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1 INTRODUCTION 
 

As the digital, physical and human worlds con-
tinue to integrate, the 4th industrial revolution, 
the internet of things and big data, the industrial 
internet, are changing the way we design, man-
ufacture, deliver products and services. In this 
fast-pace changing environment, the attributes 
related to the reliability of components and sys-
tems continue to play a fundamental role for in-
dustry. On the other hand, the advancements in 
knowledge, methods and techniques, the in-
crease in information sharing and data availabil-
ity, offer new opportunities of analysis and as-
sessment for reliability engineering. Based on 
this increased knowledge, information and data 
available, we can improve our reliability predic-
tion capability. Particularly, the increased availa-
bility of data coming from monitoring the rele-
vant components and systems parameters and 
the grown ability of treating these data by intel-
ligent algorithms capable of mining out infor-
mation relevant to the assessment and predic-
tion of their state, has open wide the doors for 
Prognostics and Health Management (PHM) and 

predictive maintenance in many industrial sec-
tors, for improved operation and maintenance 
(Zio, 2016). Approaches for RUL estimation can 
be generally categorized into model-based and 
data-driven (Baraldi et al., 2015a). Model-based 
approaches use physics-based models to de-
scribe the degradation behavior of the equip-
ment (Baraldi et al., 2015a). On the other side, 
data-driven methods are of interest when an ex-
plicit model of the degradation process is not 
available, as they rely on the availability of field 
data collected during the operation of one or 
more similar components. Among data-driven 
methods one can distinguish between (𝑖) degra-
dation-based approaches, modeling the future 
equipment degradation evolution and (𝑖𝑖) direct 
RUL prediction approaches, directly predicting 
the RUL. 

Degradation-based approaches are based on 
statistical models that learn the equipment deg-
radation time evolution from time series of the 
observed degradation (Baraldi et al., 2017). The 
predicted degradation state is, then, compared 
with a failure criterion, such as the value of deg-
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ABSTRACT: We present a method based on heterogeneous ensemble learning for the prediction of 
the Remaining Useful Life (RUL) of cutting tools (knives) used in the packaging industry. Ensemble 
diversity is achieved by training multiple prognostic models using different learning algorithms. The 
combination of the outcomes of the models in the ensemble is based on a weighted averaging strat-
egy, which assigns weights proportional to the individual model performances on patterns of a vali-
dation set. The proposed heterogeneous ensemble has been applied to real condition monitoring 
knife data. It has provided more accurate RUL predictions compared to those of each individual base 
model. 



radation beyond which the equipment fails per-
forming its function (failure threshold). Examples 
of modeling techniques used in degradation-
based approaches are Auto-Regressive models 
(Gorjian et al., 2009), Relevance Vector Machines 
(Di Maio et al., 2012) and Semi-Markov Models 
(Cannarile et al., 2017a) (Cannarile et al., 2018). 

 Direct RUL predictions approaches, instead, 
typically resort to machine learning techniques 
that directly map the relation between the ob-
servable parameters and the equipment RUL, 
without the need of predicting the equipment 
degradation state evolution towards a failure 
threshold (Schwabacher et al., 2007). Techniques 
used in direct RUL prediction approaches are, for 
example, Artifical Neural Networks (Wang & 
Vachtsenavos, 2001), Extreme Learning Ma-
chines (ELM) (Yang et al., 2017), Gaussian Pro-
cesses (GP) (Baraldi et al., 2015b), etc.  

When few run-to-failure degradation trajecto-
ries are available, direct RUL approaches may 
overfit, i.e., these algorithms customize them-
selves too much to learn the relationship be-
tween the observable parameters and the corre-
sponding RUL in the training set. Therefore, 
these methods tend to lose their generalization 
power, which leads to poor performance on new 
data. To overcome this, ensemble approaches, 
based on the aggregation of multiple model out-
comes, have been introduced (Baraldi et al., 
2013a). The basic idea is that the diverse models 
in the ensemble complement each other by lev-
eraging their strengths and overcoming their 
drawbacks.  

Thus, the combination of the outcomes of the 
individual models in the ensemble improves the 
accuracy of the predictions compared to the per-
formance of a single model (Brown et al., 2005) 
(Baraldi et al., 2013a). Different methods, such as 
ANN (Baraldi et al., 2013b), Support Vector Ma-
chine (SVM) (Liu et al., 2006) and kernel learning 
(Liu et al., 2015), have been used with success to 
build the individual models. For example, an en-
semble of feedforward Artificial Neural Networks 
(ANN) has been embedded into a Particle Filter 
(PF) for the prediction of crack length evolution 
(Baraldi et al., 2013b) and an ensemble of data-
driven regression models has been exploited for 
the RUL prediction of lithium-ion batteries (Xing 
et al., 2013). In (Rigamonti et al., 2017) a local en-
semble of Echo State Networks (ESN) has been 
proposed to improve the RUL prediction accu-
racy of turbofan engines. 

The objective of this work is to predict the 
RUL of knives installed on Tetra Pak® A3/Flex 
filling machines used to cut package material. 
The prognostic task is complicated by the fact 
that few run-to-failure degradation trajectories 

are available, and a failure threshold is not avail-
able. To cope with these issues, this work pro-
poses an ensemble formed by multiple data-
driven direct RUL prediction models, capable of 
aggregating the RUL predictions for good per-
formance throughout the entire degradation tra-
jectory of a knife. Ensemble diversity is achieved 
by heterogeneous ensemble generation, i.e., by 
training the models using different prognostics 
algorithms. Aggregation is obtained by averag-
ing the output of the individual base models with 
weights proportional to the inverse of their Em-
pirical Generalization Error (EGE) on retrieved 
patterns in a validation set. The application of the 
proposed heterogeneous ensemble method to 
real condition monitoring knife data has shown 
to provide more accurate RUL prediction com-
pared to that of each individual base learner in 
the ensemble.  

The paper is organized as follows: in Section 
2, the objectives of this work and the assump-
tions are discussed; in Section 3, ensemble learn-
ing main concepts for data-driven direct RUL 
prediction are illustrated; in Section 4, perfor-
mance metrics to compare different prognostic 
models are discussed. The application of the 
methodology to Tetra Pak® A3/Flex filling data 
is described in Section 5, whereas Section 6 
draws the work conclusions. 

2 ASSUMPTIONS AND OBJECTIVES 
 

We assume to have available run-to-failure 

degradation trajectories of 𝑁 pieces of equip-

ment similar to the one currently monitored (test 

equipment). Let  𝒙𝑖(𝜏𝑖) ∈ ℝ𝑚, 𝑖 = 1, . . , 𝑁;  𝜏 =

1, … , 𝑛𝑖 be the vector of  𝑚 features extracted 

from signal measurements performed at time 𝜏𝑖 

on the 𝑖𝑡ℎ equipment, with 𝑛𝑖 indicating the total 

number of data acquisitions performed on the 

𝑖𝑡ℎ equipment before its failure. The ground truth 

RUL of the 𝑖𝑡ℎ piece pf equipment at time 𝜏𝑖 will 

be referred to as 𝑦𝑖(𝜏𝑖), 𝑖 = 1, … , 𝑁; 𝜏𝑖 = 1, … , 𝑛𝑖 .  

We consider a case in which the failure thresh-

olds for the extracted features are not known. In 

this setting, fault prognostics is framed as a re-

gression problem: given the historical dataset 𝑈 

formed by 𝑁 realizations (degradation trajecto-

ries) {𝒙𝑖(𝜏𝑖), 𝑦𝑖(𝜏𝑖), 𝜏𝑖 = 1, … , 𝑛𝑖}, 𝑖 = 1, … , 𝑁, of a 

stochastic process (𝑿(𝜏), 𝑌(𝜏)) ∈ ℝ𝑚𝑥 (0, +∞), 

our task is to find a function 𝑓: ℝ𝑚 → (0, +∞) 

such that it associates to a test pattern 

𝑥𝑡𝑒𝑠𝑡(𝜏𝑡𝑒𝑠𝑡) ∈ ℝ𝑚, the corresponding output 



𝑦𝑡𝑒𝑠𝑡(𝜏𝑡𝑒𝑠𝑡). In what follows, we refer to 𝑓 as base 

model or base learner (Zhou, 2012). 

3 ENSEMBLE LEARNING FOR FAULT 
PROGNOSTICS 
 

In contrast to ordinary learning approaches 
which try to construct one base learner from 
training data, ensemble methods try to construct 
a set of learners 𝑓1̃, … , 𝑓�̃� and combine them to 
obtain an ensemble learner  𝑓𝑒𝑛�̃�. In this work, we 
consider combination of base learners based on 
weighted averaging (Zhou, 2012), i.e., the com-
bined output  𝑓𝑒𝑛�̃� is obtained by averaging the 
output of the individual learners with different 
weights 𝛼ℎ, which implies that the different 
learners have different importance  

 𝑓𝑒𝑛�̃�(𝒙(𝜏)) = ∑ 𝛼ℎ

𝐻

ℎ=1

𝑓ℎ̃(𝒙(𝜏)) (1) 

where 

∑ 𝛼ℎ = 1;   𝛼ℎ ≥ 0;   ℎ = 1, … , 𝐻

𝐻

ℎ=1

 (2) 

 

3.1 Error ambiguity decomposition 

In this Subsection, we motivate the use of ensem-

ble learning to enhance RUL predictions of a test 

equipment. Referring to the ensemble generali-

zation error as 𝐺𝐸(𝑓𝑒𝑛�̃�), one can show that the 

following error-ambiguity decomposition holds 

(for more details, see the Appendix): 

 

𝐺𝐸(𝑓𝑒𝑛�̃�) = 𝐺𝐸̅̅ ̅̅ (ℎ) − 𝑎𝑚𝑏𝑖̅̅ ̅̅ ̅̅ ̅(ℎ) (3) 

 

where 𝐺𝐸̅̅ ̅̅ (ℎ) = ∑ 𝛼ℎ𝐺𝐸(𝑓ℎ̃)𝐻
ℎ=1  is the weighted 

average of the ℎ𝑡ℎ individual base learner gener-

alization error 𝐺𝐸(𝑓ℎ̃); and 𝑎𝑚𝑏𝑖̅̅ ̅̅ ̅̅ ̅(ℎ) =

∑ 𝛼ℎ𝑎𝑚𝑏𝑖(𝑓ℎ̃)𝐻
ℎ=1  is the weighted average of the 

ℎ𝑡ℎ individual base learner ambiguity 𝑎𝑚𝑏𝑖(𝑓ℎ̃) 

defined in Appendix. The quantity 𝑎𝑚𝑏𝑖(𝑓ℎ̃) 

quantifies how much the ℎ𝑡ℎ base learner predic-

tions , 𝑓ℎ ,̃  differ from the ensemble predictions. 

On the right-hand of Eq. (3), the first term 𝐺𝐸̅̅ ̅̅ (ℎ) 

represents the individual learner average error, 

which depends on the generalization ability of 

individual base learners whereas the second 

term 𝑎𝑚𝑏𝑖̅̅ ̅̅ ̅̅ ̅(ℎ) represents the ambiguity, which 

depends on the ensemble diversity. Since the 

second term is always positive, and it is sub-

tracted from the first term, it is clear that the er-

ror of the ensemble will never be larger than the 

average error of the individual base learners. Fur-

ther, Eq. (11) shows that the more accurate and 

the more diverse the individual learners, the bet-

ter the ensemble. 

3.2 Ensemble Generation 

According to the error-ambiguity decomposi-

tion discussed in Subsection 3.1, ensemble diver-

sity, i.e., the difference among the individual base 

learners is a fundamental issue in ensemble 

learning. Therefore, since complementarity is 

more important than pure accuracy (Zhou, 2012), 

an ensemble formed by only very accurate learn-

ers can provide worse performances than one 

formed by also some relatively weak learners. 

Two approaches are typically used to generate 

diverse base learners: 

• Homogeneous ensemble generation: dif-

ferent base learners are generated using 

the same prognostic algorithm and diver-

sity is achieved by manipulating data in dif-

ferent ways: subsampling from the training 

set (e.g., bagging ((Zhou, 2012))) or using 

different subsets of features. 

• Heterogeneous ensemble generation: dif-

ferent base models are generated using 

different prognostic algorithms. 

In this work, we have resorted to heterogene-

ous ensemble generation since it has been 

shown able to provide better performance than 

homogenous ensemble methods in cases of few 

low-dimensional data (Rathore & Kumal, 2017). 

3.3 Setting the ensemble base model weights 

𝛼ℎ 

The data extracted from the available 𝑁 run-

to-failure degradation trajectories of similar 

components are divided into training, validation 

and test subsets, formed by 𝑃𝑡𝑟𝑎𝑖𝑛, 𝑃𝑣𝑎𝑙𝑖𝑑 and 

𝑃𝑡𝑒𝑠𝑡 instances, respectively. The training subset 

is used to build the 𝐻 individual base models, the 

validation subset to assign them weights to be 

used for the aggregation of the individual model 

outcomes (Eq. (1)) and the test subset to verify 

the final ensemble performance. The weight 𝛼ℎ 

associate to the ℎ𝑡ℎ base learner is calculated 

based on its performance in predicting the RUL 



of the validation set patterns. Performance is 

measured resorting to the Empirical Generaliza-

tion Error (EGE), which for the  ℎ𝑡ℎ base learner is 

defined as the mean squared error on validation 

set patterns:  

  

𝐺�̂�(𝑓ℎ̃) =
1

𝑃𝑣𝑎𝑙𝑖𝑑
∑

1

𝑛𝑝
∑ (𝑦𝑝(𝜏𝑝) − 𝑓ℎ̃ (𝒙𝒑(𝜏𝑝)))

2
𝑛𝑝

𝜏𝑝=1

𝑃𝑣𝑎𝑙𝑖𝑑

𝑝=1

 (4) 

 

In this work, we have considered weights pro-

portional to the inverse of the EGE, i.e., 

 

𝛼ℎ =

1

𝐺�̂�(𝑓ℎ̃)

∑
1

𝐺�̂�(𝑓�̃�)
𝐻
𝑙=1

   ℎ = 1, … , 𝐻 (5) 

 

4 PROGNOSTIC PERFORMANCE METRICS 

In addition to EGE, we have considered other 

performance metrics, which are typically consid-

ered (Rigamonti et al., 2017) for quantitatively 

assessing and comparing the point prediction 

performance of different prognostic algorithms 

(Saxena et al., 2009). A brief description of the 

implemented metrics is given hereafter consid-

ering a generic test trajectory (𝒙(𝜏), 𝑦(𝜏)), 𝜏 =

1, … , 𝑛 and a general base learner  𝑓.̃ 

 

• Relative Accuracy (RA):  

𝑅(𝑓) = ∑ exp (−
|𝑓(𝑥(𝜏) − 𝑦(𝜏)|

𝑦(𝜏)
)

𝑛

𝜏

 
   

(6) 

 

Notice that 𝑅(𝑓) is in the range [0,1] and the 

larger the relative accuracy the more accurate is 

the model. 

 

• Precision:  

•  𝑃 = √
∑ (𝑒(𝜏) − 𝑒 ̅)2 𝑛

𝜏=1

𝑛
 (7) 

 

       𝑒(𝜏) = 𝑓(𝑥(𝜏)) − 𝑦(𝜏) (8) 

 

 𝑒 ̅ =
1

𝑛
∑ 𝑒(𝜏)

𝑛

𝜏=1

 (9) 

 

This measure quantifies the dispersion (stabil-

ity) of the prediction error around its mean. 

Closer to zero is the precision, more stable is 

the model. 

 

5 CASE STUDY 

This Section presents the results of the appli-
cation of the proposed method to Tetra Pak® 
A3/Flex filling knife condition monitoring data.  

We have available run-to failure-degradation 
trajectories from 𝑁 = 10 different knives. For 
each knife, we have available  𝑚 = 2 health indi-
cators which have been extracted using the pro-
cedure presented in (Cannarile et al., 2017b).  

In this work, a heterogeneous ensemble gen-
eration has been developed considering 𝐻 = 4 
prognostic algorithms:  

• Gaussian Process Regression with 

Squared Exponential (GPRSE) covariance 

function; 

• GRP with Matern 3/2 (GRPM) covariance 

function; 

• Support Vector Regression with Gaussian 

Kernel (SVRGK); 

• SVR with Quadratic Polynomial Kernel 

(SVRQPK). 

These algorithms have been selected, since they 
have proved to be effective also when few train-
ing data with no clear patterns of regularity are 
available for training (Domingos, 2012). To 
properly compare the performance of the en-
semble model with that of each base model, we 
have resorted to a twice nested Leave-One-Out-
Cross-Validation (LOOCV) approach. The outer 
loop is to assess the performance of the ensem-
ble and the single base learners, whereas the in-
ner loop allows setting the weights 𝛼ℎ, ℎ = 1, . . ,4. 
In practice, the weights associates to the base 
learners are computed on each outer-validation 
set (using the inner LOOCV loop) and the final 
performance is measured on the corresponding 
outer-testing set (see Figure 1).  
 



 
 

 
 
 

 
 
 
 

 
 

Figure 1: Twice nested LOOCV 

 
Table 1 compares the performances of the de-

veloped ensemble model with that of the GRPM 
model, which has resulted to be the best per-
forming individual model.  

 

 Ensemble GRPM 

Empirical Generalization Error 
(EGE) 

(best value 0) 

 3.2991 3.7127 

Relative Accuracy  
(RA) 

(best value 1) 

0.8149 0.7804 

Precision 
(best value 0) 

0.0569 0.0633 

 

Table 1: Comparison between the ensemble and 

the GRPM performances 

 

Notice that the ensemble model performs better 
than GRPM in all the considered metrics. In par-
ticular, the average EGE is 11.14% lower (more 
satisfactory) than that of GRPM, the relative ac-
curacy of the ensemble is 3.34% larger (more sat-
isfactory) than that of GRPM, whereas, the two 
methods are comparable from the point of view 
of the precision. Finally, Figs. 2 and 3 show the 
RUL predicted by the ensemble and GRPM for 
two representative test trajectories.  

 

 

Figure 2: Predicted RUL by the ensemble (diamonds) 

and GRPM (exagon) for a test trajectory. 

 

Figure 3: Predicted RUL by the ensemble (diamonds) 

and GRPM (exagon) for a test trajectory. 

The most satisfactory ensemble predictions tend 

to be at the begininning of the life of the test 

knife. This is reflected by the great improvement 

of the EGE metric, which is more sensible to 

errors at the beginning of the run to failure 

trajectory than the relative accuracy. 

6 CONCLUSIONS 
 

In this work, we have developed a heteroge-
neous ensemble model for enhancing the accu-
racy of the RUL prediction of knives used in the 
packaging industry. Thanks to the diversity of the 
base learner algorithms, the proposed approach 
has been shown capable of reducing the gener-
alization error and providing more accurate RUL 
predictions compared to that of each individual 
base learner in the ensemble. 
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APPENDIX 
 

Given an instance 𝒙 = 𝒙(𝜏), the ambiguity of 
the individual base learner  𝑓ℎ̃ is defined as 

 

𝑎𝑚𝑏𝑖(𝑓ℎ̃|𝒙) = (𝑓ℎ̃(𝒙) − 𝑓𝑒𝑛�̃�(𝒙))
2

   ℎ = 1, … , 𝐻 (10) 

and the ambiguity of the ensemble is 

𝑎𝑚𝑏𝑖̅̅ ̅̅ ̅̅ ̅(𝑓𝑒𝑛�̃�|𝒙) = ∑ 𝛼ℎ𝑎𝑚𝑏𝑖(𝑓ℎ̃|𝒙) =

𝐻

ℎ=1

= ∑ 𝛼ℎ (𝑓ℎ̃(𝒙) − 𝑓𝑒𝑛�̃�(𝒙))
2

𝐻

ℎ=1

 

(11) 



The ambiguity term measures the disagree-

ment among the individual base learners on in-

stance 𝒙. If we use the Squared Error (SE) to 

measure the performance, then, the error of the 

individual base learner  𝑓ℎ̃ and the ensemble  𝑓𝑒𝑛�̃� 

are, respectively, 

 

𝑆𝐸(𝑓ℎ̃|𝒙) = (𝑓ℎ̃(𝒙) − 𝑓(𝒙))
2

   ℎ = 1, … , 𝐻 (12) 

 

𝑆𝐸(𝑓𝑒𝑛�̃�|𝒙) = (𝑓𝑒𝑛�̃�(𝒙) − 𝑓(𝒙))
2

   (13) 

Then, one can show that (Zhou, 2012) 

 

𝑎𝑚𝑏𝑖̅̅ ̅̅ ̅̅ ̅(𝑓𝑒𝑛�̃�|𝒙) = 𝑆𝐸̅̅̅̅ (ℎ̃|𝒙) − 𝑆𝐸(𝑓𝑒𝑛�̃�|𝒙) (14) 

 

where 𝑆𝐸̅̅̅̅ (ℎ̃|𝒙) = ∑ 𝛼ℎ
𝐻
ℎ=1 𝑆𝐸(𝑓ℎ̃|𝒙) is the 

weighted average of the individual base learner 

errors. Since Eq. (14), holds for every instance 𝒙, 

after averaging over the input distribution 𝑝(𝒙) 

from which the instances are sampled, it still 

holds that  

 

∑ 𝛼ℎ ∫ 𝑎𝑚𝑏𝑖(𝑓ℎ̃|𝒙)𝑝(𝒙) 𝑑𝒙 =

𝐻

ℎ=1

= ∑ 𝛼ℎ ∫ 𝑆𝐸(𝑓ℎ̃|𝒙)𝑝(𝒙) 𝑑𝒙

𝐻

ℎ=1

− ∫ 𝑆𝐸(𝑓𝑒𝑛�̃�|𝒙)𝑝(𝒙) 𝑑𝒙 

(15) 

 

The generalization error and the ambiguity of 

the individual base learner  𝑓ℎ̃, can be written as, 

respectively,  

𝐺𝐸(𝑓ℎ̃) = ∫ 𝑆𝐸(𝑓ℎ̃|𝒙)𝑝(𝒙) 𝑑𝒙    ℎ = 1, … , 𝐻 (16) 

 

𝑎𝑚𝑏𝑖(𝑓ℎ̃) = ∫ 𝑎𝑚𝑏𝑖(𝑓ℎ̃|𝒙)𝑝(𝒙)𝑑𝒙 

 ℎ = 1, … , 𝐻 
(17) 

 

Similarly, the generalization error of the en-

semble reads  

 

𝐺𝐸(𝑓𝑒𝑛�̃�) = ∫ 𝑆𝐸(𝑓𝑒𝑛�̃�|𝒙)𝑝(𝒙) 𝑑𝒙    ℎ = 1, … , 𝐻 (18) 

 

Based on the notation just introduced and Eq. 

(14), we obtain the error-ambiguity decomposi-

tion (Zhou, 2012): 

 

𝐺𝐸(𝑓𝑒𝑛�̃�) = 𝐺𝐸̅̅ ̅̅ (ℎ) − 𝑎𝑚𝑏𝑖̅̅ ̅̅ ̅̅ ̅(ℎ) (19) 
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