caā,āa can now exist. Since they
are coupled to Caā,aā via intervalley scattering, which
does not introduce additional angular dependence, they
will also be angularly-independent. Using Eqs. (15) and
(16), we can write for all Cooperons

Cab,a
′b′(Ξ; Q) = [Caa,aa00 (Q)δΞ,1 + Caa,aaaa (Q)δΞ,−1]

× δaa′δbb′δab + Caā,bb̄00 (Q)δab̄δa′b̄′ ,

W ab,a′b′(Ξ) = [W aa,aa
0 δΞ,1 +W aa,aa

a δΞ,−1]

× δaa′δbb′δab +W aā,bb̄
0 δab̄δa′b̄′ . (17)

Then, Eq. (10) can be written in a simpler, angularly-
independent form,

Cab,a
′b′

αβ,α′β′(Ξ; Q) = W ab,a′b′

αβ,α′β′(Ξ)

+W aa1,bb1
αα1,ββ1

(Ξ)Πa1b1
α1β1,α2β2

(Q)Ca1b1,a
′b′

α2β2,α′β′
(Ξ; Q). (18)

Next, we employ a transformation to the singlet-triplet
basis28 in spin and valley space,

M ll′

ss′ =
1

4
[syss]αβ [ηxηl]

abMab,a′b′

αβ,α′β′ [ss′sy]β′α′ [ηl′ηx]b
′a′ ,

(19)
where indices s, s′ = 0 and l, l′ = 0 correspond to spin-
and valley-singlet Cooperon modes, respectively, while
s, s′ = x, y, z and l, l′ = x, y, z correspond to spin- and
valley-triplet modes. Here, the operator M can stand for
a Cooperon (C), disorder correlator (W ), or a polariza-
tion operator (Π). The disorder correlator is diagonal

in the singlet-triplet space, W ll′

ss′(Ξ) = W l
s(Ξ)δss′δll′ , and

the Cooperon equation (18) after the transformation be-
comes

Cll
′

ss′(Ξ; Q) = W l
s(Ξ)δss′δll′ +W l

s(Ξ)Πll1
ss1(Q)Cl1l

′

s1s′
(Ξ; Q).

(20)
The quantum correction involves only the diagonal
Cooperons Cllss ≡ Cls. Note that triplets modes Cxs and
Cys are related to the intravalley Cooperons, while the
valley-singlet C0

s and triplet Czs are related to intervalley
ones. Finally, the interference correction, Eq. (12), in the
new basis has the form

δσ = −e
2D

π
(2πντ2

0 )

∫
d2Q

(2π)2
×∑

s

cs

[ ∑
l=0,z

clCls(Ξ; Q) + Ξ
∑
l=x,y

clCls(Ξ; Q)

]
, (21)

where cs = −1, 1, 1, 1 and cl = 1, 1, 1,−1 for s, l =
0, x, y, z. Eq. (21) generalizes similar expressions from
Refs. 28 and 29, which are valid at Ξ = −1 and Ξ = 1,
respectively.

The diagonal Cooperon modes Cls, necessary to com-
pute δσ, are determined by solving Eq. (20). Due to
the spin-splitting described by ∆so and h, the polariza-
tion operator Πll′

ss′(Q) is not diagonal in the singlet-triplet
space. As a consequence, some Cooperon modes are cou-
pled. As will be discussed in the further text, the cou-
pling of different Cooperon modes by the spin-splitting
fields suppresses them. In a physical sense, Cooperons
coupled by the fields describe interference of electrons
coming from two spin-split bands, which is suppressed by
the energy difference of the electrons. On the other hand,
interference of electrons in degenerate bands is described
by the non-coupled Cooperons. Note that momentum
dependent parts of the Hamiltonian (1), such as Rashba
SOC and trigonal warping, do not cause coupling of dif-
ferent Cooperon modes in the diffusive limit, but only
enter their gaps.
a. Non-coupled Cooperon modes. First, we solve the

Cooperons that are not coupled by the valley-dependent
SOC or the in-plane field, with the indices (s, l) =
(y, x), (y, y), (z, 0), (z, z). They are given by

Cls =
1

2πντ2
0

1

P ls
. (22)

Here, we introduced P ls = D|Q|2 − iω+ τ−1
φ + Γls, where

the Cooperon gaps Γls are specified in Table II. Because
the intravalley Cooperons have different angular depen-
dence in the two extreme limits of Eq. (15), their gaps Γxs
and Γys will also depend on the relevant limit (right-hand
side of Table II). Intervalley Cooperons, on the other
hand, do not depend on angles and chemical potential
and have the same gaps for any µ (left-hand side of Ta-
ble II).

The Cooperon gaps contain the scattering rates origi-
nating from the phenomenological disorder potential (3).
Their estimates, listed in Table I, are inversely pro-
portional to the scattering times τ0 and τiv. These
rates are therefore induced and reinforced by disorder,
and behave similarly to the Elliott-Yafet spin relaxation
mechanism35,36. This includes the well-known scatter-
ing rate due to the Kane-Mele SOC28, captured by

τ−1
z,e ∝ τ−1

0 (
∆KMv

2q2F
µ3 )2 (see Table I). Additionally, scat-

tering rates that are proportional to the potential scat-
tering time τ0 also enter the gaps:

τ−1
BR = 2

(
λvqF
µ

)2

τtr, τ−1
W = 2

(
κvq3

F

µ

)2

τ0. (23)

They are related with Rashba SOC and trigonal warp-
ing, respectively. These rates appear since electrons, due
to the details of the band structure, acquire an addi-
tional phase upon propagation in-between two scatter-
ing events. This effect is suppressed by disorder. The
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first rate in Eq. (23) is associated with the Dyakonov-
Perel37 spin relaxation mechanism. The second rate de-
scribes the suppression of intravalley Cooperons due to
the breaking of rotational symmetry by trigonal warping,
as discussed in Ref. 32.

b. Coupled Cooperon modes. Next, we address
the coupled Cooperon modes. The effect of the in-
plane Zeeman field h applied along the x-direction is
such that it couples the spin-singlet Cl0 and spin-triplet
Clx Cooperons, as discussed for conventional metals38.

Valley-dependent SOC behaves similarly to an effective
Zeeman field in z-direction, but acts differently from the
true Zeeman field as it does not break the time-reversal
symmetry, and therefore does not affect the spin- and
valley-singlet C0

0 , which is protected by this symmetry.

It couples the Cooperons C
0(z)
x with C

z(0)
y , and C

x(y)
0

with C
y(x)
z , as discussed in Ref. 29. The equations for all

the coupled Cooperon modes can be compactly written
in a matrix form

 P
x(y)
0 ∓2∆so −2ih

±2∆so Py(x)
z 0

−2ih 0 Px(y)
x


C

xx(yy)
00 C

xy(yx)
0z C

xx(yy)
0x

C
yx(xy)
z0 C

yy(xx)
zz C

yx(xy)
zx

C
xx(yy)
x0 C

xy(yx)
xz C

xx(yy)
xx

 =
1

2πντ2
0

=

P
0(z)
x −2∆so −2ih

2∆so Pz(0)
y 0

−2ih 0 P0(z)
0


C

00(zz)
xx C

0z(z0)
xy C

00(zz)
x0

C
z0(0z)
yx C

zz(00)
yy C

z0(0z)
y0

C
00(zz)
0x C

0z(z0)
0y C

00(zz)
00

 .
(24)

Eq. (24) summarizes 4 matrix equations, each involv-
ing 3 coupled modes. Since the Green’s functions are
diagonal in valley space, the equations for intra- and in-
tervalley Cooperons are decoupled. This can be seen in
Eq. (24), where the left-hand (right-hand) side describes
matrix equations for intravalley (intervalley) Cooperon
modes.

Note that in, Eq. (24), the spin-splitting fields, h and
∆so, are considered only up to the leading order in τ0 in
the diffusive limit. As discussed in Appendix A, by con-
sidering higher-order terms, we find that these fields also
modify the Cooperon gaps by supplementing them with

terms of the order ∆2
soτ0 and h2τ0. However, these terms

can always be neglected, as their effect is small compared
to the one produced by coupling of the Cooperon modes
by these fields.

C. Interference-induced magnetoconductance

Finally, after inverting the matrices in Eq. (24), we
obtain all Cooperon modes. Combining them with
Eq. (21), and introducing the conductance quantum σ0 =
e2/(2π2h̄), we arrive at the expression for the interference
correction

δσ = 2πσ0D

∫
d2Q

(2π)2

[
− Ξ

(
1

Pxy
+

1

Pyy
+A(yz ,

x
x ,
x
0 ) +A(xz ,

y
x ,
y
0 )

)
− 1

P0
z

+
1

Pzz
+A(zy,

0
0 ,

0
x )−A(0

y,
z
0 ,
z
x )

]
,

where A(l1s1 ,
l2
s2 ,

l3
s3 ) = 2πντ2

0 (Cl1s1 + Cl2s2 − C
l3
s3) =

−P l1s1P
l2
s2 + P l3s3P

l1
s1 + 4h2 + P l2s2P

l3
s3 + 4∆2

so

P l1s1P l2s2P l3s3 + 4h2P l1s1 + 4∆2
soP

l2
s2

. (25)

Here, each A accounts for one set of coupled Cooperons, that is, one matrix equation from Eq. (24).
The above equation is the main result of our work. It is readily evaluated analytically in the absence of the in-

plane Zeeman field. The divergent integral over momenta in Eq. (25) can be handled by introducing an upper cutoff
associated with the inverse mean free path l−1 =

√
Dτ0, which is the smallest length scale in our system. At h = 0,

we then obtain

δσ

σ0
= − 2Ξ ln

(
τ−1

τ−1
φ + Γxx

)
− 1

2
ln

(
τ−1

τ−1
φ + Γ0

z

)
+

1

2
ln

(
τ−1

τ−1
φ

)
− 1

2
ln

(
τ−1

τ−1
φ + Γz0

)
+

1

2
ln

(
τ−1

τ−1
φ + Γzz

)
+ γiv

∑
±
± ln

(
τ−1

τ−1
φ + Γ+

iv ±
Γ−iv
γiv

)
+ Ξγs

∑
±
± ln

(
τ−1

τ−1
φ + Γ+

s ± Γ−s
γs

)
. (26)

Here, we have introduced Γ±iv = (Γzx ± Γ0
x)/2 and Γ±s = (Γx0 ± Γxz )/2, as well as

γiv,s =
1√

1−
(

2∆so

Γ−iv,s

)2 . (27)
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Relaxation gaps for C0 and Cz Relaxation gaps for Cx and Cy at Ξ = −1

Γ0
0 = 0 Γxx = Γxy = Γyx = Γyy = τ−1

∗ + 2τ−1
z,e + τ−1

z,o + τ−1
zv,o + τ−1

BR

Γ0
x = Γ0

y = 2τ−1
z,e + τ−1

z,o + 2τ−1
zv,e + τ−1

zv,o + 2τ−1
iv,e + τ−1

iv,o + τ−1
BR= τ−1

s Γx0 = Γy0 = τ−1
∗ + 2τ−1

zv,e + 2τ−1
zv,o

Γ0
z = 2τ−1

z,o + 2τ−1
zv,o + 2τ−1

iv,o + 2τ−1
BR= 2τ−1

asy Γxz = Γyz = τ−1
∗ + 2τ−1

z,o + 2τzv,e
−1 + 2τ−1

BR

Γz0 = 2τ−1
iv + 2τ−1

iv,e + 2τ−1
iv,o Relaxation gaps for Cx and Cy at Ξ = 1

Γzx = Γzy = 2τ−1
iv + 2τ−1

z,e + τ−1
z,o + 2τ−1

zv,e + τ−1
zv,o + τ−1

iv,o + τ−1
BR Γxx = Γxy = Γyx = Γyy = τ−1

∗∗ + τ−1
z,o2 + τ−1

zv,o + τ−1
BR

Γzz = 2τ−1
iv + 2τ−1

z,o + 2τ−1
zv,o + 2τ−1

iv,e + 2τ−1
BR Γx0 = Γy0 = τ−1

∗∗ + 2τ−1
z,e2 + 2τ−1

z,o2 + 2τ−1
zv,e + 2τ−1

zv,o

Γxz = Γyz = τ−1
∗∗ + 2τ−1

z,e2 + 2τ−1
zv,e + 2τ−1

BR

τ−1
∗ = τ−1

iv + 2τ−1
z + τ−1

iv,e + τ−1
iv,o + τ−1

W + 2
τ0

E2
g

µ2

τ−1
∗∗ = τ−1

iv + τ−1
z1 + τ−1

z,e1 + τ−1
z,o1 + τ−1

iv,e + τ−1
iv,o + τ−1

W + 1
16τ0

v4q4F
µ4

TABLE II. Left: Relaxation gaps Γls for intervalley Cooperons, where indices s and l denote spin and valley, respectively. There
are 8 intervalley Cooperons. The time-reversal symmetry sets the gap Γ0

0 to zero, while the x−y symmetry imposes equality of
all x and y spin-triplet gaps. As a result, there are only 5 independent gaps. The scattering rates τ−1

asy and τ−1
s = τ−1

sym + τ−1
asy,

related to the valley-singlet gaps Γ0
i (i = x, y, z), are introduced in Eqs. (30) and (31). Right: Relaxation rates for intravalley

Cooperons, which depend on the chemical potential, captured by the coefficient Ξ. In each regime, there are 8 intravalley
Cooperons. x− y symmetry imposes equality of all x and y triplet gaps, in both spin and valley space. As a result, there are
only 3 independent gaps. Since at Ξ = 0 intravalley Cooperons do not contribute to the quantum correction, the related gaps
are not included in the table. For a definition of the different scattering rates, see Table I.

The coefficients γiv and γs capture the effect of the spin
splitting. They are real if 1 ≥ 4∆2

so/Γ
2
iv,s, and imaginary

otherwise. Although the rates Γ−iv,s can be negative and
the coefficients γiv,s can be imaginary, their combination
entering Eq. (26) is such that the imaginary parts cancel
out, so that the conductance is always real (as it should
be).

Quantum interference is very sensitive to a magnetic
field B⊥ perpendicular to the monolayer, as it breaks
the coherence of time-reversed paths of electrons, re-
sponsible for WL and WAL. This is used as a probe

of W(A)L in experiments, which measure the magne-
toconductance as a function of B⊥. The perpendicular
field couples to the momentum of the electrons, unlike
the parallel field B‖, which only couples to spin via the
Zeeman effect. It leads to a quantization of momenta,
|Q| → Qn = (n + 1/2)/l2B , where n = 0, 1, 2... denotes

the Landau levels and lB =
√
h̄/4eB⊥ is the magnetic

length. We assume lB � l, such that the diffusive limit
is not violated, which imposes a constraint on the maxi-
mum field B⊥ � h̄/(4eDτ0). We then evaluate the mag-
netoconductance ∆σ = δσ(B⊥)− δσ(0) as

∆σ

σ0
= 2ΞF

(
B⊥

Bφ +Bxx

)
+

1

2
F

(
B⊥

Bφ +B0
z

)
− 1

2
F

(
B⊥
Bφ

)
+

1

2
F

(
B⊥

Bφ +Bz0

)
− 1

2
F

(
B⊥

Bφ +Bzz

)
− γiv

∑
±
±F
(

B⊥

Bφ +B+
iv ±

B−iv
γiv

)
− Ξγs

∑
±
±F
(

B⊥

Bφ +B+
s ± B−s

γs

)
. (28)

Here, we have introduced

F (z) = ln(z) + ψ

(
1

2
+

1

z

)
≈

{
z2

24 , z � 1,

ln z, z � 1,
(29)

where ψ(z) is the digamma function, and Bji =

h̄Γji/(4eD) are effective magnetic fields associated with
the scattering rates.

Eq. (28) acquires a simple form if the decoherence
rate τ−1

φ is either the dominant or the smallest scat-

tering rate. For very long τφ, such that τ−1
φ � Γls,

all the gapped Cooperons can be neglected, and only
the third term in Eq. (28) remains. Then, we have

∆σ/σ0 = −(1/2)F (B⊥/Bφ), as in conventional metal
with strong spin-dependent disorder. For short decoher-
ence times, τ−1

φ � Γls, all the Cooperon gaps can be ne-

glected. Different contributions to Eq. (28) then cancel
pairwise, and we obtain ∆σ/σ0 = 2ΞF (B⊥/Bφ). This
exhibits WL, WAL or a vanishing quantum correction
for Ξ = 1,−1, 0 respectively, similarly to a Dirac material
in a smooth disorder potential. This limiting case con-
tributes to the interference correction with a four times
larger prefactor compared to the previous one - a conse-
quence of spin and valley degeneracy.

The magnetoconductance formula Eq. (28) captures
the rich weak localization behavior of TMDCs and
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graphene/TMDC. Due to the large number of parame-
ters it is difficult to apply it directly to experiments. In
the next section, we will present and discuss several real-
istic regimes in which this result significantly simplifies,
and compare them to the existing theories. Furthermore,
we will discuss the effect of a finite in-plane Zeeman field.

IV. DISCUSSION

We will proceed by analyzing the magnetoconductance
formula (28) in the regimes of strong (Sec. IV A) and
weak short-range disorder (Sec. IV B). We will also ad-
dress the effect of an in-plane Zeeman field (Sec. IV C).

A. Strong short-range disorder

The regime where intervalley scattering dominates over
all spin-dependent scattering rates, τ−1

iv � τ−1
i,j , with

i = z, zv, iv and j = z, o, is the most commonly used
regime when interpreting the measurements of the quan-
tum correction. Such a large magnitude of intervalley
scattering is expected in samples with an abundance of
atomic defects, or in small samples, where the edges can
contribute to this kind of scattering. In that case, the
effect of spin-dependent disorder can be captured with
only two scattering rates,

τ−1
sym = 2(τ−1

z,e + τ−1
zv,e + τ−1

iv,e),

τ−1
asy = τ−1

z,o + τ−1
zv,o + τ−1

iv,o + τ−1
BR. (30)

Here τ−1
sym contains all the spin-dependent scattering pro-

cesses that satisfy mirror (z → −z) symmetry and, thus,
preserve the electron spin. On the other hand, τ−1

asy con-
tains spin-flip processes that break this symmetry. In
the presence of potential disorder only, we can use the
estimates provided in Table I to identify the dominant
contributions to these rates. In that case, we find that
the symmetric rate is dominated by τ−1

z,e , which describes
the Elliott-Yafet spin-relaxation mechanism induced by
Kane-Mele SOC, while the asymmetric rate is dominated
by τ−1

BR, which describes the Dyakonov-Perel spin relax-
ation mechanism induced by Rashba SOC. If additional
spin-orbit impurities are present in the system, the sym-
metric and asymmetric rates are not limited by the band
structure SOC parameters.

In this regime, Γ−iv ≈ Γ+
iv ≈ τ−1

iv , and γiv ≈
1/
√

1− 4∆2
soτ

2
iv. Furthermore, we will assume that the

effect of trigonal warping captured in τ−1
∗ and τ−1

∗∗ for
intravalley Cooperons (see the bottom of Table II) is
small compared to intervalley scattering. Then, we have
τ−1
∗ ≈ τ−1

∗∗ ≈ τ−1
iv , and the magnetoconductance (28)

becomes

∆σ

σ0
= 2ΞF

(
B⊥

Bφ +Biv

)
+

1

2
F

(
B⊥

Bφ + 2Basy

)
− 1

2
F

(
B⊥
Bφ

)
− γiv

[
F

(
B⊥

Bφ +Biv(1 + 1
γiv

)

)
− F

(
B⊥

Bφ +Biv(1− 1
γiv

) +Bs

)]
. (31)

Here τ−1
s = τ−1

sym+τ−1
asy, andBi = h̄/(4eDτi). We see that

the magnetoconductance is determined by a combination
of valley and spin physics, described by the intervalley
scattering rate τ−1

iv , and spin scattering rates τ−1
sym and

τ−1
asy. The interplay between intervalley scattering and

valley-dependent SOC is captured by the coefficient γiv.
We will proceed by analyzing this interplay in two limits:
τ−1
iv � ∆so and ∆so � τ−1

iv .

Within these two limits, we can readily address
3 regimes of the decoherence rate: (i) τ−1

φ � τ−1
s ,

(ii) τ−1
s � τ−1

φ � τ−1
iv , and (iii) τ−1

iv � τ−1
φ , where the

quantum correction acquires a simple form. The cases (i)
and (iii), where the decoherence rate is the dominant or
the smallest one, respectively, were previously discussed
in the general context of Eq. (28). The intermediate
regime (ii) is not universal. In the limit τ−1

iv � ∆so,

it yields ∆σ/σ0 = F (B/Bφ). This is analogous to a con-
ventional metal without SO impurities, and represents
a sum of three spin-triplets C0

i (i = x, y, z), which con-
tribute as (3/2)F (B⊥/Bφ), and a spin-singlet C0

0 , which

contributes as −(1/2)F (B⊥/Bφ). For ∆so � τ−1
iv , the

two triplets C0
x and C0

y are suppressed by the SOC, and
the quantum correction vanishes.

We obtain more complex behavior in the crossover
regimes τ−1

φ ∼ τ−1
s [which includes (i) and (ii)] and

τ−1
φ ∼ τ−1

iv [which includes (ii) and (iii)]. Strong inter-
valley scattering completely suppresses the valley struc-
ture in the first regime, so that the magnetoconductance
is determined by the spin physics only. On the other
hand, the valley physics dominates in the second regime,
as the effect of spin-scattering is washed out by electron
decoherence.
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a. Limit τ−1
iv � ∆so: Here, Eq. (31) simplifies, as

γiv ≈ 1. In the crossover regime τ−1
φ ∼ τ−1

s , the first and

the fourth term of Eq. (31) are suppressed by the large
intervalley scattering, and we obtain

∆σ

σ0
=

1

2
F

(
B⊥

Bφ + 2Basy

)
− 1

2
F

(
B⊥
Bφ

)
+F

(
B⊥

Bφ + B̃s

)
,

(32)
Here, we have introduced

τ̃−1
s = τ−1

iv

(
1− 1

γiv

)
+ τ−1

s ≈ 2∆2
soτiv + τ−1

s , (33)

and B̃s = h̄/(4eDτ̃s). As valley structure and spin-
splitting are suppressed in this regime, the system be-
haves similarly to a diffusive metal with spin-orbit im-
purities, and Eq. (32) is equivalent to the HLN for-
mula. This remains true even when intervalley scat-
tering becomes comparable to intervalley scattering, for
τ−1
iv ∼ τ−1

0 . The equation (32) still holds in that case,
although with a modified diffusion constant (see Ap-
pendix B).

The effect of valley-dependent SOC is captured by an
additional contribution to the symmetric rate, τ−1

sym →
τ−1
sym + 2∆2

soτiv, which stems from the coupling of the

Cooperon modes C
0(z)
x with C

z(0)
y by this SOC. This

effect was already discussed in Refs. 26, 39, and 40,
and used to estimate ∆so from the experimental data
in graphene/TMDC heterostructures. However, the es-
timated SOC is of the same order of magnitude as τ−1

iv ,
which is outside of the region of validity of this formula
(τ−1
iv � ∆so). Instead, the full formula provided by

Eq. (31) should be used in order to get a more reliable
estimate of the valley-dependent SOC.

If τ̃−1
s ∼ τ−1

φ ∼ τ−1
asy, Eq. (32) exhibits WAL-WL

crossover as the magnitude of the perpendicular field is
increased. We next consider the regime τ̃s � τ−1

φ ∼ τ−1
asy.

Here, the last term of Eq. (32) is suppressed due to the
combined effect of all mirror-symmetric SOC in the sys-
tem, as τ−1

sym + 2∆2
soτiv � τ−1

φ . We thus have

∆σ

σ0
=

1

2
F

(
B⊥

Bφ + 2Basy

)
− 1

2
F

(
B⊥
Bφ

)
. (34)

This corresponds to pure WAL behavior as a function
of B⊥, that saturates on the scale of Basy. This kind of
saturation was noticed in several recent experiments that
show flat WAL curves, such as Refs. 21, 25, and 26. The
interference correction vanishes for τ̃−1

s � τ−1
φ � τ−1

asy,

and shows pure WL behavior if τ̃−1
s ∼ τ−1

φ � τ−1
asy, given

as

∆σ

σ0
= F

(
B⊥

Bφ + B̃s

)
. (35)

Next, we address the crossover regime τ−1
φ ∼ τ−1

iv .
Here, the spin scattering rates can be neglected, and the

second and third term of Eq. (31) cancel out, which yields

∆σ

σ0
= 2ΞF

(
B⊥

Bφ +Biv

)
+ F

(
B⊥
Bφ

)
− F

(
B⊥

Bφ + 2Biv

)
.

(36)
This result at Ξ = −1 is equivalent to Ref. 32, which de-
scribes graphene without spin-dependent impurities. As
a function of a perpendicular field, it exhibits pure WL
for Ξ = 1 and Ξ = 0, and a WL-WAL crossover for
Ξ = −1.

Fig. 3(a) gives a schematic representation of the differ-
ent regimes in the limit τ−1

iv � ∆so.

FIG. 3. Schematic representation of the WL behavior in the
regime of strong short-range disorder, τ−1

iv � τ−1
s . In the

crossover regions described by Eqs. (32)-(37), the magneto-
conductance at low (high) perpendicular field behaves the
same as in the left (right) adjacent region on the τ−1

φ arrow.

In panel (a), the regime of vanishing interference correction
between τ−1

asy and τ̃−1
s disappears if τ−1

asy ∼ τ̃−1
sym.

b. Limit ∆so � τ−1
iv : Since γiv ≈ 0, here only

the first three terms of Eq. (31) contribute to the mag-
netoconductance. In the crossover regime τ−1

φ ∼ τ−1
s ,we

again obtain Eq. (34). Similarly to the previously con-
sidered case analyzed below Eq. (34), saturated WAL
in this regime can be understood as a consequence of
strong mirror-symmetric SOC which suppresses Cooper-
ons that would lead to WL. However, this suppression is
now predominantly caused by spin-splitting due to ∆so,
irrespective of the magnitude of τ−1

sym. This regime, there-
fore, presents an alternative to the standard HLN theory
to interpret the experiments showing saturated WAL sig-
nals.

Finally, we analyze the crossover regime τ−1
φ ∼ τ−1

iv .
We find

∆σ

σ0
= 2ΞF

(
B⊥

Bφ +Biv

)
, (37)

which exhibits pure WAL, pure WL, or vanishes for Ξ =
1, Ξ = −1 and Ξ = 0, respectively.

Fig. 3(b) gives a schematic representation of the dif-
ferent regimes in the limit ∆so � τ−1

iv .
Fig. 4 illustrates the behavior of the magnetoconduc-

tance beyond the two extreme limits τ−1
iv � ∆so and
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FIG. 4. Interference-induced magnetoconductance as a function of a weak perpendicular magnetic field under the influence
of increasing valley-dependent SOC. We take the chemical potential to be deep in the conduction band, such that Ξ = −1.
The fields Bsym and Basy are determined by the Elliott-Yaffet contribution from the Kane-Mele SOC, and the Dyakonov-Perel
contribution due to the Rashba SOC, respectively, as well as other sources of spin-orbit scattering [see Table I and Eq. (30)].
The effect of the valley-Zeeman SOC is captured by the parameter ∆soτiv. (a) All curves are plotted for the parameters
Biv = 200Bφ, Bsym = Basy = 3Bφ. The dashed black line corresponds to Eq. (32), while the dotted line corresponds to
Eq. (34) (b) All curves are plotted for the parameters Biv = 10Bφ, Bsym = Basy = 0.02Bφ. The dashed black line corresponds
to Eq. (36), while the dotted line corresponds to Eq. (37).

∆so � τ−1
iv , analyzed above. In particular, Fig. 4(a)

addresses the crossover from the regime described by
Eq. (32) to Eq. (34) as the magnitude of valley-dependent
SOC is increased. Similary Fig. 4(b) shows a crossover
from Eq. (36) to Eq. (37).

B. Weak short-range disorder

In this section, we analyze the regime where inter-
valley scattering rate is much weaker than the spin-
scattering rates, τ−1

sym, τ
−1
asy � τ−1

iv , which is appropriate
for large samples without atomic defects. The interval-
ley spin-scattering rates are assumed to be even weaker,
τ−1
iv,e/o � τ−1

iv , and thus neglected. The magnetoconduc-

tance formula is then given as

∆σ

σ0
= 2ΞF

(
B⊥

Bφ +Bxx

)
− 1

2
F

(
B⊥
Bφ

)
+

1

2
F

(
B⊥

Bφ + 2Biv

)
− Ξγs

∑
±
±F
(

B⊥

Bφ +B+
s ± B−s

γs

)
.

(38)

In this regime, the quantum correction is governed by
the interplay between ∆so and a combination of the spin-
scattering rates Γ−s , described by the coefficient γs. Un-
like the case of strong short-range disorder, the Cooper-
ons containing γiv cancel out in this regime, so the ratio
of intervalley scattering and valley-dependent SOC does
not affect ∆σ. The three intravalley Cooperon gaps Γxi
(i = 0, x, y, z) that enter Eq. (38) have a similar struc-
ture. To simplify further analysis, we will assume that
they are of the same order of magnitude.

We proceed similarly to the previous section, and an-
alyze the three extreme limits with respect to the de-
coherence rate. If it is the smallest, τ−1

φ � τ−1
iv , or the

largest, Γxi � τ−1
φ , scattering rate, the general arguments

presented after Eq. (28) apply. In the intermediate limit
τ−1
iv � τ−1

φ � Γxi , the quantum correction vanishes.

We next examine the crossover regimes. For τ−1
φ ∼

τ−1
iv , we have

∆σ

σ0
= −1

2
F

(
B⊥
Bφ

)
+

1

2
F

(
B⊥

Bφ + 2Biv

)
. (39)

This formula is determined by intervalley scattering only,
and exhibits WAL behavior which saturates on the scale
of Biv. Finally, in the crossover regime τ−1

φ ∼ Γxi we have

∆σ

σ0
= 2ΞF

(
B⊥

Bφ +Bxx

)
− Ξγs

∑
±
±F
(

B⊥

Bφ +B+
s ± B−s

γs

)
. (40)

In the limit Γ−s � ∆so, one should consider all three
terms in Eq. (40) since γs ≈ 1. As ∆so increases, the sec-
ond line of Eq. (40) becomes suppressed, until it vanishes
for ∆so � Γ−s , where γs ≈ 0. We see that the qualitative
behavior of the magnetoconductance remains the same
for any γs, and thus, any ∆so. It only depends on the
doping coefficient Ξ, and exhibits WL, WAL, or neither
for Ξ = 1,−1, and 0, respectively. These conclusions are
schematically represented in Fig. 5.

FIG. 5. Schematic representation of the WL behavior in the
regime of weak short-range disorder, τ−1

sym, τ
−1
asy � τ−1

iv �
τ−1
iv,e/o. The behavior in the crossover regions is represented

in the same way as in Fig. 3.
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FIG. 6. Influence of the in-plane Zeeman field on the magnetoconductance curves. The solid black line represents the curve
at zero in-plane Zeeman field, while the dashed line represents the saturation curve given by Eq. (42) at high fields. (a) The
parameters for the plot are Biv = 100Bφ, Bsym = Basy = 10Bφ, Bso = 0, and Ξ = −1. The crossover to WL happens at
B⊥ ≈ 10Bφ. (b) The parameters for the plot are Biv = 100Bφ, Bsym = Basy = 3.5Bφ, Bso = 120Bφ, and Ξ = −1. The
crossover to WL happens at B⊥ ≈ 30Bφ.

C. Influence of the in-plane Zeeman field

One of the main difficulties when experimen-
tally extracting the parameters from quantum mag-
netoconductance fits comes from the fact that there are
multiple parameter combinations that can fit the same
data. For example, both valley-dependent SOC and spin-
dependent scattering can lead to pronounced WAL sig-
nals. Applying an in-plane Zeeman field can help over-
come these ambiguities, as different kinds of disorder and
SOC interplay differently with the field.

At sufficiently high in-plane Zeeman field, all spin-
singlet Cl0 and spin-triplet Clx Cooperons are suppressed,
and we arrive at the asymptotic formula for the magne-
toconductace,

∆σ

σ0
=
∑
i=x,z

[
ΞF

(
B⊥

Bφ +Bxi

)

+
1

2
F

(
B⊥

Bφ +B0
i

)
− 1

2
F

(
B⊥

Bφ +Bzi

)]
. (41)

The magnitude of the in-plane Zeeman field required to
reach the high-field formula (41) differs depending on the
parameter regime, as will be discussed in the following.
Note that it will always be reached if h � ∆so, τ

−1
i ,

where τ−1
i are all scattering rates except the diagonal

one, τ−1
0 .

First, we analyze the regime where the short-range dis-
order rate is much larger than all spin-dependent disorder
rates, τ−1

iv � τ−1
s . In this case the asymptotic formula

acquires the form

∆σ

σ0
= 2ΞF

(
B⊥

Bφ +Biv

)
+

1

2
F

(
B⊥

Bφ + 2Basy

)
+

1

2
F

(
B⊥

Bφ +Bs

)
− F

(
B⊥

Bφ + 2Biv

)
. (42)

Starting from the general expression (25), we will next
check the magnitude of h needed to reach this formula in
the limits τ−1

iv � ∆so and ∆so � τ−1
iv .

Let us consider τ−1
iv � ∆so. If the decoherence rate

τ−1
φ is larger than all spin-scattering rates, the spin struc-

ture is suppressed, and the in-plane Zeeman field has no
effect. In this case, the formula (42) is valid for any h and
is equivalent to Eq. (36). On the other hand, if τ−1

φ is of
the order of the spin-scattering rates, all the valley-singlet
Cooperons, C0

s , contribute to the magnetoconductance at
h = 0 [Eq. (32)], and a finite h acts by suppressing the
spin-singlet Cooperon C0

0 and the spin-triplet Cooperon
C0
x. For fields of the order τ̃−1

s � h � τ−1
iv , Eq. (42)

holds, but with Bs replaced with B̃s. Therefore, unless
τ−1
s � ∆2

soτiv, the valley-dependent SOC still has an ef-
fect at such fields, through the contribution 2∆2

soτiv to
the effective rate τ̃−1

s . In that case, the high-field asymp-
totic formula is reached only at very high fields of the
order of intervalley scattering, namely h� τ−1

iv .

Next, we consider the limit ∆so � τ−1
iv . In this regime,

the Cooperons Cji and Cij , where i = x, y and j = 0, z,
are suppressed by the strong ∆so at h = 0. In order
to reach the asymptotic formula Eq. (42), a large field
h � ∆so is needed. It negates the effect of the valley-
dependent SOC and restores Cjy and Ciz Cooperons, while

suppressing all Cl0 and Clx Cooperons.
Finally, we address the limit of weak short-range disor-

der, τ−1
sym, τ

−1
asy � τ−1

iv � τ−1
iv,e/o, described by Eq. (38) at

h = 0. Similarly to the previously considered case, strong
h negates the effect of ∆so and suppresses all spin-singlet
and x-triplet Cooperons. Here, the asymptotic formula
takes the form

∆σ

σ0
= Ξ

∑
i=x,z

F

(
B⊥

Bφ +Bxi

)
, (43)

and is reached if the in-plane Zeeman field is the largest
energy scale, h � Γxi ,∆so, τ

−1
φ (i = 0, x, y, z). The pref-

actor Ξ indicates that it can exhibit WAL, WL, or neither
depending on the doping, similarly to Eq. (40).

To illustrate a situation where applying the in-plane
field can help in the interpretation of the quantum cor-
rection, we plot two magnetoconductance curves with a
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similar shape, but with significantly different parameters
in Fig. 6 (black line). The first curve [Fig. 6(a)] has strong
spin-scattering and no valley-dependent SOC, while the
second one has weaker spin-scattering and strong SOC
[Fig. 6(b)]. The high-field saturation curve (dashed line)
has a similar shape in both cases, and is described by
Eq. (42). The amplitude of WL at high fields is some-
what larger in the case of strong SOC, as the spin-orbit
scattering is weaker, which means that the second line
of Eq. (42) gives a larger contribution compared to the
other case. More importantly, this case is more resis-
tant to the effect of the applied field, and the crossover
to WL happens at a much higher field amplitude. This
is consistent with the above analysis, as the expected
crossover field is h ∼ τ−1

s for Fig. 6(a) and h ∼ ∆so

for Fig. 6(b). Thus, applying an in-plane field helps dis-
tinguish the contributions of valley-dependent SOC and
spin-dependent scattering to the quantum correction.

V. CONCLUSIONS

In conclusion, we have developed a theory of weak lo-
calization and magnetoconductance for TMDC monolay-
ers and their heterostructures with graphene, using the
standard diagrammatic technique for disordered systems.
The interplay between spin and valley physics in these
materials yields a rich behavior of the quantum correction
to the conductivity, which we discuss in several regimes
of interest for the interpretation of recent experimental
data. We generalize the HLN and MF theories and pro-
pose a formula that can be used to extract the magnitude
of valley-dependent SOC and disorder from the experi-

ments in all regimes. In some cases, interpreting the ex-
periments is not straightforward, as different parameter
combinations may explain the data equally well. An in-
plane Zeeman field can be used as an additional tuning
parameter to help distinguish between the contributions
of different processes.
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Appendix A: Higher-order corrections due to the
valley-dependent SOC and in-plane Zeeman field

As discussed in Sec. III B, the main effect of the spin-
splitting fields, h and ∆so, is the coupling of different
Cooperon modes. However, it is also important to con-
sider the corrections beyond the leading order in τ0 in the
diffusive limit, by keeping the terms of the order ∆2

soτ0,
h2τ0, and h∆soτ0, as they can be of comparable magni-
tudes to the scattering rates appearing in the Cooperon
gaps. In this Appendix, we will discuss these corrections,
and show that they can always be neglected when com-
pared to the leading-order effect of h and ∆so.

Firstly, we generalize Eq. (24) to include these correc-
tions. We have

P
x(y)
0 + 4ρ2τ0 ∓2∆so −2ih

±2∆so Py(x)
z + 4∆2

soτ0 ±4ih∆soτ0
−2ih ∓4ih∆soτ0 Px(y)

x + 4h2τ0


C

xx(yy)
00 C

xy(yx)
0z C

xx(yy)
0x

C
yx(xy)
z0 C

yy(xx)
zz C

yx(xy)
zx

C
xx(yy)
x0 C

xy(yx)
xz C

xx(yy)
xx

 =
1

2πντ2
0

,

P
0(z)
x + 4ρ2τ0 −2∆so −2ih

2∆so Pz(0)
y + 4∆2

soτ0 4ih∆soτ0
−2ih −4ih∆soτ0 P0(z)

0 + 4h2τ0


C

00(zz)
xx C

0z(z0)
xy C

00(zz)
x0

C
z0(0z)
yx C

zz(00)
yy C

z0(0z)
y0

C
00(zz)
0x C

0z(z0)
0y C

00(zz)
00

 =
1

2πντ2
0

, (A1)

where ρ2 = ∆2
so +h2. We see that all the gaps related to

the Cooperons coupled by the in-plane Zeeman field, Γl0
and Γlx, are now supplemented with a rate 4h2τ0. Sim-
ilarly, all the gaps related to the Cooperons coupled by
the valley-dependent SOC, Γji (i ∈ {x, y}, j ∈ {0, z},
or i ∈ {0, z}, j ∈ {x, y}), are supplemented with the
rate 4∆2

soτ0. Furthermore, mixed terms of the form

±4ih∆soτ0 introduce coupling of the Cooperons C
y(x)
z

with C
x(y)
x , and C

z(0)
y with C

0(z)
0 .

Next, let us consider the combinations of cou-
pled Cooperons that enter the interference correc-
tion: A(l1s1 ,

l2
s2 ,

l3
s3 ) = 2πντ2

0 (Cl1s1 + Cl2s2 − Cl3s3), for

(l1s1 ,
l2
s2 ,

l3
s3 ) = (yz ,

x
x ,
x
0 ), (xz ,

y
x ,
y
0 ), (zy,

0
0 ,

0
x ), (0

y,
z
0 ,
z
x ), as intro-

duced in Eq. (25). After inverting Eq. (A1) and sim-
plifying, we obtain
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A(l1s1 ,
l2
s2 ,

l3
s3 ) =

−P l1s1P
l2
s2 + P l2s2P

l3
s3 + P l3s3P

l1
s1 + 4∆2

so(1 + P l1s1τ0 + P l3s3τ0 + 4ρ2τ2
0 ) + 4h2(1 + P l2s2τ0 + P l3s3τ0 + 4ρ2τ2

0 )

P l1s1P l2s2P l3s3 + 4h2P l1s1(1 + P l2s2τ0 + P l3s3τ0 + 4ρ2τ2
0 ) + 4∆2

soP
l2
s2(1 + P l1s1τ0 + P l3s3τ0 + 4ρ2τ2

0 )
.

(A2)
Finally, after neglecting terms which are small in the diffusive limit (1� Pτ0, ρ2τ2

0 ), we find

A(l1s1 ,
l2
s2 ,

l3
s3 ) =

−P l1s1P
l2
s2 + P l3s3P

l1
s1 + 4h2 + P l2s2P

l3
s3 + 4∆2

so

P l1s1P l2s2P l3s3 + 4h2P l1s1 + 4∆2
soP

l2
s2

, (A3)

which is exactly what enters Eq. (25), where higher-order
corrections were not included.

Thus, we have shown that the higher order corrections
due to ∆so and h can be neglected. This result is not
surprising, but it becomes apparent only at a late stage
of the calculation, as it is contingent upon exact cancela-
tion of several terms coming from two different sources:
corrections to the Cooperon gaps of the form 4∆2

soτ0 and
4h2τ0, and the coupling of Cooperons by the terms of
the form ±4ih∆soτ0. This is a consequence of the basis
chosen for our calculation.

Appendix B: Diffusion constant in the regime
τ−1
iv ∼ τ

−1
0

We generalize the calculation of the transport time and
the diffusion constant presented in Eq. (8), to account for
intra- and intervalley terms of the potential disorder HD0

qq′

on an equal footing. This yields

τ−1
tr = τ−1

0

µ2 + 3E2
g

2(µ2 + E2
g)

+ τ−1
iv,+ + τ−1

iv,− +
3

2
τ−1
iv,x. (B1)

Here,

τ−1
iv,± = 2πν

∑
i=x,y

V 2
±i

(
1± Eg

µ

)2

(B2)

describes on-site intervalley disorder, while

τ−1
iv,x = πν

∑
i=x,y

V 2
xi

v2q2
F

µ2
(B3)

describes hopping intervalley disorder.
At µ ≈ Eg, the intervalley contribution to the trans-

port time comes predominantly from one (”+”) site, and
the diffusion constant is D = 1

2vF (τ−1
0 + τ−1

iv,+)−1. At
µ � Eg, both sites contribute equally, together with
hopping disorder, and the diffusion constant is D =
1
2vF (

τ−1
0

2 + τ−1
iv,+ + τ−1

iv,− + 3
2τ
−1
iv,x)−1.
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4 A. Kormányos, G. Burkard, M. Gmitra, J. Fabian,
V. Zólyomi, N. D. Drummond, and V. Falko, 2D Mat.
2, 022001 (2015).

5 D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys.
Rev. Lett. 108, 196802 (2012).

6 K. F. Mak, K. He, J. Shan, and T. F. Heinz, Nat. Nan-
otech. 7, 494 (2012).

7 H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Nat. Nan-
otech. 7, 490 (2012).

8 Y. Saito, Y. Nakamura, M. S. Bahramy, Y. Kohama,
J. Ye, Y. Kasahara, Y. Nakagawa, M. Onga, M. Tokunaga,
T. Nojima, et al., Nat. Phys. 12, 144 (2016).

9 J. Lu, O. Zheliuk, I. Leermakers, N. F. Yuan, U. Zeitler,
K. T. Law, and J. Ye, Science 350, 1353 (2015).

10 X. Xi, Z. Wang, W. Zhao, J.-H. Park, K. T. Law,
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