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Abstract: Risk Informed Decision Making (RIDM) is based on risk metrics obtained from a Probabilistic Risk Assessment (PRA). 

For plants exposed to multiple hazards, Multi-Hazards Risk Aggregation (MHRA) is necessary to inform decisions. In practice, this 
is often done by a simple arithmetic summation over the different risk contributors, without taking into account that the state of 
knowledge of the risk models of the different hazards can be quite different. 

In this paper, we provide a hierarchical framework to assess the strength of knowledge that PRA models are based upon. The 
framework is organized in three attributes characterizing the knowledge which a PRA model is based upon (assumptions, data, 
phenomenological understanding). These attributes are further broken down into sub-attributes and, finally,  attributes that can 
be evaluated. The PRA models of two hazards groups for Nuclear Power Plants (NPPs) are considered and the strength of knowledge 
behind each model is assessed using the developed framework. 
Keywords: Strength of knowledge, Probabilistic Risk Assessment (PRA), Risk Informed Decision Making (RIDM), Multi-
Hazards Risk Aggregation (MHRA) 

1. Introduction

In risk assessment, quantities are calculated to describe the 
magnitude and likelihood of the consequences from accidents 
that may develop from known hazards [1]. The confidence on 
the calculated risk indexes depends on the knowledge available 
to support the risk assessment [3-5]. For example, in the risk 
assessment of Nuclear Power Plants (NPPs), there is more 
experience and knowledge on internal events than other hazard 
groups like external flooding [1]. Evaluating the strength of 
knowledge of a risk assessment, is, then, important to evaluate 
how much confidence we can put on the risk outcomes, that are, 
then, used to inform decision making [2].  

Research efforts have been conducted, recently, for linking 
knowledge, knowledge evaluation and knowledge management 
to Risk-Informed Decision-Making (RIDM) [4-7]. For example, 
in the nuclear industry, knowledge management has been 
identified as a key factor in sustaining nuclear power programs 
and maintaining their safety and security [3]. However, most of 
the existing works are qualitative in nature. A semi-quantitative 
method for evaluating  the strength of knowledge has been 
proposed by Flage and Aven [4], where the strength of 
knowledge is evaluated in terms of four attributes: (i) 
phenomenological understanding and availability of trustable 
predicting models; (ii) reasonability and realism of assumptions; 
(iii) availability of reliable and relevant data, and information; 
(iv) agreement/disagreement among peers. The four attributes 
were assessed in three levels (minor, moderate and significant) 
and aggregated for strength of knowledge assessment [4]. 
Although the knowledge attributes proposed are plausible and 
reasonably complete, their definitions remain ambiguous. In 
addition, the evaluation of these attributes is somewhat 
intangible in practice, since it is done by simple scoring based 
on a plain description of the attributes. To overcome this 
problem, we expand the work in [5] and introduce a hierarchical 
tree-based framework for evaluating the state of knowledge. 

The rest of the paper is organized as follows. In Sect. 2, we 
present the developed framework for strength of knowledge 

assessment. Section 3 applies it on a case study of two hazard 
groups considered in NPPs risk assessment. Finally, in Sect 4, 
the paper is concluded with a discussion on potential future 
developments. 

2. Assessment framework 

We consider the strength of knowledge assessment of event tree 
models which are widely applied in PRA of NPPs. The events 
probabilities in the event tree model might are typically 
calculated by fault tree models. The risk index associated to a 
given consequence (e.g. the probability of core damage) is 
calculated by summing the values of the risk index from several 
risk models: 

 (1) 

where  is the number of operation states (O),  is the 
number of accident sequences (scenarios, S) that in operation 
state  can lead to the given consequence. Each in (1) 
quantifies the specific risk index under scenario  (e.g., medium 
flood level) in operation state  (e.g., emergency shutdown).  

The risk models used to calculate the risk index  values are 
characterized by initial events (IEs), basic events (BEs) and the 
combinations of the latter into minimal cut sets (MCSs). In 
practice, it can often be assumed that the MCSs are mutually 
exclusive; then, can be calculated by [5]: 

 (2) 

where  is the number of minimal cut sets in the risk 
model for operation state  and scenario ,  is the number 
of basic events in the th minimal cut set, and  is the 
probability of having the th basic event. The five elements, S, 
O, IE, BE and MCS, fully define a PRA model, as shown in 



Figure 1. In this paper, we refer to these five elements as atomic 
elements . 

To assess the strength of knowledge of a PRA model, all the five 
atomic elements need to be considered. In practice, however, 
PRA models are very complex and contain many scenarios and 

operation states combined in large and complex fault trees and 
event trees, that consist of thousands of BEs and MCSs [6]. For 
such a complex risk assessment model, it is not practical to 
consider all atomic elements for evaluating the strength of 
knowledge. To address this problem, in this work, we first 
develop a reduced-order model for (1), in order to limit the 
number of atomic elements that need to be analyzed. 

A flowchart of the developed knowledge assessment method is 
given in Figure 2. The first step involves developing a reduced-
order model for the original risk assessment model. A detailed 
discussion on how to construct the reduced-order model is given 
in Sect. 2.1. Then, the strength of knowledge supporting each 
atomic element in the reduced-order model is assessed by an 
Analytical Hierarchy Process (AHP), as illustrated in Sect. 2.2. 
Finally, the strength of knowledge of each element is aggregated 
to evaluate the strength of knowledge of the entire PRA model. 
A detailed discussion is given in Sect. 2.3. 

2.1 Reduced-order PRA model construction 

It is often observed in PRA models that most of the contribution 
to the total risk is due to a small number of elements of the 
problem (known as Pareto principle ) [7]. We can, then, 
reduce the PRA model into a reduced-ordered model, which 
cons elements  

The procedure for constructing the reduced-order model 
comprises of three steps. Firstly, the number of operation states 

 is reduced to , as follows: 

 Calculate the risk  for each operation state: 
 (3) 

where  is calculated by (2). 

 Rank  in descending order. 
 Find the minimal  so that 

   (4) 
where  is the fraction of total risk that can be 
reproduced by the operation states in the reduced-order 
model (in the case study in Sect. 3.2.1, we assume that 

). 
 Keep only operation states for  

operation states with  are eliminated. 

The second step is to define the reduced number of scenarios 
 for each operating state  in the reduced-order model, 

where :  

 For calculate the risk , 
 by (2). 

 Rank  in descending order. 
 Find the minimal  so that, 

   (5) 

where  is calculated by (3) and  is the fraction of 
total risk that can be reproduced by the scenarios in the 
reduced-order model (in the case study in Sect. 3.2.1, 
we assume that ). 

 Keep only scenarios for ; scenarios 
with  are eliminated. 

Finally, the number of minimal cut sets  is tailored to 
,  

 Calculate by: 

  (6) 

 Rank  in descending order. 
 Find the minimal  so that, 

  (7) 

where  is calculated by (6) and  is the fraction of 
total risk that can be reproduced by the minimal cut sets 
in the reduced-order model (in the case study in Sect. 
3.2.1, we assume that ). 

 Keep only minimal cut sets for ; 
minimal cut sets with  are eliminated. 

Assuming that the MCSs are mutually exclusive, the total risk 
of the reduced-order PRA model can be calculated by: 

  (8) 

Note that from (4), (5) and (7), the reduced order risk  can 
reconstruct  of the total risk . Only the events that 
are contained in the reduced-order model (8) are used for 
assessing the strength of knowledge of the PSA. 

Figure 1 Atomic elements of a PRA model 

Figure 2 Steps of PRA model knowledge assessment 



2.2 Knowledge assessment for the risk elements 

Once the reduced-order model is constructed, the strength of 
knowledge of each atomic element in such model is evaluated. 
In Section 2.2.1, we present a tree-based hierarchical framework 
for knowledge assessment. Then, in Section 2.2.2, we show how 
to proceed with the evaluation using the Analytical Hierarchy 
Process (AHP) method. 

2.2.1 Knowledge assessment framework 
A tree-based hierarchical framework is here developed for 
knowledge assessment, as shown in Figure 3. The strength of 
knowledge, represented by  (Level 1), represents the solidity 
of knowledge that supports a PRA model. A higher value of 
strength of knowledge indicates that the PRA model is supported 
by trustable evidence and reliable knowledge, and, therefore, its 
results can be taken with confidence.  
As in Flage and Aven [4], we evaluate the strength of knowledge 
in terms of three attributes: assumptions ( ), data ( ) and 
phenomenological understanding  The attribute  
represents the adequacy, solidity and plausibility of the 
assumptions upon which the model is based;  represents the 
amount and quality of the available data that are used to estimate 
the parameters of the model;   represents the knowledge 
behind the phenomenon described in the model.  

For their evaluation, the three attributes are further decomposed 
into sub-attributes. In particular, assumptions  is evaluated 
in terms of quality of assumptions , value ladenness  
and impact ; data is evaluated in terms of the amount 
of data  and the reliability and consistency of data ; 
phenomenological understanding  is evaluated in terms of 
years of experience of the experts involved in the model 
development number of experts involved  
academic evidence  and industrial evidence  Value 
ladenness and reliability and consistency of data are further 
decomposed into leaf -attributes in level 4 for their 
evaluation, as shown in Figure 3.  
The tree structure in Figure 3 is constructed based on a thorough 
literature review related to trustworthiness and validity 
assessment of PRA/QRA. References related to the construction 
of the tree model are given in Table 1. It should be noted that for 
phenomenological understanding, few references directly 
consider its assessment. A comprehensive understanding of 
phenomena requires its explanation [8], which depends on the 
capability of the experts involved in the risk modeling and 
analyses. Then, four sub-attributes are proposed for the 
assessment of phenomenological understanding: (i) industrial 
evidence; (ii) academic evidence; (iii) number of experts 
involved; (iv) number of years of experience in the domain).  

 

 
 

Table 1. References that justify the model in Figure 3 
Attributes References 
Strength of knowledge is evaluated by  and . [4] 
Realism and plausibility of assumptions ( ) is evaluated by the quality of assumptions ( ), the value 
ladenness and subjectivity of the experts ( ) and sensitivity analysis on the assumptions ( ). [9]; [10]; [11] 

Value ladenness ( ) is defined by - . [10]; [9]; [12]; 
[13]; [14] 

Data  ( ) is evaluated in terms of amount of available data ( ) and reliability of data ( ). [4] 
Reliability of data is defined by: (i) completeness; (ii) consistency; (iii) accuracy; (iv) validity; (v) timeliness. [15]; [16]; [17] 

 

2.2.2 Evaluation using AHP 

Given the hierarchical tree in Figure 3, the assessment of the 
strength of knowledge is carried out within a multi-criteria 
decision analysis (MCDA) framework. AHP is adopted [18], as 
it is fit for both quantitative and qualitative evaluation of 
attributes and factors [19] and for group decision making [20]. 

A first step in applying AHP is to evaluate the  attributes 
(the non-decomposable attributes in Figure 3). A score between 

 and  is used to represent the strength of knowledge with 
respect to each  attribute, where 1 represents the lowest 
knowledge level and 5 represents the highest knowledge level. 
The score is evaluated based on some predefined evaluation 

Figure 3 A hierarchical tree-based framework for knowledge assessment 



criteria. Due to page limits, we only present the evaluation 
criteria for  as an example (See Table 2).  

Table 2. Quality of assumptions scoring guidelines 

    Score 
Attribute 

1 3 5 

Q
ua

lit
y 

of
 a

ss
um

pt
io

ns
 

The 
assumptions 
are based on 
weak 
knowledge 
and not 
realistic 
(conservative 
assumptions 
or over-
optimistic) 

The 
assumptions 
are 
acceptable 
based on 
moderate 
knowledge, 
simple 
model and 
extrapolated 
data 

The 
assumptions 
are based on 
strong 
knowledge 
and 
established 
theory, 
verified by 
peer review 
and very 
plausible 

 

Then, the inter-level priorities (weights) are determined for each 
attribute, sub-attribute and  attribute, denoted by , 

 and , respectively. Based on [14] and [20], a 
scale of 1-9 is used for evaluating the importance of each of 
these attributes relative to each other, with reference to their 
contribution to the parent attribute: a  value of 1 is assigned when 
two attributes of the same level of the hierarchy are equally 
important and 9 is assigned when one attribute is significantly 
more important than the other. 

The strength of knowledge of the th atomic element, denoted 
by , is, then, calculated as a weighted average of all the scores 
of the  attributes. The value of  is between  and  and 
a high value indicates that we have stronger knowledge on that 
atomic element. 

2.3 Knowledge aggregation 

From (8), the risk index of the reduced-order PRA model is the 
sum of  risk index values from the 
corresponding elementary risk model, where each elementary 
risk model is further composed of MCS and BEs, as shown in 
(2)  

  (9) 

In (9),  is the risk index of the -th reduced elementary risk 
model, where  and  is the number of 
MCS in the -th reduced elementary risk model. 

Let  denote the strength of knowledge of the -th BE in 
the reduced elementary risk, where  and a large 
value of  indicates strong knowledge of BE. The s 
are assessed using the procedures described in Sect. 2.2. 

The next step is to aggregate the s to assess the strength 
of knowledge of the whole risk assessment model. The 
aggregation should consider the difference in each atomic 

contribution to the total risk. 

Different importance measures can be used to evaluate the 
contribution of the atomic elements with respect to the total risk. 
Since the elementary reduced-ordered risk model is constructed 
by the BEs through MCSs, the weights of the BEs are calculated 
based on Fussell-Vesely importance measures: 

   (10) 

where  is the Fussell-Vesely importance measure of the 
corresponding BE in the elementary risk model .  

The strength of knowledge for the -th elementary reduced order 
risk model, denoted by  is calculated by: 

 (11) 

The importance of the elementary reduced-order model is 
evaluated by its contribution to the total risk: 

     (12) 

where  is the risk index value of the -th elementary 
reduced order model and is calculated by (9). 

To calculate the total strength of knowledge  of the 
reduced-order risk model, the knowledge indexes s of the 
reduced-order elementary risk models are further aggregated by 
considering their contributions: 

   (13) 

The index  is, then, used to represent the strength of 
knowledge of the entire PRA. Its value is between  and  and 
a high value indicates that we have strong knowledge in support 
of the PRA model and its risk outcomes. 

3. Case study 

3.1 Problem description

In this section, we apply the developed method to assess the 
strength of knowledge of NPPs PRAs. Two hazard groups, i.e., 
external hazards and internal events are considered in this case 
study.  

External hazards refer to the undesired events originating from 
sources outside the NPPs such as: external flooding, external 
fires, seismic hazards, etc., [21]. In particular, external flooding 
is a naturally induced hazard that might be caused due to 
different reasons such as: tides, tsunamis, dam failures, snow 
melts, storm surges and etc., (see [22] for more examples). The 
choice of these initiating events to be a part of the external 
flooding risk assessment models is site-specific and some 
guidance should be provided for this purpose [23]. In general, 
for external flooding, the state of PRA practice is considered less 
mature than for internal events [24]. For example, the flood 
frequencies are obtained using statistical models and by 
extrapolating design basis flood levels to the fitted historical data 
(usually limited), which results in a very high uncertainty [24]. 
Moreover, for extreme floods, the probability of occurrence is 
very low but, on the other hand, the potential consequences can 
be catastrophic [22]. The low probability and the consequent 
lack of data experience introduces large uncertainties in the risk 
analysis of this type of events [22]. 

Internal events refer to the undesired events that originate within 
the NPPs itself, which cause initiating events that might lead to 
loss of important systems and might eventually result in core 
meltdown [1]. The internal events are mainly [25]: (i) different 
types of components, systems and structures failures, missiles 
and fires; (ii) safety systems operation and maintenance errors. 
These types of internal events can cause other initiating events 
such as turbine trip or Loss of Coolant Accidents (LOCAs). The 



risk assessment of internal events has been significantly 
developed and considered to have lower uncertainty compared 
to other hazard groups [1]. 

3.2 Evaluation of hazard group strength of knowledge 

In this case study, we consider the risk analysis models of two 
hazard groups developed by Electricité de France (EDF) using 
Risk Spectrum Professional software [26]; [27]. The knowledge 
assessment framework developed in Section 2 is applied to 
evaluate the strength of knowledge of the risk models for both 
internal and external events. Technical reports were provided to 
the experts to support the knowledge assessment with the needed 
data and information. For simplification, we only present the 
case of the external events (specifically flooding). For internal 
events, we only show the results of the application. 

3.2.1 Reduced-order model construction 

Based on Eq. (4) with , we found that only one out of six 
operating states (NS/SG-normal shutdown with cooling using 
steam generator-NS/SG) is needed for the reduced-order model, 
which contributes to  of the total risk index. Similarly, 
based on Eq. (5) with , only one out of ten scenarios  
(water levels) is needed for the reduced-order model, whose risk 
contribution is  Based on Eq. (7) with , the 
number of MCSs needed for the reduced-order model is 5 out of 
3102, and the risk contribution is  

Therefore, a reduced-order model is constructed based on the 
atomic elements in Table 3, as shown in Figure 4.

Table 3 Reduced-order model constituents 

Operating 
state Scenarios Number 

of MCS 

Number 
of basic 
events 

BE 

Total risk 
Contribution 

 Water 
level A 5 10 0.86×0.987×0.801= 

0.6799 
 

 

3.2.2 Strength of knowledge assessment 

After constructing the reduced-order model, the knowledge 
assessment framework in Section 2.2 has been applied on each 
of the atomic elements and, then, AHP is used to compare the 
overall model strength of knowledge. The strength of knowledge 
for external flooding turns out to be . The results of 
the knowledge assessment for both hazard groups are 
graphically illustrated in Figure 5. It can be seen from the Figure 
that the strength of knowledge on the internal events is higher 
than that on external flooding. In fact, these results confirm our 
expectations. In addition, most of the risk assigned to the 
external flooding is due to two basic events (failure to close the 
isolating valve in the auxiliary feedwater system and failure of 

the containment spray system), whose strength of knowledge is 
very weak.  

 

4. Conclusions 

An analytical hierarchy process-based framework has been 
proposed for assessing the strength of knowledge of PRA 
models. The framework is based on three main attributes 
(assumptions, data, and phenomenological understanding), 
which are further decomposed into sub-attributes and  
attributes. A reduced-order PRA model is constructed, that 
reduces the number of atomic elements to be analyzed. The 
framework has been applied on two hazard groups in NPPs.  

In the future, model uncertainty in the PRA model will be 
considered for a more comprehensive knowledge assessment. In 
addition, in the current framework, the weights of the attributes 
in the AHP were subjectively evaluated. Future investigations 
will be devoted on how to more objectively evaluate the weights.  
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