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Abstract
In this paper, we investigate a problem of passive mitigation of friction-induced vibrations due to mode
coupling instability in breaking systems. For this purpose, the well-known Hultèn’s model is coupled to
one Nonlinear Energy Sinks (NES). In previous work by the authors [1], an asymptotic analysis has been
performed on the system allowing to explain the steady-state response regimes observed in the numerical
simulations and predict some of them. However, because of the appearance of a three-dimensional critical
manifold, the prediction of the mitigation limit (i.e. the friction coefficient value which separates harmful
situations from harmless situations) has been not performed. This present work completes this previous
study using a general dynamics reduction method allowing to obtain one dimensional critical manifolds.
The mitigation limit is therefore predicted and compared, for validation purposes, to numerical integration
of the system.

1 Introduction

The squealing noise is due to dry friction in braking systems. It does not affect the quality of breaking but it is
the source of significant noise nuisance. This phenomenon also called mode-coupling instability corresponds
to a dynamic instability. It can be explained by the appearance of self-sustained oscillations - Limit Cycle
Oscillation (LCO) - induced by dry friction and due to the coalescence of modes in self-excited systems.

Research is always active to understand the generation of a disc brake squeal and to predict and reduce it.
Recent papers are for example based on non conventional analysis techniques such as probabilistic approach
incorparing incertainty in the parameters of the model to predict instabilities [2, 3] or statistical approach
from data obtained from different pad designs [4].

A more traditionally framework is considered here to investigate the problem of passive mitigation of
friction-induced vibrations due to mode coupling instability in breaking systems. The well-known two
degrees of freedom Hultèn’s model is used as simplified analytic model to gain insight the mechanisms
controlling brake squeal generation. This model is sufficient to investigate the mode-coupling instability
([5, 6, 7, 2]). This model is one of the models discussed in the review paper [8].

In the previous work by the authors [1], the mitigation squeaking noise was considered using the concept
of Targeted Energy Transfer (TET)[9]. TET is a passive control method which consists in coupling an
essentially nonlinear attachment also named Nonlinear Energy Sink (NES) to the primary system. The NES
involves a mass, an essential cubic restoring force and a linear damping force. The addition of a NES
drastically modifies the dynamic of the whole system giving access to complicate (nonlinear) dynamics
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Figure 1: (a) Mechanical system with NES. (b) Zoom on the NES.

fostering the energy transfer from the primary system to the NES[10]. This phenomenon is called energy
pumping.

Using the well-known Hultèn’s model coupled to two ungrounded NESs, Bergeot et al. [1] showed that the
use of NES appears to be an interesting way to control mode-coupling instability in braking systems. To ana-
lyze the steady-state response regimes, the system is partitioned in slow-fast dynamics using complexification-
averaging approach due to the presence a small dimensionless parameter related to the mass of the NES. The
slow-fast nature of the system allowed us to use multiple scale approach to analyze it. In particular, the shape
of the Critical Manifold of the slow-flow and the associated stability properties provide an analytical tool to
explain the existence of three regimes: periodic response regimes, strongly modulated responses regimes
and no mitigation regimes that appear when the trivial solution is unstable. A complete suppression regimes
is also observed.

The procedure gives access to the boundary values of the friction coefficient corresponding to the transi-
tion from complete suppression regime to periodic response regimes and from periodic response regimes
to strongly modulated responses are predicted analytically. However the prediction of the boundary value
between strongly modulated responses and no mitigation responses is not performed, this highlights that
global structure of possible response regimes can not be deduced from local stability analysis of a slow flow
subsystem with dimension larger than one. The prediction of this boundary value could be important in the
context of engineering applications and this is the object of this present work.

The aim of the present work is i) to show that mode-coupling instability in braking systems can be miti-
gated with only one NES and ii) to provide an analytic prediction of the boundary value between strongly
modulated responses and no mitigation responses.

The paper is organized as follows. In Sect. 2, the system under study including the Hultèn’s model (the
primary system) coupled to one ungrounded NES is presented and a reduction of the dynamics on the un-
stable mode of the primary system is performed. In Sect. 3 the reduced system is first analyzed following
the Geometric Singular Perturbation Theory writting first the reduced system as a slow-flow system using a
complexification-averaging method. Next the prediction of the mitigation limit is introduced and discussed
when the friction parameter is used as a bifurcation parameter. Finally, analytical prediction proposed in
Sect. 3 are compared to direct numerical simulations of the whole system.
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2 System under study

2.1 Mechanical model

The system considered here is shown Fig. 1. It is composed by the simple 2 degrees-of-freedom (DOFs) self-
excited system proposed by Hultèn [11] (the primary system) coupled to one NES with mass mh, damping
coefficient ch and cubic stiffness coefficient kNLh (and without linear stiffness) attached on the system in an
ungrounded configuration.

We focus on the analysis on the capacity of the NES attachments to suppress or mitigate vibrations when the
primary system is unstable.

The system is decribed by the follwing equations:

ẍ1 + εη1ẋ1 + x1 − εγx2 + εϕ1x
3
1 + εµ(ẋ1 − ḣ1) + εα (x1 − h1)3 = 0 (1a)

ẍ2 + εη2ẋ2 + (1− 2εa)x2 + εγx1 + εϕ2x
3
2 = 0 (1b)

εḧ+ εµ(ḣ− ẋ) + εα (h− x1)3 = 0 (1c)

where x1 and x2 (respectively h) are the displacements of the primary mass (respectively of the NES mass).

As shwon in [1], Eq. (1) results from a scaling of time (t = ω1t̃ with ω2
1 = k1/m) and a scaling of the

parameters with respect to the mass ratio ε = mh/m assuming 0 < ε << 1 where coefficients η1, η2, ϕ1,
ϕ2, γ, µ, α, a are adopted to be of order unity. The coefficients η1 and η2 characterize the damping terms
(c1, c2) of the Hulten model, ϕ1 and ϕ2 are the associated cubic stiffness coefficients (kNL1 , kNL2 ) whereas
γ is the friction coefficient. The parameters µ and α characterize the damping coefficient (ch)and the cubic
stiffness coefficient (kNLh ) of the NES. Finally, the coefficient a is defined as

√
k2/k1 = 1− εa.

2.2 Reduction of the dynamics

To simplify asymptotic analysis in next section, it is convenient to introduce new coordinates as

u1 = x1 + ε h u2 = x2 v = x1 − h, (2a)

giving reciprocally,

x1 =
u1 + ε v

1 + ε
x2 = u2 h =

u1 − v
1 + ε

. (3a)

Using Eqs. (3), Eq. (1) is transformed into the following form

ü1 + εη1u̇1 + u1 − εγu2 + ε(ϕ1u
3
1 − u1 + v) = 0 (4a)

ü2 + εη2u̇2 + (1− 2εa)u2 + εγu1 + εϕ2u
3
2 = 0 (4b)

v̈ + (1 + ε)µv̇ + εv + (1 + ε)αv3 + εη1u̇1 + (1− ε)u1 − εγu2 + εϕ1u
3
1 = 0, (4c)

where a first-order Taylor series around ε = 0 has been performed.

The reduction of the dynamics is performed on the first two equations of Eqs. (4) (the primary system) using
the biorthogonal transformation (see for example [12]).

Let u = (u1, u2, u̇1, u̇2)
t (the " t " is the usual notation for transpose operator), Eqs. (4a) and (4b) can be

written as a system of first order differential equations (state-space form)

u̇ = Au+ εf (u, v) , (5)
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where the matrix A is defined by

A =




0 0 1 0
0 0 0 1
−1 γε −εη1 0
−γε −1 + 2aε 0 −εη2


 (6)

and the vector function f is easily deduced from Eqs. (4a) and (4b). It is important to note that the matrix A
also characterizes the linear part of the primary system written on its state-space form.

The following eigenvalue problems:

Ar = λr and Atl = λl, (7)

where At denotes the transpose of A, are solved giving:

• two pairs of complex conjugates eigenvalues: λ1 and λ∗1, and λ2 and λ∗2 (the " ∗ " is the usual notation
for the complex conjugate),

• two pairs of complex conjugates eigenvectors of A: r1 and r∗1, and r2 and r∗2, called right eigenvectors
of A,

• two pairs of complex conjugates eigenvectors of At: l1 and l∗1, and l2 and l∗2, called left eigenvectors
of A.

The right and left eigenvectors satisfy the biorthogonality properties i.e LtR and LtAR are diagonal matri-
ces where R = [r1 r

∗
1 r2 r

∗
2] and L = [l1 l

∗
1 l2 l

∗
2]. It is convenient to normalize the two sets of eigenvectors

ri and li in order to obtain
LtR = I giving LtAR = D (8)

where I is the identity matrix and D = diag(λ1, λ
∗
1, λ2, λ

∗
2).

Performing now the change of variables

u = Rq or equivalently q = Ltu, (9)

Eq. (5) becomes
q̇ = Dq+ εLtf (Ru, v) . (10)

Eqs. (10) and (4c), which are equivalent to Eqs. (4), define the Full Non-Averaged System (FNAS).

From now we assume that only one pair of eigenvalues of the perturbed system, here denoted without lost
of generality (λ1, λ

∗
1), may have positive real part whereas the second pair (λ2, λ∗2) always has negative real

part. Hence, and because the coupling terms are of the order of magnitude of ε, after some exponentially
decaying transients the components q2, q∗2 become small, i.e. q2 ∼ q∗2 ∼ O(ε). Therefore, all terms related
to q2, q∗2 can be omitted from further consideration and Eq. (10) becomes

q̇1 = λ1q1 + εl1f (r11q1 + r∗11q
∗
1, v) (11)

where r11 denotes the first component of the vector r1.

Eqs. (11) and (4c) define the reduced equations of motion. Note that the previous reduction is valid during
transient when the amplitudes are relatively small and therefore must be questioned when large amplitudes
of oscillation are reached.
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2.3 About the order of magnitude of the eigenvalues and eigenvectors

Looking at Eq. (6), the matrix A appears as a perturbed matrix A = A0 + εA1 where the matrix A1

results from the damping and friction forces. The perturbed system (5) is a circulatory system 1 while the
unperturbed system, defined by A0 is not. It can be shown that A is regularly perturbed with respect to its
eigenvalues. Indeed, the determinant det(A) do not contain singular terms. Therefore, the matrix D can
be written as follow D = D0 + εD1, where D0 = diag(j,−j, j,−j) (from now, j2 = −1) is a diagonal
matrix with the eigenvalues of A0 on its diagonal and D1 ∼ O(1). On the contrary, the perturbed system
is no regularly perturbed with respect to its eigenvectors, i.e. the eigenvectors of A do not tend toward the
eigenvectors of A0 when ε → 0. Consequently, as the most restrictive assumption for further analysis, we
assume that left and right eigenvectors are of order 1 (i.e. R,L ∼ O(1)), even if they can contain terms of
order ε.

Taking into account previous remarks, the eigenvalue λ1 is written as follows

λ1 = j + ε (ρu + jνu) = ερu + j (1 + ενu) , (12)

where 1 + ενu is the frequency for which the observed steady-state responses are assumed to oscillate and
the real part is of order ε (i.e. ρu ∼ O(1)). Therefore, Eq. (11) becomes

q̇1 = jq1 + ε (ρu + jνu) q1 + εl1f (r11q1 + r∗11q
∗
1, v) . (13)

Finally grouping Eqs. (13) and (4c), the reduced equations of motion take the following form

q̇1 − jq1 − ε (ρu + jνu) q1 − εl31
(
ϕ1(r11q1 + r∗11q

∗
1)

3 − (r11q1 + r∗11q
∗
1)
)
+

εl41ϕ2(r21q1 + r∗21q
∗
1)

3 + εl31v = 0 (14a)

v̈ + (1 + ε)µv̇ + εv + (1 + ε)αv3 + εη1(r31q1 + r∗31q
∗
1) + (1− ε)(r11q1 + r∗11q

∗
1)−

εγ(r21q1 + r∗21q
∗
1) + εϕ1(r11q1 + r∗11q

∗
1)

3 = 0, (14b)

where rij (respectively lij) denotes the i-th component of the vector rj (respectively lj). Note that Eqs. (14)
characterize one unknown complex variable q1 and one unknown real variable v. Eqs. (14) define the Re-
duced Non-Averaged System (RNAS).

3 Asymptotic analysis of the reduced system

3.1 The slow-flow

In this section, RNAS (14) is analyzed following the Geometric Singular Perturbation Theory (GSPT) ([13,
14]) writing first the system as a slow-flow system.

The following change of variables is first applied to complexify the variable v as

ψ = v̇ + jv (15a)

and the complex variables q1, and ψ are next replaced by

q1 = φejt (16a)

ψ = ξejt, (16b)

where φ and ξ are the complex slow modulated amplitude of the fast component ejt.
1A circulatory mechanical system has a non-symmetric stiffness matrix due for example to friction or follower forces.
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After some algebraic manipulations followed by an averaging over one period T = 2π of the resulting
equations, Eqs. (14) reduce to

φ̇ = ε

(
(ρu − jνu + l31r11)φ− 3

(
l31|r11|2r11ϕ1 + l41|r21|2r21ϕ2

)
|φ|2φ+

jl31
2
ξ

)
(17a)

ξ̇ = −r11φ−
1

2
(µ+ jωu)ξ +

3jα

8
|ξ|2ξ

+ ε

(
(r11 + γr21 − η1r31)φ−

1

2
(µ− j)ξ − 3|r11|2r11ϕ1|φ|2φ+

3jα

8
|ξ|2ξ

)
. (17b)

where |.| denotes the modulus of a complex number.

For the future analysis, it is convenient to rewrite Eqs. (17) considering real variables. To achieve this, polar
coordinates are introduced as

φ = sejθφ (18a)

ξ = rejθξ , (18b)

where s and θφ (respectivily r and θξ) characterized the modulus and the argument of φ (respectivaly ξ).
Substituting Eq. (18b) into Eq. (17) and separting in real and imaginary part, Eq. (17) reduce to

ṡ = εf(s, r, δ) (19a)

ṙ = g1(s, r, δ, ε) (19b)

δ̇ = g2(s, r, δ, ε), (19c)

where δ = θφ − θξ. The expressions of the functions f , g1 and g2 are given Appendix A.

Eqs. (19) appear to have the slow-fast form where s is the slow variable whereas r and δ are the fast variables.
Eqs. (19) can be reformulated by switching from the fast time scale t to the slow time scale τ = εt giving

s′ = f (s, r, δ) (20a)

ε r′ = g1 (s, r, δ, ε) (20b)

ε δ′ = g2 (s, r, δ, ε) , (20c)

where ′ = d
dτ . Solutions of slow-fast system (19) or (20) can exhibit slow and fast epochs characterized by

slow and fast motions. This will be considered in the following Section in the framework of the GSPT.

3.2 The Critical Manifold and its stability

Stating ε = 0, Eqs. (19) and (20) reduce, respectively, to:

ṡ = 0 (21a)

ṙ = g1(s, r, δ, 0) (21b)

δ̇ = g2(s, r, δ, 0), (21c)

the fast subsystem which is a family of dynamical systems for the fast variables ξ and

s′ = f (s, r, δ) (22a)

0 = g1 (s, r, δ, 0) (22b)

0 = g2 (s, r, δ, 0) , (22c)

the slow subsystem which is a system of Differential Algebraic Equations (DAE). The goal of the GSPT is
to characterize the dynamic of the initial system (19) or (20) using the fast and slow subsystems (21) or (22).
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Considering the slow subsystem, the nonlinear equations (22b) and (22c) define the so-called Critical Mani-
fold S as [14]

S :=
{
(s, r, δ) ∈ R3

∣∣ g1 (s, r, δ, 0) = 0 and g2 (s, r, δ, 0) = 0
}
. (23)

Looking at Eqs. (42) and (43), the nonlinear equations takes the form

g1 (s, r, δ, 0) = −
µ

2
r − (rR11 cos(δ)− rI11 sin(δ))s = 0 (24a)

g2 (s, r, δ, 0) =
3α

8
r2 − ωu

2
− (rR11 sin(δ) + rI11 cos(δ))

s

r
= 0. (24b)

Combining Eqs. (24a) and (24b) leads to the modulus equation

s2
(
rR

2

11 + rI
2

11

)
= H(r), (25)

where

H(r) = H2
1 (r) +H2(r)

2 with H1(r) = −
µ

2
r and H2(r) =

(
3α

8
r2 − 1

2

)
r, (26)

and to the characterization of the argument δ as

cos(δ) =
r
(
3r2αrR11 + 4µrI11 − 4rR11

)

8s
(
rR

2

11 + rI
2

11

) and sin(δ) =
r
(
3r2αrR11 − 4µrR11 − 4rI11

)

8s
(
rR

2

11 + rI
2

11

) . (27)

Hence the Critical Manifold S appears to be a curve in the (s, r)-plane.

Stability analysis of the SIM is now carry out considering the fast subsystem (21). It can be shown that the
Jacobian matrix reads as 


dH1(r)

dr
−H2(r)

1

r

dH2(r)

dr

H1(r)

r


 , (28)

and using the Routh-Hurwitz criterium we can deduce that a fixed point of Eq. (21) is stable if H ′(r) > 0
and unstable if H ′(r) < 0. Hence the subset of S satisfying H ′(r) > 0 defines the attractive zone for the
fast dynamics whereas the subset of S satisfying H ′(r) > 0 define the repulsive zone.

Exploiting the polynomial properties ofH , it can be shown that the local extrema ofH (i.eH ′(r) = 0) occur
at

rM =
2

3
√
α

√
2−

√
1− 3µ2 and rm =

2

3
√
α

√
2 +

√
1− 3µ2, (29)

if the following relation holds

µ <
1√
3
, (30)

and in this case rM < rm.

When condition (30) is satisfied, the two points (sm, rm) and (sM , rM ) where the two scalars sM and sm are

defined by sm =

√
H(rm)

rR
2

11 +rI
2

11

and sM =

√
H(rM )

rR
2

11 +rI
2

11

characterize the bounds where S ceases to be attractive

connecting stable and unstable (repulsive) parts of S. These two points are called fold points. A typical CM
is depicted Fig. 2 where the green points correspond to the fold points. The two scalars rd and ru (see the
red points on Fig. 2), which will be used later, are defined by Hn (r

m
n ) = Hn

(
rdn
)

and Hn

(
rMn
)
= Hn (r

u
n)

giving

rdn =
2
√
2

3
√
α

√
1−

√
1− 3µ2 and run =

2
√
2

3
√
α

√
1 +

√
1− 3µ2. (31a)
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Figure 2: Typical Critical Manifold (CM). Set of parameters (40) is used with µ = 0.35.

3.3 Fixed points and folded singularities of the slow flow

The dynamic of the slow subsystem (22) is now characterized in S.

Substituting Eq. (25) into Eq. (22a) results in

(√
H(r)

rR
2

11 + rI
2

11

)′
= f

(√
H(r)

rR
2

11 + rI
2

11

, r, δ

)
(32)

Next using Eq. (22b), Eq. (32) reduces to

dH(r)

dr
r′ = fr(r), (33)

where the expression of fr is given Appendix B.

A (regular) fixed points of Eq. (33) is defined as the roots of the following nonlinear equations in presence
of constraint

fr (r) = 0 with
dH(r)

dr
6= 0. (34)

Assuming ε � 1, a fixed point of Eq. (33) is an ε-approximation of a fixed point of Eq. (19) which charac-
terizes a periodic solution of Eq. (14). As usual, stability of the fixed points are found looking for the sign of
d
dr

(
fr(r)
H′(r)

)
.

A singular fixed points of Eq. (33) is defined as the roots of the following nonlinear equations

fr (r) = 0 and
dH(r)

dr
= 0. (35)

Assuming condition (30), singular fixed points can exists among the fold points defined Eq. (29).

3.4 Prediction of the mitigation limit

Four main types of response regimes may be observed when a NES is attached on an unstable system: com-
plete suppression of the instability, mitigation through Periodic Response (PR), mitigation through Strongly
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Modulated Response (SMR) or no mitigation. These four types of responses have been observed and an-
alyzed in the case of a Van de Pol oscillator coupled to one NES [15]. They have been also observed by
Bergeot et al. [1] studying mitigation of a mode-coupling instability in breaking systems using two NESs.
In the present study we classify these regimes into two categories depending on the fact that the NES acts or
not and therefore separating harmless situations from harmful situations:

1. Harmless situation: the NES acts resulting to the following regimes

(a) Complete suppression. The trivial fixed point of the slow-flow is reached. In this case, due to
the additional damping, the NES attachment stabilizes the system, i.e. the trivial fixed point,
common to both the non-averaged system and the slow-flow, becomes stable.

(b) Mitigation through Periodic Response. A nontrivial stable fixed point of the slow-flow is reached.
In this case, the steady-state of the non-averaged system response regime is a periodic regime, i.e.
LCOs with an amplitude smaller than amplitude of the LCOs undergone by the primary system.

(c) Mitigation through Strongly Modulated Response. In this case, the steady-state response regime
is a quasiperiodic regime which exhibits a "fast" component and a "slow" component correspond-
ing to the envelope of the signal. The term "Strongly modulated response" has been introduced
in [16] for the study of a harmonically forced linear system coupled to a NES. SMR for the non-
averaged system corresponds to relaxation oscillation of the slow-flow. To ensure the existence
of SMRs, condition (30) must be respected.

2. Harmful situation: the NES does not act resulting to

(a) No mitigation. The NES is not able to mitigate the instability and the non-averaged system
saturates on a LCO which has an amplitude close to that of the case without NES. Regarding the
slow-flow, it reaches a stable fixed point with large amplitude.

The nature of the steady-state regime depends on two things about the slow-flow. Firstly, it depends on the
initial conditions to know where the slow dynamics leads the trajectory on S. Secondly, it depends on the
fixed points (position and stability) which orientates the dynamics on S at the slow time scale. Here, for
convenience and in accordance with real word situations, we consider a set of initial conditions {s(0), r(0)}t
as a small perturbation of the trivial solution 0.

Considering the two situations described above and the previous comments, the mitigation limit with respect
to the friction parameter γ (the chosen bifurcation parameter in this work) is introduced in the following
definition. The definition can be adapted to other parameters.

Definition 3.1 Considering a set of initial conditions (for the slow-flow) {s(0), r(0)}t as a small perturba-
tion of the trivial solution 0, the mitigation limit of the friction parameter γ is defined as the value of γ ,
denoted γml, which separates harmful situations from harmless situations.

The definition 3.1 is based only on the nature of the steady-state regimes when 1:1 resonance occurs. This
may be questioned regarding the amplitudes of these regimes but it is admitted in this study.

The method to predict the steady-state regimes, and consequently the mitigation limit, is now presented. As
a result of the reduction method presented in Sect. 2.2, the slow-flow (17) is equivalent to that of a 1 DOF
primary system coupled to one NES. This allows to predict easily the nature of the steady-state regimes.
In keeping with [15], conditions to ensure that the system undergoes a harmless situation are stated below
assuming that the NES respects condition (30).

Result 3.1 The conditions to obtain harmless situations are split in two cases:
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Case a. We assume that the slow-flow has a stable fixed point {s∗s, r∗s} (trivial or nontrivial) on the first
attractive part of the critical manifold S. In this case, the system is in a harmless situation if

r∗s < rM . (36)

In this case harmless situation corresponds to Complete suppression for the trivial fixed point or
Mitigation through Periodic Response for the nontrivial fixed points.
If (36) is not respected one must pass to Case b.

Case b. We assume that the system has at least one nontrivial unstable fixed points on a stable part of the
critical manifold S; denoted {s∗u, r∗u}. In this case, the system is in an harmless situation if

r∗u < ru. (37)

In this case harmless situation corresponds to Mitigation through Periodic Response or Mitigation
through Strongly Modulated Response.

Conversely, the system is in an harmful situation if the system is nether in Case a, nor in Case b.

We give now a quantitative definition of the mitigation limit γml of the system.

Result 3.2 Let γlim, the value of the parameter γ after which the slow-flow has no more nontrivial unstable
fixed points and γs the value of the parameter γ such that

r∗u = ru, (38)

where ru is defined by Eq. (31).

The theoretical prediction of the mitigation limit, denoted γthml, is defined as follows

γthml =

{
γs, if γs < γlim (39a)

γlim, if γs > γlim. (39b)

4 Numerical illustrations of the steady-state response regimes

The purpose of this section is to illustrate some steady-state response regimes by means of direct numerical
integration of the FNAS (10), the RNAS (14) and the slow-flow (17). To achieve this, the following set of
parameters is used

η1 = 0.4, η1 = 1, ϕ1 = 8, ϕ2 = 2, ε = 0.01, α = 4 (40)

with µ = 0.35 and for three de different values of γ: 1.5, 1.67 and 2 leading respectively to Mitigation
through Periodic Response, Mitigation through Strongly Modulated Response and No mitigation of the LCO
(see Fig 3). As expected the RNAS is a good approximation of the FNAS during transient and it is valid
during steady-state regime only when the latter has a relatively small amplitude, as it is here for Mitigation
through Periodic Response. On the other hand, the slow-flow appears to be alway a good approximation of
the RNAS.
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Figure 3: Direct numerical integration of the FNAS (10), the RNAS (14) and of the slow-flow (17). Set of
parameters (40) is used with µ = 0.35. (a) and (b) γ = 1.5; (c) and (d) γ = 1.67; (e) and (f) γ = 2.

5 Comparison of theoretical results with numerical simulations

In this section, analytical predictions proposed in Results 3.1 and 3.2 are compared to direct numerical
integration of the system.

The comparison between the theoretical bifurcation diagram, obtained from Eq. (34) and the maximum
steady-state amplitudes obtained from numerical simulations of the Full Non-Averaged System (FNAS) (10),
the Reduced Non-Averaged System (RNAS) (14) and of the slow-flow (17b) using the set of parameters (40)
is presented in Figs. 4 and 5 for different values of the NES parameter µ. The graphs of the maximum
steady-state amplitude give a numerical estimation of the mitigation limit as the value of γ for which the last
jump of the amplitude is observed.

In Fig 4, where µ = 0.35, the amplitude jump appears at γ ≈ 1.67 for the FNAS and at γ ≈ 1.74 for both the
RNAS and the slow-flow (see the last jump of the amplitude of the variable s Fig 4(a) and r Fig 4(b). Hence
the reduction of the dynamic causes here a slight increase in the value of the mitigation limit. However, the
slow-flow, can predict the mitigation limit observed with the RNAS. Previous values must be compared to
the theoretical prediction γthml ≈ 1.72 which is given, for µ = 0.35, by Eq. (39a). Here γs is obtained solving
Eq. (38) graphically in Fig. 4(b) as the intersection of the branch of the larger unstable fixed points (dark
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Figure 4: Comparison between theoretical bifurcation diagram (magenta dots for stable fixed points and blue
dots for unstable fixed points) and maximum steady-state amplitudes obtained from numerical simulations of
the Eq. (10) (green filled squares), Eq. (14) (blue filled circles) and Eq. (17) (black empty circles). Bifurcation
diagram and maximum steady-state amplitudes are plotted for the variables (a) s and (b) r. In the latter, red
horizontal lines correspond to rM and rm (with rM < rm) and orange horizontal lines correspond to ru and
rd (with rd < ru). Set of parameters (40) is used with µ = 0.35.

blue curve) and ru (upper orange horizontal line). Therefore, a good agreement between prediction and direct
numerical simulations is observed. Moreover, we can state here the same conclusion about amplitudes as in
Sect. 4, with, in addition, a significant difference observed between the amplitude of the slow-flow and that
of the RNAS after the jump. This can be due to the fact that the assumption of 1:1 resonance capture is not
respected anymore. Indeed, an FFT performed on the signals shows the appearance of additional harmonics
in the steady-state response regimes of the RNAS. Note that these harmonics are not present in the steady-
state response regimes of the FNAS. However, all these differences do not affect the good prediction of the
mitigation limit.

In Fig 5, only graphs with respect to the variable r are presented with µ ≈ 0.4, 0.45 and 0.57. One can see
that the last amplitude jump appears at γ ≈ 1.85, 1.94 and 1.9 for both the RNAS and the slow-flow and they
are well predicted by the theoretical values (γthml ≈ 1.87, 1.98 and 1.95 respectively2). These results allows
to validate the asymptotic study presented in Sect. 3.

However, the comparison between the mitigation limits observed on the graph of the maximum steady-state
amplitudes of the FNAS (the amplitude jump appears at γ = 1.67, 1.65 and 1.63) and the theoretical pre-
diction highlights the limits of the dynamics reduction method presented in Sect. 2.2. Indeed, the theoretical
values overestimate now the mitigation limit observed with FNAS when µ increases. The overestimation of

2When µ = 0.4 and 0.45, the theoretical prediction γthml is given by Eq. (39a) whereas it is given by Eq. (39b) for µ = 0.57.
Like γs, the value of γlim is determined graphically.
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the mitigation is due to a bad estimation of amplitudes before the jump (see Fig. 5), even if the amplitudes
are small. The causes of these discrepancies are not yet known, this will be subject of future work.
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Figure 5: Same caption as for Fig. 4(b) with µ = 0.4, 0.45 and 0.57.

6 Conclusion

We studied the capacity of Nonlinear Energy Sinks (NES) to mitigate vibrations due to mode-coupling
instability in braking systems. As an extension of a previous work [1], we used here a general dynamics
reduction method allowing to obtain a one dimensional critical manifolds and consequently to predict all
the steady-state response regimes observed using direct numerical integration of the equations of motion.
In particular, the mitigation limit, defined as the value of the friction coefficient which separates harmful
situations from harmless situations, has been predicted. The comparison with numerical simulation allows
to validate the used asymptotic analysis but highlights the limits of the dynamic reduction method. Indeed,
overestimations of the mitigation limit are observed for large value of NES damping parameter. The causes
of these discrepancies are not yet known and will be subject of future work.

A Slow-fast system

The function f , g1 and g2 characterizing the slow-fow system (19) are given here after.

f(s, r, δ) =
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g1(s, r, δ, ε) = −rµ
2
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B Slow subsystem

The function fr characterizing Eq. (33) is given here after.
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