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Risk Informed Decision Making (RIDM) is based on risk metrics obtained from a Probabilistic Risk Assessment (PRA). For plants exposed to multiple hazards, Multi-Hazards Risk Aggregation (MHRA) is necessary to inform decisions. In practice, this is often done by a simple arithmetic summation over the different risk contributors, without taking into account that the state of knowledge of the risk models of the different hazards can be quite different.

In this paper, we provide a hierarchical framework to assess the strength of knowledge that PRA models are based upon. The framework is organized in three attributes characterizing the knowledge which a PRA model is based upon (assumptions, data, phenomenological understanding). These attributes are further broken down into sub-attributes and, finally, attributes that can be evaluated. The PRA models of two hazards groups for Nuclear Power Plants (NPPs) are considered and the strength of knowledge behind each model is assessed using the developed framework.

Introduction

In risk assessment, quantities are calculated to describe the magnitude and likelihood of the consequences from accidents that may develop from known hazards [START_REF]Informed Decision[END_REF]. The confidence on the calculated risk indexes depends on the knowledge available to support the risk assessment [START_REF]Safety Knowledge Approaches and National unce Reliab[END_REF][4][5]. For example, in the risk assessment of Nuclear Power Plants (NPPs), there is more experience and knowledge on internal events than other hazard groups like external flooding [START_REF]Informed Decision[END_REF]. Evaluating the strength of knowledge of a risk assessment, is, then, important to evaluate how much confidence we can put on the risk outcomes, that are, then, used to inform decision making [START_REF]s of the new risk Reliab[END_REF].

Research efforts have been conducted, recently, for linking knowledge, knowledge evaluation and knowledge management to Risk-Informed Decision-Making (RIDM) [4][5][6][7]. For example, in the nuclear industry, knowledge management has been identified as a key factor in sustaining nuclear power programs and maintaining their safety and security [START_REF]Safety Knowledge Approaches and National unce Reliab[END_REF]. However, most of the existing works are qualitative in nature. A semi-quantitative method for evaluating the strength of knowledge has been proposed by Flage and Aven [4], where the strength of knowledge is evaluated in terms of four attributes: (i) phenomenological understanding and availability of trustable predicting models; (ii) reasonability and realism of assumptions; (iii) availability of reliable and relevant data, and information; (iv) agreement/disagreement among peers. The four attributes were assessed in three levels (minor, moderate and significant) and aggregated for strength of knowledge assessment [4]. Although the knowledge attributes proposed are plausible and reasonably complete, their definitions remain ambiguous. In addition, the evaluation of these attributes is somewhat intangible in practice, since it is done by simple scoring based on a plain description of the attributes. To overcome this problem, we expand the work in [5] and introduce a hierarchical tree-based framework for evaluating the state of knowledge.

The rest of the paper is organized as follows. In Sect. 2, we present the developed framework for strength of knowledge assessment. Section 3 applies it on a case study of two hazard groups considered in NPPs risk assessment. Finally, in Sect 4, the paper is concluded with a discussion on potential future developments.

Assessment framework

We consider the strength of knowledge assessment of event tree models which are widely applied in PRA of NPPs. The events probabilities in the event tree model might are typically calculated by fault tree models. The risk index associated to a given consequence (e.g. the probability of core damage) is calculated by summing the values of the risk index from several risk models: [START_REF]Informed Decision[END_REF] where is the number of operation states (O), is the number of accident sequences (scenarios, S) that in operation state can lead to the given consequence. Each in (1) quantifies the specific risk index under scenario (e.g., medium flood level) in operation state (e.g., emergency shutdown).

The risk models used to calculate the risk index values are characterized by initial events (IEs), basic events (BEs) and the combinations of the latter into minimal cut sets (MCSs). In practice, it can often be assumed that the MCSs are mutually exclusive; then, can be calculated by [5]:
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where is the number of minimal cut sets in the risk model for operation state and scenario , is the number of basic events in the th minimal cut set, and is the probability of having the th basic event. The five elements, S, O, IE, BE and MCS, fully define a PRA model, as shown in Figure 1. In this paper, we refer to these five elements as atomic elements .

To assess the strength of knowledge of a PRA model, all the five atomic elements need to be considered. In practice, however, PRA models are very complex and contain many scenarios and operation states combined in large and complex fault trees and event trees, that consist of thousands of BEs and MCSs [6]. For such a complex risk assessment model, it is not practical to consider all atomic elements for evaluating the strength of knowledge. To address this problem, in this work, we first develop a reduced-order model for (1), in order to limit the number of atomic elements that need to be analyzed.

A flowchart of the developed knowledge assessment method is given in Figure 2. The first step involves developing a reducedorder model for the original risk assessment model. A detailed discussion on how to construct the reduced-order model is given in Sect. 2.1. Then, the strength of knowledge supporting each atomic element in the reduced-order model is assessed by an Analytical Hierarchy Process (AHP), as illustrated in Sect. 2.2. Finally, the strength of knowledge of each element is aggregated to evaluate the strength of knowledge of the entire PRA model. A detailed discussion is given in Sect. 2.3.

Reduced-order PRA model construction

It is often observed in PRA models that most of the contribution to the total risk is due to a small of elements of the problem (known as Pareto principle ) [7]. We can, then, reduce the PRA model into a reduced-ordered model, which cons elements

The procedure for constructing the reduced-order model comprises of three steps. Firstly, the number of operation states is reduced to , as follows:

Calculate the risk for each operation state:

(

where is calculated by [START_REF]s of the new risk Reliab[END_REF].

Rank in descending order. Find the minimal so that (4) where is the fraction of total risk that can be reproduced by the operation states in the reduced-order model (in the case study in Sect. 3.2.1, we assume that ). Keep only operation states for operation states with are eliminated.

The second step is to define the reduced number of scenarios for each operating state in the reduced-order model, where :

For calculate the risk , by [START_REF]s of the new risk Reliab[END_REF]. Rank in descending order. Find the minimal so that,

where is calculated by ( 3) and is the fraction of total risk that can be reproduced by the scenarios in the reduced-order model (in the case study in Sect. 3.2.1, we assume that ). Keep only scenarios for ; scenarios with are eliminated.

Finally, the number of minimal cut sets is tailored to , Calculate by:

(6) Rank in descending order. Find the minimal so that,

where is calculated by ( 6) and is the fraction of total risk that can be reproduced by the minimal cut sets in the reduced-order model (in the case study in Sect.

3.2.1, we assume that

). Keep only minimal cut sets for ; minimal cut sets with are eliminated.

Assuming that the MCSs are mutually exclusive, the total risk of the reduced-order PRA model can be calculated by: (8)

Note that from (4), ( 5) and ( 7), the reduced order risk can reconstruct of the total risk . Only the events that are contained in the reduced-order model (8) are used for assessing the strength of knowledge of the PSA. 

Knowledge assessment for the risk elements

Once the reduced-order model is constructed, the strength of knowledge of each atomic element in such model is evaluated. In Section 2.2.1, we present a tree-based hierarchical framework for knowledge assessment. Then, in Section 2.2.2, we show how to proceed with the evaluation using the Analytical Hierarchy Process (AHP) method.

2.2.1

Knowledge assessment framework A tree-based hierarchical framework is here developed for knowledge assessment, as shown in Figure 3. The strength of knowledge, represented by (Level 1), represents the solidity of knowledge that supports a PRA model. A higher value of strength of knowledge indicates that the PRA model is supported by trustable evidence and reliable knowledge, and, therefore, its results can be taken with confidence. As in Flage and Aven [4], we evaluate the strength of knowledge in terms of three attributes: assumptions ( ), data ( ) and phenomenological understanding

The attribute represents the adequacy, solidity and plausibility of the assumptions upon which the model is based;

represents the amount and quality of the available data that are used to estimate the parameters of the model; the knowledge behind the phenomenon described in the model.

For their evaluation, the three attributes are further decomposed into sub-attributes. In particular, assumptions is evaluated in terms of quality of assumptions , value ladenness and impact

; data is evaluated in terms of the amount of data and the reliability and consistency of data ; phenomenological understanding is evaluated in terms of years of experience of the experts involved in the model development number of experts involved academic evidence and industrial evidence Value ladenness and reliability and consistency of data are further decomposed into leaf -attributes in level 4 for their evaluation, as shown in Figure 3. The tree structure in Figure 3 is constructed based on a thorough literature review related to trustworthiness and validity assessment of PRA/QRA. References related to the construction of the tree model are given in Table 1. It should be noted that for phenomenological understanding, few references directly consider its assessment. A comprehensive understanding of phenomena requires its explanation [8], which depends on the capability of the experts involved in the risk modeling and analyses. Then, four sub-attributes are proposed for the assessment of phenomenological understanding: (i) industrial evidence; (ii) academic evidence; (iii) number of experts involved; (iv) number of years of experience in the domain).

Table 1. References that justify the model in Figure 3 Attributes References Strength of knowledge is evaluated by and .

[4] Realism and plausibility of assumptions ( is evaluated by the quality of assumptions ( ), the value ladenness and subjectivity of the experts (

) and sensitivity analysis on the assumptions ( ).

[9]; [START_REF] Kloprogge | based environm[END_REF]; [11] Value ladenness ( ) is defined by -.

[10]; [START_REF] Boone | evaluate the quality of assumptions in quantitative microbial risk[END_REF]; [START_REF]he contribution of external cost calculations to energy system governance: The case of a potential large-scale[END_REF]; [START_REF] Van Der Sluijs | Ravetz Quantitative and Qualitative Measures of Uncertainty in Model-Based Environmental Assessment[END_REF]; [14] Data ( ) is evaluated in terms of amount of available data ( ) and reliability of data ( ).

[4] Reliability of data is defined by: (i) completeness; (ii) consistency; (iii) accuracy; (iv) validity; (v) timeliness. [START_REF] Bergdahl | Handbook on Data Quality Assessment Methods and Tools[END_REF]; [16]; [START_REF]Data Collection and Record Keeping for the Management of Nuclear Power Plant Ageing[END_REF] 

Evaluation using AHP

Given the hierarchical tree in Figure 3, the assessment of the strength of knowledge is carried out within a multi-criteria analysis (MCDA) framework. AHP is adopted [START_REF] Saaty | Models, methods, concepts & applications of the analytic hierarchy process[END_REF], as it is fit for both quantitative and qualitative evaluation of attributes and factors [START_REF]Making using the Analytic United States Soc. Secur. Adm. Balt[END_REF] and for group decision making [START_REF]king with the analytic[END_REF].

A first step in applying AHP is to evaluate the attributes (the non-decomposable attributes in Figure 3). A score between and is used to represent the strength of knowledge with respect to each attribute, where 1 represents the lowest knowledge level and 5 represents the highest knowledge level. The score is evaluated based on some predefined evaluation criteria. Due to page limits, we only present the evaluation criteria for as an example (See Table 2). , respectively. Based on [14] and [START_REF]king with the analytic[END_REF], a scale of 1-9 is used for evaluating the importance of each of these attributes relative to each other, with reference to their contribution to the parent attribute: a value of 1 is assigned when two attributes of the same level of the hierarchy are equally important and 9 is assigned when one attribute is significantly more important than the other.

The strength of knowledge of the th atomic element, denoted by , is, then, calculated as a weighted average of all the scores of the

The value of is between and and a high value indicates that we have stronger knowledge on that atomic element.

Knowledge aggregation

From (8), the risk index of the reduced-order PRA model is the sum of risk index values from the corresponding elementary risk model, where each elementary risk model is further composed of MCS and BEs, as shown in (2) [START_REF] Boone | evaluate the quality of assumptions in quantitative microbial risk[END_REF] In ( 9), is the risk index of the -th reduced elementary risk model, where and is the number of MCS in the -th reduced elementary risk model.

Let

denote the strength of knowledge of the -th BE in the reduced elementary risk, where and a large value of indicates strong knowledge of BE. The s are assessed using the procedures described in Sect. 2.2. The next step is to aggregate the s to assess the strength of knowledge of the whole risk assessment model. The aggregation should consider the difference in each atomic contribution to the total risk.

Different importance measures can be used to evaluate the contribution of the atomic elements with respect to the total risk. Since the elementary reduced-ordered risk model is constructed by the BEs through MCSs, the weights of the BEs are calculated based on Fussell-Vesely importance measures: [START_REF] Kloprogge | based environm[END_REF] where is the Fussell-Vesely importance measure of the corresponding BE in the elementary risk model .

The strength of knowledge for the -th elementary reduced order risk model, denoted by is calculated by: (

The importance of the elementary reduced-order model is evaluated by its contribution to the total risk:

where is the risk index value of the -th elementary reduced order model and is calculated by [START_REF] Boone | evaluate the quality of assumptions in quantitative microbial risk[END_REF].

To calculate the total strength of knowledge of the reduced-order risk model, the knowledge indexes s of the reduced-order elementary risk models are further aggregated by considering their contributions: [START_REF] Van Der Sluijs | Ravetz Quantitative and Qualitative Measures of Uncertainty in Model-Based Environmental Assessment[END_REF] The index is, then, used to represent the strength of knowledge of the entire PRA. Its value is between and and a high value indicates that we have strong knowledge in support of the PRA model and its risk outcomes.

Case study

Problem description

In this section, we apply the developed method to assess the strength of knowledge of NPPs PRAs. Two hazard groups, i.e., external hazards and internal events are considered in this case study.

External hazards refer to the undesired events originating from sources outside the NPPs such as: external flooding, external fires, seismic hazards, etc., [START_REF]Probabilistic Safety Assessment for Nuclear Power[END_REF]. In particular, external flooding is a naturally induced hazard that might be caused due to different reasons such as: tides, tsunamis, dam failures, snow melts, storm surges and etc., (see [22] for more examples). The choice of these initiating events to be a part of the external flooding risk assessment models is site-specific and some guidance should be provided for this purpose [23]. In general, for external flooding, the state of PRA practice is considered less mature than for internal events [24]. For example, the flood frequencies are obtained using statistical models and by extrapolating design basis flood levels to the fitted historical data (usually limited), which results in a very high uncertainty [24]. Moreover, for extreme floods, the probability of occurrence is very low but, on the other hand, the potential consequences can be catastrophic [22]. The low probability and the consequent lack of data experience introduces large uncertainties in the risk analysis of this type of events [22].

Internal events refer to the undesired events that originate within the NPPs itself, which cause initiating events that might lead to loss of important systems and might eventually result in core meltdown [START_REF]Informed Decision[END_REF]. The internal events are mainly [25]: (i) different types of components, systems and structures failures, missiles and fires; (ii) safety systems operation and maintenance errors. These types of internal events can cause other initiating events such as turbine trip or Loss of Coolant Accidents (LOCAs). The risk assessment of internal events has been significantly developed and considered to have lower uncertainty compared to other hazard groups [START_REF]Informed Decision[END_REF].

Evaluation of hazard group strength of knowledge

In this case study, we consider the risk analysis models of two hazard groups developed by Electricité de France (EDF) using Risk Spectrum Professional software [26]; [START_REF][END_REF]. The knowledge assessment framework developed in Section 2 is applied to evaluate the strength of knowledge of the risk models for both internal and external events. Technical reports were provided to the experts to support the knowledge assessment with the needed data and information. For simplification, we only present the case of the external events (specifically flooding). For internal events, we only show the results of the application.

Reduced-order model construction

Based on Eq. ( 4) with , we found only one out of six operating states (NS/SG-normal shutdown with cooling using steam generator-NS/SG) is needed for the reduced-order model, which contributes to of the total risk index. Similarly, based on Eq. ( 5) with , only one out of ten scenarios (water levels) is needed for the reduced-order model, whose risk contribution is Based on Eq. ( 7) with , the number of MCSs needed for the reduced-order model is 5 out of 3102, and the risk contribution is Therefore, a reduced-order model is constructed based on the atomic elements in Table 3, as shown in Figure 4. 

Strength of knowledge assessment

After constructing the reduced-order model, the knowledge assessment framework in Section 2.2 has been applied on each of the atomic elements and, then, AHP is used to compare the overall model strength of knowledge. The strength of knowledge for external flooding turns out to be . The results of the knowledge assessment for both hazard groups are graphically illustrated in Figure 5. It can be seen from the Figure that the strength of knowledge on the internal events is higher than that on external flooding. In fact, these results confirm our expectations. In addition, most of the risk assigned to the external flooding is due to two basic events (failure to close the isolating valve in the auxiliary feedwater system and failure of the containment spray system), whose strength of knowledge is very weak.

Conclusions

An analytical hierarchy process-based framework has been proposed for assessing the strength of knowledge of PRA models. The framework is based on three main attributes (assumptions, data, and phenomenological understanding), which are further decomposed into sub-attributes and attributes. A reduced-order PRA model is constructed, that reduces the number of atomic elements to be analyzed. The framework has been applied on two hazard groups in NPPs.

In the future, model uncertainty in the PRA model will be considered for a more comprehensive knowledge assessment. In addition, in the current framework, the weights of the attributes in the AHP were subjectively evaluated. Future investigations will be devoted on how to more objectively evaluate the weights. 
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Table 2 . Quality of assumptions scoring guidelines
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	Score	1	3	5
	Attribute			
		The	The	The
		assumptions	assumptions	assumptions
	Quality of assumptions	are based on weak knowledge and not realistic (conservative assumptions or over-	are acceptable based moderate knowledge, on simple model and extrapolated	are based on strong knowledge and established theory, verified by peer review
		optimistic)	data	and very
				plausible
	Then, the inter-level priorities (weights) are determined for each
	attribute, sub-attribute and	denoted by	,
	and			

Table 3 Reduced-order model constituents Operating state Scenarios Number of MCS Number of basic events BE Total risk Contribution
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	Water level A	5	10	0.86×0.987×0.801= 0.6799